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1. Introduction

Particle swarm optimization (PSO) is a computational intelligence technique widely used to
solve optimization problems. It was inspired on the social behavior of flocks of birds. In the
PSO algorithm, the search space is bounded and each possible position within the search space
represents a solution for the optimization problem.
During the algorithm execution, the particles adjust their velocities and positions based on the
best position reached by itself and on the best position reached by its neighborhood during the
search process. Some issues are quite important for the convergence velocity and the quality of
the solutions, among them we can cite: the communication scheme to exchange information
among the particles (topology) (Bratton & Kennedy (2007); Kennedy & Mendes (2002)), the
equation used to update the velocity of the particles (Eberhart & Shi (2000)), the mechanisms
to avoid explosion states (Clerc & Kennedy (2002)) and the quality of the Random Number
Generator (RNGs) (Bastos-Filho et al. (2009)).
PSO is inherently parallel since the fitness can be evaluated for each particle individually.
Hence, PSO is naturally suitable for parallel implementations.
In the recent years, the use of Graphic Processing Units (GPUs) have been proposed for some
general purpose computing applications. GPUs have shown great advantages on applications
requiring intensive parallel computing. Despite GPU based architectures require an additional
CPU time to assign the tasks for the GPUs, the speed up obtained by GPU based architectures
in relation to simple CPU architectures is higher for application where the processing is much
more focused on floating point and matrix operations.
The major benefit to implement the PSO in GPU based architectures is the possibility to
reduce the execution time. It is quite possible since the fitness evaluation and the update
processes of the particles can be parallelized through different threads. Nevertheless, some
issues regarding GPU-based PSOs should be analyzed.
In this chapter, we analyze and discuss some advantages and drawbacks of PSO algorithms
implemented on GPU-based architectures. We describe the steps needed to implement
different PSO variations in these architectures. These variations include different topologies
such as Global, Local, Focal, Four Cluster and von Neumann. Two different approaches used
to update the particles are analyzed as well.
We also consider some other relevant aspects such as: (1) how to determine the number
of particle for a specific GPU architecture; (2) in which memory the variables should be
allocated; (3) which RNG should be used to accelerate the execution; and (4) when and where
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is necessary to state synchronization barriers. The analysis of these aspects is crucial to provide
high performance for GPU-based PSOs. In order to show this, we performed simulation using
a parallel processing platform developed by NVIDIA, called CUDA (NVIDIA, 2010).

2. Particle Swarm optimization

Particle Swarm Optimization (PSO) is a stochastic, bio-inspired, population-based global
optimization technique. James Kennedy and Russel C. Eberhart first described the algorithm
in 1995 (Kennedy & Eberhart (1995)). It is based on the social behaviour of biological
organisms, specifically the ability of groups of animals to work as a whole in searching
desirable positions in a given area.
Each particle in the swarm represents a point in the fitness function domain. Each particle
i has four attributes: its current position in the D-dimensional space �xi = (xi1, xi2, ..., xid), its
best position found so far during the search �pi = (pi1, pi2, ..., pid), the best position found by its
neighborhood so far �ni = (ni1, ni2, ..., nid) and its current velocity �vi = (vi1, vi2, ..., vid) (Bratton
& Kennedy (2007)). The position and the velocity of every particle are updated iteratively
according to its current best position �pi and the best position of its neighborhood �ni by
applying the following update equations for each particle in each dimension d:

vid = vid + c1 · r1 · (pid − xid) + c2 · r2 · (nid − xid), (1)

xid = xid + vid, (2)

where c1 and c2 in the Equation (1) are non negative constants. They are the cognitive and the
social acceleration constants, respectively, and they weight the contribution of the cognitive
and social components. The values r1 and r2 are two different random variables generated at
each iteration for each dimension from a uniform distribution in the interval [0,1].
Particles velocities can be clamped to a maximum value in order to prevent an explosion state.
Their positions are also bounded by search space limits in order to avoid inutile exploration
of space (Bratton & Kennedy (2007)).
The original PSO updates the velocities fully considering the previous velocity of the particles.
The first and most famous variation of this updating process uses an inertia factor (ω)
(Eberhart & Shi (2000)). It was designed to adjust the influence of the previous velocity of
the particles. It helps to switch the search mode of the swarm from exploration to exploitation
along the search process. The resulting velocity update equation is stated as follows:

vid = ω · vid + c1 · r1 · (pid − xid) + c2 · r2 · (nid − xid). (3)

Similar to the parameter ω, a parameter χ, known as the constriction factor, was proposed by
Clerc (Clerc & Kennedy (2002)). The factor χ is defined according to the following equation:

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2. (4)

This constriction factor is applied to the entire velocity update equation as shown in the
following equation:

vid = χ · [vid + c1 · r1 · (pid − xid) + c2 · r2 · (nid − xid)]. (5)

The effects are similar to those obtained by inertia weight approach. The χ parameter controls
the exploration-exploitation abilities of the swarm.
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2.1 Population topologies

