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1. Introduction

Search is one of the most frequently used problem solving methods in artificial intelligence
(AI) [1], and search methods are gaining interest with the increase in activities related to
modeling complex systems [2, 3]. Since most practical applications involve objective
functions which cannot be expressed in explicit mathematical forms and their derivatives
cannot be easily computed, a better choice for these applications may be the direct search
methods as defined below: A direct search method for numerical optimization is any algorithm
that depends on the objective function only through ranking a countable set of function values. Direct
search methods do not compute or approximate values of derivatives and remain popular
because of their simplicity, flexibility, and reliability [4]. Among the direct search methods,
hill climbing methods often suffer from local minima, ridges and plateaus. Hence, random
restarts in search process can be used and are often helpful. However, high-dimensional
continuous spaces are big places in which it is easy to get lost for random search.
Resultantly, augmenting hill climbing with memory is applied and turns out to be effective
[5]. In addition, for many real-world problems, an exhaustive search for solutions is not a
practical proposition. It is common then to resort to some kind of heuristic approach as
defined below: heuristic search algorithm for tackling optimization problems is any algorithm that
applies a heuristic to search through promising solutions in order to find a good solution. This
heuristic search allows the bypass of the “combinatorial explosion” problem [6]. Those
techniques discussed above are all classified into heuristics involved with random move,
population, memory and probability model [7]. Some of the best-known heuristic search
methods are genetic algorithm (GA), tabu search and simulated annealing, etc.. A standard
GA has two drawbacks: premature convergence and lack of good local search ability [8]. In
order to overcome these disadvantages of GA in numerical optimization problems,
differential evolution (DE) algorithm has been introduced by Storn and Price [9].

In the past 20 years, swarm intelligence computation [10] has been attracting more and more
attention of researchers, and has a special connection with the evolution strategy and the
genetic algorithm [11]. Swarm intelligence is an algorithm or a device and illumined by the
social behavior of gregarious insects and other animals, which is designed for solving
distributed problems. There is no central controller directing the behavior of the swarm;
rather, these systems are self-organizing. This means that the complex and constructive
collective behavior emerges from the individuals (agents) who follow some simple rules and
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4 Search Algorithms and Applications

communicate with each other and their environments. Swarms offer several advantages
over traditional systems based on deliberative agents and central control: specifically
robustness, flexibility, scalability, adaptability, and suitability for analysis. Since 1990's, two
typical swarm intelligence algorithms have emerged. One is the particle swarm optimization
(PSO) [12], and the other is the ant colony optimization (ACO) [13].

In this chapter, two recently proposed swarm intelligence algorithms are introduced. They
are seeker optimization algorithm (SOA) [3, 14-19] and stochastic focusing search (SFS) [20,
21], respectively.

2. Seeker Optimization Algorithm (SOA) and its applications

2.1 Seeker Optimization Algorithm (SOA) [3, 14-19]

Human beings are the highest-ranking animals in nature. Optimization tasks are often
encountered in many areas of human life [6], and the search for a solution to a problem is
one of the basic behaviors to all mankind [22]. The algorithm herein just focuses on human
behaviors, especially human searching behaviors, to be simulated for real-parameter
optimization. Hence, the seeker optimization algorithm can also be named as human team
optimization (HTO) algorithm or human team search (HTS) algorithm. In the SOA,
optimization process is treated as a search of optimal solution by a seeker population.

2.1.1 Human searching behaviors

Seeker optimization algorithm (SOA) models the human searching behaviors based on their
memory, experience, uncertainty reasoning and communication with each other. The
algorithm operates on a set of solutions called seeker population (i.e., swarm), and the
individual of this population are called seeker (i.e., agent). The SOA herein involves the
following four human behaviours.

