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1. Introduction 

The present research work reports the usability of knowledge-based control (KBC) as an 
alternative control method with specific concentration robot arm (RA). This novel control 
approach is based on the combination of inferences and calculations. It is dictated by the 
advent of microprocessor technology which has been one of the sources of inspiration for 
techniques spanning the whole spectrum of controllers design. KBC can contribute to build 
simple proportional integral and derivative (PID) control schemes (Åström et al., 1992) to 
large classes of regulators such as self-tuning regulators and model-reference adaptive 
controllers, among others (Hanlei, 2010). Because knowledge base systems (KBSs) research 
has focused on implementing heuristic techniques, the corresponding knowledge-based 
controllers can justly be considered as the next logical step in control design and 
implementation (Handelman et al., 1990). The main characteristics of knowledge-based 
controllers is that they incorporate years-long human expertise under the form of machine-
understandable heuristic rules. In KBC, the knowledge elicited from human experts is 
codified and embodied within the KB in the form of IF-THEN rules. As a result, the KB 
technology takes into account the increase in system complexity. This sophistication is 
naturally encountered as efforts are made to stretch the limits of system performance and 
integrate more capabilities as a response to technological advances (Calangiu et al., 2010). In 
addition, the inherent ability of KBSs to support incremental expansion of capabilities and 
provide justification for recommendations or actions is offered by conventional 
programming techniques. Serious considerations are being given to increasing system 
reliability by predicting algorithm failure in RAs control and reconfiguring control laws in 
response to algorithm failure due to instability/chattering, or large RAs parameter 
variations.  
The knowledge-based control (KBC) benefits as applied to RA are to:  
 Implement/incorporate heuristics within the RA control schemes.  
 Diagnose or predict algorithm failure. 
 Identify changes in RA parameters or structure. 
 Recalculate control laws based upon knowledge of the current RA parameters.  
 Select appropriate control laws based on the current RA responses.  
 Execute supportive control logic which has been used for practical controllers in the past.  
 Provide an explanation of the situation to the user as and when requested.  
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However KBC approach is not without issues. Indeed, KBC design problem requires 
elicitation / acquisition and coding of the "useful expertise", gained by humans over a 
lifetime. It is highly difficult to find proper ways of extracting this expertise from the human 
experts. Discerning "usefulness", avoiding unnecessary data and finding ways of optimizing 
this knowledge representation is not a straight-forward task. How far are we from common 
sense-based control? This paper extends the limits of RA control using KBC approach in 
order to reach this distant end.   
The main issue of the present work is to answer positively our central question, i.e., whether 
it is possible to integrate the diversified methods dealing with dynamical systems control 
exemplified by RA control, while concentrating on KBC as an alternative control method. 
We describe the epistemological characteristics of a framework that is believed to integrate 
two distinct methodological fields of research i.e., artificial intelligence (AI)-based methods 
where KBC is partly rooted, on the one hand, and control theory, where RA control is 
formulated, on the other hand. Blending research from both fields results in the appearance 
of a richer research community. Emphasis is now made on RA control as a prelude to other 
classes of robotic systems; ultimately enhancing full programmable self-assembly 
compounds (Klavins, 2007). The chapter is organized as follows. In Section 2, the main KBC 
issues are discussed.  Section 3 presents KBC within the general area of intelligent control 
and places KBC with respect to generalized hybrid control. Section 4 summarizes RA 
control in standard mathematical terms.  Section 5 deals with an architecture for KBC for RA 
as an alternative control method followed by a conclusion and future developments.   

2. Knowledge-based control issues 

2.1 Our specific problem 

The specific problem we want to tackle can broadly be expressed as follows: 
Given: 
 A plant configuration library describing the actual system to be controlled, 
 A library of control algorithms with various degrees of complexity, 
Find: 

One (class of) algorithm (s) that control one plant configuration. 
Application: 

Address simulation of RAs dynamics under various control schemes. 
For doing this, consider two complementary environments, i.e. a numeric environment 
responsible for making calculations (trajectory, control law,…) and a symbolic environment 
responsible for making logical inferences incorporating human experience. These two 
environments are the main components of any KBC architecture. Two modes of operation 
are therefore possible. In the numerical or exploitation mode, the program generates the 
outputs using imposed algorithms. In the inferential or exploration mode, the algorithm is 
not known before hand. Using the codified expertise in the KB, the program has to choose it 
from a library before firing the numeric mode. For the sequel, we first start by considering 
standard RA control and then KBC within the larger context of intelligent control. 

2.2 From standard RA control to KBC 

RA control is the process whereby a physical system, namely a set of robotic linked arms, is 
made compliant with some prescribed task such as following an imposed trajectory or 
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keeping in pace with a given angular velocity (Siciliano, 2009). Welding and assembly-line 
robots are popular examples of RA industrial applications. RA control is a much diversified 
field. As a result, it makes concentrated research a difficult task. While RA control has been 
extensively studied from the pure control side (Lewis et al., 2003), for the last four decades, 
or so, very little attention has been made with regard to KBC. Indeed, the symbolic 
approach  efforts as applied to control at large remain quite isolated (Martins et al. 2006). 
Our fundamental aim is to contribute to the integration of RA control within KBC, 
considered within a larger intelligent control methodology; this latter being defined as a 
computational methodology that provides automatic means of improving tasks from 
heuristics (Hamdi-Cherif & Kara-Mohamed, 2009). As a subfield of intelligent control, KBC 
attempts to elaborate a control law on the basis of heuristics. KBC aim is therefore consistent 
with the overall goal of intelligent control and, as such, automatically generates a control 
law from heuristic rules and actual facts describing the actual RA status (control law, errors, 
trajectories). 

