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1. Introduction 

Model predictive control (MPC) refers to the class of computer control algorithms in which a 
dynamic process model is used to predict and optimize process performance. Since its lower 
request of modeling accuracy and robustness to complicated process plants, MPC for linear 
systems has been widely accepted in the process industry and many other fields. But for 
highly nonlinear processes, or for some moderately nonlinear processes with large operating 
regions, linear MPC is often inefficient. To solve these difficulties, nonlinear model 
predictive control (NMPC) attracted increasing attention over the past decade (Qin et al., 
2003, Cannon, 2004). Nowadays, the research on NMPC mainly focuses on its theoretical 
characters, such as stability, robustness and so on, while the computational method of 
NMPC is ignored in some extent. The fact mentioned above is one of the most serious 
reasons that obstruct the practical implementations of NMPC.  
Analyzing the computational problem of NMPC, the direct incorporation of a nonlinear 
process into the linear MPC formulation structure may result in a non-convex nonlinear 
programming problem, which needs to be solved under strict sampling time constraints and 
has been proved as an NP-hard problem (Zheng, 1997). In general, since there is no accurate 
analytical solution to most kinds of nonlinear programming problem, we usually have to 
use numerical methods such as Sequential Quadric Programming (SQP) (Ferreau et al., 2006) 
or Genetic Algorithm (GA) (Yuzgec et al., 2006). Moreover, the computational load of NMPC 
using numerical methods is also much heavier than that of linear MPC, and it would even 
increase exponentially when the predictive horizon length increases. All of these facts lead 
us to develop a novel NMPC with analytical solution and little computational load in this 
chapter. 
Since affine nonlinear system can represents a lot of practical plants in industry control, 
including the water-tank system that we used to carry out the simulations and experiments, 
it has been chosen for propose our novel NMPC algorithm. Follow the steps of research 
work, the chapter is arranged as follows:  
In Section 2, analytical one-step NMPC for affine nonlinear system will be introduced at first, 
then, after description of the control problem of a water-tank system, simulations will be 
carried out to verify the result of theoretical research. Error analysis and feedback 
compensation will be discussed with theoretical analysis, simulations and experiment at last. 
Then, in Section 3, by substituting reference trajectory for predicted state with stair-like 
control strategy, and using sequential one-step predictions instead of the multi-step 
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prediction, the analytical multi-step NMPC for affine nonlinear system will be proposed. 
Simulative and experimental control results will also indicate the efficiency of it. The 
feedback compensation mentioned in Section 2 is also used to guarantee the robustness to 
model mismatch.  
Conclusion and further research direction will be given at last in Section 4. 

2. One-step NMPC for affine system 

2.1 Description of NMPC for affine system 
Consider a time-invariant, discrete, affine nonlinear system with integer k representing the 

current discrete time event: 

 k+1 k k k kx =f(x )+g(x )×u +ξ   (1a) 

 s. t. n
kx X R∈ ⊆    (1b) 

 m
ku U R∈ ⊆   (1c) 

 n
kξ R∈   (1d) 

In the above, k k ku ,x ,ξ  are input, state and disturbance of the system respectively, 

n nf:R R→ , n n×mg:R R→ are corresponding nonlinear mapping functions with proper 

dimension.  

Assume k+j|kx̂ are predictive values of k+jx at time k, k k k-1Δu =u -u  and k+j|k
ˆΔu are the 

solutions of future increment of k+ju at time k, then the objective function kJ  can be written 

as follow: 

 
p-1

k k+p|k k+j|k k+j|k
j=0

ˆ ˆJ =F(x )+ G(x ,Δu )  (2) 

The function F (.) and G (. , .) represent the terminal state penalty and the stage cost 

respectively, where p is the predictive horizon.  

