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Fluorescence Immunohistochemistry by 
Confocal Laser-Scanning Microscopy for 

Studies of Semi-Ultrathin Specimens of 
Epoxy Resin-Embedded Samples 

Shin-ichi Iwasaki and Hidekazu Aoyagi 
The Nippon Dental University School of Life Dentistry at Niigata 

 Japan 

1. Introduction 

It is difficult to visualize histological details on semi-ultrathin sections by light microscopy 

after immunohistochemical labeling because the histological structures in such sections 

cannot be distinguished by standard counter-staining. To solve this problem and to 

visualize the immunoreactivity specific for various antigens, we have developed a technique 

that involves a combination of immunofluorescent staining of semi-ultrathin sections of 

epoxy resin-embedded samples and either the corresponding differential interference 

contrast (DIC) images or the corresponding images in transmission mode obtained by 

confocal laser-scanning microscopy (LSM), providing detailed information about the 

immuno-localization of histological and cellular structures. 

Haraguchi and Yokota (2002) were the first to describe a similar method, including 

treatment of sections with 10% sodium ethoxide to remove epoxy resin (Litwin et al., 1984) 

and reaction with fluorescence-labeled second antibodies. In our method, we use 10% 

sodium methoxide to remove epoxy resin from sections (Mayor et al., 1961). There is no 

significant difference between the two treatments, but Haraguchi & Yokota (2002) used 

fluorescence-labeled second antibodies while we use a combination of biotin-conjugated 

second antibodies and streptavidin fluorescence. Our preliminary experiments indicated 

that the latter system has greater sensitivity than the former in the case of semi-ultrathin 

sections. Using our above-mentioned method, we are now easily able to detect 

immunofluorescence on semi-ultrathin sections of epoxy resin-embedded specimens. 

To demonstrate the effectiveness of our method, in the present study we examined the 

immunofluorescence of immuno-stained keratins and collagens and the images obtained, in 

transmission mode, of the lingual mucosa of the filiform and circumvallate papillary areas 

of tongues of fetus and juvenile rats by LSM. By combining images, we were able to define 

clearly the histological locations of keratin 13 (K13) and keratin 14 (K14) in the lingual 

epithelium (Iwasaki et al., 2006a, 2011a) and those of collagen II (CII) and collagen III (CIII) 

in the lingual connective tissue (Asami et al., 2008, Iwasaki et al., 2008, 2011b). Furthermore, 

we demonstrated that our newly developed technique for localization of pairs of antigens 

should be useful for investigations of very small specimens, such as fetal tissues and organs 

(Aoyagi et al., 2008).  
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2. Experimental methods 

2.1 Experimental animals 
Sprague-Dawley (SPF) rats were used for all observations. Tongues were removed from 

fetal and juvenile rats after they had been killed by an intraperitoneal overdose of sodium 

pentobarbital. 

2.2 Preparation of tissue 
Rat lingual tissues were fixed in 4% formaldehyde titrated from paraformaldehyde (Table 1-

A) in 0.1 M phosphate buffer (PBS; pH 7.4; Table 1-B) at 4 oC for 5 h. After rinsing in 0.1 M 

PBS, all samples were transferred to an ascending ethanol series (60%, 70%, 80%, 90% and 

99% ethanol; 10 min each) and then to absolute ethanol (twice for 15 min each) for 

dehydration. After immersion in propylene oxide (twice for 15 min each), each specimen 

was transferred to a mixture of propylene oxide and epoxy resin (1:1, v/ v), and embedded 

in epoxy resin (Table 1-C), which was allowed to polymerize overnight at 60 oC. Then the 

epoxy resin-embedded blocks were sectioned at 500-nm thickness with a diamond knife on 

an ultramicrotome (MT-XL; RMC, Tucson, AZ, USA). The resultant semi-ultrathin sections 

were mounted on glass slides (Matsunami Glass Inc., Osaka, Japan) and incubated in 10% 

sodium methoxide (Table 1-D) for 2 min at room temperature to remove the epoxy resin  

(Mayor et al., 1961). After passage through an acetone series, which consisted of absolute 

acetone (two times) and 50% acetone (once), sections were transferred to PBS (pH 7.4). Each 

specimen was passed rapidly through each solvent, that is to say, with immersion for 30 sec 

or so. 

2.3 Immunofluorescence staining 
After retrieval of antigens (Shi et al., 1991) by heating in a microwave oven at 500 Watts for 2 

min in 10 mM sodium citrate buffer (pH 6.0; Table 1-E), sections on slides were allowed to 

cool for 8 min and were then transferred to PBS (pH 7.4) at room temperature. Sections were 

then incubated with primary antibodies overnight at 4 oC. The primary antibodies that we 

used in this study are shown in Table 2. To determine the optimum working dilutions of 

each preparation of antibodies, we tested dilutions from 1:25 to 1:800. After washing in PBS, 

sections were incubated with biotin-conjugated antibodies raised in rabbit against mouse 

IgG, IgA and IgM (Nichirei Biosciences, Tokyo, Japan) or with biotin-conjugated antibodies 

raised in goat against rabbit IgG (Nichirei Biosciences) for 30 min at room temperature. 