The uniqueness of the PSO algorithm lies in the dynamic interaction of the particles (Kennedy
& Mendes (2002)). Even when it is using different types of update equations, the performance
depends on the information exchange mechanism inside the swarm.
The information flow scheme through the particles is determined by the communication
method used by the swarm (Ferreira de Carvalho & Bastos-Filho (2009)). The topology of
the swarm defines the neighborhood of each particle, that is the subset of particles which it is
able to communicate with (Bratton & Kennedy (2007)).
Previous investigation performed by Watts (Watts (1999); Watts & Strogatz (1998)) showed
that some aspects can affect the flow of information through social networks. These aspects
included the degree of connectivity among the nodes; the average number of neighbors in
common per node; and the average shortest distance between nodes.
Kennedy and Mendes analyzed these factors on the particle swarm optimization algorithm
(Kennedy & Mendes (2002)) and showed that the presence of intermediaries slows down the
information. On the other hand, it moves faster between connected pairs of individuals. Thus,
when a distance between nodes are too short, the population tends to rapidly toward the best
solution found in earlier iterations. On simple unimodal problems, it usually result in a faster
convergence on the global optimum.
However, the fast convergence might lead to a premature suboptimal point on multi-modal
problems (Bratton & Kennedy (2007)). In this case, a structure with intermediaries could help
to reach better results.
The first PSO model used a dynamic topology with a Euclidean distance based neighborhood,
where the distance between particles determines which particles were close enough to
communicate with (Heppner & Grenander (1990)). It was abandoned due to the high
computational cost, albeit the similarity to the natural behavior of bird flocks (Bratton &
Kennedy (2007)).
The global topology is the structure proposed in the first PSO approach and is still used
by researchers. It uses a global neighborhood mechanism known as gbest. Particles can
share information globally through a fully-connected structure, as shown in Figure 1. This
arrangement leads to a fast convergence, since the information spreads quickly.

Fig. 1. The Global Topology.

The usual alternative to the global topology is the ring topology, depicted in Figure 2. In
this structure, each particle has one neighbor on each side. The information spreads slowly
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along the graph, thus different regions of the search space is explored, but it slows down the
convergence.

Fig. 2. The Ring Topology.

The dichotomic behaviour of the global and ring topologies suggests to consider structures to
balance the previous approaches. Some other topologies were recently proposed.
The four clusters topology consists in clusters of particles connected among themselves by
several gateways (Mendes et al. (2003)), as shown in Figure 3. Each gateway particle act as an
informant that disseminates the information acquired by its own cluster.

Fig. 3. The Four Clusters Topology.

The topology depicted in Figure 4 is known as focal topology. One single particle is the focus
of the swarm, it updates its position based on the performance of the other particles (Ferreira
de Carvalho & Bastos-Filho (2009)). If the focus improves its position, this information will be
transmitted to the entire neighborhood.
In the von Neumann topology, the particles are connected as a grid. Each particle has
neighbors above, below, and on each side (Kennedy & Mendes (2002)), as shown in
Figure 5. This structure is commonly used to represent neighborhoods in the Evolutionary
Computation and Cellular Automata communities (Mendes et al. (2004)). Kennedy and
Mendes pointed this topology as the most consistent in their experiments in (Kennedy &
Mendes (2002)).
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Fig. 4. The Focal Topology.

Fig. 5. The von Neumann Topology.

3. GPU computing

GPU parallel computing follows an architecture called SIMT (Single Instruction – Multiple
Threads) (NVIDIA (2010)). In the SIMT paradigm, the same instruction set is executed on
different data processors at the same time. In our case, the data processors are on the GPUs.
The GPU SIMT architecture presents a lower overhead for parallel computing, which is
suitable for intensive and repetitive computations.
The GPUs are specially well-suited to tackle problems that can be expressed as data-parallel
computations, where the same set of commands can be executed in parallel on many data
processing elements. Data-parallel processing maps these data elements to parallel processing
threads.
Traditionally, GPUs were designed for image and graphic processing. However, The
GPUs have became popular in recent years through the CUDA (Compute Unified Device
Architecture), which is a technology that enables programmers and developers to write
software to solve complex computational problems by automatically distributing these
threads to many-core graphic processors.
The CUDA parallel programming model allows the programmer to divide the main problem
in many sub-problems that can be executed independently in parallel. Each sub-problem can
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be decomposed in many modules where each module can be executed cooperatively and in
parallel. In CUDA terminology, each sub-problem corresponds to a block of threads, where
each thread is a module. The function that is performed to solve the sub-problem is called
kernel. When a kernel function is invoked by the CPU, it runs on each thread within the
corresponding block.
Each thread that executes a kernel function is identified by its thread identifier that is
accessible within the kernel with two built-in variables threadIdx and blockIdx.
Blocks of threads are organized into a one-dimensional or two-dimensional grid of thread
blocks. The number of thread blocks in a grid is defined by the size of the data being processed
or the number of processors in the system. The maximum number of threads inside a block is
defined by the number of processor inside the GPU and its architecture. On the current GPUs,
a thread block may contain up to 1024 threads. However, the simulations in this chapter were
made with GPUs that supports up to 512 threads.
Threads within a block can cooperate among themselves by sharing data through some shared
memory and synchronizing their execution to coordinate memory accesses. Each thread has a
private local memory. Each block of threads has a shared memory visible to all threads of the
block and with the same lifetime of the block. All threads can access the same global memory.
There is a memory hierarchy in the architecture, the memory with fastest access is the local
memory and the one with the slowest is the global memory. On the other hand, the largest
memory is the global memory and the smallest is the local memory.