2.3 Pending control issues 

Although KBC is a promising applied research area, there remain many challenges to be 
addressed. The main pending issues are:  
 the system under control can be very complex (e.g. nonlinearities in robot arm (RA)) ;  
 our knowledge of the system is imprecise (e.g. unknown RA parameters, unknown 

conditions of operation) although gradually increasing during operation, in the 
optimistic case of successful identification process, 

 the influence of the environment is strong (e.g. outside perturbation, modeling errors), 
may vary and may even influence the current task,  

 the goal of the system is described symbolically and may have internal hierarchy to be 
further investigated and structured. 

If the answer to these challenges can be obtained from human experts, then this knowledge 
is codified within the KB by knowledge engineers. If the answer is unknown, then offline 
experimentation is done by control engineers to gradually build an answer and codify it in 
the KB. In any case, the KBC designer has to constantly upgrade the KB with human 
expertise and/or manual experimentations.  

2.4 Overview of related works 

Few authors have addressed the issue of designing and developing systems that cater for 
general-purpose RA control. For example (Yae et al. 1994) have extended the EASY5 - the 
Boeing Engineering and Analysis SYstem - incorporating constrained dynamics. (Polyakov 
et al. 1994) have developed, in MATHEMATICA™, a symbolic computer algebra system 
toolbox for nonlinear and adaptive control synthesis and simulation which provides flexible 
simulation via C and MATLAB™ code generation. MATHEMATICA™ has also been used 
in a simulation program that generates animated graphics representing the motion of a 
simple planar mechanical manipulator with three revolute joints for teaching purposes 
(Etxebarria, 1994). A toolbox is available for RA control running on MATLAB™ (Corke, 
1996). For supplementary and more general applications of computer algebra to CACSD 
(computer-aided control system design), we refer to (Eldeib and Tsai, 1989). Recent research 
directions aim at the development of operating systems for robots, not necessarily for the 
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RA class. An overview of ROS, an open source robot operating system has been recently 
reported. ROS is not an operating system in the traditional sense of process handling and 
scheduling. It provides a structured communications layer above the host operating systems 
of a heterogeneous cluster. ROS was designed to meet a specific set of challenges 
encountered when developing large-scale service robots as part of the so-called STAIR 
project [http://stair.stanford.edu/papers.php]. The way how ROS relates to existing robot 
software frameworks, and a brief overview of some of the available application software 
which uses ROS are reported in (Quigley, et al. 2009). However, none of these works 
addressed the issue of using the KBC approach to solve the RA control problem. Hence our 
solution.   

3. Solution components 

3.1 KBC within intelligent control  
3.1.1 The area of intelligent control 

One of the fundamental issues that concerns intelligent control is the extent to which it is 
possible to control the dynamic behavior of a given system independently of  
 its complexity, 
 our capability of separating it from the environment and localizing it, 
 the context in which this system operates,  
 the forms of knowledge available and the categories it manipulates, 
 the methods of representation.  
As formulated, this issue cannot be handled by either control theory or artificial intelligence 
(AI). Indeed, control theory has a very localized mostly numerical vision of the problem. 
This prevents it from looking beyond the localized constraints self-imposed by the designer 
and hidden within the mechanism of the mathematical representation. From the standpoint 
of AI, the available knowledge-related methods cannot easily handle dynamic systems and 
have very little consideration for numerical manipulation. Indeed, computations of margins 
of stability, controllability, observability are alien to AI. Moreover, both control theory and 
artificial intelligence (AI) cannot properly operate out of the operations research (OR) 
paradigm. Its queues, graphs and game-theoretic situations are typical of the variety of 
control applications. That is why an early proposal for the definition of intelligent control is 
to consider this field as the intersection of the three previously-cited disciplines namely 
control theory, AI and OR, (Saridis, 1987). Other fields such as soft computing represented 
by fuzzy, genetic,  neural systems and their combinations, on the one hand, and cognitive 
science, on the other hand have been progressively integrated within the intelligent control 
discipline over the last three decades, or so (Lewis et al; 2003).  

3.1.2 Landmarks of intelligent control 

Intelligent control is a term that first appeared in the seventies and later developed in 
(Saridis , 1987). An early, but constantly refined definition of this field describes itself as that 
area beyond adaptive, learning and self-organizing systems which represents the meeting 
point between artificial intelligence (AI), automatic control (AC) and operations research 
(OR). A tremendous body of literature has been developed to account for the description / 
design within this novel paradigm. International intelligent control symposia have been 
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held every year since 1985 and numerous contributions appear regularly in the specialized 
and thoroughly documented literature where novel original definitions and applications of 
the field are proposed e.g. (Rao, 1992), (Handelman et al., 2010). Extensions of the field are 
reported by (Åström, 1989), (Åström and MacAvoy, 1992), and (Cellier et al., 1992). Other 
approaches have also been considered by researchers like the cognition-oriented approach 
with applications, (Meystel, 1994). Among the several advanced theoretical and applied 
results are those due to (Saridis, 1987) who proposed the so-called an entropy-based theory 
for hierarchical controller design based on the so-called "principle of decreasing precision 
with increasing intelligence". More recently, methods concentrated on soft computing 
methods such as:   
a. Neural networks (NNs). In (Kwan et al., 2001), a desired compensation adaptive law-

based neural network (NN) controller is proposed for the robust position control of 
rigid-link robots where the NN is used to approximate a highly nonlinear function. 
Global asymptotic stability is obtained with tracking errors and boundedness of NN 
weights. No offline learning phase is required as learning is done on-line. Compared 
with classic adaptive RA controllers, parameters linearity and determination of a 
regression matrix are not needed. However, time for converging to a solution might be 
prohibitive.  

b. Fuzzy-Genetic. In (Merchán-Cruz and Morris, 2006), a simple genetic algorithm planner 
is used to produce an initial estimation of the movements of two RAs’ articulations and 
collision free motion is obtained by the corrective action of the collision-avoidance 
fuzzy units. 