A. Uncertainty Reasoning behaviours

In the continuous objective function space, there often exists a neighborhood region close to
the extremum point. In this region, the function values of the variables are proportional to
their distances from the extremum point. It may be assumed that better points are likely to
be found in the neighborhood of families of good points. In this case, search should be
intensified in regions containing good solutions through focusing search [2]. Hence, it is
believed that one may find the near optimal solutions in a narrower neighborhood of the
point with lower objective function value and find them in a wider neighborhood of the
point with higher function value.

“Uncertainty” is considered as a situational property of phenomena [23], and precise
quantitative analyses of the behavior of humanistic systems are not likely to have much
relevance to the real-world societal, political, economic, and other type of problems. Fuzzy
systems arose from the desire to describe complex systems with linguistic descriptions, and
a set of fuzzy control rules is a linguistic model of human control actions directly based on a
human thinking about the operation. Indeed, the pervasiveness of fuzziness in human
thought processes suggests that it is this fuzzy logic that plays a basic role in what may well
be one of the most important facets of human thinking [24]. According to the discussions on
the above human focusing search, the uncertainty reasoning of human search could be
described by natural linguistic variables and a simple fuzzy rule as “If {objective function
value is small} (i.e., condition part), Then ({step length is short} (i.e., action part)”. The
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Two Population-Based Heuristic Search Algorithms and Their Applications 5

understanding and linguistic description of the human search make a fuzzy system a good
candidate for simulating human searching behaviors.

B. Egotistic Behavior

Swarms (i.e., seeker population here) are a class of entities found in nature which specialize
in mutual cooperation among them in executing their routine needs and roles [25]. There are
two extreme types of co-operative behavior. One, egotistic, is entirely pro-self and another,
altruistic, is entirely pro-group [26]. Every person, as a single sophisticated agent, is
uniformly egotistic, believing that he should go toward his personal best
position p; ,,.; through cognitive learning [27].

C. Altruistic Behavior

The altruistic behavior means that the swarms co-operate explicitly, communicate with each
other and adjust their behaviors in response to others to achieve the desired goal. Hence, the
individuals exhibit entirely pro-group behavior through social learning and simultaneously
move to the neighborhood’s historical best position or the neighborhood’s current best
position. As a result, the move expresses a self-organized aggregation behavior of swarms
[28]. The aggregation is one of the fundamental self-organization behaviors of swarms in
nature and is observed in organisms ranging from unicellular organisms to social insects
and mammals [29]. The positive feedback of self-organized aggregation behaviors usually
takes the form of attraction toward a given signal source [28]. For a “black-box” problem in
which the ideal global minimum value is unknown, the neighborhood’s historical best
position or the neighborhood’s current best position is used as the only attraction signal
source for the self-organized aggregation behavior.

C. Pro-Activeness Behavior

Agents (i.e., seekers here) enjoy the properties of pro-activeness: agents do not simply act in
response to their environment; they are able to exhibit goal-directed behavior by taking the
initiative [30]. Furthermore, future behavior can be predicted and guided by past behavior
[31]. As a result, the seekers may be pro-active to change their search directions and exhibit
goal-directed behaviors according to the response to his past behaviors.

2.1.2 Implementation of Seeker Optimization Algorithm

Seeker optimization algorithm (SOA) operates on a search population of s D-dimensional
position vectors, which encode the potential solutions to the optimization problem at hand.
The position vectors are represented as ¥; =[x;;,-,x;;,--,X;p], =1, 2, -+, s, where x;; is the
jth element of X; and s is the population size. Assume that the optimization problems to be
solved are minimization problems.