Secondary antibodies are also shown in Table 2. Sections were incubated with streptavidin-

Alexa Fluor 488 or 633 (Molecular Probes, Eugene, OR, USA) for 30 min at room 

temperature. Fluorescent reagents are shown in Table 3. Sections were then mounted with 

FluoroGuardTM antifade reagent (Bio-Rad Laboratories, Hercules, CA, USA) after washing 

in PBS. Each specimen was covered with a glass coverslip (Matsunami Glass Inc) with clear 

nail varnish as adhesive. The main steps for immunofluorescence staining are summarized 

in Table4. The specificity of immunoreactions was checked by preparation of the following 

controls: a control without primary antibodies; a control incubated with normal mouse 

serum instead of primary antibodies; and controls incubated with antibodies that had been 

incubated for 24 h at 4 oC with the corresponding antigen at 10 to 100 μg/ ml. No 

immunolabeling of the lingual mucosa of fetal and juvenile rats was seen in any of the 

negative controls. 
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 Reagent Preparation 

A 

4% formaldehyde 

titrated from 

paraformaldehyde

(1) 25 ml of distilled water (DW) are heated almost to boiling 

point. 

(2) 2 g of paraformaldehyde (fine granules; TAAB) are added to 

the hot DW and are dissolved by gentle shaking. 

(3) Upon addition of one to three drops of 1 N NaOH, the 2 g of 

paraformaldehyde are completely dissolved in DW. 

(4) Finally, a small amount of DW is added to give bring the total 

volume back to 25 ml. 

(5) Phosphate-buffered saline (PBS) is prepared as a 10x stock 

solution that contains 1.37 M NaCl, 27 mM KCl, 100 mM 

Na2HPO4 and 18 mM KH2PO4 (adjusted to pH 7.4 with HCl, if 

necessary) and is stored at 4 oC. 

(6) A working solution is prepared by dilution of one part stock 

solution with four parts distilled and deionized water (DDW). 

(7) Mix 25 ml of the solution of paraformaldehyde with 25 ml of 

2x PBS just before use. 

B 
0.1 M phosphate 

buffer (pH 7.4) 

(1) Prepare a 10x stock solution of PBS with 1.37 M NaCl, 27 mM 

KCl, 100 mM Na2HPO4 and 18 mM KH2PO4 (adjust to pH 7.4 

with HCl, if necessary) and store at 4 oC. 

(2) Prepare a working solution by dilution of one part stock 

solution with nine parts DDW. 

C Epoxy resin 

(1) Solution A: 62 ml of Epon 812 and 100 ml of dodecenyl 

succinic anhydride (DDSA; TAAB). 

(2) Solution B: 100 ml of Epon 812 and 89 ml of methyl nadic 

anhydride (MNA). 

(3) Mix equal volumes of solutions A and B, adding 1.5 to 1.8% 

tri-dimethylaminomethyl phenol (DMP-30; TAAB) for 

polymerization. 

D 
10% sodium 

methoxide 

(1) Add 20 g of sodium metal to 200 ml of absolute methanol in a 

1,000-ml flask; bubbling will occur for approximately 20 min. 

(2) Add methanol to give a volume of 200 ml, to compensate for 

losses due to evaporation. 

(3) After addition of 200 ml of benzene, add 50 to 100 ml of 

methanol until complete fusion of methanol and benzene has 

occurred. 

E 

10 mM sodium 

citrate buffer (pH 

6.0) 

(1) 10 mM sodium citrate buffer (pH 6.0): prepare a 20x stock 

solution with 20 ml of 200 mM citric acid and 80 ml of 200 mM 

sodium citrate. 

(2) Prepare the working solution by dilution of one part stock 

solution with nineteen parts DDW. 

Table 1. Preparation of reagents for fixation of tissues and immunofluorescence staining. 
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Antibodies Origin Host Type Dilution Company 

Anti-K13 Human Mouse Monoclonal 1:50-1:100
Progen Biotech GmbH,  

Germany 

Anti-K14 Human Mouse Monoclonal 1:50-1:100
Cymbus Bioscience Ltd.,  

UK 

Anti-CII Rat Rabbit Polyclonal 1:50-1:100
Chemicon International,  

Inc., USA 

Anti-CIII Rat Rabbit Polyclonal 1:50-1:100
Chemicon International,  

Inc., USA 

Biotin-conjugated 

anti-mouse 
--- Rabbit --- 10 μg/ ml

Nichirei Biosciences, 

Japan 

Biotin-conjugated 

anti-rabbit 
--- Goat --- 10 μg/ ml

Nichirei Biosciences, 

Japan 

Table 2. Primary and secondary antibodies used in this study.  

 

Label Dilution Company 

Streptavidin-Alexa Fluor 488 10 μg/ ml Molecular Probes, USA 

Streptavidin-Alexa Fluor 633 10 μg/ ml Molecular Probes, USA 

Table 3. Fluorescent reagents used in this study. 

