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1. Introduction

For a search problem associated with a unsorted database, the remarkable Grover’s quantum
algorithm (1) provides a quadratic speedup over its classical counterpart. The search problem
can be described as follows: for a given function f , there exists one unknown element in the
set {0, 1, ..., N − 1} that satisfies f (x) = −1, say x = τ, whereas the other N − 1 ones give
f (x) = 1. How many times of evaluations of f are required to determine the element τ for
f (τ) = −1? Through a conventional algorithm, one needs O(N) trials to achieve this aim.
How about the utility of quantum algorithm for the search?
For the scenario in the quantum world, the search problem can be rephrased in the quantum
mechanical language: for a given unitary operator Iτ, that is sometimes called the oracle
operator, and a set of state vectors (orthonormal basis): s = {|0〉 , |1〉 , ..., |N − 1〉}, Iτ |x〉 = |x〉
for all states in the set except Iτ |x〉 = − |x〉 for x = τ. How many queries of Iτ are required

to determine |τ〉? By Grover’s algorithm, one needs only O(
√

N) quantum mechanical steps
to find the marked state |τ〉 out. It has been shown that Grover’s algorithm is optimal since it
needs minimal oracle calls to perform a quantum search (2).
The quantum searching process will be briefly reviewed as follows. The first step of Grover’s
algorithm is to prepare a superposition state of all elements with uniform probability
amplitude:

|s〉 =
1√
N

N−1

∑
x=0

|x〉 . (1)

Then apply the Grover kernel G = −Iη Iτ to |s〉, where Iη is a unitary operator and contains

no bias against the marked state. For large N, after about m = π
√

N/4 repetitions of G
operations, the probability to observe |τ〉 is close to one, i.e.,

Gm |s〉 ∼ |τ〉 . (2)

Since every single G involves one query of Iτ, only O(
√

N) searching steps are required for a
quantum search task.
In what follows, we will first investigate on the general SU(2) formulation for the kernel of
Grover’s searching operator G. The discussions of quantum searching certainty, robustness,
and the analog analogue version of the Grover’s algorithm will be given afterwards.
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2. Kernel of Grover’s searching operator G

Suppose in a two-dimensional complex Hilbert space we have a marked state |τ〉 to be
searched by successively operating a Grover’s kernel G on an arbitrary initial state |s〉. The
Grover kernel is a product of two unitary operators Iτ and Iη , given by (3)

Iτ = I + (eiφ − 1) |τ〉 〈τ| , (3)

Iη = I + (eiθ − 1)U |η〉 〈η|U−1, (4)

where U is an arbitrary unitary operator, |η〉 ∈ s, and φ and θ are two phase angles. Note that
in the original designation of Grover, the phase angles φ = θ = π are chosen for phase flips of
the state vectors. The Grover kernel can be expressed in a matrix form in the following set of
basis vectors:

|I〉 = |τ〉 , |I I〉 = (U |η〉 − Uτη |τ〉)/l, (5)

where Uτη = 〈τ|U |η〉 and l = (1 −
∣

∣Uτη

∣

∣

2
)1/2. Let us suppose that Uτη = sin(β)eiα, we then

have
U |η〉 = sin(β)eiα |I〉+ cos(β) |I I〉 , (6)

and the Grover kernel can now be written as

G = − Iη Iτ

= −
[

eiφ(1 + (eiθ − 1) sin2(β)) (eiθ − 1) sin(β) cos(β)eiα

eiφ(eiθ − 1) sin(β) cos(β)e−iα 1 + (eiθ − 1) cos2(β)

]

. (7)

3. Quantum searching with certainty

In the searching process, the Grover kernel is successively operated on the initial state |s〉. We
suppose that after m iterations the final state Gm |s〉 will be orthogonal to the basis vector |I I〉,
which means that the probability for finding the marked state |τ〉 will exactly be unity, i.e.,

〈I I|Gm |s〉 = 0, (8)

which implies that
|〈τ|Gm |s〉| = |〈I| Gm |s〉| = 1. (9)

For the matrix of Eq. (7), the eigenvalues of the Grover kernel G are

λ1,2 = −ei( φ+θ
2 ±w), (10)

where the angle w is defined by

cos(w) = cos(
φ − θ

2
)− 2 sin(

φ

2
) sin(

θ

2
) sin2(β). (11)

Furthermore, the normalized eigenvectors associated with these eigenvalues can be derived:

|g1〉 =

[

e−i φ
2 eiα cos(x)
sin(x)

]

, |g2〉 =

[

− sin(x)

ei
φ
2 e−iα cos(x)

]

. (12)

Here the angle x is defined by

sin(x) = sin(
θ

2
) sin(2β)/

√

lm, (13)
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where

lm = 2 sin(w)(sin(w) + sin(
φ − θ

2
) + 2 cos(

φ

2
) sin(

θ

2
) sin2(β)). (14)

Then the matrix Gm can be expressed in the eigenbasis of G by Gm = λm
1 |g1〉 〈g1| +

λm
2 |g2〉 〈g2|, and we have

Gm = (−1)meim( φ+θ
2 )

[

eimw cos2(x) + e−imw sin2(x) e−i
φ
2 eiαi sin(mw) sin(2x)

ei
φ
2 e−iαi sin(mw) sin(2x) eimw sin2(x) + e−imw cos2(x)

]

. (15)

We proceed to consider the initial state |s〉. Here we assume that the initial state |s〉 is more
general than the uniform superposition state (1):

|s〉 = sin(β0) |I〉+ cos(β0)eiu |I I〉 . (16)

