
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

A Search Algorithm for
Intertransaction Association Rules

Dan Ungureanu
Politehnica University of Bucharest

Romania

1. Introduction

The problem analysed in this chapter is the discovery of interesting relations between
variables in large databases.
The databases are considered to contain transactions that each contain one or more items
from a discrete set of items. The relations between the items are expressed in the form of
association rules. The problem of searching for association rules has been denoted in the
research literature as association rule mining.
The initial association rule mining problem ignored any correlation between the transactions

and searched for associations only between items inside a transaction (this case is called case

intratransaction association rules mining). To search for associations between items across

several transactions ordered on a dimension (usually time or space), intertransaction

association rule mining has been used.

We use the stock market database example to differentiate between intra- and inter-

transaction analysis. If the database contains the price for each stock at the end of the trading

day, an intratransaction association rule might be “If stock prices for companies A and B go up

for one day, there is a probability of over c% that the price for company C will also go up the

same day”. However, analysts might be more interested in rules like “If stock prices for

companies A and B go up for one day, there is a probability of over c% that the price for

company C will go up two days later.” This rule describes a relationship between items from

different transactions, and it can be discovered only by using intertransaction analysis.

The main part of association rules mining has been determined to be finding the frequent
itemsets.
A search algorithm that finds frequent intertransaction itemsets called InterTraSM will be
presented, exemplified and analyzed in this chapter. It was first introduced in (Ungureanu
& Boicea, 2008). This algorithm is an extension for the intertransactional case of the
SmartMiner algorithm presented in (Zou et al., 2002). InterTraSM focuses on mining
maximal frequent itemsets (MFI) – itemsets that are not a subset of any other frequent
itemset. Once the MFI have obtained all the frequent itemsets can easily be derived, and
they can then be counted for support in a single scan of the database.
The remainder of this chapter is organized as follows.

• Section 2 contains a formal definition for the problem of intertransaction association
rules mining.

www.intechopen.com

Search Algorithms and Applications

372

• Section 3 briefly describes other algorithms used for finding frequent intertransaction
itemsets.

• Section 4 introduces the InterTraSM algorithm for searching frequent intertransaction
itemsets. It also contains a detailed example of its application, and an analysis of its
complexity.

• Section 5 presents an implementation of the InterTraSM algorithm, the experimental
results obtained regarding its execution time, and a comparison with the performances
of the algorithms from Section 3.

• Section 6 concludes the chapter and proposes future research in this area.

2. Problem description

We consider I to be a set of literals {a1, a2, …, an}, also called items.
In the original association rule mining problem a transaction T was defined as a set of items
such that T ⊂ I.
A database DB (also called transaction database or transactional database) was defined as a
set of transactions with unique transaction IDs {T1, T2, …, Tn}.
An association rule was defined as an implication of the form X→Y, where X and Y are

distinct subsets of I (X ⊂ I, Y ⊂ I, X ∩ Y = Ø).

The two main measures used to characterize association rules are support and confidence.
A rule X→Y has support s in a database DB if s% of the transactions from DB contain X∪ Y.
A rule X→Y has confidence c in a database DB if c% of the transactions from DB that contain
X also contain Y.
The initial approach to association rule mining only considered rules between items from
the same transaction.
In practice though the transactions usually have some additional information attached to
them, like the time when they occurred, the customers that purchased the items, or the
geographical location.
In order to characterize such contexts of when / where the transactions occurred,
dimensional attributes have been introduced. They can be of any kind, as long as they can
be associated with the transactions from the database in a meaningful way.
In this paper we consider only the case when there is a single dimensional attribute which
has an ordinal domain. Furthermore, the domain of the attribute can be divided into equal-
sized intervals, such that at most one transaction from the transaction database is associated
with each interval, and that each transaction can be associated with an interval.
Let df be the first interval and dl be the last interval from the domain that have an associated
transaction. Then, without loss of generality, we can denote the first interval with 0 and the
intervals that follow it with 1, 2, 3 and so on. We consider l to be the number of interval dl.
We denote with D the domain of the attribute and with Dom(D) the set of intervals
{0, 1, 2, …, l}.
So for the intertransaction case we introduce the following
Definition Transactional database. A transactional database is a database that contains

transactions of the form t = (d, T), where d ∈ dom(D) and T ⊂ I.
In practice we are not interested in associations between items from transactions for which
the distance between the associated intervals is unlimited. The running time of an algorithm
that searches for such associations can be prohibitive, and also the practical use of such
associations is limited at best. The goal of our research is used to find previously unknown