3.1 Previous GPU-based particle Swarm optimization approaches

Few parallel PSO implementations on GPU have been developed. They have all shown great
speed-up performances when compared to CPU versions. Nevertheless, there is a absence of
analysis of the performance impact on the parallel model when using different topologies.
Zhou & Tan (2009) have presented a model of the Standard Particle Swarm Optimization
(SPSO) (Bratton & Kennedy (2007)) on CUDA. In their analysis, there is no other topology,
but the local ring structure. Furthermore, the implementation is not CPU-free since it needs
to generate random numbers on the host. Zhu & Curry (2009) presented a SPSO model that
combines CPU and GPU codes on the particles best solution updates. Likewise, they carried
out the analysis only on the ring topology. On the other hand, Mussi et al. (2009) did not only
focus their studies on the local ring topology, they implemented the global topology and also
used their PSO model to detect signs on the road.
Moreover, none of these studies presented any analysis of the impact of the location of
the synchronization barriers on PSO performance. For instance, the different location of
the synchronization barriers is what allows to generate a synchronous PSO, where the best
position is obtained after all particles have been totally updated, or a asynchronous PSO,
which updates the best position based on the current status of the particles during the
optimization process.

4. Our GPU-based Particle Swarm optimization proposals

4.1 First Considerations

There are some first considerations to be analyzed when modeling the particle swarm
optimization technique on the CUDA platform. The algorithm correctness must be
guaranteed, once race conditions on a parallel implementation may lead to wrong results.
Furthermore, since we want to run the algorithm as fast as possible, it is worth to discuss the
main issues that may slow it down.
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4.1.1 Memory bottleneck

There is a huge bottleneck on data transferring between the host and the device. Any transfer
of this kind can harm the performance. Thus, this operation should be avoided when it is
possible. One way to get rid of it is to move more code from the host to the device.
On the same way, as shown in Section 3, there is a memory hierarchy present on CUDA
platform. The access to the shared memory is faster than the access to the global memory,
despite both memory are placed in the GPU. Then, if there is data that must be accessed by
all threads in a block, the shared memory is the best choice. However, there are two issues on
using it: it is only shared by threads inside one block, if there are more blocks, it will not work
right; and as it follows a memory hierarchy, the memory space is not very large, then there
will be problems that are not suitable for the shared memory.

4.1.2 Synchronization barriers

Another issue to be pointed out relies on the synchronization barriers. A barrier placed on
the code allows a thread to wait until all the other threads have reached the same barrier.
They guarantee the correctness of the algorithm running on the GPU, but can mitigate the
performance.
On the original PSO algorithm, each particle updates its neighborhood �ni after all particles
have been totally updated. This first approach is known as synchronous PSO. On the other
hand, the asynchronous PSO updates the �ni based on the current status of the other particles.
It means that a particle can adjust its �ni before some other particle j updates its �nj.
Hence, the synchronous PSO must be implemented carefully with barriers to prevent any race
condition that could generate mistaken results. These barriers guarantee the correctness but
it comes with a caveat. Since the particles need to wait for all others, all these barriers harm
the performance. As a result, the execution of the asynchronous approach is faster than the
synchronous one due its absence of synchronization barriers. However, the results will be
probably worse, since the information acquired is not necessarily updated.

4.1.3 Random number generation

Bastos-Filho et al. (2009) showed that the random number generator (RNG) used in the PSO
technique needs a minimum quality for the algorithm to perform well. However, the classic
RNGs can not be executed parallel, since they need a current state and a seed to run.
Most of GPU-based PSO proposed get rid of it pre-generating all random numbers needed
to run the algorithm on the CPU. Some other PSO implementations use a GPU version of
the Mersenne Twister generator (Matsumoto & Nishimura (1998); Podlozhnyuk (2007)). Both
approaches are not CPU-free and the numbers are not generated on demand.
GPU-based random numbers generators are discussed by Nguyen (2007) and Thomas et al.
(2009). Bastos-Filho et al. (2010) presented a CPU-free approach for generating random
numbers on demand based on the Xorshift generator (Marsaglia (2003)). They also analyzed
the quality of the random numbers generated with the PSO algorithm and showed that the
quality of the RNG is similar to the frequently RNGs used by researchers.

4.1.4 Hardware limitation

The GPUs present in the current video cards have a huge parallel computation capacity.
However, they have also some limitation that may reduce their performance.
Although the GPUs are famous by their parallel high precision operations, there are
GPUs with only single precision capacity. Since many computational problems need double
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precision computation, this limitation may lead to wrong results and then turn these GPUs
inappropriate to solve these kind of problems.
Another issue on the GPU is the maximum number of threads running in parallel in a block. It
is defined by the number of processors and the architecture. Therefore, each GPU has its own
limitation. This way, application that needs to overpass this limitation have to be executed
sequentially with more blocks what might result in wrong computations.
The global memory space is not a big deal for the majority of the applications. However, the
other levels of memory – such as the shared memory and the local memory – are not as huge
as the global memory. This limitation may harm the performance, since many applications
need to store data on a low speed memory – the global memory.
The NVIDIA CUDA platform classify the NVIDIA GPUs with what they call Compute
Capability NVIDIA (2010). The cards with double-precision floating-point numbers has
Compute Capability 1.3 or 2.x. The cards with 2.x Capability can run 1024 threads in a block
and has 48 KB of shared memory space, the other ones only can execute 512 threads and have
16 KB of shared memory space.

