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1. Introduction  

During recent years, applications using speech recognition have been developed to aid 
dictation during lectures and to advance voice-prompted car navigation systems. Research 
in speech recognition has been conducted to improve recognition performance and spoken 
document processing (Nakagawa, 2007). However, even with developments in speech 
recognition technology, high recognition performance can be compromised due to noisy 
environments. Standard rate scales, such as CENSREC (Kitaoka et al., 2006) and AURORA 
(Hirsch and Pearce, 2000), are typically used for evaluating speech recognition performance 
in noisy environments and have shown that speech recognition rates are approximately 50–
80% when under the influence of noise, demonstrating the difficulty of achieving high 
recognition percentages. To achieve a high recognition performance, background noise 
should be minimal, and normal speech should be clear, because the system estimates 
recognition using a feature vector from its signal. This signal can be affected by sound 
quality or by an utterance style due to noise in the surrounding environment.  
When the noise level is low, sound quality becomes clear. However, when the noise level is 
high, the speech is buried in the noise, causing a change in the speaker’s utterance style, 
termed the Lombard effect. This change causes the basic frequency to rise because a speaker 
does not hear the feedback sound from the ear. The method of extracting normal speech 
under these complex conditions because environment always changes. Several methods 
have been investigated to extract clear speech under these conditions, such as a noise 
reduction method, the use of a microphone array or a body-conducted signal. Of these, 
noise reduction is most commonly used for retrieving a noisy signal and can extract clear 
speech effectively as long as the background noise is not too high. The microphone array is 
typically combined with noise reduction. Body-conducted speech is a robust signal 
extraction method that differs from the other techniques, because it provides a solid signal 
that propagates through skin and bone. 
Previously, we built a body-conducted speech recognition system to recognize speech in a 
noisy environment (98 dB SPL), specifically in the engine room of Oshima-maru, a training 
ship in Oshima National College of Maritime Technology (Ishimitsu et al., 2004). We found 
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that this system exhibited an average recognition rate of greater than 95 %. However, the 
recognition for body-conducted speech needs the suitable acoustic model to achieve a high 
recognition performance. Here, we aimed to extract a clear signal using body-conducted 
speech and to evaluate its efficacy by signal frequency characteristics and recognition 
performance. Though body-conducted speech gives a robust signal, it does not have a clear 
quality. 
Conventional retrieval methods for body-conducted speech include Modulation Transfer 

Function (MTF), Linear Predictive Coefficients (LPC), direct filtering and the use of a throat 

microphone. However, these methods need the direct input of speech (Tamiya and 

Shimamura, 2006; Vu et al., 2006; Liu et al., 2004; Dupont et al., 2004). Additionally, a 

conventional microphone does not extract speech in a noisy environment. Thus, we 

proposed retrieval methods with only body-conducted speech. 

2. Body-conducted speech 

2.1 Characteristics of body-conducted speech  

Speech is an air-conducted signal and is easy to influence with surrounding noise. In 

contrast, body-conducted speech is a solid propagated signal and is less influenced by noise. 

Figures 1 and 2 demonstrate the word, ”Asahi”, obtained from the database of JEIDA which 

contains 100 local place words (Itahashi, 1991). They were uttered by a 20-year-old male. 

Speech was measured 30 cm from the mouth using a microphone, and body-conducted 

speech was extracted from the upper lip with an accelerator. This microphone position is 

commonly used for a speech input of the car navigation system. The upper lip, as a signal 

extraction position, can provide the best cepstral coefficient characteristic as a feature vector 

for recognition (Ishimitsu et al., 2004). The signals were recorded at 16 kHz and 16 bits. 

Table 1 shows the recording environments used in this research. Speech generally provides 

a clear signal; however, body-conducted speech is not always clear because it lacks a high 

frequency component (2 kHz or more). Thus, the recognition performance can be low when 

its signal is used for the recognition directory. 