Hence from the condition of searching with certainty, 〈I I|Gm |s〉 = 0, we have:

− sin(mw) sin(
φ

2
− α − u) sin(2x) sin(β0) + cos(mw) cos(β0) = 0, (17)

sin(mw) cos(
φ

2
− α − u) sin(2x) sin(β0) − sin(mw) cos(2x) cos(β0) = 0. (18)

After substituting the angle x into Eq. (18), the equation can be reduced to the following
condition:

(sin(
φ − θ

2
) + 2 cos(

φ

2
) sin(

θ

2
) sin2(β)) cos(β0) = sin(

θ

2
) sin(2β) cos(

φ

2
− α − u) sin(β0),

(19)
which is identical to the relation derived by Long et al. (4):

tan(
φ

2
) = tan(

θ

2
)(

cos(2β) + sin(2β) tan(β0) cos(α + u)

1 − tan(β0) tan( θ
2 ) sin(2β) sin(α + u)

). (20)

For Eq. (17), under the satisfaction of the matching condition (19), or (20), we can have a
formula for evaluating the number of iterations m:

cos(mw + sin−1(sin(β0) sin(
φ

2
− α − u))) = 0. (21)

Then one can compute the number m:

m = ⌈ f ⌉ , (22)

where ⌈⌉ denotes the smallest integer greater than the quantity in it, and the function f is
given by

f =
π
2 − sin−1(sin(β0) sin(

φ
2 − α − u))

cos−1(cos(
φ−θ

2 ) − 2 sin(
φ
2 ) sin( θ

2 ) sin2(β))
. (23)

It can be shown also that if the matching condition is fulfilled, then after m searching iterations
the final state will be

Gm |s〉 = eiδ |τ〉 = e
i
[

m(π+ φ+θ
2 )+Ω

]

|τ〉 , (24)
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Fig. 1. Variations of φ(θ) (solid) and f (θ) (broken), for α + u = 0, β0 = 10−4, and β = 10−4

(1), 10−2 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the special case of Høyer
(6), while the black cirles correspond to the optimal choices of φop and θop for α + u = 0,

β0 = 10−4 and β = 0.7. The solid straight line 1 corresponds the case φ = θ, while the solid
curve 2 is only approximately close to the former.

where the angle Ω is defined by

Ω = tan−1(cot(
φ

2
− α − u)). (25)

The matching condition (19), or (20), relates the angles φ, θ, β, β0 , and α + u for finding a
marked state with certainty. If β, β0 and α + u are designated, then φ = φ(θ) is deduced by
the matching condition. As φ(θ) is determined, we then can evaluate the value of f = f (φ(θ),
θ) by (23) and consequently decide the number of iterations m by (22). It is worth to note that
as α + u = 0 and β = β0, the matching condition recovers φ = θ automatically since then Eq.
(20) becomes an identity, and accordingly one has

f =
π
2 − sin−1(sin(

φ
2 ) sin(β))

2 sin−1(sin(
φ
2 ) sin(β))

, for φ = θ, (26)

which is the case discussed in Ref. (5). We also note that the matching condition (19) will
recover the relation by Høyer (6):

tan(
φ

2
) = tan(

θ

2
) cos(2β), for cos(φ/2 − α − u) = 0. (27)
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Fig. 2. Variations of φ(θ) (solid) and f (θ) (broken), for α + u = 0.1, β0 = 0.1, and β = 10−4

(1), 10−2 (2), 0.5 (3) and 0.7 (4), respectively. The cross marks denote the special case of Høye
(6). The solid curves 1 and 2 are almost identical, and both of them are only approximately
close to the line φ = θ.

In Figs. 1 and 2 we have shown by the cross marks some particular examples of this special
case.
Observing Figs. 1 and 2, one realizes that for every designation of β, β0 and α + u, the optimal
choices for φ and θ is φ = θ = π, since then the corresponding f is minimum under the fact
d f /dθ = (∂ f /∂φ)(dφ/dθ) + ∂ f /∂θ = 0, for φ = θ = π. We thus denote the optimal value of
m by

mop = ⌈min( f )⌉ =

⌈

π
2 − sin−1(sin(β0) cos(α + u))

2β

⌉

. (28)

With the choice of mop, however, one needs to modify the phases θ and φ(θ) to depart from

π so that the matching condition is satisfied again. For example, if α + u = 0, β0 = 10−4 and
β = 0.7 are designated, then the minimum value of f will be min( f ) = 0.56 . So we choose
mop = 1 and the modified phases are θop = (1 ± 0.490)π and φop = (1 ± 0.889)π, respectively.
This example has been shown by the marked black circles in Fig. 1. It is worth to note again
that under the choice of mop the modified φ and θ for the special case considered by Long (5)
will be

φop = θop = ⌈min( f )⌉ = 2 sin−1(
sin( π

4mop+2 )

sin(β)
), (29)

where

mop =

⌈ π
2 − β

2β

⌉

, (30)
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This is in fact a special case in which the phases φop and θop can be given by a closed-form
formula.

