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1. Introduction

The relevance of robot manipulators in different processes has created the need to design
efficient controllers with low computational costs. Although several applications for this
problem are defined in operational coordinates, a wide variety of controllers reported in the
literature are defined in joint coordinates. Then, for a joint robot control the desired joint
references are computed from desired Cartesian coordinates using inverse mappings and its
derivatives up to second order. However, computing the inverse kinematics mappings is
difficult due to the ill-posed nature of these mappings.
To circumvent the computation of inverse kinematics, a very old but not less important
approach coined as Cartesian control can be used. Cartesian control deals with the problem
of designing controllers in terms of desired Cartesian or operational coordinates. This allows
saving a significant amount of time in real time applications due to the inherent simplification.

1.1 Cartesian control

Based on the seminal work of Miyazaki and Masutani [Miyazaki & Masutani (1990)] have
been presented several approaches for regulating tasks, working with the assumption that the
Jacobian is uncertain. Several approaches for setpoint control are presented [Yazarel & Cheah
(2001)], [Chea et.al. (1999)], [Chea et.al. (2001)] [Huang et.al. (2002)], [Chea et.al. (2004)],
assuming that the jacobian matrix can be parameterized linearly. Now, if we are interested that
having the end effector of the robot manipulator follow a desired trajectory, Cartesian robot
dynamics knowledge is required. However, Cartesian robot dynamics demands even more
computational power than computing the inverse kinematics. Therefore, non-model based
control strategies which guarantee convergence of the Cartesian tracking errors is desirable.
In addition, Cartesian controllers should be robust and efficient with very low computational
cost.
To differentiate this work from other approaches for tracking tasks [Chea et.al. (2006)],
[Chea et.al. (2006)], [Moosavian & Papadopoulus (2007)], [Zhao et.al. (2007)] in this chapter it
is assumed that the initial condition and desired trajectories belong to the Cartesian workspace
Ω, which defines the hyperspace free of singular configurations, an standard assumption for
joint robot control. However, this assumption is not evident for others Cartesian controllers
[Huang et.al. (2002)], [Chea et.al. (2001)]. This assumption allows us to use a well posed
inverse Jacobian for any initial condition. In addition, it is possible to prove that exponential
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stability is guaranteed despite the fact the Jacobian is not exactly known and the Jacobian
adaptive law is avoided.

Brief introduction to sliding mode control

The name variable structure control (sliding mode control) comes from the fact that the control
signal is provided by one of two controllers. Which one? It depends on the sign of a scalar
switching function S that in turn depends on the states of the system. If the outcome of this
function is positive, one controller is used. If not, the other one. It is clear that the selection of
the switching function is crucial for the control and that it allows to the designer to generate a
rich family of behaviors.
If this switching function is designed such that the state velocity vectors in the vicinity of the
switching surface (the geometric locus of the states that comply with S = 0) points to the
surface, then it is said that a sliding surface exists. Why this name? Because once the system
intercepts such a surface it continues sliding within it until an equilibrium point is reached.
Therefore, sliding mode control needs to comply with two conditions

• The control law has to provide with sufficient conditions to guarantee the existence and
the reachability of the sliding surface.

• Once the state space behavior of the system is restricted to the sliding surface, the dynamics
corresponds to the desired one, i.e. stability or tracking.

The properties of sliding mode control ensure that a properly controlled system will reach the
sliding surface in a finite time th < ∞, beyond which the states of the system are ketp within
the sliding surface and displaying the desired dynamics.
All the considerations given above rest on assuming ideal sliding modes. This implies having
the capability of producing infinitely fast switchings, something of course impossible in the
physical world. Therefore, the states of the system oscillate within a neighborhood of the
sliding surface. This effect translates into a chattering signal [Utkin (1977)], [DeCarlo et.al.
(1988)], [Hung et.al. (1993)] that looks like noise.

Contribution

In this chapter, free-chattering second order sliding mode control is presented in order to
guarantee convergence of the tracking errors of the robot manipulator under parametric
uncertainty. Specifically, a Cartesian second order sliding mode surface is proposed, which
drives the sliding PID input. Therefore, the closed loop system renders a sliding mode for all
time, whose solution converges to the sliding surface in finite time and a perfect tracking is
guaranteed under assumption that the Jacobian is uncertain.
The main characteristics of the proposed scheme can be summarized as follows:

• The regressor is not required.

• Very fast tracking is guaranteed.

• The controller is smooth.

• An exact Jacobian is not required.

• A conservative tuning of feedback gains is required.