 
 

Recorder TEAC RD-200T 

Microphone Ono Sokki MI-1431 

Microphone 
amplifier 

Ono Sokki SR-2200 

Microphone position 
30cm (Between mouth and 
microphone) 

Accelerator Ono Sokki NP-2110 

Accelerator amplifier Ono Sokki PS-602 

Accelerator position Upper lip 

Table 1. Recoding environments 
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Fig. 1. Speech                                                      Fig. 2. Body-conducted speech 

2.2 Differential acceleration 
Because body conducted speech does not exhibit a high frequency component, conventional 
retrieval techniques may also be needed to extract clear speech. However, speech is not well 
measured with a microphone in noisy environments. Therefore, we aimed to investigate the 
signal retrieval from body-conducted speech itself. To improve the sound quality, we 
focused on a high frequency component of 2 kHz or more, however this signal has little gain 
and includes an effective frequency. Subsequently, we developed for a novel signal retrieval 
method using differential acceleration calculated from the difference of body-conducted 
speech in each sample. Even with the changing of sampling frequency and speaker, it was 
not necessary to design a new filter because the proposed technique allowed signal retrieval 
with only differential procedure. 
Figure 3 shows the differential acceleration signal estimated from Figure 2. Figure 3 
becomes a emphasized signal however the stationary noise was included. For this reason, 
differential acceleration involving a retrieval signal introduces conventional noise reduction 
(Gong, 1995). To obtain a signal that approximates natural speech and includes effective 
frequencies components, conventional noise reduction techniques were employed for the 
differential acceleration. 

3. Noise reduction for differential acceleration 

3.1 Spectral subtraction method 

The spectral subtraction method subtracts the spectrum of the noise sections from the 

average of spectrum of the noisy signal (Gong, 1995). Equations (1) and (2) describe this 

method. 

 ( ) ( ) ( )x i s i n i= +  (1) 

 ( ) arg ( )( ) ( ) ( ) exp j XS X N ωω ω ω= −  (2) 

It is assumed that differential acceleration ( )x i  consists of the speech signal ( )s i  and the 

noise signal ( )n i . An estimated spectrum ( )S ω  can be obtained using the spectral 

subtraction method from Equation (2). The phase information on the input signal spectrum, 
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( )X ω , is represented by arg ( )X ω . Figure 4 shows the results from the spectral subtraction 

method when the filtering was repeated seven times with a setting frame width of 128 

samples. The stationary noise is not removed completely. The characteristics of the high 

frequency component cannot be fully recovered because musical noise is produced in the 

signal (Nomura et al., 2006; Yamashita et al., 2005). So we concluded that it was difficult to 

recover frequency characteristics with this method. 

3.2 Wiener filtering method 

The Wiener filtering method is a technique which estimates a speech spectrum envelope 

from noisy speech (Li and O’Shaughnessy, 2003). The speech spectral envelope is estimated 

using linear prediction coefficients to obtain a clear signal that nears the frequency 

component of speech. The following equation describes the Wiener filtering method. 

 
( )

( )
( ) ( )

Speech
Estimate

Speech Noise

H
H

H H

ω
ω

ω ω
=

+
 (3) 

The estimated signal spectrum, ( )EstimateH ω , is calculated from the noisy speech, ( )SpeechH ω , 

and noise spectrum, ( )NoiseH ω . ( )EstimateH ω  is expressed as a transfer function that converts 

a noisy signal to a clear signal. To estimate ( )EstimateH ω , autocorrelation functions and linear 

prediction coefficients by the Levinson Durbin algorithm are required (Durbin, 1960). Noise 

spectrum, ( )NoiseH ω , is then estimated by autocorrelation functions and is used as a noise 

signal in differential acceleration. Figure 5 shows the result of each signal when the 

coefficient of both linear prediction coefficients and autocorrelation functions were equal to 

1, frame width was 764 sample, and repetition was three times.  

To estimate ( )SpeechH ω  and ( )NoiseH ω , the number of the linear prediction coefficients and 

autocorrelation function used the same number because this setting allows us to solve the 

problem simply and easily. The number of coefficients was changed from 1 to 32, the frame 

width was changed from 128 to 4,096, and the number of repetitions was also changed from 

1 to 5. The best results were obtained using the conditions shown in Figure 5. We confirmed 

the recovery of frequency components at 2 kHz or more when using the Wiener filtering 

method, and musical noise was not found. Next, we compared the signal difference using 

spectrograms. The experimental results showed that the Wiener filtering method was 

suitable for differential acceleration. 

4. Improvement using a combination between the proposed method and 
conventional method 

We attempted to extract a clear signal using a combination of differential acceleration and 

the Wiener filtering method. We next evaluated the combination of the proposed method 

with various conventional methods including the cross spectrum method and the adaptive 

filter method. These results are shown in the following sub-sections. 