3.1.3 Scope of intelligent control 

Intelligent control as a discipline provides generalization of the existing control theories and 
methods on the basis of the following elements (Aström and MacAvoy, 1992): 
 combined analysis of the plant and its control criteria,  
 processes of multisensor operation with information (knowledge) integration and 

recognition in the loop, 
 man-machine cooperative activities, including imitation and substitution of the human 

operator, 
 computer structures representing these elements. 

3.1.4 Specific issues in intelligent control 

One of the main drawbacks of intelligent control is that, up to now, there is no established 
terminology identifiable with this discipline. There remains an inertia in following 
conventional views and recommendations. This attitude hinders the development of 
intelligent control ideas and methods. For the purpose of immediate applications, we will 
concentrate on a small area of intelligent control. On the one hand, we will focus on the use 
of numerical/exploitation (procedural) and inferential/exploration processing (declarative, 
rule-based) systems. The former describe the RA control algorithms while the latter 
represent the way in which the expertise is explored and used in firing the adequate 
algorithm according to the actual situation (plant, errors). In the multiresolutional control 
architectures for intelligent machines proposed by (Meystel, 1991), the general structure of 
the intelligent controller is described by a set of feedback loops. Each one of these loops is 
declared for a particular resolution level and works with a different time-scale. Resolution of 

www.intechopen.com



 
Robot Arms 

 

56

a given level is defined by (Meystel, 1994) as "the size of undistinguishability zone for the 
representation of goal, plan and feedback law."   

3.2 KBC as a generalized hybrid control methodology 
3.2.1 Hybrid control 

KBC can alternatively be considered with respect to hybrid control. In the early sixties, the 
discipline of hybrid control referred to controlled systems using both discrete and 
continuous parts. This discipline spanned a substantial area of research from basic switched 
linear systems to full-scale hybrid automata. Later, symbolic control methods came to 
include abstracting continuous dynamics to symbolic descriptions, instruction selection and 
coding in finite-bandwidth control applications, and applying formal language theory to the 
continuous systems domain. A number of results have emerged in this area with a 
conventional control-theoretic orientation, including optimal control, stability, system 
identification, observers, and well-posedness of solutions. At the same time, symbolic 
control provides faithful descriptions of the continuous level performance of the actual 
system, and as a result, provides a formal bridge between its continuous and the discrete 
characteristics (Egerstedt et al., 2006).   

3.2.2 Generalized hybrid control 

Generalized hybrid control is meant to incorporate logic and control, whether discrete or 
continuous. For our KBC concern, we will consider KBC as an integration of pure control 
and logical inference as expressed by either propositional logic or first-order logic (FOL). As 
a result, KBC addresses questions at the highest level, i.e., at the level of symbols, and as 
such stands half-way between computer science and logic, on the one hand and control 
theory, on the other hand. A whole research area is to be investigated whereby results from 
hybrid control are to be mapped onto generalized hybrid control. As for now, a new line of 
research in hybrid systems has been initiated that studies issues not quite standard to the 
controls community, including formal verification, abstractions, model expressiveness, 
computational tools, and specification languages. These issues were usually addressed in 
other areas, such as software engineering and formal languages (Hamdi-Cherif, 2010).   

3.3 Overall architecture for intelligent control  

Intelligent machines are those that perform anthropomorphic tasks, autonomously or 
interactively and/or proactively with a human operator in structured or unstructured, 
familiar or unfamiliar environments. The intelligent controller represents the driving force 
that allows intelligent machines achieve their goals autonomously. It embodies functions of 
inferences as well as conventional control based on numeric processing. When such 
environments treat more than one state of the process to be controlled, as in the case of RA 
control, then it is careful to separate between control and inference, both functionally and 
architecturally. To this end we propose, in Figure 1,  an overall architecture for intelligent 
control which considers the following levels: 

3.3.1 Formulation level 

At the formulation level, we find a hierarchical task formulation / task negotiation process. 
In the worst case situation, this formulation elaborates a model of an imprecise and 
incomplete plant.  
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3.3.2 Controller-plant matching level 

This level uses knowledge from the KB to decide which controller algorithm is suitable for a 
given plant when operating under some prescribed user-defined specifications and other 
additional constraints. This level is further expanded in Figure 2.  

3.3.3 Reasoning level 

At this level, a KB contains the necessary knowledge to solve the controller-plant matching 
problem on the basis of the formulation. For the obtainment of the final controller-plant 
matching, a hybrid numeric / symbolic system representation has to be used. Some trade-
off tasks as part of control process have to be considered.  
 