In general, kJ  usually has a quadratic form. Assume k+j|kw  is the reference value of k jx +  at 

time k which is called reference trajectory (the form of k j|kw +  will be introduced with detail 

in Section 2.2 and 3.1 for one-step NMPC and multi-step NMPC respectively), semi-positive 
definite matrix Q and positive definite matrix R are weighting matrices, (2) now can be 
written as : 

 
p p 1

2 2

k k j|k k j|k k j|kQ R
j 1 j 0

ˆJ x w u
−

+ + +
= =

= − + ∆    (3) 

Corresponding to (1) and (3), the NMPC for affine system at each sampling time now is 

formulated as the minimization of kJ , by choosing the increments sequence of future 

control input k|k k 1|k k p 1|k[ u u u ]+ + −∆ ∆ ∆ , under constraints (1b) and (1c).  
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By the way, for simplicity, In (3), part of kJ  is about the system state kx , if the output of the 

system  k ky Cx= , which is a linear combination of the state (C is a linear matrix), we can 

rewrite (3) as follow to make an objective function kJ  about system output: 

 
p p 1

2 2

k k j|k k j|k k j|kQ R
j 1 j 0

ˆJ Cx w u
−

+ + +
= =

= − + ∆ 
p p 1

2 2

k j|k k j|k k j|kQ R
j 1 j 0

ŷ w u
−

+ + +
= =

= − + ∆   (4) 

And sometimes, k j|ku +∆  in kJ  could also be changed as k j|ku +  to meet the need of practical 

control problems. 

2.2 One-step NMPC for affine system 
Except for some special model, such as Hammerstein model, analytic solution of multi-step 
NMPC could not be obtained for most nonlinear systems, including the NMPC for affine 
system mentioned above in Section 2.1. But if the analytic inverse of system function exists 
(could be either state-space model or input-state model), the one-step NMPC always has the 
analytic solution. So all the research in this chapter is not only suitable for affine nonlinear 
system, but also suitable for other nonlinear systems, that have analytic inverse system 
function. 
Consider system described by (1a-1d) again, the one-step prediction can be deduced directly 

as follow with only one unknown data k|k k|k k 1u u u −∆ = −  at time k: 

 1
k 1|k k k k|k k k k 1 k k|k k 1|k k k|k

ˆ ˆx f(x ) g(x ) u f(x ) g(x ) u g(x ) u x g(x ) u+ − += + ⋅ = + ⋅ + ⋅ ∆ = + ⋅ ∆  (5) 

In (5), 1
k 1|kx̂ + means the part which contains only known data ( kx and k-1u ) at time k, and 

k k|kg(x ) u⋅ ∆ is the unknown part of predictive state k 1|kx̂ + . 
If there is no model mismatch, the predictive error of (5) will be k 1|k k 1 k 1|k k 1

ˆx x x ξ+ + + += − = . 

Especially, if kξ  is a stationary stochastic noise with zero mean and variance 2
kE[ ]ξ = δ , it is 

easy known that k 1|kE[x ] 0+ = , and T 2
k 1|k k 1|k k 1|k k 1|kE[(x E[x ]) (x E[x ])] n+ + + +− ⋅ − = δ    , in 

another word, both the mean and the variance of the predictive error have a minimum 
value, so the prediction is an optimal prediction here in (5).  

Then if the setpoint is spx , and to soften the future state curve, the expected state value at 

time k+1 is chosen as k 1|k k spw x (1 )x+ = α + − α , where [0,1)α ∈  is called soften factor, thus 

the objective function of one-step NMPC can be written as follow: 

 
2 2

k k 1|k k 1|k k|kQ R
ˆJ x w u+ += − + ∆  (6)  

To minimize kJ without constraints (1b) and (1c),  we just need to have k

k|k

J
0

u

∂
=

∂∆
 and 

2
k
2
k|k

J
0

u

∂
>

∂∆
,  then: 

 T 1 1
k|k k k k k 1|k k 1|k

ˆu (g(x ) Q g(x ) R) (g(x ) Q (x w ))−
+ +∆ = − ⋅ ⋅ + ⋅ ⋅ ⋅ −  (7) 
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Mark T
k kH g(x ) Q g(x ) R= ⋅ ⋅ +  and 1

k k 1|k k 1|k
ˆF g(x ) Q (w x )+ += ⋅ ⋅ − , so the increment of 

instant future input is: 

 1
k|ku H F−∆ = −   (8) 

But in practical control problem, limitations on input and output always exist, so the result 

of (8) is usually not efficient. To satisfy the constraints, we can just put logical limitation on 

amplitudes of ku  and kx , or some classical methods such as Lagrange method could be 

used. For simplicity, we only discuss about the Lagrange method here in this chapter. 
First, suppose every constraint in (1b) and (1c) could be rewritten in the form as 

T
i k|k ia u b∆ ≤ , i 1,2, q=  , then the matrix form of all constraints is: 

 k|kA u B∆ ≤   (9) 

In which, 
TT T T

1 2 qA a a ... a =  
T

1 2 qB b b ... b =   . 