4. Phase error tolerance in a quantum search algorithm

In Section 3 we have given a general review of quantum search algorithm with SU(2)
formulation. To give a detailed discussion about phase error tolerance in a quantum search
algorithm, in what follows we will focus on the original version of Grover’s algorithm, which
means that the unitary operator U shown in Eq. (4) corresponds to a specific transformation.
Grover’s quantum search algorithm (1) is achieved by applying Grover kernel G on
an uniform superposition state (1), which is obtained by applying Walsh-Hadamard
transformation on a initial state, in a specific operating step such that the probability
amplitude of marked state is amplified to a desired one. Specifically, Grover’s kernel is
composed of phase rotations and Walsh-Hadamard transformations. The phase rotations
include two kinds of operations: π-inversion of the marked state and π-inversion of the initial
state. As shown in Section 3, the phases, π, can be replaced by two angles, φ and θ, under
the phase matching criterion, which is the necessary condition for quantum searching with
certainty. In other words, the relation between φ and θ will affect the degree of success of
quantum search algorithm.
There have been several studies concern with the effect of imperfect phase rotations. Long
et al. (7) have found that, a given expected degree of success Pmax, the tolerated angle
difference between two phase rotations, δ, due to systematic errors in phase inversions is about
2/

√
NPmax , where N is the size of the database. Høyer (6) has shown that after some number

of iterations of Grover kernel, depending on N and unperturbed θ, it will give a solution with

error probability O(1/N) under a tolerated phase difference δ ∼ O(1/
√

N). The same result
is also redrived by Biham et al. (8). A roughly close conclusion, δO(1/N2/3), is presented by
Pablo-Norman and Ruiz-Altaba (9).
The result of Long et al. (7) is based on the approximate Grover kernel and the assumptions
of large N and small δ. However, one can find that the main inaccurancy comes from the
approximate Grover kernel. Since all parameters in Grover kernel connect with each other
exquisitely, any reduction to the structure of Grover’s kernel would destroy this penetrative
relation, so accumulative errors emerge from the iterations to a quantum search. In what
follows, we will use the tool derived from SU(2) formulation discussed in Section 3 to get
an improved criterion for tolerated error in phase rotation and the required number of qubits
for preparing a database (10). In addition, a concise formula for evaluating minimum number
of iterations to achieve a maximum probability will also be acquired.
Let us follow the derivation detailed in Section 3 for the analysis of error tolerance. If the
operator U is Walsh-Hadamard transformation W, the orthonormal set becomes

|I〉 = |τ〉 and |τ⊥〉 = (W |η〉 − Wτη |τ〉)/l , (31)

where Wτη = 〈τ|W |η〉 and l = (1 −
∣

∣Wτη

∣

∣

2
)1/2. Since Wτη = sin(β) we have

|s〉 = W |η〉 = sin(β) |τ〉 + cos(β) |τ⊥〉 , (32)

and the Grover kernel can now be written as

G = − Iη Iτ

= −
[

eiφ(1 + (eiθ − 1) sin2(β)) (eiθ − 1) sin(β) cos(β)
eiφ(eiθ − 1) sin(β) cos(β) 1 + (eiθ − 1) cos2(β)

]

. (33)
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After m number of iterations, the operator Gm can be expressed as

Gm = (−1)meim( φ+θ
2 )

[

eimw cos2(x) + e−imw sin2(x) e−i φ
2 i sin(mw) sin(2x)

ei φ
2 i sin(mw) sin(2x) eimw sin2(x) + e−imw cos2(x)

]

. (34)

Then the probability of finding a marked state is

P = 1 − |〈τ| Gm |s〉|2

= 1 − (cos(mw) cos(β) − sin(mw) sin(
φ

2
) sin(2x) sin(β))2

− sin2(mw)(cos(
φ

2
) sin(2x) sin(β) − cos(2x) cos(β))2. (35)

By the equation ∂P/∂(cos(mw)) = 0, the minimum number of iterations for obtaining the
maximum probability, Pmax(cos(mminw)), is evaluated:

mmin(β, φ, θ) =
cos−1(

√

b−2a
2b )

w
, (36)

where

a = sin(2x) cos(2β) + cos(2x) cos(
φ

2
) sin(2β),

b = (2 + sin2(2x) + (3 sin2(2x) − 2) cos(4β) − 2 sin2(2x) cos(φ) sin2(2β))

+2 sin(4x) cos(
φ

2
) sin(4β).

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

P
m
a
x

n

Fig. 3. Variations of exact vaule of Pmax (n)(cross marks), 16β2 sin2( θ
2 )/(δ2 + 16β2 sin2( θ

2 ))

(solid), and 4β2/(δ2 + 4β2) (dash) for θ = π, δ = 0.01 where β = sin−1(2−n/2).

For a sure-success search problem, the phase condition, φ = θ, with mmin = (π/2 −
sin−1(sin(φ/2) sin(β))/w, is required. However, when effects of imperfect phase inversions
are considered, the search is not certain, then the new condition to phase error, δ = φ − θ,
and the size of database should be derived in order to accomplish the search with a reduced
maximum probability. Now, we suppose the database is large, i.e., if sin(β) ≪ 1, and a phase
error δ is small, where |δ| ≪ 1, one has the following approximation:
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Fig. 4. Variations of exact value of Pmax (n)(cross marks), 16β2 sin2( θ
2 )/(δ2 + 16β2 sin2( θ

2 ))

(solid), and 4β2/(δ2 + 4β2) (dash) for θ = π, δ = 0.001 where β = sin−1(2−n/2).

cos(w) = cos(
δ

2
) − 2 sin(

θ

2
+

δ

2
) sin(

θ

2
) sin2(β)

≈ 1 − (
δ2

8
+ 2β2 sin2(

θ

2
)),

sin(w) = (1 − cos2(w))1/2

≈ (δ2 + 16β2 sin2( θ
2 ))1/2

2
,

sin(2x) =
4β sin( θ

2 )

(δ2 + 16β2 sin2( θ
2 ))1/2

.