 
Fig. 1. Overall architecture for intelligent control 

3.4 Inference issues 

In evaluating any knowledge base system (KBS), and therefore any knowledge-based 
control (KBC) system, a wide range of criteria can be considered. We will define a generic 
framework for a description of the inferential part intervening in the KBC system. There are 
thousands of such systems ranging from free software (e.g. CLIPS, 
http://clipsrules.sourceforge.net/) to large industrial advanced packages such as G2™  
from Gensym™ (http://www.gensym.com)  

3.4.1 Knowledge base structure  

Under this heading, we describe whether the system provides the representation by frames, 
messages, object-oriented languages, semantic nets, among others.  

3.4.2 Type of logic involved  

The usual types of logic available in KBS shells/systems are : 
 Propositional:  Boolean with no variables.  
 Predicate or first order logic (FOL): Boolean with variables.  
 Temporal: involves time in reasoning. 
 Fuzzy: handles uncertainty, imprecision.  
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 Non-monotone: handles changing data.  
 Default: handles situations like "most controllers are acceptable for these specifications".  
 Modal: handles situations like "it's possible that", "it has been shown that this type of 

controller does not fit". 
 

 
Fig. 2. Controller-plant matching problem 

3.4.3 Reasoning strategy  

 Forward chaining: hypothesis-driven.  
 Backward chaining: goal-driven.  
 Hybrid chaining: combining both forward and backward chaining. 
 Blackboards: for keeping set of hypotheses of partial and final solutions.  

3.4.4 Knowledge issues  

 Knowledge management : browsers, editors, workspaces, workspaces security.  
 Knowledge validation : "what if's" simulation capabilities.  
 Knowledge building tools : human interface quality, KB construction quality, natural 

language environment. 
 Knowledge debugging : levels of tracing, rules reporting, quality in entry and knowledge 

management. 

3.4.5 Explanation, truth and uncertainty  

 Explanation of reasoning: why's, natural language explanations, messages, variables 
values representation. 

 Truth maintenance : forward update, backward update. 
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 Uncertainty management : certainty factors, fuzzy-oriented management. 

3.4.6 Miscellaneous  

 Interface with outside world: data acquisition, data bases, other specialized software 
interfacing.  

 Other performance: stand-alone off-line, real-time performance, networking, other 
advanced special features.   

4. RA Standard control problem  

4.1 Brief history 

On the control side, we concentrate on some classes of control methods such as adaptive 
control and passivity-based control. The development of RA control algorithms has gone 
through at least three historical phases. The first is the model reference adaptive control and 
self-tuning control followed by the passivity approach and then by the soft computing 
methods. We report here the first two phases while the soft computing methods have been 
described in Section  3.1.3 above..  

4.1.1 Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) 

The first phase (1978-1985) concentrated its efforts on the approximation approach. The 
methods developed during this period are well-documented in the literature and some 
review papers have been written for that period (e.g. Hsia, 1986). Researches were 
concentrated on issues expanded below.   
a. Model reference adaptive control approach (MRAC) guided by the minimization of the error 

between the actual system and some conveniently chosen model of it. At the 
methodological level, this represents a traditional example of supervised learning based 
on comparison between the actual and desired outputs while trying to minimize the 
error between desired and actual values.  

b. Self-tuning control based on performance criteria minimization.  

4.1.2 Parametrization approach  

The methods developed during the second period that followed with some time overlaps 
with the previous period, concentrated on the parameterization approach. The methods 
developed within this period can be further separated in two broad classes, namely inverse 
dynamics and passivity-based control.  
a. Inverse dynamics 

The first set of methods treats the inverse dynamics-based control or computed torque 
method. It relies on the exact cancellation of all the nonlinearities in the system. In the 
ideal case, the closed-loop system is decoupled and linear. Stability in this case is based 
on the Lyapunov direct method. A dynamical system is said to be stable in the sense of 
Lyapunov if it has the characteristics that when it loses an un-restored energy over 
time,  then it will stabilize at some final state, called the attractor. In Lord Kelvin’s terms 
this means that conservative systems in the presence of dissipative forcing elements will 
decay to a local minimum of their potential energy. However, finding a function that 
gives the precise energy of a given physical system can be extremely difficult. On the 
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other hand, for some systems (e.g. econometric and biological systems), the Lyapunov 
function has no physical meaning.  

b. Passivity-based control 
The second set of methods deals with passivity-based control. The aim is to find a 
control law that preserves the passivity of the rigid RA in closed-loop. Stability here is 
based on the Popov hyperstability method (Popov, 1973). One of the main motivations 
for using these control laws, as far as stability is concerned, is that they avoid looking 
for complex Lyapunov functions - a bottleneck of the Lyapunov-based design. These 
laws also lead, in the adaptive case, to error equations where the regressor is 
independent of the joint acceleration. The difficult issue of inertia matrix inversion is 
also avoided. At the opposite of inverse dynamics methods, passivity-based methods 
do not look for linearization but rather for the passivity of the closed-loop system. 
Stability is granted if the energy of the closed-loop system is dissipated. The resulting 
control laws are therefore different for the two previous classes.  