Choose Lagrange function as T T
k i k i i k|k iL ( ) J (a u b )λ = + λ ∆ − , i 1,2, q=  , let 

k|k i i
k|k

L
H u F a 0

u

∂
= ∆ + + λ =

∂∆
 and T

i k|k i
i

L
a u b 0

∂
= ∆ − =

∂λ
, then: 

 1
k|k i iu H (F a )−∆ = − + λ   (10a) 

 
T 1
i i

i T 1
i i

a H F b

a H a

−

−

+
λ = −   (10b) 

If i 0λ ≤ in (10b), means that the corresponding constraint has no effect on k|ku∆ , we can 

choose i 0λ = , but if i 0λ >  in (10b), the corresponding constraint has effect on ku∆  indeed, 

so we must choose i iλ = λ , finally, the solution of one-step NMPC with constraints  could 

be: 

 1 T
k|ku H (F A )−∆ = − + Λ   (11) 

In which, 
T

1 2 q
 Λ = λ λ λ   

2.3 Control problem of the water-tank system 
Our plant of simulations and experiments in this chapter is a water-tank control system as 
that in Fig. 1. and Fig. 2. (We just used one water-tank of this three-tank system). Its affine 
nonlinear model is achieved by mechanism modeling (Chen et al., 2006), in which the 
variables are normalized, and the sample time is 1 second here:  

 k 1 k k kx x 0.2021 x 0.01923u+ = − +   (12a) 

  s. t. kx [0%,100%]∈   (12b) 
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 ku [0%,100%]∈   (12c) 

In (12), kx  is the height of water in the tank, and ku  is the velocity of water flow into the 

tank, from pump P1 and valve V1, while valve V2 is always open. In the control problem of 

the water-tank, for convenience, we choose the system state as the output, that means  

k ky x= , and the system functions are k k kf(x ) x 0.2021 x= −  and kg(x ) 0.01923= . 
 

 

Fig. 1. Photo of the water-tank system 

 

 

Fig. 2. Structure of the water-tank system 

To change the height of the water level, we can change the velocity of input flow, by 
adjusting control current of valve V1, and the normalized relation between the control 

current and the velocity ku  is shown in Fig. 3. 
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Fig. 3. The relation between control current and input ku  

2.4 One-step NMPC of the water-tank system and its feedback compensation 

Choose objective function 2 2
k k 1|k k 1|k k|k

ˆJ (x w ) 0.001 u+ += − + ∆ , spx 30%= and soften 

factor 0.95α = , to carry out all the simulations and the experiment in this section. (except for 

part of Table 1., where we choose 0.975α = ) 

Suppose there is no model mismatch, the simulative control result of one-step NMPC for 

water-tank system is obtained as Fig. 4. and it is surely meet the control objective. 

 

0  50 100 150
10%

20%

30%

40%

x

0  50 100 150
40%

50%

60%

70%

80%

u

time(sec)  

Fig. 4. Simulation of one-step NMPC without model mismatch and feedback compensation 

To imitate the model mismatch, we change the simulative model of the plant from 

k 1 k k kx x 0.2021 x 0.01923u+ = − +  to  k 1 k k kx x 110% 0.2021 x 90% 0.01923u+ = − × + × , but 

still use k 1 k k kx x 0.2021 x 0.01923u+ = − +  to be the predictive model in one-step NMPC, 

the result in Fig. 5. now indicates that there is obvious steady-state error. 
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Fig. 5. Simulation of one-step NMPC with model mismatch but without feedback 
compensation 

Proposition 1: For affine nonlinear system k 1 k k kx f (x ) g (x ) u+ ′ ′= + ⋅ , if the setpoint is spx , 

steady-state is su  and sx , and the predictive model is k 1 k k kx f(x ) g(x ) u+ = + ⋅ , without 

consideration of constraints, the steady-state error of one-step NMPC is 

s s s s s
s sp

(f (x ) f(x )) (g (x ) g(x )) u
e x x

1

′ ′− + − ⋅
= − =

− α
, in which α  is the soften factor. 