4.1 Cross spectrum method 
The cross spectrum method (Morise et al., 2007) was introduced using the auto spectrum of 

body-conducted speech, ( )BCSH ω , and the cross spectrum between normal speech and 
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body-conducted speech, ( )Speech BCSH ω− . To estimate the retrieval signal, ( )
EstimateBCSH ω , the 

following equation was used. 

 
( )

( )
( )Estimate

Speech BCS
BCS

BCS

H
H

H

ω
ω

ω
−=  (4) 

Figure 6 shows the retrieval signal using a transfer function in a word estimated by the cross 
spectrum method. Sufficient recovery of the frequency characteristic was not observed when 
processed by the cross spectrum method. Since a transfer function is estimated by the signal 
in a word that contains two or more phonemes and syllables, it is difficult to retrieve sound 
quality. However, it is possible to improve sound quality using a transfer function for sub-
word, because sub-word is a minimum unit of uttered speech (Ishimitsu et al., 2007). 
 

 

Fig. 3. Differential acceleration                      Fig. 4. Spectral subtraction method 

 

Fig. 5. Wiener filtering method                        Fig. 6. Cross spectrum method 

 

 

Fig. 7. LMS algorithm 
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Fig. 8. Adaptive filter for word unit               Fig. 9. Adaptive filter for sub-word unit 

4.2 Adaptive filter method for word unit 
In previous research (Ishimitsu et al., 2004), the adaptive filter method (Haykin, 1996) was 

not enough to recover a sufficient frequency characteristic when body-conducted speech 

was used as a reference signal. The result in previous research is not improved the 

frequency characteristic because bodyconducted speech is low quality (Ishimitsu et al., 

2004). However, since a retrieval signal using differential acceleration is clear, the estimation 

of clearest signal can be expected by using the retrieval signal and adaptive filter (Haykin, 

1996). The updated filter method is shown in the following equation and in Figure 7.  

 ( 1) ( ) ( ) ( )w n w n e n x nμ+ = + ⋅ ⋅  (5) 

where, ( 1)w n +  is new filter, μ  is the convergence coefficient, and n  is time index, 

respectively. Output signal ( )y n  is provided by input signal ( )x n  and current filter ( )w n . 

And then, error signal ( )e n  is calculated from the difference between the input signal and 

the output signal. By using an error signal, the system can be used to estimate a new filter 

part using Equation 5. Figure 8 shows the retrieval signal using an adaptive filter when the 

convergence coefficient was set to 0.01, and the filter length of taps was 16,384. 

Subsequently, the coefficients of the final stage of updated adaptive filter were used. Thus, a 

clear signal was produced using an adaptive filter. Moreover, the formant was not observed 

in the retrieval signal with the cross spectrum method. And it was also confirmed in the 

spectrogram. 

4.3 Adaptive filter method for sub-word unit 

The result of previous sub-section confirmed the efficacy of the proposed method. Next, we 

proposed the use of an adaptive filter using a sub-word unit. Previously, we constructed the 

speech support system that used a transfer function for sub-word to create a clear speech 

from body-conducted speech (Ishimitsu et al., 2007). Thus, the sound quality was improved 

by a transfer function for a sub-word. 

Consequently, we experimented whether supervised speech recognition could be achieved 

by this system. The proposed system would be able to estimate the boundary of a sub-word 

or a word using the recognition decoder. The continuous sub-word unit recognition decoder 
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is made by Julian that is the Large vocabulary continuous speech recognition system 

(Kawahara et al., 1999; Lee et al., 2001). Our subjects are Japanese, so we choose the Mora 

unit as a sub-word. The Mora unit is constructed of a vowel or consonant and a vowel. 

There is a problem in length of sample because the length of an adaptive filter for a sub-
word is very short. So adaptive filter for sub-word unit could not be estimated by 
conventional methods. As a result, the adaptive filter for sub-word unit is required the long 
sample. The input signal can be a long sample using following equation. 

 x iN=  (6) 

where x  is the length of long sample; i  is the number of each sub-word sample, and N  is 

the number of connection. Figure 9 shows the results of using a adaptive filter for a sub-
word. A convergence coefficient of 0.3 and number of connection of 6 times were used. It 
was possible to recover the high frequency components and the formant frequencies. 
Additionally, since an impulsive noise was mixed at the boundary of each sub-word, the 
calculated results always include the errors. The adaptive filter for word unit compared 
with the adaptive filter for sub-word unit, so we decided that the adaptive filter for word 
unit is suitable for retrieval signal with differential acceleration. 