The probability P (Eq.35) then can be expressed approximately as

P ≈ 1 − cos2(mw) cos2(β) − sin2(mw) cos2(2x) (37)

= sin2(mw) sin2(2x),

with a maximum value, by setting sin2(mw) = 1,

Pmax ≈ sin2(2x) =
16β2 sin2( θ

2 )

δ2 + 16β2 sin2( θ
2 )

. (38)

From Fig. 3 and Fig. 4, one can realize the function (38) depicted by solid line coincides with
the exact value which is obtained by Eq. (35) and Eq. (36) as shown by cross marks. On the
contrary, the result of Long et al.,

Pmax ≈ 4β2 sin2( θ
2 )

δ2 + 4β2 sin2( θ
2 )

, (39)

is an underestimation depicted by dash lines.
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5. Family of sure-success quantum search algorithms

Even in the case of large N, where high success rate in finding the marked state is
expected by using the standard Grover’s algorithm, inevitable noises including decoherence
and gate inaccuracies can significantly affect the efficiency of the algorithm. To overcome
such drawback , one might either apply the fault-tolerant computation (11) to reduce gate
imperfections and decoherence, or limit the size of the quantum database to depress the
effect of the uncertainty of the phase inversion operations. In another way, one can also, if
possible, consider implementing a modified algorithm which is itself robust against phase
imperfections and or decoherence. Recently, Hu (12) introduced an interesting family of
algorithms for the quantum search. Although these algorithms are more complicated than
the standard Grover’s algorithm, they can be proved to be robust against imperfect phase
inversions, so the limitation of the size of database can be greatly relieved. In what follows the
algorithms introduced by Hu (12) will be analyzed intently in detail, and the robustness of the
family in resisting the effect of imperfect phase inversions will be shown later on.
Let us denote the phase inversion of marked state Iτ = 1 + (eiφ − 1) |τ〉 〈τ| as usual and the
phase inversion of the initial state Is = 1 + (eiθ − 1) |s〉 〈s|. Instead of applying Gn on the initial
state |s〉, Hu (12) presented and utilized the operators A2n =(I†

s I†
τ Is Iτ)n and A2n+1 = GA2n to

accomplish a quantum search with certainty, and named the former the even member and the
latter the odd member of the family {An, n = 1, 2, ...} because they require even (2n) and odd
(2n + 1) oracle calls in computation, respectively. The arrangement I†

s I†
τ Is Iτ is shown to have

cancellation effect on phase errors in each iteration of the algorithm A2n and A2n+1 and as a
whole can ensure the robustness against imperfect phase inversion.
Consider a two-dimensional Hilbert space spanned by the marked state |τ〉 and the state |τ⊥〉,
which is orthogonal to |τ〉. The initial state, as a uniform superposition of all states, then can
be expressed by |s〉 = W |0〉 = sin(β) |τ〉 + cos(β) |τ⊥〉, where sin(β) ≡

√
M/N and M is

the number of the target states. The eigenvalues of the operator I†
s I†

τ Is Iτ are λ1,2 = cos(ω)±
i sin(ω) and the corresponding eigenvectors are computed (13; 14) as

|λ1〉 = cos(x) |τ〉+ i sin(x)ei( φ
2 −γ) |τ⊥〉 ,

|λ2〉 = i sin(x)e−i( φ
2 −γ) |τ〉 + cos(x) |τ⊥〉 , (40)

where the rotation x and the related parameters are defined by

tan(x) =
2r sin(

φ
2 ) sin( θ

2 ) sin(2β)

sin(ω) + sin2( θ
2 ) sin(φ) sin2(2β)

, (41)

cos(ω) = 1 − 2 sin2(
θ

2
) sin2(

φ

2
) sin2(2β), (42)

reiγ = cos(
θ

2
) + i sin(

θ

2
) cos(2β). (43)

Then in n iterations of the operator of I†
s I†

τ Is Iτ we will have A2n =(I†
s I†

τ Is Iτ)n = λn
1 |λ1〉 〈λ1|+

λn
2 |λ2〉 〈λ2|, which can be expressed in the following matrix form:

A2n =

[

cos(nw) + i sin(nw) cos(2x) sin(2x) sin(nw)e−i( φ
2 −γ)

− sin(2x) sin(nw)ei( φ
2 −γ) cos(nw)− i sin(nw) cos(2x)

]

, (44)
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where sin(2x) and cos(2x) are given by

sin(2x) = (
1 − sin2( θ

2 ) sin2(2β)

1 − sin2( θ
2 ) sin2(

φ
2 ) sin2(2β)

)1/2, (45)

cos(2x) =
sin( θ

2 ) cos(
φ
2 ) sin(2β)

(1 − sin2( θ
2 ) sin2(

φ
2 ) sin2(2β))1/2

. (46)

When the quantum search is carried out by using the even member A2n, the component of the
final state after n iterations of (I†

s I†
τ Is Iτ) in the basis state |τ⊥〉 is expressed by 〈τ⊥| A2n |s〉 =

REe + i IMe, and accordingly the exact success rate in finding the marked state |τ〉 then is
given by

p = 1 − |〈τ⊥| A2n |s〉|2 = 1 − (RE2
e + IM2

e ), (47)

where

REe = cos(nω) cos(β) − sin(nω) sin(2x) cos(
φ

2
− γ) sin(β), (48)

IMe = − sin(nω) sin(β)

(1 − sin2( θ
2 ) sin2(

φ
2 sin2(2β)))1/2

sin(
θ + φ

2
). (49)