 

Step Procedure 

1 
Retrieval of antigens by heating in a microwave oven (500 W) for 2 min in 10 mM 

sodium citrate buffer (pH 6.0) 

2 Cooling for 8 min at room temperature 

3 Incubation with the primary monoclonal or polyclonal antibodies overnight at 4℃ 

4 Washing in PBS 

5 

Incubation with biotin-conjugated rabbit antibodies against mouse IgG, IgA and 

IgM or with biotin-conjugated goat antibodies against rabbit IgG for 30 min at 

room temperature 

6 Washing in PBS 

7 
Incubation with streptavidin-Alexa Fluor 448 or 633 for 30 min at room 

temperature 

8 Mounting with FluoroGuardTM antifade reagent 

Table 4. A summary of methods, showing the main steps for immunofluorescence staining. 

Using our new technique, we were able easily to detect and localize immunofluorescence in 

the tongues of fetal and juvenile rats. In the present study, we used DIC images and images 

in transmission mode obtained by LSM to examine the same specimens as those in which 

we monitored the fluorescence of Alexa Fluor 488 or 633. We were able to define the 

histological location of K13, K14, CII and CIII by combining the respective images. 
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2.4 Confocal laser-scanning microscopy (LSM) 
All specimens were examined with a confocal laser-scanning microscope (LSM510 or 

LSM710; Carl Zeiss, Jena, Germany) that was equipped with an argon laser or a helium-

neon (HeNe) laser. The dimensions of all images displayed on the monitor were 1024 x 1024 

pixels. For single scanning for detection of the fluorescence of Alexa Fluor 488 (Molecular 

Probes), we used a 488-nm laser wavelength filter; a 488-nm primary dichroic beam-splitter; 

and a 505- to 530-nm band-pass filter. These specimens were examined with a confocal laser-

scanning microscope that was fitted with an argon laser. For single scanning for detection of 

the fluorescence of Alexa Fluor 633, we used a 633-nm laser wavelength filter; a 514/ 633-nm 

primary dichroic beam-splitter; and a 650-nm low-pass filter. These specimens were 

examined with a confocal laser-scanning microscope that was fitted with a HeNe laser. 

Combinations of pixel sizes from 0.12 μm x 0.12 μm to 0.17 μm x 0.17 μm and a 40x objective 

with a numerical aperture (NA) of 0.75 were used for observations. We also examined DIC 

images that revealed the histology and morphology of cells on the same semi-ultrathin 

sections. We stacked the immunofluorescence images and the corresponding DIC images by 

computer, as summarized in Table 5. Furthermore, after staining of specimens with 0.2% 

toluidine blue (Waldeck GmbH & Co., Münster, Germany) in 2.5% Na2CO3, we examined 

the corresponding images by LSM in the transmission mode. Finally, two images, showing 

the immunoreactivity of a specific antigen and the histology, recorded in transmission 

mode, were stacked on top of one another, by computer, for analysis. 

 

Step Procedure 

1* Fluorescent immunostaining 

2* Immunofluorescent images obtained by LSM 

3 DIC images obtained by LSM 

4 Toluidine blue staining 

5 Images in transmission mode obtained by LSM 

6 Combination of immunofluorescent and DIC images 

7 Combination of immunofluorescent and transmission-mode images 

Table 5. A summary of methods for the stacking of images of immunoreactivity and DIC 

images or images obtained by LSM in transmission mode.  

* Steps 1 and 2 should be repeated using adjacent semi-ultrathin sections and antibodies 

with two different specificities to show the localization of pairs of antigens.  

To reveal the combined localization of the pair of antigens of K13 and of K14, we stacked 
three images obtained by LSM, which showed the immunoreactivity of each antigen and the 
histology, recorded in transmission mode, on top of one another by computer and analyzed 
the results after examining the same respective DIC images and images obtained in 
transmission mode.  

3. Experimental results and analyses 

3.1 Localization of immunofluorescence specific for K13 and K14 in the lingual 
epithelium during morphogenesis of non-gustatory papillae 
We have not yet succeeded in the double immunolabeling of samples prepared by the 

epoxy-resin method. Therefore, instead of double immunolabeling, we immunolabeled K13 
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and K14, separately, in adjacent sections. We then stacked the two resultant images together 

with an image obtained by LSM, in transmission mode, using a computer (Aoyagi et al., 

2008). The combination of laser-scanning micrographs, which show the immunolabeling of 

K13 and K14 in the fetal rat tongue, and images obtained by LSM in transmission mode is 

shown in Figure 1. 

Localization of immunofluorescence specific for K13 and K14 in the lingual epithelium 

during morphogenesis of non-gustatory papillae, as revealed by the above-mentioned 

double immunolabeling, is shown in Figure 2.  Filiform papillae, which are non-gustatory 

lingual papillae, were compactly distributed on the dorsal surface of the lingual body of rats 

after birth, and these papillae developed rapidly just before birth (Iwasaki et al., 1997). 