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

373

correlations between items, but the idea is that there might be an intrinsic relation between
the data that would come into light. Such a relation would ensure that future transactions
from the same domain would exhibit the same properties. This would mean that we can use
the discovered associations to take useful actions related to the domain.
Research has therefore been focused on searching for associations between items from
transactions for which the distance between the associated intervals has a maximum value w
– we will also call this value the maximum span of the intertransaction association rules.
Definition Sliding window. A sliding window W in a transactional database T represents a

set of continuous intervals from the domain D, such that there exists in T a transaction

associated to the first interval from W. Each interval is called a subwindow of the sliding

window, and they are numbered corresponding to their temporal order d0, d1, …, dw. We

also use the notation W[0], W[1], …, W[w] for the intervals of W and we say that w is the

size of the sliding window.

Definition Megatransaction. Let T be a transactional database, let I be the set of items
{a1, a2, …, an} and let W be a sliding window with size w. A megatransaction M associated with
the sliding window W is the set of all elements denoted with aij, such that ai belongs to the
transaction associated with the interval W[j], for each corresponding value of 1≤i≤n, 0≤j≤w.
The items from a megatransaction will be called from now on extended items.
We denote with E the set of all the possible extended items {a10, a11, ..., a1w, a20, ..., anw}.
We call an intratransaction itemset a set of items A ⊂ I.
We call an intertransaction itemset a set of extended items B ⊂ E such that B contains at least
one extended item of the form ei0.
Definition Intertransaction association rule. An intertransaction association rule has the form
X → Y where:
i. X, Y ⊂ E
ii. X contains at least one extended item of the form ei0, 1≤i≤n.
iii. Y contains at least one extended item of the form eij, 1≤i≤n, j>0.

iv. X ∩ Y = ∅

Let N be the total number of transactions, TXY be the set of transactions that contain the set
X∪ Y and TX be the set of transactions that contain X.
Then the support of the rule is s = |TXY| / N and the confidence of the rule is
c = |TXY| / |TX|.
The research in this domain has been focused on finding association rules whose support and

confidence are above some specified minimum thresholds. The support threshold indicates

that the two itemsets appear together in the transactional database often enough so we can

benefit in practice from finding an association between them, and the confidence threshold

indicates a minimum degree of confidence for the association between the two itemsets.

The problem of searching for intertransaction association rules has been divided into two
parts:

• finding the intertransaction itemsets that have the support above a specified minimum
threshold (this itemsets are said to be frequent)

• finding the association rules
The second problem takes much less computational time than the first one, so it presents

little interest for research. A solution has been discussed for example in (Tung et al., 2003).

Our work (like most of the research in this area) has therefore focused on developing an

algorithm for the first problem.

www.intechopen.com

Search Algorithms and Applications

374

3. Related work

Several algorithms for finding frequent intertransaction itemsets have been previously
introduced, and some of them are presented in this chapter. Many of the algorithms for
searching intertransaction association rules (including our algorithm InterTraSM that will be
presented in the next chapter) are extensions for the intertransaction case of algorithms
developed for searching intratransaction association rules.