4.2 Data structures, kernel functions and GPU-operations

The swarm is modeled with four unidimensional NxD-elements arrays, where N is the
number of particles and D is the number of dimensions. The four arrays represent the velocity
�vi, the position �xi , the best position reached �pi and the best position in the neighborhood �ni –
respectively vx, xx, px and nb – for all the particles of the swarm. For example, the first element
of the xx array corresponds to the first dimension of the first particle position vector; the Nth
element is the first dimension of the second particle, and so far.
The GPU used to run the algorithm only executes 512 thread simultaneously. Due to this, more
than one block is needed to run the algorithm. Once the threads need to communicate through
blocks, the vectors used by the algorithm must be stored in the global memory. It will harm
the performance but it can be overcomed by using more advanced GPUs cards.
The modulus operation and the integer division are widely used through the pseudocodes.
The first one is expressed by the % character and it returns the division rest of the operators.
The integer division is actually a simple division operation attributed to a integer variable, it
means that only the integer value is stored.
In order to know which particle belongs the Kth element of an array, one can use the modulus
operation and the integer division operation. By instance, the particle has index p = K/D and
it represents the dimension d = K%D.
The synchronization barrier shown on Section 4.1.2 is expressed on the pseudocodes by the
command synchronization-barrier(). In the CUDA platform, it is expressed as __syncthreads().
The kernel function calls are written in the code with the < < a, b > > parameters. It means that
the function will be executed by a threads in b blocks. It is very similar to the CUDA platform,
but, in this case, it is used built-in variable types.
The particle variable presented on the codes is actually what defines a thread on the GPU. In
the CUDA platform, it is obtained using built-in variables shown on Section 3.
The first-thread-of-the-particle is also seen on the codes, it is a boolean that indicates if the
current thread is the thread with the duty to manipulate the first dimension of the vectors.
It is used to avoid many threads executing the same operation on the same data.
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4.3 The synchronous PSO

The synchronous version of the PSO needs a parallel model with barriers to assure that
the particles will use the best information available from their neighborhood. For this, we
split the code in kernel functions. After each call of a kernel function, there is an implicit
synchronization barrier, which means that every thread has terminated its execution before
the next kernel function be executed. The main code of the synchronous PSO with the kernel
function calls is shown on Pseudocode 1.

Pseudocode 1 The Main Part of the Synchronous PSO on GPU.

1 fo r 1 to number−of−runs
2 i n i t i a l i z e −p a r t i c l e s << 512 , 2 >>;
3 f i t n e s s −evaluat ion << 30 , 1 >>;
4 i n i t i a l i z e −pbest << 30 , 1 >>;
5 do

6 f i t n e s s << 30 , 1 >>;
7 update−pbestx << 512 , 2 >>;
8 update−pbest << 30 , 1 >>;
9 f ind−nbest << 30 , 1 >>;

10 update−p a r t i c l e s << 512 , 2 >>;
11 while ( i t e r a t i o n < number−of−i t e r a t i o n s )

The implicit barrier avoids the particles to be updated before the best information has been
found. However, searching for the best particle in the neighborhood may be computationally
expensive, once it is a sequential search. The worst case is in the global topology where the
order is O(n).
Since the particles are actually arrays, one way to get rid of it is to use a method called
Reduction Method. It reduces the searching order to O(log n). First, it compares in parallel the
odd index elements of an array with the even index ones. Then, each thread copies the best one
to the odd index element. Subsequently, the threads compare the elements with index being
multiple of 2 and copy in parallel the best one to the element with the smallest index. And so
forth with the elements multiples of 4, 8, 2n < N/2, where N is the number of elements in the
array. In the end, the best value is in the first element of the array.
This method is described on Pseudocode 2 and it is used by the Global topology, the Four
Clusters topology and the Focal topology.

Pseudocode 2 The Reduction Method with a 32-elements Array.

1 fo r s = 1 to 16 with increment s = s *2
2 i f ( thread−idx % 2* s == 0)
3 i f ( array [ thread−idx ] > array [ thread−idx ] )
4 array [ thread−idx ] = array [ thread−idx ] ;
5 synchronization−b a r r i e r ( ) .

The find-nbest kernel has the duty to search the best neighbour of each particle. Each thread
acts as a particle and search on its own neighborhood. Thus, the difference between the
topologies lies in this kernel. They are shown in the following subsections.
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4.3.1 Synchronous GPU-based PSO using the Global Topology

In the global topology, all particles are able to communicate with the other particles. Then, the
best particle in a neighborhood is actually the best particle in the swarm. Thus, basically the
global topology is the reduction method being used.
The kernel function is shown on the Pseudocode 3. Differently to the Pseudocode 2, there is
an auxiliary variable index in the code. It is used to not override the pbest values.

Pseudocode 3 The find-nbest Kernel for the Global Topology.

1 fo r ( i n t s = 1 ; s <=16; s = s * 2 )
2 i f ( p a r t i c l e % 2* s == 0)
3 i f ( pbest [ index [ p a r t i c l e ] ] > pbest [ index [ p a r t i c l e +s ] ] )
4 index [ p a r t i c l e ] = index [ p a r t i c l e +s ] ;
5 synchronization−b a r r i e r ( ) ;
6 best−neighbour [ p a r t i c l e ] = index [ 0 ] ;

4.3.2 Synchronous GPU-based PSO using the Ring topology

A particle in a swarm with the ring topology has only two neighbours. They are modeled
here with the contiguous elements of an array. Thus, a thread knows its neighbours using the
modulus operator, as shown on Pseudocode 4.

Pseudocode 4 The find-nbest Kernel for the Ring Topology.