Morphogenesis of filiform papillae is closely related to the keratinization of the dorsal 

lingual epithelium (Iwasaki et al., 1999). Immunoreactivity specific for K13 and for K14 was 

not detected on the lingual epithelium of fetuses on day 15 after conception (E15), at which 

time the lingual epithelium was composed of a few layers of cuboidal cells. 

Immunoreactivity specific for K13 and K14 was distinct at all postnatal stages examined. 

Although the respective patterns of K13-specific and K14-specific immunoreactivity differed 

as the filiform papillae developed, immunoreactivity specific for K13 was generally evident 

in the suprabasal cells of the interpapillary cell columns, where keratinization was weaker 

than in the papillary cell columns. Immunoreactivity specific for K14 was detected in the 

basal and suprabasal cells, which were mitotically active, of the papillary and interpapillary 

cell columns. Immunoreactivity specific for K13 in immunopositive cells in the 

interpapillary cell columns was densely distributed in the cytoplasm exclusively and non 

was evident in the nuclei. The same was true of the immunoreactivity specific for K14. 

Furthermore, immunoreactivity specific for K13 in the suprabasal cells of the interpapillary 

cell columns was more densely distributed than it was in the suprabasal cells of the 

papillary cell columns. By contrast, immunoreactivity specific for K14 in the basal and 

suprabasal cells of the papillary cell columns was more distinctively distributed than it was 

in the interpapillary cell columns. The corresponding images in transmission mode clearly 

revealed that the lingual epithelium was composed of stratified squamous cells and, in 

addition, that rounded rudiments of filiform papillae were arranged at equal intervals, for 

the most part, just before and just after birth. The sizes of basal cells in the papillar and 

interpapillar regions were almost same as those of cells in the dorsal epithelium of the 

tongue. At this stage, the connective tissue was beginning to penetrate into the central part 

of each filiform papilla and, as a result, the epithelial-connective tissue border was 

undulated (Iwasaki et al., 2006a). 

3.2 Localization of immunofluorescence specific for K13 and K14 in the lingual 
epithelium during the morphogenesis of gustatory papillae 
Localization of immunofluorescence specific for K13 and K14 in the epithelium during the 

morphogenesis of circumvallate papillae, which are gustatory papillae, in fetal and juvenile 

Sprague-Dawley rats is shown in Figures 3, 4 and 5. Only a single circumvallate papilla, one 

type of gustatory lingual papilla, is located medially on the dorsal surface at the end of the 

lingual body (Iwasaki et al., 1997). We used fluorescence immunohistochemistry, analysis of 

DIC images and LSM in the transmission mode, after staining specimens with toluidine 

blue, to examine the localization of K13 and K14 in the lingual epithelium of rats during the 

prenatal and postnatal morphogenesis of the circumvallate papillae. No immunoreactivity  
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Fig. 1. The stacking of images of immunofluorescence with DIC images and with images 

obtained by LSM in transmission mode. Micrographs of two sagittally adjacent sections on 

P0, which show the immunolabeling of K13 (Alexa Fluor 633; green) and of K14 (Alexa 

Fluor 488; red) in the lingual epithelium of rats on P0 and the images obtained by LSM in 

the transmission mode, are stacked as follows.  

(a) Immunofluorescence of K14 obtained by LSM;  

(b) removal of the background from image in (a);  

(c) DIC image of the same section as in (a), obtained by LSM;  

(d) stacking of images in (b) and (c);  

(e) image obtained by LSM in transmission mode after toluidine blue staining;  

(f) stacking of images in (b) and (e);  

(g) immunofluorescence of K14 obtained by LSM; 

(h) stacking of image in (g), without background, and in (c); and 

(i) stacking of images in (b), in (g) without background, and in (e).  

E, Dorsal lingual epithelium; CT, connective tissue; and M, muscle. Bars = 10 μm. 
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Fig. 2. Combination of laser-scanning micrographs, which show the immunolabeling of K13 

(Alexa Fluor 633; green) and of K14 (Alexa Fluor 488; red) in the fetal rat tongue, and DIC 

images (left half of each micrograph) or images obtained by LSM in transmission mode 

(right half of each micrograph) that show the histology and cellular morphology of semi-

ultrathin sections.  

(a) Sagittal section from a fetus on E15; 

(b) sagittal section from a fetus on E17; 

(c) sagittal section from a fetus on E19; 

(d) sagittal section from a juvenile on P0; 

(e) sagittal section from a juvenile on P7; and 

(f) sagittal section from a juvenile on P14. 

E, Dorsal lingual epithelium; PE, periderm; CT, connective tissue; FP, filiform papillae; KL, 

keratinized cell layer; M, muscle; IP, interpapillary cell column; A, anterior cell column of 

filiform papilla; P, posterior cell column of filiform papilla; and arrows, connective tissue 

papillae. Bars = 10 μm. 
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Fig. 3. Combination of laser-scanning micrographs, which show the immunolabeling of K13 

in the fetal rat tongue, and DIC images (left half of each micrograph) or images obtained by 

LSM in transmission mode (right half of each micrograph) that show the histology and 

cellular morphology of semi-ultrathin sections. No immunoreactivity was recognizable. 