4.2 Issues in adaptive and passivity RA control  

From the vast literature on adaptive control, only a small portion is applicable to RA control. 
One of the first approaches to adaptive control, based on the assumption of decoupled joint 
dynamics, is presented in (Craig, 1988). In general, multi-input multi-output (MIMO) 
adaptive control provides the means of solving problems of coupled motion, though 
nonlinear robot dynamics with rapidly changing operating conditions complicate the 
adaptive control problem involved, even if there are also advantages when compared with 
the adaptive control of linear systems. Specialized literature has appeared in the field, e.g., 
the interesting tutorial reported in (Ortega & Spong, 1989). As far as adaptive control is 
concerned, some methods assume that acceleration is available for measurement and that 
the inertia matrix inverse is bounded. Others avoid at least the boundedness constraint (e.g. 
Amestegui et al., 1987) while passivity-based control avoids both limitations. We propose to 
classify the specialized contributions in the field as follows: 
a. Parameter estimation: such as  the linear estimation models suitable for identification of 

the payload of a partially known robot, going back to (Vukabratovic et al., 1984).  
b. Direct adaptive control of robot motion as studied by : 

1. (Craig et al., 1987) in conjunction with model reference adaptive control (MRAC). 
Here stability is studied using strictly positive real transfer functions (SPR-TF). 

2. (Slotine and Li, 1987) in conjunction with the so-called "MIT rule". Here the 
regulator is independent of the acceleration measurement and linear in the 
parameters. 

3. Johansson has still improved the work of (Craig et al., 1987) in terms of stability. 
This method avoids matrix inversion and SPR-TF requirements (Johansson, 1990).  

c. Decentralized control for adaptive independent joint control as proposed by (Seraji, 1989).  
d. Control and stability analysis such as passivity-based control developed by (Landau and 

Horowitz, 1989).   

4.3 RA dynamics 

A standard mathematical model is needed for any RA control problem. The RA dynamics 
are modeled as a set of n linked rigid bodies (Craig, 2005). The model is given by the 
following standard ordinary differential equation in matrix form. 
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 ( ) ( ) ( , ) ( ) ( )t M q q C q q q G q V q
   

     (1) 

Time arguments are omitted for simplicity. The notations used have the following meaning:  
q : joint angular position, nx1 real vector.  
q


: joint angular velocity, nx1 real vector. 
q


: joint angular acceleration, nx1 real vector. 
( )t  : joint torque, nx1 real vector.  

( )M q  : matrix of moment of inertia or inertia matrix, nxn real matrix.   
( , )C q q q

 

: Coriolis, centrifugal and frictional forces. C is nxn real matrix.  
( )G q  : gravitational forces. G is an nx1 real vector describing gravity.   
( )V q


 : nx1 real vector for viscous friction. It is neglected in our forthcoming treatment.  

4.4 RA PID control 

Proportional integral and derivative (PID) control is one of the simplest control schemes. It 
has been successfully used for the last six decades, or so, in many diversified applications of 
control. Despite its simplicity, PID is still active as an applied research field. In February 
2006, a special issue of IEEE Control Systems Magazine has been devoted to the subject to 
account for its importance and actuality. Insofar as automatically-tuned PIDs (or autotuners) 
are concerned, commercial products became available around the early eighties. Since the 
Ziegler-Nichols rules of thumb developed in the 1940’s, many attempts have been made in 
the “intelligent” choice of the three gains (e.g. Åström et al. 1992). The intelligent approach 
also helps in explanation of control actions usage. Indeed, in many real-life applications, 
explanation of control actions is desirable, e.g., why derivative action is necessary.  
On the numerical level, the PID control u(t) is given by: 

 
0

( ) ( ) ( ) ( )
t

p v i
u t K e t K e t K e n dn



     (2) 

 ( ) ( ) ( )
d

e t q t q t   (3) 

 ( ) ( ) ( )
d

e t q t q t
  

   (4) 

Equation (1) describes the control u(t). Kp, Ki, Kv are the gains for the proportional (P), 
integral (I) and derivative (D) actions, respectively.  
Equation (3) defines the position error e(t), i.e., the difference between the actual system 
position q(t) and the desired position qd(t).  
Equation (4) defines the velocity error and is simply the time-derivative of the error given in 
Equation (3) above. Equation (4) describes the difference between the actual system velocity 
and the desired velocity. The PID scheme block-diagram is given in Figure 3.  

4.5 RA adaptive control  
4.5.1 Purpose of adaptive control 

The general adaptive controller design problem is as follows : given the desired trajectory 
qd(t), with some (perhaps all) manipulator parameters being unknown, derive a control law 
for the actuator torques and an estimation law for the unknown parameters such that the 
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manipulator output q(t) tracks the desired trajectories after an initial adaptation process. 
Adaptive control laws may be classified on the basis of their control objective and the signal 
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Fig. 3. RA PID Control 

that drives the parameter update law. This latter can either be driven by the error signal 
between the estimated parameters and the true parameters (prediction or parametric error) 
or by the error signal between the desired and actual outputs (tracking error). Stability 
investigations are at the basis of acceptability of the proposed scheme. 

4.5.2 Example of adaptive control scheme  

As an example, the method due to (Amestegui et al., 1987) compensates the modeling errors 
by a supplementary control . First, the computed torque approach is used whereby the 
linearizing control is obtained by a suitable choice of the torque. This amounts to simply 
replacing the acceleration q



 by the control u in (1) above resulting in:  

 ( ) ( ) ( , ) ( ) ( )t M q u C q q q G q V q
  

     (5) 

Combining (1) and (5) yields:  

 ( )( ) 0M q q u


   (6) 

Which amounts to n decoupled integrators ( )q u


 . In this case, the control u can be 
expressed in terms of the desired acceleration as a PD compensator.  
Now compensate the modeling errors by a supplementary control  and neglect viscous 
friction.  