The chapter is organized as follows: Section II presents the dynamical model of a rigid n-link
serial non-redundant robot manipulator and some useful properties. Section III presents
a parameterization of the system in terms of the Cartesian coordinates. Furthermore, two
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Cartesian controllers are presented assuming parametric uncertainty. In the first case, a
traditional Cartesian controller based on the inverse Jacobian is presented. Now, assuming
that the Jacobian is uncertain a Cartesian controller is proposed as a second case. In
Section IV, numerical simulations using the proposed approaches are provided. Finally, some
conclusions are presented in section V.

2. Dynamical equations of robot manipulator

The dynamical model of a non-redundant rigid serial n-link robot manipulator with all
revolute joints is described as follows

H(q)q̈ +

(

1

2
Ḣ(q) + S(q, q̇)

)

q̇ + g(q) = u (1)

where q, q̇ ∈ ℜn are the joint position and velocity vectors, H(q) ∈ ℜnxn denotes a symmetric
positive definite inertial matrix, the second term in the left side represent the Coriolis and
centripetal forces, g(q) ∈ ℜn models the gravitational forces, and u ∈ ℜn stands for the
torque input.
Some important properties of robot dynamics that will be used in this chapter are:

Property 1. Matrix H(q) is symmetric and positive definite, and both H(q) and H−1(q) are uniformly
bounded as a function of q ∈ ℜn [Arimoto (1996)].

Property 2. Matrix S(q, q̇) is skew symmetric and hence satisface [Arimoto (1996)]:

q̇TS(q, q̇)q̇ = 0 ∀q, q̇ ∈ ℜn

Property 3. The left-hand side of (1) can be parameterized linearly [Slotine & Li (1987)], that is, a
linear combination in terms of suitable selected set of robot and load parameters, i.e.

YΘ = H(q)q̈ +

(

1

2
Ḣ(q) + S(q, q̇)

)

q̇ + g(q)

where Y = Y(q, q̇, q̇, q̈) ∈ ℜnxp is known as the regressor and Θ ∈ ℜp is a vector constant parameters
of the robot manipulator.

2.1 Open loop error equation

In order to obtain a useful representation of the dynamical equation of the robot manipulator
for control proposes, equation (1) is represented in terms of the nominal reference (q̇r, q̈r) ∈
ℜ2n as follows, [Lewis (1994)]:

H(q)q̈r +

(

1

2
Ḣ(q) + S(q, q̇)

)

q̇r + g(q) = YrΘr (2)

where the regressor Yr = Yr(q, q̇, q̇r, q̈r) ∈ ℜnxp and Θr ∈ ℜp.
If we add and subtract equation (2) into (1) we obtain the open loop error equation

H(q)Ṡr +

(

1

2
Ḣ(q) + S(q, q̇)

)

Sr = u − YrΘ (3)

where the joint error manifold Sr is defined as

Sr = q̇ − q̇r (4)
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The robot dynamical equation (3) is very useful to design controllers for several control
techniques which are based on errors with respect to the nominal reference [Brogliato et.al.
(1991)], [Ge & Hang (1998)], [Liu et.al. (2006)].
Specially, we are interesting in to design controllers for tracking tasks without resorting on
H(q), S(q, q̇), g(q). Also, to avoid the ill-posed inverse kinematics in the robot manipulator,
a desired Cartesian coordinate system will be used rather than desired joint coordinates
(qT

d , q̇T
d )

T ∈ ℜ3n.
In the next section we design a convenient open loop error dynamics system based on
Cartesian errors.

3. Cartesian controllers

3.1 Cartesian error manifolds

Let the forward kinematics be a mapping between joint space and task space (in this case
Cartesian coordinates) given by 1

X = f(q) (5)

where X is the end-effector position vector with respect to a fixed reference inertial frame, and
f(q) : ℜn → ℜm is generally non-linear transformation. Taking the time derivative of the
equation (5), it is possible to define a differential kinematics which establishes a mapping at
level velocity between joint space and task space, that is

q̇ = J−1(q)Ẋ (6)

where J−1(q) stands for the inverse Jacobian of J(q) ∈ ℜn×n.
Given that the joint error manifold Sr is defined at level velocities, equation (6) can be used to
defined the nominal reference as

q̇r = J−1(q)Ẋr (7)

where Ẋr represents the Cartesian nominal reference which will be designed by the user. Thus,
a system parameterization in terms of Cartesian coordinates can be obtained by the equation
(7). However an exact knowledge on the inverse Jacobian is required.
Substituting equations (6) and (7) in (4), the joint error manifold Sr becomes