3.1 E-Apriori, EH-Apriori

The classic algorithm for searching (intratransaction) association rules is Apriori, introduced
in (Agrawal & Srikant, 1994). It uses the following fact: if an itemset that has k elements (also
called a k-itemset) is frequent, then all its subsets, (k-1) itemsets, must also be frequent.
The algorithm first determines all the frequent 1 - itemsets (all the frequent items in this
case) by counting the support of all the items.
Then, for each k>=2, the algorithms knows that the frequent itemsets must have all their
subsets also frequent. The algorithm uses each combination of two itemsets with k-1
elements to see if their reunion is a k-itemset for which all the subsets with k-1 elements are
frequent itemsets. For all the k-itemsets that verify this property (these itemsets are called
candidate itemsets) their support is counted in a single pass through the database.
The algorithm stops when for a given k no frequent k-itemsets are found.
In order to ensure that the same frequent itemset is not discovered multiple times (starting
from different initial items) the algorithm assumes there is a lexical ordering between the
items, and at any given steps it tries to add to the current itemset only items that are
“greater” (using the lexical ordering) than the last added item.
The E-Apriori (Extended Apriori) algorithm for the intertransaction case, introduced in (Lu
et al., 2000), is an extension of the Apriori algorithm so it uses intertransaction itemsets
containing extended items. A lexical order is given for the intratransaction items, and for all
the extended items from the same interval the lexical order for the corresponding
intratransaction items is used. It is also said that all the extended items from interval (i+1)
are “greater” than all the extended items from interval i.
It has been observed that the time for obtaining the frequent 2-itemsets has a big impact on
the total running time, due to the fact that there are a large number of frequent 1-itemsets,
which leads to a large number of candidate 2-itemsets which have to be analized.
The EH-Apriori (Extended Hash Apriori) , also introduced in (Lu et al., 2000), uses a hashing
technique to reduce the number of candidate 2-itemsets. As the support of the frequent
extended items is computed, each possible 2-extended itemset is mapped to a hash table. Each
bucket from the hash table indicates how many extended itemsets has been hashed to it.

3.2 FITI

Another algorithm for searching intertransaction association rules, initially introduced in
(Tung et al., 2003) is called FITI (First Intra Then Inter).
FITI uses the property that given a frequent intertransaction itemset, any subset for which
the same interval is associated to all the extended items must correspond to a frequent
intratransaction itemset. Using this property the algorithm first determines all the frequent
intratransaction itemsets, and using them determines next all the frequent intertransaction
itemsets – hence the name of the algorithm.
We briefly describe the three phases of the FITI algorithm:

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

375

1. Find the frequent intratransaction itemsets (using any algorithm for intratransaction
association rule mining, like Apriori). The itemsets will be stored in a special data
structure called FILT (Frequent-Itemsets Linked Table). This consists of a hash table of
itemsets where the nodes are linked with multiple types of connections. Each frequent
itemset is associated a unique ID.

2. The database is transformed into a set of encoded frequent-itemsets tables (FIT tables).
The number of FIT tables is the maximum size of the frequent intratransaction itemsets
discovered in phase 1, and each table corresponds to a particular size (from 1 to the
maximum value). For any FIT table, corresponding to a size denoted with k, the records
have the form {di, IDseti} where di represents a value of the dimensional attribute (an
interval), and IDseti represents the set of IDs (defined in phase 1) of frequent
intratransaction itemsets with size k that are found in the transaction associated with di.

3. The frequent intertransaction itemsets are discovered using a level-wise process similar
to the one used in Apriori: all the candidates with k elements are determined, their
support is computed during one pass through the database and then using the frequent
itemsets with k elements we go on to compute all the candidates with (k+1) elements.

For the discovery of frequent itemsets with two items FITI uses a hashing approach similar
to the one used in EH-Apriori.
For k>=2, the algorithm defines two kinds of combining two itemsets with k elements in
order to generate a candidate itemset with (k+1) elements:
a. an intratransaction join is performed between two itemsets who have (k-1) of their

items identical, and the items that are different belong to the same interval of the sliding
window

b. a cross-transaction join is performed between two itemsets who have (k-1) of their items
identical, and the items that are different belong to different intervals I1 and I2 of the
sliding window. In order not to generate the same itemsets through both
intratransaction and cross-transaction joins, the following restriction are placed for
cross-transaction joins:

- the first itemset must not have any items associated to interval I2 or any items
associated to any interval after I1

- the second itemset must not have any items associated to interval I1 or any items
associated to any interval after I2