 0 0( ) ( )( ) ( , ) ( )t M q u C q q q G q 
 

     (7) 

Using the linear parametrization property, we obtain: 
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 0( )( ) ( , , )M q u q q q q  
  

     (8) 

The compensating control is then given by :  

 ˆ( , , )q q q  
 

   (9) 

and the estimated parametric error vector is solution of :  

 0
ˆ ˆ( , , ) ( )( )T q q q M q u q 
   

     (10) 

In the previous equations, the following notations are used: 
( , , )q q q

 

 represents the regressor matrix, of appropriate dimensions. 
The parametric error vector: 

 0      (11) 

where  is the actual parameter vector and  

0  a constant and linear vector with respect to the nominal robot model.  
̂ is the estimate of   and  

 1 2( , ..., )
n

diag      (12) 

is a positive-definite diagonal matrix with 0
i
  , representing the adaptation gain for the 

gradient parametric estimation method. Note that this last scheme avoids the inversion of 
the inertia matrix. It reduces the calculations complexity. However the measurement of the 
acceleration is always required. The block-diagram is given in Figure 4.  
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NB : In Figure 4, the following notations are used: 0 0;y t t      

Fig. 4. Amestegui's adaptive compensation scheme 
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4.6 RA robust control  

Robust control approach considers adding a correcting term to the control signal. This 
compensates the parametric error. This supplementary signal gives better tracking and 
makes the system more robust with respect to parametric error. We can classify the robust 
methods as Lyapunov-based methods, variable structure methods and non-chattering high 
gains methods.  

4.6.1 Lyapunov-based methods  

This class of methods is based on the Lyapunov direct method and is based on (Spong and 
Vidyasagar, 2006). The main problem encountered by Lyapunov-based class of RA control 
algorithms is the so-called chattering effect which results from commutation of the 
supplementary signal. This behavior creates control discontinuities. Research efforts have 
been accomplished that cater for this undesirable chattering effect. The algorithm proposed 
by (Cai and Goldenberg 1988) is a tentative answer to the problem of chattering. The issue of 
chattering represents a predilection area for the applicability of KB methods, since 
chattering can be modeled using human expertise.  

4.6.2 Variable structure methods  

Variable structure methods, such as the one proposed by (Slotine, 1985) are based on high-
speed switching feedback control where the control law switches to different values 
according to some rule. This class of methods drives the nonlinear plant's trajectory onto an 
adequately designed sliding surface in the phase space independently of modeling errors. In 
(Chen and Papavassilopoulos, 1991) four position control laws have been analyzed and 
compared for a single-arm RA dynamics with bounded disturbances, unknown parameter, 
and unmodeled actuator dynamics. Although very robust to system's disturbance and 
simplifying the complexity of control laws implementation, these methods suffer from 
undesirable control chattering at high frequencies.  

4.6.3 Non-chattering high gains methods 

The non-chattering high gains class of methods is based on the singular perturbation 
theory and considers two time scales. This class avoids the chattering effect (Samson, 
1987). However, robustness in this case is guaranteed by the choice of a nonlinear gain 
which is calculated from the a priori knowledge of the parametric uncertainties and from 
the model chosen for control calculation. The resulting control can be considered as a 
regulator which automatically adapts the gains in accordance with the displacement 
errors (Seraji, 1989) and uses high gains only when these are needed, for instance when 
displacement error is large.  

4.6.4 Example of robust control scheme 

In this case, the parameters are not known but their range of variations is known. The basic 
idea of this method is to add a compensating term to the control which is obtained from an a 

priori estimated model. This compensation term takes into account the parameters bounds 
and tries to compensate the difference between the estimated and the real parameters of the 
robot. This makes possible an improved trajectory tracking and provides robustness with 
respect to the parametric errors. Several schemes of RA robust control have been studied 
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and compared (Abdallah et al., 1991). As an example, only one robust algorithm is described 
here, whose control law is given by : 

 0 0 0( ) ( )( ) ( , ) ( )t M q u u C q q q G q 
 

     (13) 

where  
* M0, C0 and G0 are the a priori  estimates of M, C and G, respectively. 
* u is the compensating control supplement. 
* u is given by a PD compensator of the form: 

 ( ) ( ) ( ) ( )
p vd

u t q t K e t K e t
 

    (14) 

The additional control u is chosen so as to ensure robustness of the control by 
compensating the parametric errors. Stability must be guaranteed. A reformulation of this 
control gives:  

 ( ( , , ))x Ax B u u q q 
 

    (15) 

 
1E Cx  (16) 

where A, B, C and x are given by  

  
0 0

p v

eI
A B C I x

K K I e
 

    
               

 (17) 

with  is a diagonal constant positive-definite matrix of rank n, and  

 1
1( , , ) ( ) ( ) ( , )u q q E q u E u M q H q q 

 
     (18) 

 1
0( ) ( ) ( )E q M q M q I   (19) 

 0 0( , ) [ ( , ) ( , )] [ ( ) ]H q q C q q C q q q G q G
   

      (20) 

Stability is granted only if the vector ( , , )u q q


 is bounded. These bounds are estimated on the 
worst-case basis. Furthermore, under the assumption that there exists a function such that:  

 ( , , )u e e t 


  (21) 

 ( , , )e e t 


  (22) 

the compensating control u can be obtained from : 

 
1

1

1

1

( , , ) 0

0 0

E
e e t if E

Eu

if E




  
 

 (23) 
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This last control u presents a chattering effect due to the discontinuities in (23). This 
phenomenon can cause unwanted sustained oscillations. Another control has been proposed 
which reduces these unwanted control jumps, (Cai and Goldenberg, 1988) as given in 
equation (24).  