Sr = J−1(q)(Ẋ − Ẋr)

� J−1(q)Sx (8)

where Sx is called as Cartesian error manifold. That is, the joint error manifold is driven by
Cartesian errors through Cartesian error manifold.
Now two Cartesian controllers are presented, in order to solve the parametric uncertainty.
Case No.1
Given that the parameters of robot manipulator are changing constantly when it executes a
task, or that they are sometimes unknown, then a robust adaptive Cartesian controller can be
designed to compensate the uncertainty as follows [Slotine & Li (1987)]

u = −Kd1Sr1 + YrΘ̂ (9)

˙̂
Θ = −ΓYT

r Sr1 (10)

1 In this paper we consider that the robot manipulator is non-redundant, thus m = n.
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where Kd1 = KT
d1 > 0 ∈ ℜn×n, Γ = Γ

T
> 0 ∈ ℜp×p.

Substituting equation (9) into (3), we obtain the following closed loop error equation

H(q)Ṡr1 +

(

1

2
Ḣ(q) + S(q, q̇)

)

Sr1 = −Kd1Sr1 + Yr∆Θ

where ∆Θ = Θ̂ − Θ. If the nominal reference is defined as Ẋr1 = xd − α1∆x1 where α1 is a
positive-definite diagonal matrix, ∆x1 = x1 − xd and subscript d denotes desired trajectories,
the following result can be obtained.

Assumption 1. The desired Cartesian references xd are assumed to be bounded and uniformly
continuous, and its derivatives up to second order are bounded and uniformly continuous.

Theorem 1. [Asymptotic Stability] Assuming that the initial conditions and the desired trajectories
are defined in a singularities-free space. The closed loop error dynamics used in equations (9), (10)
guarantees that ∆x1 and ∆ẋ1 tends to zero asymptotically.

Proof. Consider the Lyapunov function

V =
1

2
ST

r1H(q)Sr1 +
1

2
∆Θ

T
Γ
−1

∆Θ

Differentiating V with respect to time, we get

V̇ = −Sr1Kd1Sr1 ≤ 0

Since V̇ ≤ 0, we can state that V is also bounded. Therefore, Sr1 and ∆Θ are bounded.
This implies that Θ̂ and J−1(q)Sx1 are bounded if J−1(q) is well posed for all t. From the
definition of Sx1 we have that ∆ẋ1, and ∆x1 are also bounded. Since ∆ẋ1, ∆x1, ∆Θ, and Sr1 are
bounded, we have that Ṡr1 is bounded. This shows that V̈ is bounded. Hence, V̇ is uniformly
continuous. Using the Barbalat’s lemma [Slotine & Li (1987)], we have that V̇ → 0 at t → ∞.
This implies that ∆x1 and ∆ẋ1 tend to zero as t tends to infinity. Then, tracking errors ∆x1 and
∆ẋ1 are asymptotically stable [Lewis (1994)].

The properties of this controller can be numbered as:

a) On-line computing regressor and the exact knowledge of J−1(q) are required.

b) Asymptotic stability is guaranteed assuming that J−1(q) is well posed for all time.
Therefore, the stability domain is very small because q(t) may exhibit a transient response
such that J(q) losses rank.

In order to avoid the dependence on the inverse Jacobian, in the next case it is assumed that
the Jacobian is uncertain. At the same time, the drawbacks presented in the Case No.1 are
solved.
Case No.2 Considering that the Jacobian is uncertain, i.e. the Jacobian is not exactly known,
the nominal reference proposed in equation (7) is now defined as

˙̂qr = Ĵ
−1

(q)Ẋr2 (11)
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where Ĵ
−1

(q) stands as an estimates of J−1(q) such that rank(Ĵ
−1

(q)) = n for all t and for all
q ∈ Ω where Ω = {q|rank(J(q)) = n}. Therefore, a new joint error manifold arises coined as
uncertain Cartesian error manifold is defined as follows

Ŝr2 = q̇ − ˙̂qr

= J−1(q)Ẋ − Ĵ
−1

(q)Ẋr2 (12)

In order to guarantee that the Cartesian trajectories remain on the manifold Sx although the
Jacobian is uncertain, a second order sliding mode is proposed by means of tailoring Ẋr2.
That is, a switching surface over the Cartesian manifold Sx should be invariant to changes in
J−1(q). Hence, high feedback gains can to ensure the boundedness of all closed loop signals
and the exponential convergence is guaranteed despite Jacobian uncertainty.
Let the new nominal reference Ẋr2 be defined as