- any interval must have associated at most one extended item in both itemsets

3.3 ITP-Miner
The ITP-Miner algorithm, initially introduced in (Lee & Wang, 2007), tries to avoid the
breadth first search approach of Apriori-like algorithms. In order to realize only one pass
through the database the algorithm uses a special data structure called dimensional attribute
list (dat-list) to store the dimensional attributes (the corresponding intervals in fact)
associated to a frequent itemset. For a given frequent itemset A, if the megatransactions in
which A appears start at the intervals t1, t2, …, tn then the associated dat-list is A(t1, t2, …, tn).
The algorithm also assumes a lexical ordering of the intratransaction items, which leads to
an ordering of the extended items in the way described for the E-Apriori and EH-Apriori
algorithms. A convention is used that the extended items in a frequent itemset from a dat-
list are stored in increasing order (using the ordering previously described).
The algorithm uses a structure called ITP-Tree that is a search tree that has dat-lists as
nodes. The parent node of a dat-list a(t1, t2, …, tn) is the dat list b(u1, u2, …, um) where b is

www.intechopen.com

Search Algorithms and Applications

376

obtained from a by removing the last extended item and m>=n. The root of an ITP-Tree is

the empty itemset ∅ and the nodes on the same depth level are ordered in increasing order

depending on the extended items from the itemset.
The algorithm starts with determining the frequent items and their dat-lists, and for
determining the frequent itemsets with more than one element it doesn't read the database
again, but it works with the already determined dat-lists.
A join between two frequent itemsets {u0(0), u1(i1), …, uk-1(ik-1)} and {v0(0), v1(j1), …, vk-1(jk-1)}
is deemed possible if the first (k-1) extended items are identical and uk-1(ik-1) < vk-1(jk-1) using
the given order relation. The unified itemset is then {u0(0), u1(i1), …, uk-1(ik-1), vk-1(jk-1)}- so it
is the same principle of generating candidate itemsets as the one used for Apriori-like
algorithms, only a DFS search is used instead of a BFS-search.
The dat-list for a candidate itemset has for the set of dimensional attributes the intersection
of the sets of dimensional attributes from the two itemsets used to generate it. The size of
this set determines the support of the candidate itemset, and in this way it is determined if
the itemset is frequent.
The following pruning strategies are used by ITP-Miner to reduce the size of the search
space:

• pruning of infrequent itemsets with 2 elements: a hash table is used to check if a pair of
frequent items can generate a frequent 2-itemset before the join is performed. A hash
table H2 is created while finding the frequent items and their dat-lists

• pruning of infrequent itemsets with k elements: before performing a join of 2 frequent
itemsets with (k-1) elements, the hash table H2 is used to check if the two extended
items that differ might represent a frequent itemsets with 2 elements (once again the
property that any subset of a frequent itemset must also be frequent is used here)

3.4 EFP-Growth

We will now summarize the EFP-Growth algorithm, initially presented in (Luhr et al., 2007).
The algorithm uses the pattern-growth property and it is an adaptation for the
intertransaction case of the FP-Growth algorithm described in (Han et al., 2000). The
algorithm uses an EFP-Tree (Extended Frequent Pattern Tree) which is an adaptation for the
intertransaction case of the FP-Tree used in the FP-Growth algorithm.
The EFP-Tree is composed of intraitem nodes ordered by descending frequency, and each
node can have zero or one interitem subtree which is a FP-Tree where the frequency
ordering of the interitems is conditioned on the intraitem parent node.
The construction of the EFP-Tree is done in three passes over the database.
The frequency of the extended items is computed in the first pass and the frequent
intraitems and interitems are found.
In the second pass the intraitem tree is built and for each transaction the infrequent
intraitems are removed and the frequent items are sorted in decreasing order of frequency.
Also the conditional frequencies for the interitems are computed (the frequencies only in the
transactions in which the intraitems appear).
In the third pass the interitem sub-trees are build.
The trees are build by passing through each transaction of the database, and for each item
encountered by going one step lower in the tree (or creating a new descendent node with
the new item if it doesn't exist) and increasing the support with 1. When the first interitem is
reached the processing passes to the interitem subtree corresponding to the current
intraitem node.