(a) Transverse section from a fetus on E15; 

(b) transverse section from a fetus on E17; and 

(c) transverse section from a fetus on E19. 

E, Dorsal lingual epithelium; PE, periderm; CT, connective tissue; CP, circumvallate papilla; 

CS, circular sulcus; M, muscle; BV, blood vessel; and arrows, connective tissue papillae. Bars 

= 20 μm. 

 

 

Fig. 4. Combination of laser-scanning micrographs, which show the immunolabeling of K13 

(Alexa Fluor 633; green) in the juvenile rat tongue, and DIC images (left half of each 

micrograph) or images obtained by LSM in transmission mode (right half of each 

micrograph) that show the histology and cellular morphology of semi-ultrathin sections.  

(a) Transverse section from a juvenile on P0; 

(b) transverse section from a juvenile on P7; and 

(c) transverse section from a juvenile on P14. 

E, Dorsal lingual epithelium; CT, connective tissue; CP, circumvallate papilla; CS, circular 

sulcus; M, muscle; TB, taste bud; SD, secretory duct of von Ebner’s gland; and arrows, 

connective tissue papillae. Bars = 50 μm. 
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Fig. 5. Combination of laser-scanning micrographs, which show the immunolabeling of K14 

(Alexa Fluor 488; red) in the juvenile rat tongue, and DIC images (left half of each 

micrograph) or images obtained by LSM in transmission mode (right half of each 

micrograph) that show the histology and cellular morphology of semi-ultrathin sections. 

(a) Transverse section from a juvenile on P0; 

(b) transverse section from a juvenile on P7; and  

(c) transverse section from a juvenile on P14. 

E, Dorsal lingual epithelium; CT, connective tissue; CP, circumvallate papilla; CS, circular 

sulcus; M, muscle; TB, taste bud; SD, secretory duct of von Ebner’s gland; and arrows, 

connective tissue papillae. Bars = 50 μm. 

specific for K13 and K14 was detected in the lingual epithelium of fetuses on E15, at which 

time the circumvallate papillary placode, the primitive rudiment of the circumvallate 

papilla, was detectable as the thickening of several layers of cuboidal epithelial cells. On E17 

and E19, the developing circumvallate papillae were clearly recognizable, each onsisting of a 

central papilla and the surrounding sulcus. No immunoreactivity specific for K13 and K14 

was evident in the lingual epithelium around these structures at this time. K14-specific 

immunoreactivity was first detected in the basal layer of the epithelium of the circumvallate 

papillae on P0 (the day of birth) and K13-specific immunoreactivity was detected on P7. 

Morphogenesis of the circumvallate papillae progressed significantly from P0 to P14, and 

immunoreactivity specific for K13 and K14 was clearly recognizable after P7. The respective 

patterns of K13-specific and K14-specific immunoreactivity differed during the development 

of the circumvallate papillae. K13-specific immunoreactivity was generally evident in cells 

in the intermediate layer of the epithelium, while K14-specific immunoreactivity was 

detected in cells in the basal and suprabasal layers. 
The immunostaining method used in the present study, with removal of epoxy-resin and 

antigen retrieval by microwaving, was fundamentally the same as that used in previous 

studies (Aoyagi et al., 2008; Asami et al., 2008; Iwasaki et al., 2008). Therefore, the observed 

significant differences between the respective patterns of distribution of immunoreactive 

K13 and K14 in filiform papillary regions and circumvallate papillary regions are unlikely to 

be based on differences in methodology. The main reason for the differences in the 

respective patterns of distribution of K13 and K14 between the two areas might be the 

differences in the patterns of stratification and keratinization of the epithelium between the 

two areas. In particular, the difference in the timing of the appearance of K14 seems to be 
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related to the difference in the timing of initiation of the stratification of the epithelium. It is 

possible that the appearance of K14 in basal cells of the lingual epithelium might induce 

changes in the lingual dorsal epithelium, namely, morphogenesis of filiform papillae, 

keratinization of the epithelium of the papillary cell column, and so on (Aoyagi et al., 2008). 

The initiation of stratification in the filiform papillary area clearly occurs earlier than that in 

the circumvallate papillary area, and K14-specific immunoreactivity in the filiform papillary 

area appears earlier than that in the circumvallate papillary area. By contrast, the 

appearance of K13-specific immunoreactivity seems to be related both to the stratification 

and to the keratinization of the epithelium. As indicated by Aoyagi et al. (2008), K13 is 

widely distributed in the suprabasal layer of the entire lingual epithelium before the 

initiation of the hard keratinization of the filiform papillae. However, the region of which 

K13 appears is restricted to the suprabasal and intermediate layers of the interpapillary cell 

columns, in which hard keratinization does not develop. After P7, K13-specific 

immunoreactivity was evident on the surface and upper intermediate layers of the 

epithelium in the circumvallate papillary area, but no hard keratinization was evident in this 

region. Thus, the pattern of keratinization of the epithelium clearly differs between the 

filiform papillary area and the circumvallate papillary area (Iwasaki et al., 2011a).  