Ẋr2 =ẋd − α2∆x2 + Sd − γpσ (13)

σ̇ =sgn(Se)

where α2 is a positive-definite diagonal matrix, ∆x2 = x2 − xd, xd is a desired Cartesian
trajectory, γp is positive-definite diagonal matrix and function sgn(∗) stands for the signum
function of (∗) and

Se = Sx − Sd

Sx = ∆ẋ2 + α2∆x2

Sd = Sx(t0)exp−κ(t−t0), κ > 0

Now, substituting equation (13) in (12) we have that

Ŝr2 = J−1(q)Ẋ − Ĵ
−1

(q)(ẋd − α2∆x2 + Sd − γp

∫ t

t0

sgn(Se(τ))dτ) (14)

Uncertain Open Loop Equation
Using equation (11), the uncertain parameterization of YrΘr becomes

H(q) ¨̂qr +

(

1

2
Ḣ(q) + S(q, q̇)

)

˙̂qr + g(q) = ŶrΘr (15)

If we add and subtract equation (15) to (1), the uncertain open loop error equation is defined
as

H(q) ˙̂Sr2 +

(

1

2
Ḣ(q) + S(q, q̇)

)

Ŝr2 = u − ŶrΘr (16)

Theorem 2: [Local Stability] Assuming that the initial conditions and the desired trajectories
are within a space free of singularities. Consider the uncertain open loop error equation (16)
in closed loop with the controller given by

u = −Kd2Ŝr2 (17)

with Kd2 an n × n diagonal symmetric positive-definite matrix. Then, for large enough
gain Kd2 and small enough error in initial conditions, local exponential tracking is assured

provided that γp ≥ ‖J̇(q)Ŝr2 + J(q) ˙̂Sr2 + J̇(q)∆JẊr2 + J(q)∆ J̇Ẋr2 + J(q)∆JẌr2‖.
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Proof. Substituting equation (17) into (16) we obtain the closed-loop dynamics given as

H(q) ˙̂Sr2 = −

(

1

2
Ḣ(q) + S(q, q̇)

)

Ŝr2 − Kd2Ŝr2 − ŶrΘ (18)

The proof is organized in three parts as follows.
Part 1: Boundedness of Closed-loop Trajectories. Consider the following Lyapunov function

V =
1

2
Ŝ

T
r2H(q)Ŝr2 (19)

whose total derivative of (19) along its solution (18) leads to

V̇ = −Ŝ
T
r2Kd2Ŝr2 − Ŝ

T
r2ŶrΘ (20)

Similarly to [Parra & Hirzinger (2000)], we have that ŶrΘ ≤ η(t) with η a functional that
bounds Ŷr. Then, equation (20) becomes

V̇ ≤ −Ŝ
T
r2Kd2Ŝr2 − ‖Ŝr2‖η(t) (21)

For initial errors that belong to a neighborhood ǫ1 with radius r > 0 near the equilibrium
Ŝr2 = 0, we have that thanks to Lyapunov arguments, there is a large enough feedback gain
Kd2 such that Ŝr2 converges into a set-bounded ǫ1. Thus, the boundedness of tracking errors
can be concluded, namely

Ŝr2 → ǫ1 as t → ∞ (22)

then

Ŝr2 ∈ L∞ ⇒ ‖Ŝr2‖ < ǫ1 (23)

where ǫ1 > 0 is a upper bounded.
Since desired trajectories are C2 and feedback gains are bounded, we have that ( ˙̂qr , ¨̂qr) ∈ L∞,

which implies that Ẋr2 ∈ L∞ if Ĵ
−1

(q) ∈ L∞. Then, the right hand side of (18) is bounded
given that the Coriolis matrix and gravitational vector are also bounded. Since H(q) and

H−1(q) are uniformly bounded, it is seen from (18) that ˙̂Sr2 ∈ L∞. Hence there exists a
bounded scalar ǫ2 > 0 such that

‖ ˙̂Sr2‖ < ǫ2 (24)

So far, we conclude the boundedness of all closed-loop error signals.
Part 2. Sliding Mode. If we add and subtract J−1(q)Ẋr to (12), we obtain