Proof: If the system is at the steady-state, then we have k 1 k sx x x− = =  and k 1 k su u u− = = . 

Since k 1 k su u u− = = , so ku 0∆ = , from (8), we know matrix F=0, or equally 

1
k 1|k k 1|kˆ(w x ) 0+ +− = . 

Update the process of one-step NMPC at time k, we have: 

 k 1|k k sp s spw x (1 )x x (1 )x+ = α + − α = α + − α   (13) 

  1
k 1|k k k k 1 s s sx̂ f(x ) g(x ) u f(x ) g(x ) u+ −= + ⋅ = + ⋅   (14) 

(13)-(14), and notice that s s s sx f (x ) g (x ) u′ ′= + ⋅  for steady-state, we get: 

0 s sp s s s s s s s sp sx (1 )x f(x ) g(x ) u x f(x ) g(x ) u (1 )x (1 )x= α + − α − − ⋅ = − − ⋅ + − α − − α  

s s s s s sp s(f (x ) f(x )) (g (x ) g(x )) u (1 ) (x x )′ ′= − + − ⋅ + − α ⋅ −  

So: 

 
s s s s s

s sp

(f (x ) f(x )) (g (x ) g(x )) u
e x x

1

′ ′− + − ⋅
= − =

− α
  (15) 

Proof end. 

Because the soften factor [0,1)α ∈ , thus 1 0− α ≠ always holds, the necessary condition for 

e 0=  is s s s s s(f (x ) f(x )) (g (x ) g(x )) u 0′ ′− + − ⋅ = . When there is model mismatch, there will be 

steady-state error, while this error is independent of weight matrix Q and dependent of the 
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soften factor α . For corresponding discussion on steady-state error of one-step NMPC with 

constraints, the only difference is (11) will take the place of (8) in the proof.  

Table 1. is the comparison on s spe x x= −  between simulation and theoretical analysis, and 

they have the same result. (simulative model k 1 k k kx x 110% 0.2021 x 90% 0.01923u+ = − × + × , 

predictive  model k 1 k k kx x 0.2021 x 0.01923u+ = − + ) 
 

α  Q  s spe x x= −  

Simulation(%) 

s spe x x= −  

Value of (15)(%) 

0.975 

0 -8.3489 -8.3489 

0.001 -8.3489 -8.3489 

0.01 -8.3489 -8.3489 

0.95 
 

0 -4.5279 -4.5279 

0.001 -4.5279 -4.5279 

0.01 -4.5279 -4.5279 

Table 1. Comparison on s spe x x= −  between simulation and theoretical analysis 

From (15) we know, we cannot eliminate this steady-state error by adjusting α , so feedback 

compensation could be used here, mark the predictive error ke  at time k as follow: 

  1
k k k|k 1 k k|k 1 k 1 k 1ˆ ˆe x x x (x g(x ) u )− − − −= − = − + ⋅ ∆  (16) 

In which, kx  is obtained by system feedback at time k, and k|k 1x̂ −  is the predictive value of 

kx  at time k-1. 

Then add ke  to the predictive value of k 1x +  at time k directly, so (5) is rewritten as follow: 

 
1

k 1|k k k k 1 k k|k k k 1|k k k|k k
ˆ ˆx f(x ) g(x ) u g(x ) u e x g(x ) u e+ − += + ⋅ + ⋅ ∆ + = + ⋅ ∆ +  (17) 