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

377

After the EFP-Tree is built the algorithm computes the association rules using the pattern
growth property. A divide and conquer strategy is used to construct trees conditioned on
known frequent base rules and to take the dot product of the frequent items in the
conditional tree and the conditional base itemset to produce new rules, which in turn will
become the conditional base for the new set of rules to be mined.
The algorithm uses two types of conditional trees:

• a conditional EFP-Tree that is used to find the intraitems and interitems that can be
used to extend the present intraitem rule suffix

• a FP-Tree of the interitems inherited by the conditional base

4. The InterTraSM algorithm

4.1 Theoretical presentation

We will present in this chapter the InterTraSM algorithm for mining intertransaction
association rules, which was first introduced in (Ungureanu & Boicea, 2008). The algorithm
is an adaptation for the intertransaction case of the SmartMiner algorithm for finding
(intratransaction) association rules, which was introduced in (Zou et al., 2002).
The InterTraSM algorithm (like the SmartMiner algorithm which it extends) searches for
maximal frequent itemsets (itemset which are frequent, but for which no superset of them is
also frequent) using a depth first search. Then all the frequent itemsets are derived from the
maximal frequent itemsets (MFI).
The algorithms consists of a series of steps, each of which is applied to a node of a search tree.
We will describe next what data is available for each node and how that data is processed.
We identify a node with X:Y, where X (the head) is the current set of extended items that has
been discovered to form a frequent itemset, and Y (the tail) is the set of extended items that
still has to be explored to find all the maximal frequent itemsets that contain X is a subset.

The starting node of the algorithm is identified by ∅ :E (the empty set and the set of all

possible extended items).
As in the SmartMiner algorithm, we also use some additional data attached to each node to
help our algorithm:
- we define the transaction set T(X) to represent all the transactions from the database
that contain the itemset X. For the starting node (where X is the empty set) the transaction
set is the entire database, and we will show how T(X) is obtained for each subsequent node
- if we denote with M the known frequent itemsets (the itemsets determined to be
frequent before we start processing of the current node) and with N = X : Y the current node,
then the tail information of M to N is the parts from Y (the tail of the node) that can be
inferred from M. For the processing of a given node the algorithm we use the tail
information for the frequent itemsets discovered previously.
The entry data for a node consists then of:
- the transaction set T(X)
- the tail Y
- the tail information for the node that has been obtained so far (also called global tail

information, or Ginf). This information is passed from the parent node, and it contains
the itemsets that have been previously discovered to be frequent in T(X)

The exit data for a node consists of:
- the updated global tail information Ginf
- the local maximal frequent itemsets discovered are the node and its descendants

www.intechopen.com

Search Algorithms and Applications

378

The data processing at the level of a node from the search tree is described below:
1. count the support for each item from Y in the transaction set T(X)
2. remove the infrequent items from Y
3. while Y has at least one element

4. if there is an item in Ginf with the size equal to the length of the tail, the itemset
containing all the items from the tail has already found to be frequent in previous
processing steps, so we can skip to step 12

5. select an item ai from Y
6. the head of the next state Si+1 will be Xi+1 = X ∪ {ai}
7. the tail of the next state Si+1 will be Yi+1 = Y \ {ai}
8. the global tail information for Si+1 is computed by projecting on

Yi+1 the itemsets that contain ai
9. recursively call the algorithm for the node Ni+1 = Xi+1 : Yi+1

The returned values will be Mfii the local maximal frequent itemsets found at the
node Ni+1. The global tail information Ginf is updated to include Mfii and then it is
projected on the remaining tail. The members subsumed by Mfii are marked as
deleted

10. Y = Yi+1
11. end while
12. Mfi = ∪ (aiMfii)
13. return Mfi and the current updated value of Ginf
The InterTraSM algorithm uses extended items instead of the intratransaction items used by
SmartMiner. Also for the first level nodes we select while starting from the root node we
choose only extended items which have 0 as the associated interval – because each
intertransaction association rule must contain at least one extended item with interval 0 in
the head of the rule.
We next analyse the complexity of the InterTraSM algorithm.
We consider the following variables that affect the complexity of the algorithm:
- |D| - the number of intervals for the domain D. This is equal to the number of

intertransactions from the database
- W – the size of the sliding window
- |L1| - the number of frequent intratransaction items
The processing for a node from the search tree is divided in the following parts:
1. Determining the support in T(X) for each element from Y

The number of megatransaction from T(X) is limited to |D| and the number of
elements from Y is limited to |L1|xW, so the number of operations for this step is
O(|D|x|L1|xW).

2. Preparing the entry data for each sub-node, calling each sub-node recursively (without
taking into account the processing inside the sub-nodes) and computing the exit data
using the data returned by the subnode – the complexity is O(|L1|xW).