It is clear that when IMe = 0, one obtains the n-independent phase matching condition, φ =
−θ, for A2n, and the success rate then becomes

p = 1 − RE2
e = 1 − cos2(nω − α), (50)

where α = sin−1(sin(β) cos(φ/2 + γ)). The 100% success rate for the search problem can be
achieved as by setting cos(nω− α) = 0. For a search with certainty, since n is a positive integer,
one therefore has to expect the iteration number given by

ne(θ, β) = ⌈ fe(θ, β)⌉ , (51)

and the function fe(θ, β) is given by

fe(θ, β) =
π
2 + α(θ, β)

ω(θ, β)
. (52)

Given β, the function fe has its minimal value as θ = π (and φ = −π thereby), as if
minimal oracle calls are demanded in the computation, we should have the optimal phase
θop associated with

fe(θop, β) = ⌈ fe(π, β)⌉ . (53)

For example, if given β = 1, we have ⌈ fe(π, 1)⌉ = 1, and the optimal phase angle θop =
π ± 1.304 follows in the algorithm using the even member A2n. In usual operation, however,
the quantum database is large, i.e., sin(β) ≪ 1, and the phase θ = π and φ = −π are fixed,
then the required iterations are estimated by n ∼ π/8β and the maximal success rate will be
approximately evaluated

pmax ∼ 1 − β2, for θ = π,

which is the same result obtained as if the standard Grover algorithm is implemented. That
is, as the phase θ = π is fixed, the present algorithm (A2n) is equivalent to the standard
algorithm (Gm) with even oracle calls required in the computation. Nevertheless, since in a
real operation, imperfections in the phase inversions are inevitable. In what follows,one can
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show that the present algorithm is robust against small phase imperfections in a quantum
computation and provides a maximal success rate that is similar to the one given above.
In the absence of decoherence and error correction, constant phase errors are considered to
cause the phase φ and θ to be φ = π + φe and θ = π + θe, where |φe| ≪ 1 and |θe| ≪ 1.
By introducing the constant phase imperfections, one then has the following approximations,
when β ≪ 1,

sin(2x) ∼ 1 − 1

2
β2φ2

e , cos(2x) ∼ βφe,

cos(
φ

2
− γ) ∼ −1 +

1

8
(θe − φe)

2, sin(
φ

2
− γ) ∼ 1

2
(θe − φe),

ω ∼ 4β(1 − 1

8
(θ2

e + φ2
e ) +

4

3
β2).

Then, since the errors are unknown in advance of the computation, the iteration number is
also considered to be n ∼ π/8β, and one thus has cos(nω) ∼ π(θ2

e + φ2
e )/16 − 2πβ2/3 and

sin(nω) ∼ 1. The approximation of REe and IMe accordingly are evaluated by

REe ∼ β +
π

16
(θ2

e + φ2
e )−

2

3
πβ2, (54)

IMe ∼ − 1

2
β(θe + φe).

The maximal success rate now is approximately derived by

pmax ∼ 1 − β2 − (H.O.T.), (55)

where H.O.T. represents high order terms higher than second-degree in the small parameters
β, θe and φe. Expression (55) clearly shows that the reduction of the probability due to the
introduction of the phase errors in fact can almost be neglected. Then, through it, we can see
that the present algorithm is robust against systematic phase imperfections.
We proceed to analyze the algorithm using the odd member A2n+1 by the same procedure as
in analyzing the even member. In this case, one obtains

pmax = 1 − (RE2
o + IM2

o), (56)

where

REo = cos(nw)[cos(
θ − φ

2
)− 4 sin(

θ

2
) sin(

φ

2
) sin2(β)] cos(β)

+ sin(nw){cos(2x)[sin(
θ − φ

2
) − 4 sin(

θ

2
) sin(

φ

2
) sin2(β)] cos β

− sin(2x)[cos(γ +
θ

2
) + 4 sin(γ) sin(

θ

2
) cos2(β)] sin β},

IMo = cos(β) sin(
θ − φ

2
)(cos(nw)− sin(nw)

cos(2x) sin(
φ
2 )

cos(
φ
2 )

). (57)

For IMo = 0, one has the phase matching condition, φ = θ, for A2n+1. The 100% success rate
then can be ensured when the iteration steps at no(θ, β) = ⌈ fo(θ, β)⌉, where

fo(θ, β) =

π
2 − cos−1(

cos(β)(1−4sin2( θ
2 ) sin2(β))

√

1−sin4( θ
2 ) sin2(2β)

√

1−sin2( θ
2
) sin2(2β)

)

ω(θ, β)
. (58)
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Note that in this case the inequality 1 − 4 sin(θ/2)2 ≥ 0 should be demanded since then the
meaningful requirement fo ≥ 0 can then be fulfilled. Given β, the function fo(θ, β) also has
its minimal value at θ = π (then φ = π), as the optimal choice of the phase θop should be
estimated by

fo(θop, β) = ⌈ fo(θ, β)⌉ , (59)

when minimal oracle calls are demanded in a search with certainty. For β = 1, the choice of
the phase should be θop = φop = π ± 1.870, for example. The standard Grover algorithm with
odd oracle calls can be recovered when θ = φ = π is fixed. In usual operations, when phase
imperfections are introduced, i.e., as θ = π + θo and φ = π + φo, where both θo and φo are
small errors in the phases, they also produce almost negligible reductions in the success rate
as given by an expression like Eq. (55).