Use this new predictive value to carry out one-step NMPC, the simulation result in Fig. 6. 
verify its robustness under model mismatch, since there is no steady-state error with this 
feedback compensation method. 
The direct feedback compensation method above is easy to understand and carry out, but it 
is very sensitive to noise. Fig. 7. is the simulative result of it when there is noise add to the 
system state, we can see that the input vibrates so violently, that is not only harmful to the 
actuator in practical control system, but also harmful to system performance, because the 
actuator usually cannot always follow the input signal of this kind. 
To develop the character of feedback compensation, simply, we can use the weighted 
average error ke  instead of single ke  in (17): 

 
s

1
k 1|k k 1|k k k|k i k 1 i

i 1

ˆ ˆx x g(x ) u h e+ + + −
=

= + ⋅ ∆ + ⋅ 1
k 1|k k k|k kx̂ g(x ) u e+= + ⋅ ∆ + , 

s

i
i 1

h 1
=

=  (18) 

Choose i 20= , ih 0.05= , the simulative result is shown in Fig. 8. Compared with Fig. 7. it 
has almost the same control performance, but the input is much more smooth now. Using 
the same method and parameters, experiment has been done on the water-tank system, the 
result in Fig. 9. also verifies the efficiency of the proposed one-step NMPC for affine systems 
with feedback compensation. 
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Fig. 6. Simulation of one-step NMPC with model mismatch and direct feedback compensation 
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Fig. 7. Simulation of one-step NMPC with model mismatch, noise and direct feedback 
compensation 
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Fig. 8. Simulation of one-step NMPC with model mismatch, noise and smoothed feedback 
compensation 
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Fig. 9. Experiment of one-step NMPC with setpoint spx 30%=  
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3. Efficient multi-step NMPC for affine system 

Since reference trajectory and stair-like control strategy will be used to establish efficient 

multi-step NMPC for affine system in this chapter, we will introduce them in Section 3.1 and 

3.2 at first, and then, the multi-step NMPC algorithm will be discussed with theoretical 

research, simulations and experiments. 

3.1 Reference trajectory for future state 
In process control, the state usually meets the objective in the form of setpoint along a softer 

trajectory, rather than reach the setpoint immediately in only one sample time. This may 

because of the limit on control input, but a softer change of state is often more beneficial to 

actuators, even the whole process in practice. This trajectory, usually called reference 

trajectory, often can be defined as a first order exponential curve: 

 k j|k k j 1|k spw w (1 )x , j 1,2, ,p 1+ + −= α + − α = −  (19) 

In which, spx  still denotes the setpoint, [0,1)α ∈ is the soften factor, and the initial value of 

the trajectory is k|k kw x= .The value of α  determines the speed of dynamic response and 

the curvature of the trajectory, the larger it is, the softer the curve is. Fig. 10. shows different 

trajectory with different α . Generally speaking, suitable α  could be chosen based on the 

expected setting time in different practical cases. 

 

0 50 100 150
0

setpoint

time

x

alfa=0
alfa=0.8
alfa=0.9
alfa=0.95

 

Fig. 10. Reference trajectory with different soften factor α  

3.2 Stair-like control strategy 
To lighten the computational load of nonlinear optimization, which is one of the biggest obstacles 
in NMPC’s application, stair-like control strategy is introduced here. Suppose the first unknown 

control input’s increment k k k 1u u u −∆ = − = ∆ , and the stair coefficient β  is a positive real 

number, then the future control input’s increment can be decided by the following expression: 

 j j
k j k j 1 ku u u , j 1,2, ,p 1+ + −∆ = β ⋅ ∆ = β ⋅ ∆ = β ⋅ ∆ = −   (20) 
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Instead of the full future sequence of control input’s increment: k k 1 k p 1[ u u u ]+ + −∆ ∆ ∆ , 

which has p independent variables. Using this strategy, in multi-step NMPC, it now need 

only compute ku∆ .  The computational load now is independent of the length of predictive 

horizon, which is very convenient for us to choose long predictive horizon in NMPC to 
obtain a better control performance (Zheng et al., 2007). 
Since the dynamic optimization process will be repeated at every sample time, and only 

instant input k k-1 ku u u= + ∆  will be carried out actually in NMPC, this strategy is efficient 

here. In the strategy, it supposes the future increase of control input will be in a same 
direction, which is the same as the experience in control practice of the human beings, and 
prevents the frequent oscillation of the input, which is very harmful to the actuators in real 

control plants. Fig. 11. shows the input sequences with different β . 