We conclude that the maximum complexity for a node is O(|D|x|L1|xW), but the maximum
average complexity on all nodes will be lower since both the number of transactions in T(X)
and the number of items in Y decrease while we descend into the search tree.

4.2 An example

We will next present a detailed example of the execution steps of the algorithm.
We consider first a set of items {a, b, c, d}.

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

379

We consider next the following transactional database: with 5 transactions:
T0 a,b
T1 a,c
T2 c
T3 a,b
T4 c,d
We consider the maximum span of the intertransaction association rules we want to
discover to be 1 (so the size of the sliding window will be w=1).
We will work then with the following 5 megatransactions:
M0: a0, b0, a1, c1

M1: a0, c0, c1
M2: c0, a1, b1
M3: a0, b0, c1, d1

M4: c0, d0
The minimum support threshold for the rules we want to discover is s=0.4 (40%).
We have E = {a0, b0, c0, d0, a1, b1, c1, d1}

The entry node N0 of the algorithm has X = , Y = E, Ginf = ∅ and

T(X) = {M0, M1, M2, M3, M4}.
We start by computing the support for each item from Y in T(X) (step 1 for node N0)
We find that s(a0)=3, s(b0)=2, s(c0)=3, s(d0)=1, s(a1)=2, s(b1)=1, s(c1)=3, s(d1)=1.
The frequent extended items are the ones who have the support value at least 2 (40% of the
total transactions).
When we remove the infrequent items (step 2 for node N0) we remain with {a0, b0, c0, a1, c1}.
We select a0 to be X1 - the head of the next node N1, and the tail Y1 will be {b0, c0, a1, c1}. Ginf

will be ∅ and T(X1) = {M0, M1, M3}.

We call the algorithm recursively for node N1.
We compute the support for the items from Y1 in T(X1) (step 1 for node N1)
We find that s(b0)=2, s(c0)=1, s(a1)=1, s(c1)=3.
When we remove the infrequent items (step 2 for node N1) we remain with { b0, c1}

We next select b0 to be X2 - the head of the next node N2, the tail Y2 will be { c1}, Ginf = ∅

and T(X2) = {M0, M3}. We call the algorithm recursively for node N2.
We compute the support for the items from Y2 in T(X2) (step 1 for node N2)
We find that s(c1)=2. Since there is only one element in the tail and it is frequent we can only

select c1 as the head for the next node N3 and the tail will be empty, so N3 will return ∅ as

MFI. No more items remain in the tail to be processed, so the node N2 will return MFI = {c1}
After N2 returns, the Ginf for N1 will be updated to be {c1}.
Since the remaining value of the tail is {c1}, according to step 4 for N1 we can skip to step 12.
The node N1 will return MFI= {b0c1}
After node N1 returns, the Ginf for node N0 is updated to {b0c1}
We next return to step 3 and we select another item from the remaining tail {b0, c0, a1, c1}
We select item b0 to be X4, Y4 will be {c0, a1, c1}, Ginf for node N4 will be the projection of
Ginf on Y4 - {c1}, T(X4) = {M0, M3}.
We next call the algorithm recursively for node N4.
We compute the support for the items from Y4 in T(X4) (step 1 for node N4)
We find that s(c0)=0, s(a1)=1, s(c1)=2.
When we remove the infrequent items (step 2 for node N4) we remain with {c1}.
According to step 4 we can skip to step 12.

www.intechopen.com

Search Algorithms and Applications

380

The node N4 will return MFI = ∅

We next return to step 3 and we select another item from the remaining tail {c0, a1, c1}.
We select item c0 to be X5, Y5 will be {a1, c1}. Ginf for node N5 will be the projection of Ginf
on Y5 - {c1}. T(X5) = {M1, M2,M4}.
When call the algorithm recursively for node N5, no frequent items are found in the tail.
We next return to step 3 and we select another item from the remaining tail {a1, c1}.
We select item a1 to be X6, Y6 will be {c1}. Ginf for node N6 will be the projection of Ginf on
Y6 - {c1}. T(X6) = {M1, M3}.
When call the algorithm recursively for node N6, no frequent items are found in the tail.
We then return to step 3, but since the condition in step 4 is verified we go to step 12.
Node N0 returns MFI = {a0b0c1, c0, a1}.
So the exit data of the algorithm, the maximal frequent itemsets are MFI = {a0b0c1, c0, a1}.