5. Investigation of characteristics difference 

To evaluate the efficacy of the retrieval signals, the following signals were compared with 
speech: 

• Body-conducted speech (BCS) 

• Differential acceleration with the spectral subtraction method (SS) 

• Differential acceleration with the Wiener filtering (Wiener) 

• Retrieval signal with Wiener filtering and the cross spectrum method (Cross) 

• Retrieval signal with Wiener filtering and the adaptive filter for word (Adaptive 1) 

• Retrieval signal with Wiener filtering and the adaptive filter for sub-word (Adaptive 2) 
Figure 10 shows the difference between speech and body-conducted speech using a time-
frequency representation. Figure 11 shows the difference between speech and the signal 
retrieves by the spectral subtraction method, and Figure 12 represents the difference 
between speech and the signal retrieves using Wiener filtering. As shown in Figure 10, there 
was a large difference between speech and body-conducted speech, including the formant 
frequencies greater than 2 kHz. However, body-conducted speech had no formant 
frequencies which are characteristic of the Japanese vowels. Comparing Figures 11 and 12, 
there was little difference in the frequency component. Particularly, as shown in Figure 12, 
the difference of formant frequencies was minimal. Wiener filtering was used to calculate 
the linear predictive coefficients, and the stationary noise was then reduced. This technique 
worked effectively because the predictive coefficients provided suitable parameters in each 
retrieval phase. Therefore, we concluded that the most suitable noise reduction method was 
Wiener filtering combined with differential acceleration. 
Figures 13, 14 and 15 demonstrate the differences between speech and each retrieval signal 
that was used in combination with a conventional method. These include the retrieval 
signals obtained using differential acceleration calculated from the cross spectrum method 
or an adaptive filter for a word or for a sub-word. Each figure was compared with its 
original signal obtained with Wiener filtering. In the lower range of 1.5 kHz, there is a large 
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difference in spectrograms between speech and retrieval signal with cross spectrum method. 
The difference was similarly extended in Figure 15. The retrieval signal calculated from the 
adaptive filter for a sub-word could not extract a clear signal from the body-conducted 
speech because the number of samples was reduced in each sub-word duration. However, 
there was a marginal difference of spectrograms in all frequencies of Figure 14. Therefore, 
the adaptive filter for a word was confirmed as the most suitable retrieval method when it 
was combined with retrieval signal of differential acceleration. 

 

Fig. 10. Difference of BCS                                  Fig. 11. Difference of SS 

 

Fig. 12. Difference of Wiener  filtering            Fig. 13. Difference of Cross spectrum 

 

Fig. 14. Difference of Adaptive 1                     Fig. 15. Difference of Adaptive 2 
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6. Recognition experiment 

Next, we evaluated the performance of the proposed method with an isolated word 

recognition experiment. In previous research, we constructed the body-conducted speech 

recognition system, which could perform in noisy environments, specifically in the engine 

room of a training ship (Ishimitsu et al., 2004). Here, to obtain a high recognition 

performance, the acoustic model needed to re-estimate the parameter using body-conducted 

speech. Because it is possible to estimate a speech from body-conducted speech, it expects 

that the retrieval signal can be directory used to speech recognition. The recognition 

performance can be improved when its signal becomes a clear speech. Therefore, to perform 

an objective experiment with statistical analysis, the recognition rate of isolated word 

recognition was evaluated using an acoustic model for unspecified speakers built with a 

speech. Generally, a subjective listening experiment is often used to evaluate the sound 

quality however it needs many people and much data as a admitting result. 

Speech recognition was matched with the feature vector of each signal. The model 

parameters were able to approximate a natural speech when the recognition rate compared 

with body-conducted speech to each retrieval signal. Additionally, because HMM is an 

acoustic model that evaluates each feature vector using the output of a multi-dimensional 

normal distribution, it can be evaluated statistically. Thus, HMM can confirm whether the 

speech nearness characteristic is acquired at the feature parameter level by comparing word 

recognition rates.  