3.3 Multi-step NMPC for affine system 
The one-step NMPC in Section 2 is simple and fast, but it also has one fatal disadvantage.  
Its predictive horizon is only one step, while long predictive horizon is usually needed for 
better performance in MPC algorithms. One-step prediction may lead overshooting or other 
bad influence on system’s behaviour. So we will try to establish a novel efficient multi-step 
NMPC based on proposed one-step NMPC in this section. 
In this multi-step NMPC algorithm, the first step prediction is the same as (5), then follows 

the prediction of k 1|kx̂ +  in (5), the one-step prediction of k j|kx̂ , j 2,3, ,p+ =   could be 

obtained directly: 
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Fig. 11. Stair-like control strategy 

www.intechopen.com



 
Efficient Nonlinear Model Predictive Control for Affine System 

 

103 

 k j|k k j 1|k k j 1|k k j 1|kˆ ˆ ˆx f(x ) g(x ) u+ + − + − + −= + ⋅   (21) 

Since k j 1|kx̂ + −  already contains nonlinear function of former data, one may not obtain the 

analytic solution of (21) for prediction more than one step. Take the situation of j=2 for 

example: 

 k 2|k k 1|k k 1|k k 1|k
ˆ ˆ ˆx f(x ) g(x ) u+ + + += + ⋅ k k k|k k k k|k k 1|kf(f(x ) g(x ) u ) g(f(x ) g(x ) u ) u += + ⋅ + + ⋅ ⋅ (22) 

For most nonlinear f(.) and g(.), the embedding form above makes it impossible to get an 

analytic solution of k 1u +  and further future input. So, using reference trajectory, we 

modified the one-step predictions when j 2≥  as follow: 

 k j|k k j 1|k k j 1|k k j 1x̂ f(w ) g(w ) u+ + − + − + −= + ⋅
j 1

k j 1|k k j 1|k k 1 k i|k
i 0

f(w ) g(w ) (u u )
−

+ − + − − +
=

= + ⋅ + ∆  (23) 

Using the stair-like control strategy, mark k|ku∆ = ∆ , (23) can be transformed as: 

j 1
i

k j|k k j 1|k k j 1|k k 1
i 0

x̂ f(w ) g(w ) (u )
−

+ + − + − −
=

= + ⋅ + β ∆   

j 1
i

k j 1|k k j 1|k k 1 k j 1|k
i 0

f(w ) g(w ) u g(w )
−

+ − + − − + −
=

= + ⋅ + ⋅ β ∆  

 
j 1

1 i
k j|k k j 1|k

i 0

x̂ g(w )
−

+ + −
=

= + ⋅ β ∆   (24) 

Here, 1
k j|kx̂ +  contains only the known data at time k, while the other part is made up by the 

increment of future input, thus the unknown data are separated linearly by (24), so the 

analytic solution of ∆  can be achieved. 

For j 1,2, ,p=  , write the predictions in the form of matrix: 

    

k 1|k

k 2|k
k

k p|k

x̂

x̂
X̂

x̂

+

+

+

 
 
 =  
 
  



1
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1
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k

1
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x̂
X

x̂

+

+

+

 
 
 

=  
 
 
 



k 1|k

k 2|k
k

k p|k

w

w
W

w

+

+

+

 
 
 =  
 
  

   

k|k

k 1|k
k

p 1
k p 1|k

u

u
U

u

+

−
+ −

∆∆   
   β∆∆   ∆ = =   
  

∆ β ∆     

  

 

    

k|k k

k 1|k k 1|k
k

k p 1|k k p 1|k k p 1|k

g(w ) g(x ) 0 0

g(w ) g(w ) 0
S

g(w ) g(w ) g(w )

+ +

+ − + − + −

= 
 
 =  
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2 2

p p p

s 0 0

s s 0

s s s
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1

2

k k k

p 1
p

s

s (1 )
S U S

s (1 )−

 
 + β ⋅ ∆ = ∆ = ⋅ ∆ 
 

+ β + + β  





 (25) 