3.3 Localization of immunofluorescence specific for CII and CIII in the lingual mucosa 
during morphogenesis of non-gustatory papillae 
Localization of immunofluorescence specific for CII and CIII in the connective tissue of the 

mucosa during morphogenesis of the circumvallate papillae, which are gustatory papillae, 

of fetal and juvenile rats is shown in Figures 6 and 7.  

 As shown in Figure 6, immunoreactivity specific for CII was scattered in the extracellular 

matrix over a wide area of the mesenchymal connective tissue of the fetal tongue on E15, 

when the lingual epithelium was composed of one or two layers of cuboidal cells. 

Immunoreactivity became more and more significant in the connective tissue of the lamina 

propria as morphogenesis of the filiform papillae advanced at birth. In addition, 

immunoreactivity was widely distributed in the connective tissue around the lingual 

muscle, as myogenesis in the tongue proceeded. The lingual epithelium was composed of 

stratified squamous cells, and keratinization of the lingual epithelium increased gradually as 

morphogenesis of filiform papillae continued during postnatal development. The present 

observations indicate that expression of CII might be related to the development of the 

endomysium and perimysium after myogenesis of the tongue is complete on P0. Rahkonen 

and Savontaus (2003) reported that CII is expressed in the epithelial-mesenchymal area of 

the developing heart and participates in the morphogenesis of cardiac valves and septa. 

Thus, CII might also be widely expressed during morphogenesis of connective-tissue 

components after myogenesis of striated muscle. Some common mechanism might be 

involved in both phenomena. However, in the present study, we failed to define the stages 

at which the expression of CII begins and when it ends because the period during which 

animals were collected began too long after conception and ended too soon after birth 

(Asami et al., 2008). 

We also examined, in semi-ultrathin sections of epoxy resin-embedded samples, the 

distribution of immunostained CIII, using images obtained in transmission mode, after 

toluidine blue staining, by LSM, during the morphogenesis of the filiform papillae, the 

keratinization of the lingual epithelium and the myogenesis of the tongue (Fig. 7).  
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Fig. 6. Combinations of laser-scanning micrographs that show the localization of 

immunoreactive type II collagen (Alexa Fluor 488; red) and DIC images (left half of each 

micrograph) or images obtained by LSM in the transmission mode (right half of each 

micrograph) that show the histology and cellular morphology of semi-ultrathin sections of 

the lingual body. 

(a) Frontal section from a fetus on E15; 

(b) sagittal section from a fetus on E17; 

(c) sagittal section from a fetus on E19; 

(d) sagittal section from a juvenile on P0; 

(e) sagittal section from a juvenile on P7; and 

(f) frontal section from a juvenile on P14.  

E, Dorsal lingual epithelium; P, periderm; C, connective tissue; M, muscle; FP, filiform 

papillae; and arrow, connective tissue papillae. Bars = 10 μm. 
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Fig. 7. Combinations of laser-scanning micrographs that show the localization of 

immunoreactive type II collagen (Alexa Fluor 633; green) and DIC images (left half of each 

micrograph) or images obtained by LSM in the transmission mode (right half of each 

micrograph) that show the histology and cellular morphology of semi-ultrathin sections of 

the lingual body. 

(a) Frontal section from a fetus on E15; 

(b) sagittal section from a fetus on E17; 

(c) sagittal section from a fetus on E19; 

(d) sagittal section from a juvenile on P0; 

(e) sagittal section from a juvenile on P7; and 

(f) frontal section from a juvenile on P14.  

E, Dorsal lingual epithelium; P, periderm; C, connective tissue; M, muscle; FP, filiform 

papillae; and arrow, connective tissue papillae. Bars = 10 μm. 
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Immunoreactivity specific for CIII was distributed widely in the mesenchymal connective 

tissue in fetuses on E15, at which time the lingual epithelium was composed of one or two 

layers of cuboidal cells and the lingual muscle was barely recognizable. Immunoreactivity 

specific for CIII was clearly detected on the lamina propria in fetuses on E17 and on E19, 

and it was relatively distinct just beneath the lingual epithelium. Immunoreactivity specific 

for CIII was sparsely distributed on the connective tissue around the developing lingual 

muscle. In fetuses on E19, the epithelium became clearly stratified and squamous. At 

postnatal stages from birth to P14, keratinization of the lingual epithelium advanced 

gradually with the development of filiform papillae. In newborns on P0, myogenesis of the 

tongue was almost complete. The intensity of the fluorescence due to immunoreactivity 

specific for CIII at postnatal stages was almost same as that on E19. However, fluorescence 

just beneath the lingual epithelium had disappeared on P14. The immunoreactivity around 

the fully mature muscle was relatively distinct from P0 to P14. Thus, CIII appeared in 

conjunction with the morphogenesis of filiform papillae and the keratinization of the lingual 

epithelium, as well as in the connective tissue that surrounded the lingual muscle during 

myogenesis of the rat tongue (Iwasaki et al., 2008).  