Table 2 shows the experimental environments for isolated word recognition. The 

recognition decoder, Julius (Kawahara et al., 1999; Lee et al., 2001), was used in this 

experiment. Because Julius is a decoder for large vocabulary continuous speech recognition, 

it can be changed into isolated word recognition. Thus, it became possible to recognize 

words without a language model. JEIDA 100 local place words were used as candidates for 

word recognition (Itahashi, 1991). The words consisted of a database of Japanese place 

names after consideration of phoneme balance. The acoustic model was the context-

dependent type tri-phone model in a word for unspecified speakers. The differential 

acceleration was processed with the parameter used in the previous chapter. The candidates 

for recognition in this experiment included each of the following signals: 

• Speech : Speech 

• BCS : Body-conducted speech 

• ret. BCS : Retrieval signal with Wiener filtering 
The body-conducted speech was compared with the retrieval signal from the recognition 

experiment. It was expected that the recognition performance would improve if the signal 

approximated natural speech from the body-conducted speech. Tables 3 - 5 show the 

recognition rate in each speaker. And Table 6 shows the average of all speakers. There was 

an improvement of 3 - 9 % in Speakers B and C but little improvement in Speaker A. About 

5 % of the improvement was obtained through average of the recognition rate. From Table 6, 

the retrieval signals with differential acceleration become clear signals compare to original 

body-conducted speeches. Using an adaptation technique to estimate the new parameter in 

an acoustic model, the recognition performance increased to greater than 95 %. Here, we 

focused on the investigation of the signal retrieval, so the feature vectors in the acoustic 

models did not need new parameters in this experiment. Though the improvement was 
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marginal, this result demonstrated the effectiveness for signal retrieval without speech. We 

expect that these recognition rates can be greatly improved by fine-tuning parameters for 

each speaker using an adaptation technique. 

 

Speaker two 20 and one 37 years old male 

Number of data sets 100 words × 3 set/person 

Vocabulary JEIDA 100 local place names 

Recognition system Julius-3.4 

Acoustic model gender dependent triphone model 

Model conditions 16 mixture gaussian, clustered 3000 states 

Feature vectors MFCC(12)+ΔMFCC(12)+ΔPow(1)=25 dim. 

Training condition 
20,000 sample and more (Itou et al., 1999), 

HTK 2.0 (Young et al.,2000) 

Table 2. Experimental environments 

 

Signal type Set 1 Set 2 Set 3 Average 

Speech 90% 90% 91% 90.3% 

BCS 63% 56% 61% 60.0% 

ret. BCS 62% 57% 63% 60.7% 

Table 3. Speaker A (20 years old male) 

 

Signal type Set 1 Set 2 Set 3 Average 

Speech 93% 94% 92% 93.0% 

BCS 53% 50% 48% 50.3% 

ret. BCS 63% 57% 58% 59.3% 

Table 4. Speaker B (20 years old male) 

 

Signal type Set 1 Set 2 Set 3 Average 

Speech 92% 94% 92% 92.7% 

BCS 60% 68% 61% 63.0% 

ret. BCS 65% 68% 65% 66.0% 

Table 5. Speaker C (37 years old male) 

 

 Signal type Average 

Speech 92.0% 

BCS 57.8% 

ret. BCS 62.0% 

Table 6. Recognition results of all speakers 
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7. Investigation of body-conducted speech in a noisy environment 

7.1 Signal recording in a noisy environment 

In order to acquire, a noisy environment, we used the engine room of the ’Oshima-maru’ 
training ship from the Oshima National College of Technology, Japan. Noise within the 
engine room, under the two conditions of anchorage and cruising, were 93 and 98 dB SPL, 
respectively, and the SNR measurements from microphone. There was –20 and –25 dB SNR, 
respectively. The signals of 100 words, from the database of JEIDA were read three times in 
each environment by three males aged 20, 20 and 37 years old. For body-conducted speech 
extraction, measurements were taken from the upper lip. In this study, we experimented 
under anchorage condition to estimate retrieval signals. 
Figures 16 and 17 demonstrate the word ”Ageo” that was obtained from the database of 
JEIDA. Figures 16 and 17 exhibit speech and body-conducted speech signals from the engine 
room of the Oshima-maru. Because body-conducted speech is a structure bone sound, it is 
less influenced by noise than normal speech. Unlike body-conducted speech, normal speech 
signals do not detect the utterance of speakers. Comparing Figures 2 and 17, there was little 
difference of frequency characteristic between quiet and noisy environment, so it expects 
that the proposed method for signal retrieval can apply to the signal in noisy environment. 
 