6. Analog quantum search

Several researchers have proposed other ways to solve the quantum search problem, such
as the analog analogue version of the Grover’s algorithm (15–17) and the adiabatic evolution
to quantum search (18–20). The former is to be considered here. It is proposed that the
quantum search computation can be accomplished by controlled Hamiltonian time evolution
of a system, obeying the Schrödinger equation

i
d |Ψ(t)〉

dt
= H |Ψ(t)〉 , (60)

where the constant h̄ = 1 is imposed for convenience. Farhi and Gutmann (15) presented
the time-independent Hamiltonian H f g = E f g(|w〉 〈w| + |s〉 〈s|), where |w〉 is the marked
state and |s〉 denotes the initial state. Later, Fenner (16) proposed another Hamiltonian H f =
E f i(|w〉 〈s| − |s〉 〈w|). Recently, Bae and Kwon (17) further derived a generalized quantum
search Hamiltonian

Hg = E f g(|w〉 〈w| + |s〉 〈s|) + E f (eiφ |w〉 〈s| + e−iφ |s〉 〈w|), (61)

where φ is an additional phase to the Fenner Hamiltonian. Unlike the Grover algorithm, which
operates on a state in discrete time, a quantum search Hamiltonian leads to the evolution
of a state in continuous time, so the 100% probability for finding the marked state can be
guaranteed in the absence of all kinds of imperfection occurring in a quantum operation. Both
the Hamiltonian H f g and H f can help to find the marked state with 100% success. However,
Bae and Kwon (17) addressed that the generalized Hamiltonian Hg can accomplish the search
with certainty only when φ = nπ is imposed, where n is arbitrary integer. In what follows, one
can show that the generalized Hamiltonian Hg can be derived by an analytical method, which
is distinct to the one implemented by Bae and Kwon (17), and the same method will lead to
arbitrary chosen phase φ, depending on when the measurement on the system is undertaken
and how large the system energy gap is provided. Since Hamiltonian-controlled system is
considered, the energy-time relation will play an essential role in the problem. Therefore, the
evaluation of the measuring time for the quantum search becomes crucially important. Here,
the general Hamiltonian for the time-controlled quantum search system will be reviewed first.
The exact time for measuring the marked state will be deduced. Finally, the role played by the
phase φ in the quantum search will be discussed, and both the measuring time and the system
energy gap as variations with φ will be given.

90 Search Algorithms and Applications

www.intechopen.com



Suppose that a two-dimensional, complex Hilbert space is spanned by the orthonormal set
|w〉, which is the marked state, and |w⊥〉 , which denotes the unmarked one. An initial state
|s〉 = |Ψ(0)〉, which corresponds to the quantum database discussed in the previous sections,
is designed to evolve under a time-independent quantum search Hamiltonian given by (21)

H = E1 |E1〉 〈E1|+ E2 |E2〉 〈E2| , (62)

where E1 and E2 are two eigenenergies of the quantum system, E1 > E2, and |E1〉 and |E2〉 are
the corresponding eigenstates satisfying the completeness condition |E1〉 〈E1|+ |E2〉 〈E2| = 1.
The eigenstates can be assumed by

|E1〉 = eiα cos(x) |w〉 + sin(x) |w⊥〉 ,

|E2〉 = − sin(x) |w〉 + e−iα cos(x) |w⊥〉 . (63)

where x and α are two parameters to be determined later based on the required maximal
probability for measuring the marked state. Then the Hamiltonian can be written in the matrix
form

H =

[

Ep + Eo cos(2x) Eosin(2x)eiα

Eosin(2x)e−iα Ep − Eo cos(2x)

]

. (64)

where Ep = (E1 + E2)/2 is the mean of eigenenergies and Eo = (E1 − E2)/2 represents half
of the system energy gap. The major advantage of using the controlled Hamiltonian time
evolution is that the marked state can always be searched with certainty in the absence of
quantum imperfections. The crucial key of the present problem in turn is to decide when to
measure the marked state by the probability of unity. So in what follows the relation between
all the unknowns appearing in the system will be deduced in detail and the exact measuring
time for finding the marked state with certainty will be evaluated later on.
The time evolution of the initial state is given by |Ψ(t)〉 = e−iHt |s〉. Therefore, the probability

of finding the marked state will be P =
∣

∣

∣〈w| e−iHt |s〉
∣

∣

∣

2
= 1 −

∣

∣

∣〈w⊥| e−iHt |s〉
∣

∣

∣

2
. Without loss

of generality, let us consider the problem of searching one target from N unsorted items. The
general form of the initial state considered in this study is given by

|s〉 = eiu sin(β) |w〉+ cos(β) |w⊥〉 , (65)

where sin(β) ≡ 1/
√

N and u denotes the relative phase between the two components in the
initial state. Note that the relative phase u may arise from a phase decoherence or an intended
design during the preparation of the initial state. Now, because of e−iHt = e−iE1t |E1〉 〈E1| +
e−iE2t |E2〉 〈E2|, one can deduce

〈w⊥| e−iHt |s〉 = e−iEpt((cos(β) cos(Eot)− sin(α − u) sin(2x) sin(β) sin(Eot))

+i(cos(2x) cos(β) − cos(α − u) sin(2x) sin(β)) sin(Eot)). (66)

To accomplish the quantum search with maximal probability, the time-independent term
(cos(2x) cos(β) − cos(α − u) sin(2x) sin(β)) must be vanished and thus the unknown x can
be determined by

cos(2x) =
sin(β) cos(α − u)

cos(γ)
, or sin(2x) =

cos(β)

cos(γ)
, (67)
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where γ is defined by sin(γ) = sin(β) sin(α− u) . The probability for finding the marked state
then becomes

P = 1 −
∣

∣

∣〈w⊥| e−iHt |s〉
∣

∣

∣

2

= 1 − cos2(β)

cos2(γ)
cos2(E0t + γ). (68)