5. Experiments and results

We have developed an implementation of the algorithm in C, using a structure similar to
that from the SmartMiner algorithm. We used C in order to better control the memory usage
and execution speed of the algorithm.
The traditional form of input data for algorithms that search for frequent itemsets is a series of
transactions containing items and having associated domain intervals. We have instead used
an orthogonal view of the input data. We have first determined the frequent items, and then
for each frequent item we have used a bitset containing one bit for each megatransaction from
the database. The bit is 1 if the item appears in the megatransaction and 0 if it does not appear.
The program was benchmarked under a Windows XP operating system, on a PC with Intel
Pentium 4 processor with a speed of 3GHz and memory of 1GB. The code has been written
and compiled using Visual Studio 2003.
We have used both real and artificial data to test the performance of our algorithm.
The real data consists of two datasets, WINNER and LOSER, similar to those described in (Lee
& Wang, 2007). They have been obtained from the values of 10 stock exchange indices for the
trading days between January 1, 1991 to December 31, 2005: ASX All Ordinaries Index (ASX),
CAC40 Index (CAC), DAX Index (DAX), Dow Jones Index (DOW), FTSE 100 INDEX (FTS),
Hang Seng Index (HSI), NASDAQ Index (NDQ), Nikkei 225 Index (NKY), Swiss Market Index
(SMI) and Singapore ST Index (STI). In the WINNER set a transaction for a trading day
contains the stock indices whose value rises for the day, while in the LOSER set a transaction
for a trading day contains the stock indices whose value falls for the day.
For both the WINNER and LOSER datasets we have used the sliding window size to be 4
(the maximum span of the intertransaction association rules). We have varied the minimum
support threshold value from 4% to 12% and the results are presented in Fig. 1 and Fig. 2.
The same data sets (obtained from the same stock indices for the same period) were also
used to evaluate the ITP-Miner algorithm in (Lee & Wang, 2007). The same sliding window
size was used and the minimum support varied between the same values, while the
program was run on a processor with similar properties to the one we used using Microsoft
Visual C++ 6.0. We have observed a difference of an order of magnitude between the
execution times, especially larger when the minimum support threshold decreases (and
there are more frequent itemsets to be found). For example for the LOSER data set when the
minimum support threshold is set at 4% InterTraSM takes less than 6 seconds, while the
authors reported that ITP-Miner takes about 100 seconds.

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

381

Fig. 1. Execution time vs minimum support, WINNER data set, w=4

Fig. 2. Execution time vs minimum support, LOSER data set, w=4

The synthetic data was created using the generator described in (Luhr et al., 2007),
gracefully provided to us by its authors.
The generation of data is a process with two steps:
- first a set of candidate frequent intertransaction itemsets is created
- then this set is used to populate with items the transactions from the dataset
We have generated two artificial datasets, representing sparse and dense data. This was the
same method used in (Luhr et al., 2007) to evaluate the performances of the FITI and EFP-
Tree algorithms.
The characteristics of the artificial data created are influenced by some parameters that
guide the generation process. These parameters have the following values for the two
artificial datasets we produced:

www.intechopen.com

Search Algorithms and Applications

382

Parameter name Sparse dataset Dense dataset

Number of intratransactions 500 200

Size of the intertransaction pool 50 200

Average length of intratransactions 5 25

Maximum length of intratransactions 10 50

Average length of intertransactions 5 8

Maximum length of intertransactions 10 20

Maximum number of unique items 500 100

Maximum interval span of intertransactions 4 6

Table 1. Values of parameters used in the generation of the synthetic data sets

Fig. 3. Execution time vs minimum support, sparse data set, w=4

Fig. 4. Execution time vs sliding window size, sparse data set, minsup = 1%

We have compared the performance of InterTraSM and the performance of EFP-Growth for
synthetic data sets created with the same parameters by the same generator (probably not

www.intechopen.com

A Search Algorithm for Intertransaction Association Rules

383

identical data sets since the actual generation is random, but the data sets have the same
characteristics).
For the synthetic sparse data set:
- we have varied the minimum support threshold from 1.6% to 0.6%, with the sliding

window size set to 4 – the results are in Fig. 3.
- we have varied the sliding window size from w=0 to w=10 while we have kept a fixed

minimum support threshold of 1% - the results are in Fig. 4.