1 best−neighbour [ p a r t i c l e ] = p a r t i c l e ;
2 neighbour = ( p a r t i c l e − 1) % number−of−agents ;
3 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
4 best−neighbour [ p a r t i c l e ] = neighbour ;
5 neighbour = ( p a r t i c l e + 1) % number−of−agents ;
6 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
7 best−neighbour [ p a r t i c l e ] = neighbour ;

4.3.3 Synchronous GPU-based PSO using the von Neumann topology

The von Neumann topology is similar to the Ring topology. A particle has neighbors above,
below, and on each side. This structure is a grid that can be defined by the number of columns
and the number of rows.
The modulus operator and the integer division are used in the code. They are used with the
variables columns and rows – respectively, the number of columns and the number of rows of
the grid – to determine the neighbours. The code is described on Pseudocode 5.

4.3.4 Synchronous GPU-based PSO using the Four clusters topology

The Four Clusters topology is a composition of the Ring topology and the Global topology.
First, each cluster find its best particle in the sub-swarm, then each gateway particle in the
cluster communicates with others gateway to disseminate information.
The Reduction Method is used in the code but with a lower number of iterations. Thus,
it finds the best particle in the current cluster. Then, using the modulus operator and the
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Pseudocode 5 The find-nbest Kernel for the von Neumann Topology.

1 best−neighbour [ p a r t i c l e ] = p a r t i c l e ;
2 x = p a r t i c l e % columns ;
3 y = p a r t i c l e / columns ;
4 neighbour = y * columns + ( x − 1) % columns ;
5 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
6 best−neighbour [ p a r t i c l e ] = neighbour ;
7 neighbour = y * columns + ( x + 1) % columns ;
8 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
9 best−neighbour [ p a r t i c l e ] = neighbour ;

10 neighbour = ( ( y − 1) % rows ) * columns + x ;
11 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
12 best−neighbour [ p a r t i c l e ] = neighbour ;
13 neighbour = ( ( y + 1) % rows ) * columns + x ;
14 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
15 best−neighbour [ p a r t i c l e ] = neighbour ;

integer division, the gateways communicate with the other clusters. The code is presented on
Pseudocode 6.

Pseudocode 6 The find-nbest Kernel for the Four Clusters Topology.

1 fo r ( i n t s = 1 ; s <=4; s = s * 2 )
2 i f ( p a r t i c l e % 2* s == 0)
3 i f ( pbest [ index [ p a r t i c l e ] ] > pbest [ index [ p a r t i c l e +s ] ] )
4 index [ p a r t i c l e ] = index [ p a r t i c l e +s ] ;
5 synchronization−b a r r i e r ( ) ;
6 gbest−c l u s t e r = p a r t i c l e / c l u s t e r s ;
7 gbest−c l u s t e r = gbest−c l u s t e r * c l u s t e r s ;
8 best−neighbour [ p a r t i c l e ] = gbest−c l u s t e r ;
9 y = p a r t i c l e / agents−per−c l u s t e r ;

10 x = p a r t i c l e % agents−per−c l u s t e r ;
11 neighbour = p a r t i c l e + agents−per−c l u s t e r * ( y − x + 1 ) ;
12 i f ( neighbour > number−of−agents )
13 neighbour = p a r t i c l e ;
14 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
15 best−neighbour [ p a r t i c l e ] = neighbour ;

4.3.5 Synchronous GPU-based PSO using the Focal topology

The Focal topology is very similar to the Global topology. The focus find the best particle in
the swarm but this information flows slowly through the swarm.
The kernel function is described on Pseudocode 7. The focus is the particle with the index “0′′

in the array. First all particles are compared with the focus, then the Reduction Method is used
to find the best particle in the swarm.
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Pseudocode 7 The find-nbest Kernel for the Focal Topology.

1 best−neighbour [ p a r t i c l e ] = p a r t i c l e
2 i f ( pbest [ p a r t i c l e ] > pbest [ 0 ] )
3 best−neighbour [ p a r t i c l e ] = 0 ;
4 fo r ( i n t s = 1 ; s <=16; s = s * 2 )
5 i f ( p a r t i c l e % 2* s == 0)
6 i f ( pbest [ index [ p a r t i c l e ] ] > pbest [ index [ p a r t i c l e +s ] ] )
7 index [ p a r t i c l e ] = index [ p a r t i c l e +s ] ;
8 synchronization−b a r r i e r ( ) ;
9 best−neighbour [ 0 ] = index [ 0 ] ;

4.4 The Asynchronous PSO

In the asynchronous PSO, all barriers used to assure no race condition on the synchronous
PSO are removed. Thus, it allows the best particle variable value to be changed at any time if
other particle finds a better position. Once it runs in parallel and it presents race conditions,
there is no guarantee that the best information will be considered. The main code is presented
on Pseudocode 8.

Pseudocode 8 The Main Part of the Asynchronous PSO on GPU.

1 fo r 1 to number−of−runs
2 i n i t i a l i z e −p a r t i c l e s << 512 , 2 >>;
3 do

4 i t e r a t i o n << 512 , 2 >>;
5 while ( i t e r a t i o n < number−of−i t e r a t i o n s )

The whole PSO algorithm lies in the kernel function iteration. The function is shown on
Pseudocode 9. The difference between the topologies is presented in the line 4. In the following
subsections, these differences are presented.