If the size of database N is large, then γ ≪ 1 and the marked state |w〉 will be measured
at t = π/(2Eo) by a probability p = 1 − tan2 γ ∼ 1, according to (68). Expression (68) also
indicates that, by setting cos2(E0t + γ) = 0, one can measure the marked state with unit
probability, no matter how large N is, at the time instants

tj =
(2j − 1)π/2 − sin−1(sin(β) sin(α − u))

Eo
, j = 1, 2, .... (69)

In what follows, let us only focus on the first instant t1 = (π/2− sin−1(sin(β) sin(α− u)))/Eo.
It is clear that a larger Eo, or equivalently a larger system energy gap, will lead to a shorter
time for measuring the marked state with certainty. Meanwhile, as can be seen in (68), the
probability for measuring the marked state varies with time as a periodic function whose
frequency is the Bohr frequency Eo/π, so a larger Eo will also result in a more difficult
control on the measuring time. In other words, the measuring time should be controlled
more precisely for a higher Bohr frequency in the state evolution since then a small error
in the measuring time will cost a serious drop of the probability. However, the energy gap Eo

depends on the size of database N, as will be mentioned later.
With the relations sin(2x) and cos(2x), the present Hamiltonian now can be written by

H =

⎡

⎣

Ep + Eo
sin(β) cos(α−u)

cos(γ)
Eo

cos(β)
cos(γ)

eiα

Eo
cos(β)
cos(γ)

e−iα Ep − Eo
sin(β) cos(α−u)

cos(γ)

⎤

 , (70)

which is represented in terms of the energies Ep and Eo and the phase α. Alternatively, if we
let

E f g =
(Ep − Eo

sin(β) cos(α−u)
cos(γ)

)

cos2(β)
,

E f ei(φ−u) =
Eo

cos(γ)
ei(α−u) − E f g sin(β), (71)

or inversely,

Ep = E f g + E f cos(φ − u) sin(β),

Eo = ((E f cos(φ − u) + E f g sin(β))2 + E2
f sin2(φ − u) cos2(β))

1
2 , (72)

then the Hamiltonian can also be expressed by

H =

[

E f g(1 + sin2(β)) + 2E f cos(φ − u) sin(β) eiu(E f ei(φ−u) + E f g sin(β)) cos(β)

e−iu(E f e−i(φ−u) + E f g sin(β)) cos(β) E f g cos2(β)

]

, (73)
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which in turn is represented in terms of the energies E f g and E f and the phase φ. The
Hamiltonian shown in (73) in fact can be expressed as Hg = E f g(|w〉 〈w| + |s〉 〈s|) +

E f (eiφ |w〉 〈s| + e−iφ |s〉 〈w|), which is exactly of the same form as the Bae and Kwon
Hamiltonian Hg shown in (61). However, Bae and Kwon (17) only consider the case u = 0
. In both the presentations (70) and (73) of the Hamiltonian H, the corresponding measuring
time for finding the marked state |w〉 with certainty is at

t1 =
π
2 − sin−1(sin(β) sin(α − u))

Eo

=

π
2 − sin−1(

E f sin(β) sin(φ−u)

((E f cos(φ−u)+E f g sin(β))2+E2
f sin2(φ−u))

1
2
)

((E f cos(φ − u) + E f g sin(β))2 + E2
f sin2(φ − u) cos2(β))

1
2

. (74)

Equation (74) indicates that when the phase difference α − u, or φ − u, is imposed and the
energy gap Eo or the energies E f and E f g are provided, the measurement at the end of
a search should be undertaken at the instant t1. To discuss further, one first considers the
case u = 0, i.e., the case where neither phase decoherence nor intended relative phase is
introduced in the preparation of the initial state |s〉. If φ = nπ, or α = nπ, is imposed, then the
present Hamiltonian reduces to that considered by Bae and Kwon (17) to serve for a search
with certainty when the measurement is undertaken at t1 = π/(2Eo) = π/(2|(−1)nE f +
E f g sin(β)|). If E f = 0, or if Eo = E f g sin(β) and α = 0, is imposed, then the present
Hamiltonian reduces to the Farhi and Gutmann Hamiltonian H f g, which serves for a search
with certainty at t1 = π/(2Eo) = π/(2E f g sin β). Further, when E f g = 0 and φ = π/2, or
Ep = 0 and α = π/2 is chosen, the present Hamiltonian will reduce to the Fenner Hamiltonian
H f associated with the measuring time t1 = (π − 2β)/(2Eo) = (π − 2β)/(2E f cos β). In
general, the phase φ, or α, in fact can be imposed arbitrary for a search with certainty as the
condition u = 0 is imposed.
However, if inevitable phase decoherence in the preparation of the initial state |s〉 is
considered, then the phase u must be assumed to be arbitrary. Accordingly, the probability
for finding the marked state will not be unity at all. For example, if following the treatment of
Bae and Kwon (17) by setting t1 = π/(2Eo), then we only have a probability for finding the
marked state given by

p = 1 − cos2(β) sin2(β) sin2(u)

1 − sin2(β) sin2(u)
. (75)