 

1
1

1 1

( , , )

( , , )

E
e e t if E

E
u

e e t
E if E

 


 






  
 
 



 (24) 

The robust control scheme is represented in Figure 5.  
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Fig. 5. Spong and Vidyasagar's robust control algorithm 

5. Implementation  

5.1 Basic architecture 

The basic architecture is described in Figure 6. The general menus are described in Figure 7. 
The main program is started from the Matlab™ workspace window. Simulation triggers the 
Simulink™ environment and results can be obtained under the Matlab™ graphics window 
or in the Simulink™ environment (e.g. through scopes). Results can also be stored in *.MAT 
data files to be later handled by the knowledge base, through the interface.  
The overall system is written in the Matlab™/ Simulink™ environment 
(http://www.mathworks.com). One of the main reasons for this choice is the possibility of 
interfacing it with the developed knowledge base using higher programming language, 
such as Microsoft Visual C++™ (MVC++™), under Windows™. The knowledge base is 
developed under a commercial expert system generator that supports interfacing with 
external MVC++™ executable programs. The other fundamental reason is the Matlab™ 
control systems library functions and specialized toolboxes, e.g. control systems toolbox and 
identification toolbox needed for adaptive control. Although, many languages / 
environments  can be identified as suitable for the solution to our RA problem, we do not 
know, however whether any of these is interfaceable with the chosen expert system 
generator.   
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Fig. 6. Implemented Architecture 

www.intechopen.com



 
Robot Arms 

 

68

 
Fig. 7. Exploitation Environment 
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5.2 Plant configuration 

Some of the available RA configuration have been used in the implementation, as examples. 
PLANAR, SCARA and RZERO are chosen because they are widely used and they represent 
different classes of configurations, as described in Figure 8,9,10 below. Of course the system 
is open to other configurations through the Matlab™ environment. 
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Fig. 8. PLANAR Robot 
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Fig. 9. SCARA Robot 
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Fig. 10. RZERO Robot 
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5.3 Knowledge organization: from worlds to objects 

Knowledge organization is handled by the inferential (exploration) environment. The 
knowledge is organized in different levels : 

5.3.1 Global vs. local search 
i. At the global level : this is done through the partitioning of the KB in coherent thematic 

sets of rules (each of these sets is called a world). These worlds can be hierarchically 
organized offering the possibility of describing global knowledge (ascending worlds, 
fathers worlds) and local knowledge (descending worlds, descendants worlds).  

ii. At the local level : this is done through the expertise structuring using a network of 
classes and objects. A class is defined as an abstract object maker. Objects represent a 
declarative knowledge described by sets of particular data (called attributes) and the 
corresponding attributes values. Rules allow description of the expert knowledge using 
objects and / or classes. They are expressed in the conventional IF-THEN form. We only 
operate the KB as a stand-alone module to test its behaviour against that of human 
experts for further refinement.  

5.3.2 The existing worlds 

Worlds are coherent sets of rules and represent independent and encapsulated entities 
ensuring a high degree of knowledge modularity and maintenance. A world can be created 
according to the type of knowledge that is handled (e.g. set of rules dealing with PID 
controller). Hierarchical representation is available. This allows the organization of 
knowledge from the more general to the more specific (top-down fashion).  
i. The meta-level nucleus (MLN) 
The meta-level nucleus (MLN) represents the world that governs the navigation from one 
world to the other (or from one individual KB to the other). It is placed at the highest level of 
the hierarchy. All remaining worlds are sub-worlds of the MLN. All the rules of the MLN 
world (called a father world) are applicable in all the other inheriting sub-worlds (called 
descendants). Its description is given by the following structure:  
World name : MLN  
Father World : None 
Descendants Worlds : %List of all the other remaining worlds% 

 
ii. Pruning worlds  
Based on the data and specifications provided by the user, the pruning worlds help in 
guiding the search towards the specialized individual knowledge base (IKB) as soon as 
possible. This pruning process is efficient in concentrating on the specific knowledge of 
interest at this or that particular step of the reasoning process. Once these worlds are 
selected, they become active while all other worlds remain inactive. The pruning worlds 
consist of the following : 
 
W1 World : DynamicModelKnown  

% Describing the rules applicable for this case% 
 W11 Sub-World : SpeedSlow 
   W111 Sub-sub-World : ParametersKnown 
   W112 Sub-sub-World : ParametersUnknown 
   W113 Sub-sub-World : ParametersOthers 
   W114 Sub-sub-World :ParametersNoImportance 
 W12 Sub-World : SpeedHigh 
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 (Same sub-worlds as in W11 above) 
 W13 Sub-World : SpeedUnknown 
 (Same sub-worlds as in W11 above) 
 W14 Sub-World : SpeedOthers 
 (Same sub-worlds as in W11 above) 
 W15 Sub-World : SpeedNoImportance 
 (Same sub-worlds as in W11 above) 

 
 

W2 World : DynamicModelUnknown 
% Describing the rules applicable for this case% 

 
 W21 Sub-World : SpeedSlow 
   W211 Sub-sub-World : ParametersUnknown 
   W212 Sub-sub-World : ParametersOthers 
   W213 Sub-sub-World :ParametersNoImportance 
 W22 Sub-World : SpeedHigh 
 (Same sub-worlds as in W21 above) 
 W23 Sub-World : SpeedUnknown 
 (Same sub-worlds as in W21 above) 
 W14 Sub-World : SpeedOthers 
 (Same sub-worlds as in W21 above) 
 W24 Sub-World : SpeedNoImportance 
 (Same sub-worlds as in W21 above) 