 

Fig. 16. Speech in noise                                  Fig. 17. Body-conducted speech in noise 

7.2 Differential acceleration in a noisy environment 

The signals can be a clear with same setting of signal retrieval in quiet room with proposed 

method. Difference in signals characteristics between speech and body-conducted speech 

are little because that reason is shown a difference of Figures 2 and 17. Thus, we also 

estimate the differential acceleration directory which the difference between the signals is 

calculated. Figure 18 shows the differential acceleration estimated from Figure 17. Body-

conducted speech was extracted with an accelerator from the noisy environment. The signal 

level in each frequency is low compares to signal in quiet environment. Therefore, 

differential acceleration in the noisy environment exhibited a clearer signal compared with 

that extracted in the quiet environment. 

7.3 Signal retrieval for body-conducted speech in a noisy environment 

The signal characteristic of body-conducted speech in a noisy environment is not affected by 

noise; however, the basic frequency of the signal rises by the Lombard effect. Generally, 
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since the decoder only uses spectral envelopes as recognition parameters, the problem is a 

matter of no importance. 

Figures 19, 20 and 21 show the retrieval signals using the proposed methods that differ in 
the number of Wiener filtering repetitions. The signals exhibited frequency characteristics of 
2 kHz and more. The estimated signal rejected stationary noise from the differential 
acceleration completely. The effect of repetitions was also clearly observable. We found that 
three repetitions allowed stationary noise to be completely reduced. In this study, parameter 
settings in Wiener filtering were the same as for a quiet room because difference in signal 

characteristic between quiet and noise is little. From Figure 21, we expect that performance 

of speech recognition can also be improved. 

8. Decoding algorithm for differential acceleration 

8.1 Problem of recognition for differential acceleration 

The differential acceleration exhibited a distorted signal when a consonant was present. 
Consonants were removed together with the stationary noise because its signal level is low. 
However, the signal levels of vowels are high because of the formant frequencies. Thus, 
vowels were kept intact. The stationary noise level changed according to the environment of 
 

 

Fig. 18. Differential acceleration in noise   Fig. 19. Retrieval signal with Wiener 1 

 

 

Fig. 20. Retrieval signal with Wiener 2       Fig. 21. Retrieval signal with Wiener 3 
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the recording signal, so the number of the suitable repetitions should be selected 
appropriately for recognition with the proposed retrieval method and noise environment. 
The recognition performance decreases if the repetitions are not sufficient when the 
stationary noise level is changed.  
To solve the problem, we have to invent decision method for number of repetition in Wiener 
filtering. Then, we focused on the recognition system that calculates the likelihood between 
signal and model in recognition parameter. The algorithm chooses the clearest signal 
because it is appeared a highest likelihood from the recognition decoder. So we apply this 
idea to the decoding algorithm for differential acceleration. 

8.2 Fundamental speech recognition 
The fundamental speech recognition is described as follows briefly (Rabiner, 1993). Speech 
were recorded with a microphone and sampled at 16 kHz and 16 bits. As part of the 
recognition parameters, speech data were converted to the feature vectors as cepstrum 
coefficients. Speech recognition systems often use cepstrum techniques that consist of LPC 
and melfrequency cepstral coefficients (MFCCs) (Davis and Mermelstein, 1980). MFCCs 
were used in 12 dimensions computed every 10 ms. The differences in coefficients (ΔMFCC) 
and power (ΔLogPow) were also incorporated into the feature vectors. Thus, the feature 
vectors in each frame consisted of 25 (= 12 + 12 + 1) variables. The recognition system then 
uses these parameters to discriminate sub-word or word unit candidates. Each sub-word or 
word unit model consists of hidden Markov models (HMM) (Rabiner, 1993), which have 
transition probability and output probability distributions. A neural network (NN) is also 
used in speech recognition previously. However ANN is applied to other application 
(Rivara et al., 2009), speech recognition systems uses only HMM recently. Usually, the 
HMM’s state transitions are in a left-to-right model, and the initial and final states are 
limited. This system calculates the likelihood (nearness of each acoustic model to an input 
parameter) using feature vectors and HMM. From the highest likelihood, the system can 
determine the candidate word/sub-word HMM. Generally, likelihood of acoustic models is 
computed with Viterbi algorithms. This recognition system includes dictionary and acoustic 
models, however no language models. The dictionary indicates the sub-word sequence for a 
word, because a word consists of the sub-word unit acoustic model. Equation (6) shows the 
fundamental formulation of this isolated word/sub-word recognition. 