Ŝr2 = J−1(q)Ẋ − Ĵ
−1

(q)Ẋr2 ± J−1(q)Ẋr2

= J−1(q)(Ẋ − Ẋr2) + (J−1(q)− Ĵ
−1

(q))Ẋr2

= J−1(q)Sx − ∆JẊr2 (25)

which implies that ∆J = J−1(q)− Ĵ
−1

(q) is also bounded. Now, we will show that a sliding
mode at Se = 0 arises for all time as follows.
If we premultiply (25) by J(q) and rearrange the terms, we obtain

Sx = J(q)Ŝr2 + J(q)∆JẊr2 (26)

115Cartesian Controllers for Tracking of Robot Manipulators under Parametric Uncertainties
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Since Sx = Se + γp
∫ t

t0
sgn(Se(ζ))dζ, we have that

Se = −γp

∫ t

t0

sgn(Se(ζ))dζ + J(q)(Ŝr2 + ∆JẊr2) (27)

Deriving (27), and then premultiplying by ST
e , we obtain

ST
e Ṡe = −γp|Se|+ ST

e
d

dt

(

J(q)Ŝr2 + J(q)∆JẊr2)
)

≤ −γp|Se|+ ζ|Se|

≤ −(γp − ζ)|Se|

= −μ|Se| (28)

where μ = γp − ζ and ζ = J̇(q)Ŝr2 + J(q) ˆ̇Sr2 + J̇(q)∆JẊr2 + J(q)∆ J̇Ẋr2 + J(q)∆JẌr2. Therefore,
we obtain the sliding mode condition if

γp > ζ (29)

in such a way that μ > 0 guarantees the existence of a sliding mode at Se = 0 at time te ≤
|Se(t0)|

μ . However, notice that for any initial condition Se(t0) = 0, and hence t ≡ 0 implies that

a sliding mode in Se = 0 is enforced for all time without reaching phase.
Part 3: Exponential Convergence. Sliding mode at Se = 0 implies that Sx = Sd, thus

∆ẋ2 = −α2∆x2 + Sx(t0)e
−kpt (30)

which decays exponentially fast toward [∆x2, ∆ẋ2] → (0, 0), that is

x2 → xd and ẋ2 → ẋd (31)

it is locally exponential.

"

Fig. 1. Planar Manipulator of 2-DOF.

The properties of this controller can be numbered as
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(b) Theorem 1: Cartesian Tracking Errors

Fig. 2. Cartesian Tracking of the Robot Manipulator using Theorem 1.

a) The sliding mode discontinuity associated to Ŝr2 = 0 is relegated to the first order time

derivative of ˙̂Sr2. Then, sliding mode condition in the closed loop system is induced
by the sgn(Se) and an exponential convergence of the tracking error is established.
Therefore, the closed loop is robust due to the invariance achieved by the sliding mode,
robustness against unmodeled dynamics, and parametric uncertainty. A difference of
this approach from others [Lee & Choi (2004)], [Barambones & Etxebarria (2002)], [Jager
(1996)], [Stepanenko et.al. (1998)], is that the closed loop dynamics does not exhibit
chattering. Finally, notice that the discontinuous function sgn(Se) is only used in the
stability analysis.

c) The control synthesis does not depend on any knowledge of the robot dynamics: it is
model free. In addition, a smooth control input is guaranteed.

d) Taking γp = 0 in equation (13), it is obtained the joint error manifold Sr1 defined in the
Case No.1, which is commonly used in several approaches. However under this sliding
surface it is not possible to prove convergence in finite time as well as reaching the sliding
condition. Then, a dynamic change of coordinates is proposed, where for a large enough
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feedback gain Kd in the control law, the passivity between η1 and Ŝr2 is preserved with

η1 = ˙̂Sr2 [Parra & Hirzinger (2000)]. In addition, for large enough γp the dissipativity is

established between Se and η2 with η2 = Ṡe.

e) In order to differentiate from other approaches where the parametric uncertainty in
the Jacobian matrix is expressed as a linear combination of a selected set of kinematic
parameters [Chea et.al. (1999)], [Chea et.al. (2001)], [Huang et.al. (2002)], [Chea et.al.
(2004)], [Chea et.al. (2006)], [Chea et.al. (2006)], in this chapter the Jacobian uncertainty
is parameterized in terms of a regressor times as parameter vector. To get the parametric
uncertainty, this vector is multiplied by a factor with respect to the nominal value.
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(b) Theorem 2: Cartesian Tracking Errors

Fig. 3. Cartesian Tracking of the Robot Manipulator using Theorem 2.