4.4.1 Asynchronous GPU-based PSO using the Global topology

In the global topology, the best particle in the neighborhood is actually the best one in the
swarm. In fact, each particle claims to be the best after have compared with the current best
one. In the asynchronous PSO, many particles claim to be the best at the same time and try
to change the best value found so far by the swarm. Then, there is a race condition here what
means that it is not guaranteed that the best value will actually have the best particle value.
The asynchronous PSO with global topology is shown in the Pseudocode 10.

4.4.2 Asynchronous GPU-based PSO using the Ring topology

Each particle in a ring topology has two neighbours. The neighborhood of a particle is
composed by the elements located after and before its index in the array. The code of this
topology is presented in Pseudocode 11 and it is similar to the one in Pseudocode 4. The
differences between them are only noticed at runtime, since the functions may be executed
asynchronously by threads in different multi-processors in the asynchronous version.
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Pseudocode 9 The iteration Kernel Function of the Asynchronous PSO on GPU.

1 i f ( the−f i r s t −thread−of−p a r t i c l e )
2 minval [ p a r t i c l e ] = f i t n e s s−evaluat ion ( ) ;
3 synchronization−b a r r i e r ( ) ;
4 . . .
5 synchronization−b a r r i e r ( ) ;
6 dimension = index % number−of−dimensions ;
7 pbest−index = dimension + best−neighbour [ p a r t i c l e ] * number
8 −of−dimensions ;
9 vx [ index ] = f a c t o r * ( vx [ index ] + c *random * ( pbestx [ index ]−xx [ index ] )

10 + c *random * ( pbestx [ pbest−index ] − xx [ index ] ) ) ;
11 i f ( vx [ index ] > maxv )
12 vx [ index ] = maxv ;
13 else i f ( vx [ index ] < −maxv )
14 vx [ index ] = −maxv ;
15 xx [ index ] = xx [ index ] + vx [ index ] ;
16 i f ( xx [ index ] > maxx )
17 xx [ index ] = maxx ;
18 vx [ index ] = −vx [ index ] ;
19 i f ( xx [ index ] < minx )
20 xx [ index ] = minx ;
21 vx [ index ] = −vx [ index ] ;

Pseudocode 10 The Global Topology for the GPU-based Asynchronous PSO.

1 i f ( minval [ p a r t i c l e ] <= pbest [ p a r t i c l e ] )
2 i f ( the−f i r s t −thread−of−p a r t i c l e )
3 pbest [ p a r t i c l e ] = minval [ p a r t i c l e ] ;
4 pbestx [ thread ] = xx [ index ] ;
5 i f ( the−f i r s t −thread−of−p a r t i c l e )
6 i f ( pbest [ p a r t i c l e ] < pbest [ gbest ] )
7 gbest = p a r t i c l e ;
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Pseudocode 11 The Focal Topology for the GPU-based Asynchronous PSO.

1 i f ( minval [ p a r t i c l e ] <= pbest [ p a r t i c l e ] )
2 i f ( the−f i r s t −thread−of−p a r t i c l e )
3 pbest [ p a r t i c l e ] = minval [ p a r t i c l e ] ;
4 pbestx [ thread ] = xx [ index ] ;
5 best−neighbour [ p a r t i c l e ] = p a r t i c l e ;
6 i f ( the−f i r s t −thread−of−p a r t i c l e )
7 neighbour = ( p a r t i c l e − 1)%number−of−agents ;
8 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
9 best−neighbour [ p a r t i c l e ] = neighbour ;

10 neighbour = ( p a r t i c l e + 1)%number−of−agents ;
11 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
12 best−neighbour [ p a r t i c l e ] = neighbour ;

4.4.3 Asynchronous GPU-based PSO using the von Neumann Topology

The von Neumann topology has similar behaviour when compared to the Ring topology. A
particle has neighbours above, below, and on each side. This structure is a grid that can be
defined by the number of columns and the number of rows.
The modulus operator and the integer division are used for this purpose. They are used
with the variables columns and rows – respectively, the number of columns and the number
of rows of the grid – to determine the neighbours. The code is described in Pseudocode
12 and it is very similar to the one presented in Pseudocode 5. Once the functions may be
executed asynchronously by threads in different multi-processors, the differences between
the synchronous and asynchronous versions are only noticed at runtime.

Pseudocode 12 The von Neumann Topology for the GPU-based Asynchronous PSO.

1 i f ( minval [ p a r t i c l e ] <= pbest [ p a r t i c l e ] )
2 i f ( the−f i r s t −thread−of−p a r t i c l e )
3 pbest [ p a r t i c l e ] = minval [ p a r t i c l e ] ;
4 pbestx [ thread ] = xx [ index ] ;
5 best−neighbour = p a r t i c l e ;
6 x = p a r t i c l e % columns ;
7 y = p a r t i c l e / columns ;
8 neighbour = y * columns + ( x−1)%columns ;
9 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )

10 best−neighbour [ p a r t i c l e ] = neighbour ;
11 neighbour = y * columns + ( x+1)%columns ;
12 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
13 best−neighbour [ p a r t i c l e ] = neighbour ;
14 neighbour = ( ( y − 1)%rows ) * columns + x ;
15 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
16 best−neighbour [ p a r t i c l e ] = neighbour ;
17 neighbour = ( ( y + 1)%rows ) * columns + x ;
18 i f ( pbest [ best−neighbour [ p a r t i c l e ] ] > pbest [ neighbour ] )
19 best−neighbour [ p a r t i c l e ] = neighbour ;
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4.4.4 Asynchronous GPU-based PSO using the Four clusters topology

In the Four Clusters topology, the particles first find the best particle in each cluster, likewise
the Global topology. Then, the gateways present in each sub-swarm communicate with other
clusters.
In the asynchronous PSO, the Global topology presented inside each cluster is affected in
the same way as seen in Section 4.4.1. The race condition in the code means that it is not
guaranteed that the best particle is the last one to set the best value found so far by the swarm.
The code is described in Pseudocode 13. It uses the modulus operator and the integer division
with the variable agents-per-clusters that is the number of particles inside each cluster.