 ˆ arg max ( | )
w W

w P X w
∈

=  (6) 

In equation (6), ŵ is an estimated candidate, W is set of all candidates, w represents each 

candidate in W , and 1 2, , , nX x x x= A  are feature vectors. ( | )P X w  is likelihood from the 

acoustic model. Generally, the acoustic model represents the sub-word or word unit. The 

system determines the estimated candidate by the likelihood from each HMM. 

8.3 Proposed algorithm 
To avoid decreasing of the recognition performance, the decoder algorithm was improved 

for signal retrieval using differential acceleration. The proposed algorithm using differential 

acceleration is shown in Figure 22 and represents three input signals. First, the speaker 

uttered a word, and its signal was then extracted with the accelerator. Thus, the signals 

1 2, , , NX X XA  were performed for speech recognitions as input signals. The signals of 
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Figure 22 represent original body-conducted speech, differential acceleration and retrieval 

signals using Wiener filtering. This experiment focused on the body-conducted speech 

recognition in a noisy environment, so the speech signal is removed in this experiment. 

Although the recognition performance is improve that its decoder combines speech as input 

signal when the noise level is low. Equation (7) was applied for speech recognition with 

signals of differential acceleration. 

 arg max ( | )i i
w W

w P X w
∈

=  (7) 

The recognition decoders give the recognition results that are the candidates of 

words 1 2, , , Nw w wA . The parameters of the frame lengths and acoustic scores differ in scale 

for each signal because Wiener filtering causes a problem in sample length. To compare the 

acoustic scores, it was necessary to regulate the number of samples. The regulated acoustic 

score was calculated by the acoustic score and flame length. With equation (8), each score 

was compared and then the decoder determined the final candidate using the regulated 

acoustic scores. 

 

1, ,

( | )
arg max i

final
w W i
i N

P X w
w

l∈
=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭A

 (8) 

8.4 Experimental setup 
Finally, we evaluated the signal retrieval from body-conducted speech in a noisy 
environment with conventional decoding and the decoding algorithm for differential 
acceleration. The following signals and decoding algorithms were performed in this 
experiment:  
• BCS: body-conducted speech 
• Diff. Acc.: differential acceleration of BCS 
• Wiener 1: differential acceleration using Wiener filtering that is repeated one time 
• Wiener 2: differential acceleration using Wiener filtering that is repeated two times 
• Wiener 3: differential acceleration using Wiener filtering that is repeated three times 
• Max: the decoding algorithm for differential acceleration using regulated acoustic 

scores from the retrieval signals and body-conducted speech. 
To evaluate the performance of signal retrieval using differential acceleration, the Julian 
(Kawahara et al., 1999; Lee et al., 2001), the Japanese speech recognition system that consists 
of grammar and an acoustic model, was used as the recognition decoder. The experimental 
environments are shown Table 2. 
The improvement efficacy was evaluated by the following measurements: 

 100 [%]Correct = ×
Correct  words

Rercognition  words
 (9) 

 100 
100

[%]= ×
Correct  rate B - Correct  rate A

Relative  Improvement
- Correct  rate  A

 (10) 

Equation (9) is a word correct rate, which calculates a result whether the word is recognized 
or not. Equation (10) is relative improvement, depicting major improvements above base 
line levels. 
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8.5 Recognition results 
Retrieval signals with Wiener filtering exhibited marginal improvement with a decrease in 

recognition because the algorithm rejects a stationary noise and consonant frequency. This 

problem is described in Section 8.1. We speculated that the noise reduction made improved 

the recognition performance when the stationary noise level was louder. Clear body-

conducted speech retrieval using differential acceleration is not always associated with 

noisy environment, because the environment often varies according to factors such as the 

speaker, equipment. Tables 7–9 are shown the recognition results of each speaker. And 

Table 10 is the result of average of all speakers. The meaning of each data is described in 

Section 5. In all speakers, the recognition performances are improved on ‘Diff. Acc.’ and 

‘Max’ however Wiener’s results are little improvement. ‘Diff. Acc.’ becomes a clear signal in 

this experiment because it does not produce a stationary noise from differential acceleration. 

And ‘Max’ is worked on the recognition experiment correctly, so it is proven by Table 10 

that the effectiveness of the combination method using retrieval method of signal and its 

decoding algorithm. So, the recognition performances are improved about 3–4% in word 

correct rate and about 10–19% in relative improvement. 