3.4 Localization of immunofluorescence specific for CII and CIII in the lingual mucosa 
during morphogenesis of gustatory papillae 
Immunoreactivity specific for CII was recognized first in the mesenchymal connective tissue 

just beneath the circumvallate papilla placode in fetuses on E13. At this stage, most of the 

lingual epithelium was pseudostratified epithelium composed of one or two layers of 

cuboidal cells. However, the epithelium of the circumvallate papilla placode was composed 

of several layers of cuboidal cells. Immunoreactivity specific for CII was detected mainly on 

the lamina propria just beneath the lingual epithelium of the rudiment of the circumvallate 

papilla in fetuses on E15 and on E17, and slight immunostaining was detected on the lamina 

propria around the rudiment. In fetuses on E19, immunoreactivity specific for CII was 

widely and densely distributed on the connective tissue around the developing 

circumvallate papillae and on the connective tissue that surrounded the lingual muscle. 

Immunoreactivity specific for CII was sparsely distributed on the lamina propria of the 

central bulge. After birth, morphogenesis of the circumvallate papillae advanced gradually 

with the increase in size of the tongue. Immunoreactivity specific for CII was distinctively 

distributed in the lamina propria around circumvallate papilla, in the central bulge, and in 

the connective tissue that surrounded the lingual muscle. The examination of specimens by 

LSM, in transmission mode, after staining with toluidine blue, revealed details of the 

histology and cell morphology of the dorsal mucosa more effectively than examination of 

similar DIC images. The circumvallate papillary placode could be seen on the dorsal surface 

of the lingual root of fetuses on E13. The rudiment of the circumvallate papilla developed 

gradually in fetuses, and morphogenesis of the circumvallate papilla progressed 

significantly at postnatal stages. Except at early stages, CII appeared not only in the 

connective tissue of the lamina propria but also in the connective tissue papillae during the 

morphogenesis of the rat tongue. In addition, CII appeared in the connective tissue that 

surrounded the lingual muscle and its presence seemed to be related to the development of 

the endomysium and perimysium after completion of the myogenesis of the tongue (Figs. 8 

and 9). 
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Fig. 8. Combinations of laser-scanning micrographs that show the localization (Alexa Fluor 

488; red) of immunoreactive type II collagen and DIC images (left half of each micrograph) 

or images obtained by LSM in the transmission mode (right half of each micrograph) that 

show the histology and morphology of cells in semi-ultrathin sections of the developing 

circumvallate papillary area in fetal rats. 

(a) Frontal section from a fetus on E13; 

(b) frontal section from a fetus on E15; 

(c) frontal section from a fetus on E17; and 

(d) frontal section from a fetus on E19.  

E, Dorsal lingual epithelium; PE, periderm; CT, connective tissue; M, muscle; CP, 

circumvallate papillary placode or the rudiment of the circumvallate papilla; CS, circular 

sulcus; BV, blood vessel; and arrow, connective-tissue papilla of the central papilla. Bars = 

20 μm. 

In an effort to identify a possible role for CIII in the morphogenesis of circumvallate papillae 

on the surface of the rat tongue, we examined its appearance by fluorescent 

immunostaining, in conjunction with DIC images and images obtained, after staining with 

toluidine blue, by LSM in the transmission mode. We analyzed semi-ultrathin sections of 

epoxy resin-embedded samples of the lingual mucosa of embryonic and juvenile rats, from 

E13 to P21. Immunoreactivity specific for CIII was recognized first in the mesenchymal 

connective tissue just beneath the circumvallate papillary placode on E13. At this stage, most 

of the lingual epithelium with the exception of the circumvallate papilla placode was 

pseudostratified epithelium that was composed of one or two layers of cuboidal cells.   
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Fig. 9. Combinations of laser-scanning micrographs that show the localization (Alexa Fluor 

488; red) of immunoreactive type II collagen and DIC images (left half of each micrograph) 

or images obtained by LSM in the transmission mode (right half of each micrograph) that 

show the histology and morphology of cells in semi-ultrathin sections of the developing 

circumvallate papillary area in juvenile rats. 

(a) Frontal section from a fetus on E13; 

(b) frontal section from a fetus on E15; 

(c) frontal section from a fetus on E17; and 

(d) frontal section from a fetus on E19.  

E, Dorsal lingual epithelium; CT, connective tissue; M, muscle; CP, circumvallate papilla; 

CS, circular sulcus; SD, secretory duct of the Ebner’s gland; TB, taste buds; and arrow, 

connective-tissue papilla of the central papilla. Bars = 50 μm.  