Pseudocode 13 The Four Clusters Topology for the GPU-based Asynchronous PSO.

1 i f ( minval [ p a r t i c l e ] <= pbest [ p a r t i c l e ] )
2 i f ( the−f i r s t −thread−of−p a r t i c l e )
3 pbest [ p a r t i c l e ] = minval [ p a r t i c l e ] ;
4 pbestx [ thread ] = xx [ index ] ;
5 i f ( the−f i r s t −thread−of−p a r t i c l e )
6 f i r s t −of−c l u s t e r = p a r t i c l e / c l u s t e r s ;
7 f i r s t −of−c l u s t e r = f i r s t −of−c l u s t e r * c l u s t e r s ;
8 best−neighbour [ p a r t i c l e ] = p a r t i c l e ;
9 i f ( pbest [ best−neighbour [ f i r s t −of−c l u s t e r ] ] < pbest [ p a r t i c l e ] )

10 best−neighbour [ f i r s t −of−c l u s t e r ] = p a r t i c l e ;
11 best−neighbour [ p a r t i c l e ] = best−neighbour [ f i r s t −of−c l u s t e r ]
12 y = p a r t i c l e / agents−per−c l u s t e r ;
13 x = p a r t i c l e % agents−per−c l u s t e r ;
14 neighbour−c l u s t e r = p a r t i c l e + agents−per−c l u s t e r * ( x + y − 1 ) ;
15 i f ( neighbour−c l u s t e r > number−of−agents )
16 neighbour−c l u s t e r = p a r t i c l e ;
17 i f ( pbest [ p a r t i c l e ] > pbest [ neighbour−c l u s t e r ] )
18 best−neighbour [ p a r t i c l e ] = neighbour−c l u s t e r ;

4.4.5 Asynchronous GPU-based PSO using the Focal topology

Since the Focal topology is very similar to the Global topology, once the focus first find the best
particle in the swarm, the asynchronous PSO using the Focal topology is affected similarly as
shown in Section 4.4.1. There is no guarantee that the best value found so far by the swarm
will be set in the end by the best particle.
The code is described in Pseudocode 14 and the focus is the particle with index “0′′.

5. Experiments

In this section we present the performed experiments to compare the performance of
synchronous and asynchronous PSO running on CUDA for each of the topologies analysed
previously. Well known benchmark functions were chosen to perform the experiments.

5.1 Benchmark functions

Four benchmark functions were used to employ the simulations and are described in
equations (6) to (9). All the functions are used for minimization problems. Two of these
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Pseudocode 14 The Focal Topology for the GPU-based Asynchronous PSO.

1 i f ( minval [ p a r t i c l e ] <= pbest [ p a r t i c l e ] )
2 i f ( the−f i r s t −thread−of−p a r t i c l e )
3 pbest [ p a r t i c l e ] = minval [ p a r t i c l e ] ;
4 pbestx [ thread ] = xx [ index ] ;
5 i f ( the−f i r s t −thread−of−p a r t i c l e )
6 best−neighbour [ p a r t i c l e ] = p a r t i c l e ;
7 i f ( ( pbest [ p a r t i c l e ] < pbest [ 0 ] ) && p a r t i c l e != 0)
8 best−neighbour [ 0 ] = p a r t i c l e ;
9 else

10 best−neighbour [ p a r t i c l e ] = 0 ;

functions (Rosenbrock and Schwefel) are uni-modal problems, and the others two (Rastrigin
and Griewank) are multimodal functions that contains many local optima.
The first one is Rosenbrock function. It has a global minimum located in a banana-shaped
valley. The region where the minimum point is located is very easy to reach, but the
convergence to the global minimum point is hard to achieve. The function is defined as
follows:

FRosenbrock(�x) =
n

∑
i=1

x2

[

100(xi+1 − x2
i )

2 + (1 − xi)
2

]

. (6)

The second is the generalized Rastrigin, a multi-modal function that induces the search to a
deep local minima arranged as sinusoidal bumps:

FRastrigin(�x) = 10n +
n

∑
i=1

[

x2
i − 10cos(2πxi)

]

. (7)

The third and the fourth ones are Griewank and Schwefel functions:

FGriewank(�x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(

xi√
i

)

, (8)

FSchwe f el(�x) =
n

∑
i=1

(

i

∑
j=1

xj

)

. (9)

5.2 Simulations setup

The PSO using the constriction factor, as shown on Section 2, was used to perform all the
simulations in this chapter. To compose the constriction factor (χ) we used κ = 1, c1 = 2.05
and c2 = 2.05 (φ ≥ 4) values. All the simulations were performed using 32 particles for all
five PSO topologies (Four Clusters, Focal, Global, Local and von Neumann). We run 50 trial
to evaluate the average fitness.
Each simulation of the Four Clusters topology uses 4 clusters, each one with 8 particles. The
focus of the Focal topology is the first particle of the swarm. All swarms were randomly
initialized in an area far from the optimal solution in every dimension. This allows a fair
convergence analysis between the topologies. All the random numbers needed by the PSO
algorithm were generated as proposed by Bastos-Filho et al. (2010).
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6. Results

The results of the experiments involving all the four benchmark functions are described in
this section. In the Section 6.1 the results of the comparison between the synchronous and
asynchronous algorithm for each one of the considered topologies are presented. Section 6.2
presents a performance analysis in terms of elapsed time to run the algorithm.