It is easy to show that the probability shown in (75) is always greater than or equal to the
lower bound pmin = 1 − sin2(β) = 1 − 1/N. Of course, if the nonzero phase u is introduced
by an intended design, not an inevitable phase decoherence, then a search with certainty can
be accomplished for an arbitrary φ, or α, when associated with the measuring time shown in
(74). For example, if u = π/2 is the phase designated, the ideal measuring time should be
t1 = (π − 2β)/(2Eo), which is the same as the Fenner’s t1. Again if the phase decoherence
is introduced into the system and changes the phase from π/2 to an undesired u, then one
eventually obtains a poor probability p = 1− (1 + sin2(u)− 2 sin(u)) sin2(β). Moreover if the
phase error occurs randomly in a quantum database, then one is unable to be sure when to
take a measurement, and the probability for finding the marked state even drops off seriously
in some cases. For investigating the effect of the random uncontrollable parameter u on p
at a fixed measuring time, one has to average over all possible values of p(β, u) about all
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arbitrary values of phase parameter u. Fig. 5 shows the variation of the mean probability p̄
with β for cases of Bae-Kwon, Farhi-Gutmann and Fenner at the specific measuring times,
t1,BK = t1,FG = π/(2Eo) and t1,F = (π − 2β)/(2Eo), those Hamiltonian suggest in such a
case. The same character of their proposals is that p̄ is sensitive to a phase decoherence as the
database is small. The mean success probabilities of Bae-Kwon and Farhi-Gutmann are the
same and always greater than the one of Fenner. Then the Hamiltonians presented by Bae and
Kwon, and Farhi and Gutmann are more robust against the phase decoherence than the one
proposed by Fenner especially for low values of N.

0.1 0.2 0.3 0.4 0.5
Β

0.8

0.85

0.9

0.95

1

p

Fig. 5. The variation of p̄(β) for cases of Bae-Kwon(solid), Farhi-Gutmann(solid), and
Fenner(broken) at the specific measuring times, t1,BK = t1,FG = π/(2Eo) and
t1,F = (π − 2β)/(2Eo).

A brief review on the comparison between E f g and E f , which has been discussed in Ref. (22),
can be given now and the implication behind the analog quantum search first presented by
Farhi and Gutmann (18) will be recalled. Suppose there is a (N − 1)-fold degeneracy in a
quantum system and its Hamiltonian is read as H0 = E |w〉 〈w|, then our assignment is to find
the unknown state |w〉. Since one does not yet know what |w〉 is, it is natural to add a well
known Hamiltonian, HD = E |s〉 〈s|, such that the initial state of the system |s〉 can be drove
into |w〉. The total Hamiltonian therefore becomes H = H0 + HD = E(|w〉 〈w|+ |s〉 〈s|), which
is just the Hamiltonian of Farhi and Gutmann (18) H f g. It can be simplified under the large
database limit,

H f g ≈ E(|w〉 〈w| + |s〉 〈s|) + E sin(β)(|w〉 〈s|+ |s〉 〈w|). (76)

From it one can realize that the driving Hamiltonian induces transitions between |w〉 and |s〉
with a mixing amplitude O(E sin(β)), which causes |s〉 to evolve to |w〉. By Eq. (72), thus it is
rational to assume E f ∼ E f g sin(β), and therefore the energy gap Eo should be proportional

to sin β , or 1/
√

N. The measuring time then is easily found to be t1 ∝
√

N from Eq. (74).
However, if consider the case E f ≫ E f g, like the extreme situation considered by Fenner
(16), then one encounters with Eo ∼ E f cos(φ − u) and accordingly the measuring time t1

is independent of the size of database N. Therefore, in an usual case the assumption E f ∼
E f g sin(β) is reasonable.
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Fig. 6. Variations of t1(φ − u) (broken) and Eo(φ − u) (solid), for β = 0.085 (1), β = 0.031 (2),
and β = 0.0055 (3).

An interesting phenomenon occurs when the critical condition E f = E f g sin(β) is considered.
Fig. 6 shows the variations of t1 and Eo with the phase difference φ − u in such a case. It is
observed that when φ − u = ±π the energy gap Eo becomes zero and then the eigenstates of
the quantum search system correspond to the common eigenvalue E = E1 = E2 and become
degenerate. In such case, the Hamiltonian becomes proportional to the identity 1(= |w〉 〈w|+
|w⊥〉 〈w⊥|). Therefore, the initial state |s〉 does not evolve at all and the probability for finding
the marked state |w〉 indeed is the initial one, viz., p = sin2(β) = 1/N, which can also be
deduced using Eq. (68). In other words, the quantum search system is totally useless as long
as φ − u = ±π is imposed under the critical condition E f = E f g sin(β). When φ − u �= ±π,
both t1 and Eo are finite, as can be seen from Fig. 6, and therefore the quantum search system
becomes efficient again and is capable of finding the marked state with certainty, especially
when the phase difference is imposed around φ − u = 0. As a conclusion, for an efficient,
useful quantum search system, the critical condition mentioned above should be avoided and
in fact the reasonable condition E f ∼ E f g sin(β) is recommended to be imposed.

7. Summary

A general SU(2) formulation is introduced to investigate the quantum search algorithm. In
Sections 2 and 3, we show that the matching condition (19) for finding a marked state with
certainty for arbitrary unitary transformations and an initial state can be derived from the
general SU(2) formulation. Furthermore, one can also benefit from the same approach to
evaluate the required number of iterations for the search such as Eqs. (22) and (23). With
a given degree of maximum success, in Section 4 we derive a generalized and improved
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criterion for the tolerated error and the corresponding size of the quantum database under
the inevitable gate imperfections. In Section 5, we consider a family of sure-success quantum
algorithms and prove the matching conditions for both groups and give the corresponding
formulae for evaluating the iterations or oracle calls required in the search. In addition, we
show this kind of algorithms is robust against small phase imperfections in quantum gate
operations. In the final section, we apply the same method as used for quantum search in the
quantum circuit model to the analogue quantum search. A generalized Hamiltonian driving
the evolution of quantum state in the analog search system is derived. Both the measuring
time and the system energy gap suitable for a quantum search with or without certainty can
be evaluated with the general results.
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