Fig. 5. Execution time vs minimum support, dense data set, w=6

Fig. 6. Execution time vs sliding window size, dense data set, minsup = 10%

For the synthetic dense data set:
- we have varied the minimum support threshold from 13% to 8%, with the sliding

window size set to 6 – the results are in Fig. 5.
- we have varied the sliding window size from w=0 to w=10 while we have kept a fixed

minimum support threshold of 10% - the results are in Fig. 6.

www.intechopen.com

Search Algorithms and Applications

384

Since the execution times observed here are all under 1 second and the execution times
reported in (Luhr et al, 2007) on a similar processor have values of tens or evens hundreds of
seconds, even considering for the different implementation environments we can conclude
that InterTraSM generally performs at least an order of magnitude better than EFP-Growth.

6. Conclusion

We have approached in this paper the issue of searching for intertransaction association
rules. We have presented the theoretical description of the problem and we have discussed
the differences from the classical (intratransaction) association rule mining. We have
presented some previous algorithms and then we have focused on InterTraSM - which uses
a depth first search strategy and unlike the previous algorithms introduced it searches for
maximal frequent itemsets. This reduces the number of support counting operations that
need to be performed. Experiments performed with similar data and on similar processors
with the ones used in previous algorithms show a difference of at least an order of
magnitude in favour of InterTraSM.
In the future the algorithm should be applied on more real data sets and the performance
should be measured. Also some interestingness measures for intertransaction association
rules should be applied and the results should be analysed.

7. References

Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules, Proceedings of
the 20th International Conference on Very Large Databases (VLDB), pp. 487-499,
Santiago, Chile, September 1994, Morgan Kaufmann

Han, J.; Pei, J. & Yin, Y. (2000). Mining frequent patterns without candidate generation,
Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, pp. 1-12, Dallas, United States, May 2000, ACM

Lee, A.J.T. & Wang, C-S. (2007). An efficient algorithm for mining frequent inter-transaction
patterns. Information Sciences: an International Journal, Vol. 177, Issue 17, (September
2007), pp. 3453-3476

Lu, H.; Feng, L. & Han, J. (2000). Beyond intra-transaction association analysis: mining
multi-dimensional inter-transaction association rules. ACM Transactions on
Information Systems, Vol. 18, Issue 4, (October 2000), pp. 423-454

Luhr, S.; West, G. & Venkatesh, S. (2007). Recognition of emergent human behaviour in a
smart home: A data mining approach. Pervasive and Mobile Computing, Vol. 3, Issue
2, (March 2007), pp. 95-116

Tung, A.K.H.; Lu, H.; Feng, L. & Han, J. (2003). Efficient mining of intertransaction
association rules. IEEE Transactions on Knowledge and Data Engineering, Vol. 15, Issue
1, (January 2003), pp. 43-56

Ungureanu, D. & Boicea, A. (2008). Intertrasm - a depth first search algorithm for mining
intertransaction association rules, ICSOFT 2008 - Proceedings of the Third
International Conference on Software and Data Technologies, pp. 148-153, Porto,
Portugal, July 2008, INSTICC Press 2008

Zou, Q.; Chu, W. & Lu, B. (2002). SmartMiner: a depth first algorithm guided by tail
information for mining maximal frequent itemsets, Proceedings of the 2002 IEEE
International Conference on Data Mining, pp. 570-577, Maebashi City, Japan,
December 2002, IEEE Computer Society

www.intechopen.com

Search Algorithms and Applications

Edited by Prof. Nashat Mansour

ISBN 978-953-307-156-5

Hard cover, 494 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution

search space or among a collection of objects. A solution can be a set of value assignments to variables that

will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search

algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book

demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical

solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of

readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search

algorithms and applications. The chapters are organized into three parts: Population-based and quantum

search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dan Ungureanu (2011). A Search Algorithm for Intertransaction Association Rules, Search Algorithms and

Applications, Prof. Nashat Mansour (Ed.), ISBN: 978-953-307-156-5, InTech, Available from:

http://www.intechopen.com/books/search-algorithms-and-applications/a-search-algorithm-for-intertransaction-

association-rules

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