However, the epithelium of the circumvallate papillary placode was composed of several 

layers of cuboidal cells. Immunoreactivity specific for CIII was detected mainly on the 

lamina propria just beneath the lingual epithelium of the rudiment of the circumvallate 

papilla and the developing circumvallate papilla in fetuses on E15 and on E17, and slight 

immunostaining was detected on the lamina propria around the rudiment. In fetuses on 

E19, immunoreactivity specific for CIII was widely and densely distributed on the 

connective tissue around the developing circumvallate papillae and, also, on the connective 

tissue that surrounded the lingual muscle. However, the immunoreactivity specific for CIII     
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Fig. 10. Combinations of laser-scanning micrographs that show the localization (Alexa Fluor 

633; green) of immunoreactive type III collagen and DIC images (left half of each 

micrograph) or images obtained by LSM in the transmission mode (right half of each 

micrograph) that show the histology and morphology of cells in semi-ultrathin sections of 

the developing circumvallate papillary area in fetal rats. 

(a) Frontal section from a fetus on E13; 

(b) frontal section from a fetus on E15; 

(c) frontal section from a fetus on E17; and 

(d) frontal section from a fetus on E19.  

E, Dorsal lingual epithelium; PE, periderm; CT, connective tissue; M, muscle; CP, 

circumvallate papillary placode or the rudiment of the circumvallate papilla; CS, circular 

sulcus; BV, blood vessel; and arrow, connective-tissue papilla of the central papilla. Bars = 

10 μm. 

was sparsely distributed on the lamina propria of each central papillar structure. After birth, 

from P0 to P14, morphogenesis of the circumvallate papillae advanced gradually as the total 

volume of the tongue increased. At these postnatal stages, the intensity of the fluorescence  

due to immunoreactivity specific for CIII was distinctively distributed on the lamina propria 

around each circumvallate papilla, on each central bulge, and on the connective tissue that 

surrounded the lingual muscle. However, immunofluorescence was less distinct on the 

connective tissue that surrounded the lingual muscle. Thus, CIII appeared in conjunction 

with the morphogenesis of the circumvallate papillae, as well as in the connective tissue that 

surrounded the lingual muscle during myogenesis of the rat tongue (Figs. 10 and 11). 
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Fig. 11. Combinations of laser-scanning micrographs that show the localization (Alexa Fluor 

633; green) of immunoreactive type III collagen and DIC images (left half of each 

micrograph) or images obtained by LSM in the transmission mode (right half of each 

micrograph) that show the histology and morphology of cells in semi-ultrathin sections of 

the developing circumvallate papillary area in juvenile rats. 

(a) Frontal section from a fetus on E13; 

(b) frontal section from a fetus on E15; 

(c) frontal section from a fetus on E17; and 

(d) frontal section from a fetus on E19.  

E, Dorsal lingual epithelium; CT, connective tissue; M, muscle; CP, circumvallate papilla; 

CS, circular sulcus; SD, secretory duct of the Ebner’s gland; TB, taste buds; and arrow, 

connective-tissue papilla of the central papilla. Bars = 50 μm. 

3.5 Analysis of methodology 
For the examination of sections by LSM, we found that microwave heating of specimens just 

before immunofluorescence staining was useful for the retrieval of antigens in epoxy resin-

embedded specimens, even though this treatment had originally been developed for  the 

retrieval of antigens in formalin-fixed, paraffin-embedded specimens. In our previous and 

present attempts to clarify the localization of immunoreactivity in tissues and cells, we used 

only a combination of immunofluorescence staining of semi-ultrathin sections and 
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corresponding DIC images obtained by LSM. Using this technique, we were easily able to 

detect and localize immunofluorescence in the tongues of rat fetuses and juveniles at 

embryonic and postnatal stages (Iwasaki et al., 2003, 2006a, b, 2007a, b). In some of our 

previous studies, by contrast, we used LSM in the transmission mode to examine the same 

specimens as those in which we had monitored fluorescence in an effort to reveal 

histological and cell-morphological features more distinctly than those revealed in DIC 

images. By combining immunofluorescence images and the corresponding images obtained 

by LSM in the transmission mode, we were able to define the histological localization of 

various antigens more clearly than when we combined immunofluorescence images and the 

corresponding DIC images. Our method, using both light microscopy and confocal laser-

scanning microscopy, should be applicable to various kinds of tissue and cell of which only 

very small amounts are available. 

4. Conclusion 

We have developed a technique, using a combination of immunofluorescence staining of 

semi-ultrathin sections of epoxy resin-embedded samples and the DIC images and images in 

transmission mode obtained by LSM, that provides detailed information about the 

immunolocalization of antigens and histological and cellular structures. To demonstrate the 

effectiveness of our method, we examined the immunofluorescence of immunostained K13 

and K14 and that of immunostained CII and CIII and the corresponding DIC and 

transmission images during the morphogenesis of filiform papillae on the lingual 

epithelium of rat fetuses and juveniles. We demonstrated that our newly developed 

technique for localization of pairs of antigens should be useful for investigations of very 

small specimens, such as fetal tissues and organs. 
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