6.1 Fitness Analysis

The average value of the best fitness achieved for the Rosenbrock function for five different
topologies using the synchronous and the asynchronous algorithm is shown in Figure 6.
Figures 6 (a) and 6 (b) show the convergence curve for Rosenbrock in the Four Clusters
and the Focal topologies, respectively. When we compare the results for synchronous and
asynchronous algorithm in each oh these topologies, we observe a worse performance for
the last one. It is what we expected, since some data were not considered during the velocity
update processes due to lack of synchronization barriers. On the other hand, for the topologies
Global, Local and von Neumann, presented in Figures 6 (c), 6 (d) and 6 (e), respectively, the
results are quite similar, although the loss of information by the asynchronous versions.
Figure 7 show the average value of the best fitness achieved in the Griewank function. The
analysis for this function is quite different. In this case, despite it needs more iterations to
reach the convergence, the lack of synchronicity helps to avoid the swarm to be trapped on
local minima.
The comparison of the average and the (standard deviation of the fitness) for Rastrigin and
Schwefel functions for each topology are presented in Table 1 and Table 2. Table 1 shows the
results for the synchronous algorithm performance, while Table 2 shows the results for the
asynchronous version.
A similar behaviour observed for Griewank can be observed for the Rastrigin function. It is
quite expected since both are highly multimodal functions.

Function Topology

Mean SD

Rastrigin Focal 52.31488 13.55017

Four Clusters 73.07843 39.9018

Global 53.09091 14.55321

Local 67.16104 32.97102

von Neumann 55.72031 32.49462

Schwefel Focal 2 · 10−12 1.41 · 10−11

Four Clusters 2 · 10−12 1.41 · 10−11

Global 4 · 10−11 2.82 · 10−11

Local 2.4 · 10−11 1.69 · 10−10

von Neumann 4 · 10−12 2.82 · 10−11

Table 1. The Average Value and Standard Deviation of the Fitness After 50 Trials of 10,000
Evaluations for the Synchronous Version.
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Fig. 6. The Best Fitness Comparison of the Five PSO Topologies for Rosenbrock Function.
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Fig. 7. The Best Fitness Comparison of the Five PSO Topologies of the Griewank Function.
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Function Topology

Mean SD

Rastrigin Focal 155.23031 26.16508

Four Clusters 55.79153 15.49237

Global 50.96177 13.36732

Local 41.8803 10.2887

von Neumann 33.26468 7.79463

Schwefel Focal 2 · 10−12 1.41 · 10−11

Four Clusters 19.6835 61.97515

Global 2 · 10−11 1.41 · 10−11

Local 4 · 10−12 1.9794 · 10−10

von Neumann 1.6 · 10−11 3.70328 · 10−11

Table 2. The Average Value and Standard Deviation of the Fitness After 50 Trials of 10,000
Evaluations for the Asynchronous Version.

6.2 Performance analysis

The Figure 8(a) and Figure 8(b) show the elapsed time for the synchronous and asynchronous
PSO for Rosenbrock and Griewank functions in Four Clusters, Focal, Global, Local and von
Neumann topologies. One can note that the elapsed time for the asynchronous algorithm
is lower than the synchronous algorithm for both Rosenbrock and Griewank functions. It
is also expected due to lack of synchronization barriers. However, when we compare the
performance between the five topologies, we can note that the synchronous algorithm results
are quite similar for both Griewank and Rosenbrock functions. In other hand, when we
compare the asynchronous algorithm results, a minor difference in terms of performance
between the topologies can be observed.

Fig. 8. The Elapsed Time for the GPU-based PSO Execution for Rosenbrock and Griewank
Functions Asynchronous and Synchronous.
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7. Conclusion

In this chapter, we have presented some concerns that should be carried out to implement a
GPU-based PSO algorithm. We also have analysed the performance of the PSO with different
topologies in terms of best value achieved and the time needed to execute the algorithm.
We have shown in Section 4.1 that there is a memory bottleneck when transferring data
between the GPU and the CPU. The random number generator should run in the GPU in
order to avoid data transfer.
We also have presented results for two approaches to update the particles. The
synchronization barriers placed in the code influence the algorithm runtime and performance.
As shown in Section 6, the behaviour of the algorithm running on the GPU with different
functions depends on the approach used to update the particles. For instance, when
optimizing the Rosenbrock function with the GPU-based PSO using topology Local, Global or
von Neumann, the asynchronous PSO presented similar results to the synchronous one. As the
asynchronous is faster, thus it is better use it in this case. On the other hand, by using the Focal
topology or the Four Clusters topology, the asynchronous version shows a bad performance
and the speed-up reached by using the asynchronous PSO is not worth, then the best choice
is the synchronous version.
We also showed that, in some cases, one can remove the synchronization barriers, specially
for multimodal search spaces.
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