4. Simulation results

In this section we present simulation results carried out on 2 degree of freedom (DOF) planar
robot arm, Fig. 1. The experiments were developed on Matlab 6.5 and each experiment has an
average running of 3 [s]. Parameters of the robot manipulator used in these simulations are
shown in Table 1.
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(a) Theorem 1: Control Inputs
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(b) Theorem 2: Control Inputs

Fig. 4. Control Inputs applied to Each Joint.

Parameters m1 m2 l1 l2
Value 8 Kg 5 Kg 0.5 m 0.35 m

Parameters lc1 lc2 I1 I2

Value 0.19 m 0.12 m 0.02 Kgm2 0.16 Kgm2

Table 1. Robot Manipulator Parameters.

The objective of these experiments is to given a desired trajectory, the end effector must follow
it in a finite time. The desired task is defined as a circle of radius 0.1 [m] whose center located
at X=(0.55,0) [m] in the Cartesian workspace. The initial condition is defined as [q1(0) =
−0.5, q2(0) = 0.9]T [rad]. which is used for all experiments. In addition, we consider zero
initial velocity and 95% of parametric uncertainty.
The performance of the robot manipulator using equations (9) and (10) defined in theorem 1
are presented in Fig. 2. In this case, the end-effector tracks the desired Cartesian trajectory
once the Cartesian error manifold is reached, Fig. 2(a). In addition, as it is showed in Fig. 2(b),
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Fig. 5. Cartesian Tracking of the Robot Manipulator using TBG

the Cartesian tracking errors converge asymptotically to zero in few seconds. However, for
practical applications it is necessary to know exactly the regressor and the inverse Jacobian.
Now, assuming that the Jacobian is uncertain, there is no knowledge of the regressor, and
there cannot be any overparametrization, then a Cartesian tracking of the robot manipulator
using control law defined in equation (17) is presented in Fig 3(a). As it is expected, after
a very short time, approximately 2 [s], the end effector of the robot manipulator follows the
desired trajectory, Fig. 3(a) and Fig. 3(b). This is possible because in the proposed scheme all
the time it is induced a sliding mode. Thus, it is more faster and robust.
On the other hand, in Fig. 4 are shown the applied input torques for each joint of the robot
manipulator for the cases 1 and 2. It can be see that control inputs using the controller defined
in equation (17) are more smooth and chattering free than controller defined in equation (9).
Given that in several applications, such as manipulation tasks or bipedal robots, it is not
enough the convergence of the errors when t tends to infinity. Finite time convergence faster
that exponential convergence has been proposed [Parra & Hirzinger (2000)]. To speed up the
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response, a time base generator (TBG) that shapes a feedback gain α2 is used. That is, it is
necessary to modify the feedback gain α2 defined in equation (13) by

α2(t) = α0
ξ̇

1 − ξ + δ
(32)

where α0 = 1 + ǫ, for small positive scalar ǫ such that α0 is close to 1 and 0 < δ ≪ 1. The
time base generator ξ = ξ(t) ∈ C2 must be provided by the user so as to get ξ to go smoothly
from 0 to 1 in finite time t = tb, and ξ̇ = ξ̇(t) is a bell shaped derivative of ξ such that
ξ̇(t0) = ξ̇(tb) ≡ 0 [Parra & Hirzinger (2000)]. Accordingly, given that the convergence speed
of the tracking errors is increased by the TBG, a finite time convergence of the tracking errors
is guaranteed.
In the Fig. 5 are shown simulation results using a finite time convergence at tb = 0.4 [s]. As
it is expected, the end effector follows exactly the desired trajectory at tb ≥ 0.4 [s], as shown
in Fig. 5(a). At the same time, Cartesian tracking errors converge to zero in the desired time,
Fig. 5(b).
The feedback gains used in these experiments are given in Table 2 where the subscript ji
represents the joint of the robot manipulator with i = 1, 2.

Kdj1 Kdj2 αj1 αj2 γpj1 γpj2 kp Γ tb Case

60 60 25 25 - - - 0.01 - 1

50 20 30 30 0.01 0.01 20 - - 2
60 60 2.2 2.2 0.01 0.01 20 - 0.4s TBG

Table 2. Feedback Gains

5. Conclusion

In this chapter, two Cartesian controllers under parametric uncertainties are presented. In
particular, an alternative solution to the Cartesian tracking control of the robot manipulator
assuming parametric uncertainties is presented. To do this, second order sliding surface is
used in order to avoid the high frequency commutation. In addition, closed loop renders a
sliding mode for all time to ensure convergence without any knowledge of robot dynamics
and Jacobian uncertainty. Simulation results allow to visualize the predicted stability
properties on a simple but representative task.
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