 
 

 

Fig. 22. Decoding algorithm for differential acceleration 

 

  Set 1 Set 2 Set 3 Average RI 

BCS 72% 67% 75% 71.3% - 

Diff. Acc. 76% 74% 80% 76.7% 18.6% 

Wiener 1 65% 69% 80% 71.3% 0.0% 

Wiener 2 70% 71% 79% 73.3% 7.0% 

Wiener 3 60% 74% 81% 71.7% 1.2% 

Max 76% 71% 80% 75.7% 15.1% 

Table 7. Recognition results of Speaker A in noisy environment 
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  Set 1 Set 2 Set 3 Average RI 

BCS 70% 71% 71% 70.7% - 

Diff. Acc. 71% 72% 77% 73.3% 9.1% 

Wiener 1 67% 65% 72% 68.0% -9.1% 

Wiener 2 68% 65% 70% 67.7% -10.2% 

Wiener 3 72% 67% 72% 70.3% -1.1% 

Max 72% 72% 77% 73.7% 10.2% 

Table 8. Recognition results of Speaker B in noisy environment 

 

  Set 1 Set 2 Set 3 Average RI 

BCS 84% 76% 75% 78.3% - 

Diff. Acc. 86% 79% 79% 81.3% 13.8% 

Wiener 1 87% 74% 76% 79.0% 3.1% 

Wiener 2 88% 69% 77% 78.0% -1.5% 

Wiener 3 86% 74% 77% 79.0% 3.1% 

Max 86% 74% 77% 79.0% 3.1% 

Table 9. Recognition results of Speaker C in noisy environment 

 

Average RI 

BCS 73.4% - 

Diff. Acc. 77.1% 13.8% 

Wiener 1 72.8% -2.5% 

Wiener 2 73.0% -1.7% 

Wiener 3 73.7% 0.8% 

Max 76.1% 10.0% 

Table 10. Recognition results of all speakers in noisy environment 

9. Conclusions and future work 

Here, we investigated a signal retrieval from body-conducted speech using differential 
acceleration combined with conventional noise reduction methods. Specifically, differential 
acceleration was used to emphasize the high frequency component of body-conducted 
speech. Additionally, this method is little cost in calculation. Although the differential 
acceleration of body-conducted speech became a retrieval signal when stationary noise was 
present. Thus, it was possible to remove noise effectively using conventional noise reduction 
methods i.e. spectral subtraction or Wiener filtering. From the experimental results, the 
Wiener filtering method proved to be a suitable noise reduction method for differential 
acceleration, as evidenced by the difference between normal speech and each retrieval 
signal. So, this method can be used to estimate a clear speech using only body-conducted 
speech. Thereafter, we combined the proposed method and conventional signal retrieval 
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methods to make a clear signal. Combined methods using an adaptive filter for a word, its 
effectiveness is shown the results in the difference of spectrograms between each signal and 
speech. Thus, it appears that the proposed method was effective when pre-processing for 
the conventional signal retrieval techniques existed. The recognition experiment using the 
differential acceleration followed by the Wiener filtering method, demonstrated the efficacy 
of differential acceleration that the recognition performance improved 3 - 5 % in isolated 
word recognition. These results suggest that the retrieval signal approximated natural 
speech. So we concluded that the proposed method was able to estimate clear speech from 
body-conducted speech in quiet room. 
As a next step of the proposed method, we applied the noise reduction methods to body-
conducted speech in a noisy environment. From the experimental results, the Wiener 
filtering method proved to be a suitable noise reduction method for differential acceleration 
as evidenced by comparing spectrograms with normal speech and each retrieval signal in a 
noisy environment. To decide the suitable number of repetitions on Wiener filtering, we 
proposed a decoding algorithm that was used to regulate the acoustic scores. From the 
recognition experiments, the differential acceleration signals exhibited the most 
improvement, and the proposed algorithms improved when compared with base-line body-
conducted speech signals. Furthermore, the system does not depend on the environments 
and speakers because the system chose the highest likelihood from the signals.  
As a future works, we will be examined as a pre-processing for the speech support system 
using body-conducted speech for disorders that converts a clear speech from body-
conducted speech of disorders (Ishimitsu and Nakayama, 2009). And, the signal retrieval 
using differential acceleration is applied to body-conducted speech in noisy environments.  
Furthermore, we will also construct the microphone using body-conducted speech and 
differential acceleration for noise environment. 
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