Thus 1 1
k k k k k kX̂ X S U X S= + ⋅ ∆ = + ⋅ ∆ , for minimization of traditional quadric objective 

function T T
k k k k k k k

ˆ ˆmin J min[(X W ) Q(X W ) U R U ]
∆ ∆

= − − + ∆ ∆ , where semi-positive definite 

matrix Q and positive definite matrix R are weighting matrices, by kJ
0

∂
=

∂∆
 and 

2
k
2

J
0

∂
>

∂∆
, 

the control solution of multi-step prediction is then obtained. Especially for single input 

problem, with objective function T T
k k k k k k k

ˆ ˆmin J min[(X W ) (X W ) r U U ]
∆ ∆

= − − + ∆ ∆ , it is easily 

denoted as follow: 

 
T 1
k k k

2(p 1)T 2
k k

S (W X )

S S r(1 )−

−
∆ =

+ + β + + β
 (26) 

At last, the instant input k|k k 1u u −= + ∆  can be carried out actually. As mentioned in 

Section 2, and if the model mismatch can be seen as time-invariant in p sample time (usually 

satisfied in the case of steady state in practice), to maintain the robustness, ke  or ke  can be 

also added to every prediction as mentioned in (17) and (18): 

k 1|k k k k|k kx̂ f(x ) g(x ) u e+ = + ⋅ +  

 k j|k k j 1|k k j 1|k k j 1|k kx̂ f(w ) g(w ) u e , j 2,3, ,p+ + − + − + −= + ⋅ + =   (27) 

Though there are approximate predictions in the novel NMPC which may take in some 

inaccuracy, the feedback compensation mentioned above and the new optimization process 

at every sample time will eliminate the error before its accumulation, to keep the efficiency 

of the algorithm. The constraints also could be handled by methods mentioned Section 2 or 

by other numerical optimizing algorithm, thus we would not discuss about it here again. 

3.4 Multi-step NMPC of the water-tank system 

Choose 0.975α = , 0.5β = , r 0.005= , spx 60%or30%= and predictive horizon p 10=  to carry 

out simulations. Still use the different plant model and predictive model as that of Fig. 5. and 
Fig. 6. to imitate the model mismatch, the result in Fig. 12. and Fig. 13. shows the efficiency and 
robustness of this efficient multi-objective NMPC. 

Choose 0.975α = , 0.5β = , r 0.005= , spx 60%=  to carry out experiments. Comparing 

control result between one-step NMPC and multi-step NMPC in Fig. 14. and Fig. 15., we can 
see the obvious developments on both input and output of the water-tank system when 
longer predictive horizon is used. It also verifies the efficiency of proposed novel multi-step 
NMPC algorithm. At last, Fig. 16. is the satisfactory performance of the efficient multi-step 
NMPC under disturbance (we open an additional outlet valve of the tank for 20 seconds). 
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Fig. 12. Simulation of multi-step NMPC with model mismatch but without feedback 
compensation 
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Fig. 13. Simulation of multi-step NMPC with model mismatch and feedback compensation 
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Fig. 14. Experiment of one-step NMPC with setpoint spx 60%=  (Overshooting exists when 

setpoint is higher than Fig. 9.) 

 

0 50 100 150 200 250 300 350 400

30%

40%

50%

60%

70%

x

0 50 100 150 200 250 300 350 400
40%

50%

60%

70%

80%

c
o
n
tr

o
l 
c
u
rr

e
n
t

0 50 100 150 200 250 300 350 400
50%

60%

70%

80%

90%

100%

time (sec)

u

 

Fig. 15. Experiment of one-step NMPC with setpoint spx 60%=  (p=10 and and No 

overshooting) 
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Fig. 16. Experiment of one-step NMPC under disturbance 

4. Conclusion and acknowledgement 

Using a series of approximate one-step predictions instead of  the traditional multi-step 
prediction, the proposed multi-step NMPC leaded to an analytic result for nonlinear control 
of affine system. The use of stair-like control strategy caused a very little computational load 
and the feedback compensation brought robustness of model mismatch to it. 
The simulations and experiments verify the practicability and efficiency of this multi-step 
NMPC for affine system, while the theoretical stability and other analysis will be the future 
work with considerable value. 
This work is supported by National Natural Science Foundation of China (Youth 
Foundation, No. 61004082) and Special Foundation for Ph. D. of Hefei University of  
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