 
W3 World : DynamicModelOthers  

% Describing the rules applicable for this case% 
 W31 Sub-World : SpeedSlow 
   W311 Sub-sub-world : ParametersKnown 
   W312 Sub-sub-World : ParametersUnknown 
   W313 Sub-sub-World : ParametersOthers 
   W314 Sub-sub-World :ParametersNoImportance 

 
 W32 Sub-World : SpeedSlow 
 (Same sub-worlds as in W31 above) 
 W33 Sub-World : SpeedUnknown 
 (Same sub-worlds as in W31 above) 
 W14 Sub-World : SpeedOthers 
 (Same sub-worlds as in W31 above) 
 W34 Sub-World : SpeedNoImportance 
 (Same sub-worlds as in W31 above) 

 
W4 World : DynamicModelNoImportance  

% Describing the rules applicable for this case% 
 W41 Sub-World : SpeedSlow 
   W411 Sub-sub-World : ParametersKnown 
   W412 Sub-sub-World : ParametersUnknown 
   W413 Sub-sub-World : ParametersOthers 
   W414 Sub-sub-World :ParametersNoImportance 
 W42 Sub-World : SpeedSlow 
 (Same sub-worlds as in W41 above) 
 W43 Sub-World : SpeedUnknown 
 (Same sub-worlds as in W41 above) 
 W14 Sub-World : SpeedOthers 
 (Same sub-worlds as in W41 above) 
 W44 Sub-World : SpeedNoImportance 
 (Same sub-worlds as in W41 above) 
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For each sub-world Wij (i = 1 to 4 ; j = 1 to 4 ), there correspond a sub-sub-world for RA 
parametric description. These pruning worlds give a preliminary guide to a world 
(corresponding to the chosen algorithm) where the initial search is to be started. If the 
results given by this algorithm are satisfactory then choose this algorithm as a solution. 
Otherwise, either fine-tune the obtained solution within the same world (or other eventual 
specialized sub-worlds) or go back to the meta-level nucleus (MLN) for further search.  
 

iii. The worlds describing the RA algorithms 
For each RA algorithm, we have developed a world. Each of these worlds can be considered 
as an  independent KB (IKB). Some of the worlds have very few rules. Each IKB can 
obviously be incremented, provided the expertise is available. We have considered worlds 
and sub-worlds partially describing the following algorithms.  
 
World PID 
 Sub-worlds : Basic PID, Gravitational PID, Adaptive PID, Robust PID. 
World Computed Torque (known parameters) 
 Sub-worlds : PD control, Predictive control 
World Compensators 
 Sub-worlds : Spong's adaptive compensator, Amestegui's adaptive 

compensator 
World Adaptive Control 
 Sub-worlds : linearized adaptive, passive adaptive 
World Robust Control 
 Sub-worlds : Robust PID, large gains, variable structure control (VSC) 

5.4 Example : Fuzzy rule involving fuzzy attributes in its conclusion.  

If the user does not know the RA parameters but knows the dynamic model and that the RA 
is slow, then a tentative algorithm is the passive adaptive or the linear adaptive. In the 
conclusion, we can therefore translate this by a certainty factor (CF) of 50 meaning that 
either algorithm can be used with a degree of equal certainty. The CF can of course be 
changed according to the available knowledge and refined expertise. This rule can be 
expressed by :  
 
WORLD : MLN % New world % 
DESCENDANTS WORLDS % Here is a list of all worlds %  
 
Rule TryPassvAdaptCF60  % This is the name of the rule %  
CHAINING : forward 
PRIORITY : 40  % can be changed from 0 to 100 %  
CONTENT  
 IF Guide.DynamicModelKnown_VelocitySlow = TRUE 
 AND RA.Parameters = "don't know" 
 AND Algorithm.AlgoActivation = "Activable" 
 THEN TryAlgorithm.PassivAdaptivFuzzy = TRUE CF 50 
 AND Guide.PassivAdaptivCF50 = TRUE  
 

Other situations can be described in a similar manner.  

6. Conclusion 

We have described some foundational steps to solve the RA control using knowledge base 
systems approach. More specifically, this research work reports some features of KBC 
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approach as applied to some RA control algorithms spanning PID through adaptive, and 
robust control. As such, this research represents an early contribution towards an objective 
evaluation of the effectiveness of KBC as applied to RA control. A unification of the 
diversified works dealing with RAs, while concentrating on KBC as an alternative control 
method, is therefore made possible. The adopted knowledge base systems approach is 
known for its flexibility and conveys a solution better than that provided by numerical 
means alone since it incorporates codified human expertise on top of the algorithms. The 
fundamental constraints of the proposed method is that it requires an elicitation of human 
expertise or extensive off-line trials to construct this expertise. This expertise codification has 
a direct impact on the size of the KB and on the rapidity of the user-defined problem 
solution. Like any KBS method, the proposed procedure also requires a diversified coverage 
of the working domain during the elicitation stage to obtain a richer KB. As a consequence, 
the results report only some aspects of the overall issue, since these describe only a fragment 
of the human expertise for a small class of control algorithms. Much work is still required on 
both sides, i.e., robotics and KBS in order to further integrate these two entities within a 
single one while meeting the challenges of efficient real-life applications.   
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