The main steps of SOA are shown as Fig. 1. In order to add a social component for social
sharing of information, a neighborhood is defined for each seeker. In the present studies, the
population is randomly divided into three subpopulations (all the subpopulations have the
same size), and all the seekers in the same subpopulation constitute a neighborhood. A
search direction d,(t)=[d,;,"-,d;p] and a step length vector @;(t)=[e;;, -, a;p] are computed
(see Section 1.1.3 and 1.1.4) for the ith seeker at time step t, where «;(t) 20, d;(t) € {-1,0,1},
i=1,2,-+s; j=1,2,--,D. When dij(t) =1, it means that the i-th seeker goes towards the positive
direction of the coordinate axis on the dimension j; when d;(f)=-1, the seeker goes

www.intechopen.com



6 Search Algorithms and Applications

towards the negative direction; when dj;;(t) =0, the seeker stays at the current position on the
corresponding dimension. Then, the jth element of the ith seeker’s position is updated by:

xii(E+1) = 2 (8) + o (£)dy (F) 1)

Since the subpopulations are searching using their own information, they are easy to converge
to a local optimum. To avoid this situation, an inter-subpopulation learning strategy is used,
i.e., the worst two positions of each subpopulation are combined with the best position of each
of the other two subpopulations by the following binomial crossover operator:

| @)
xknj,worst else

XJj best ifR;<0.5
k, j,worst —

where R; is a uniformly random real number within [0,1], x; ; ot is denoted as the jth
element of the nth worst position in the kth subpopulation, xj; ., is the jth element of the
best position in the Ith subpopulation, the indices k, 1, I are constrained by the combination
(k) e {(1,1,2), (1,2,3), (21,1), (2.2,3), (31,1), (3,2,2)}, and j=1,--,D. In this way, the good
information obtained by each subpopulation is exchanged among the subpopulations and
then the diversity of the population is increased.

2.1.3 Search direction

The gradient has played an important role in the history of search methods [32]. The search
space may be viewed as a gradient field [33], and a so-called empirical gradient (EG) can be
determined by evaluating the response to the position change especially when the objective
function is not be available in a differentiable form at all [5]. Then, the seekers can follow an
EG to guide their search. Since the search directions in the SOA does not involve the
magnitudes of the EGs, a search direction can be determined only by the signum function of
a better position minus a worse position. For example, an empirical search direction
d =sign(¥ —x")when ¥’ is better than X", where the function sign( ) is a signum function on
each element of the input vector. In the SOA, every seeker i (i=1,2,-s) selects his search
direction based on several EGs by evaluating the current or historical positions of himself or
his neighbors. They are detailed as follows.

According to the egotistic behavior mentioned above, an EG from X;(t) to p; ;.. (t) can be
involved for the ith seeker at time step t. Hence, each seeker i is associated with an empirical

direction called as egotistic direction ai,ego(t) =[di1,eg0/Ai2,e007" " 14iD eg0 ] -

di,ego(t) = Sign(l—gi,best(t) - fi(t)) (3)

On the other hand, based on the altruistic behavior, each seeker i is associated with two
optional altruistic direction, i.e., d; ,, (t)and d; 4 (t):

;Zi,ultl (t) = Sign(gi,best(t) - J_Ci (t)) (4)

d; air, (£) = Sign(; oy (1) = i (1)) ®)
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Two Population-Based Heuristic Search Algorithms and Their Applications 7

where g; . (t) represents the neighborhood’s historical best position up to the time step ¢,
Ti,best(t) represents the neighborhood’s current best position. Here, the neighborhood is the
one to which the ith seeker belongs.

Moreover, according to the pro-activeness behavior, each seeker i is associated with an

empirical direction called as pro-activeness direction L—ii,pm(t) :

d; o (1) = sign(X,(t;) — % (t,)) (6)

where t,,t, e{t,t -1,t -2}, X,(t;)and X;(t,) are the best one and the worst one in the set
{x;(t),%;(t-1),%;(t — 2) } respectively.

According to human rational judgment, the actual search direction of the ith
seeker, d;(t) =[d;,d.y, -+, d;p], is based on a compromise among the aforementioned four
empirical directions, i.e., Eli,ego(t), i’ﬂ,t] (t),ﬁi,ﬂltz(t) and ﬁi,pm(t). In this study, the jth

element of d.(t) is selected applying the following proportional selection rule (shown
as Fig. 2):

. 0
0 1frj£p§)
1

d“ =

e (0 0 1
i 1fp§-)<rj£p§)+p§) (7)

-1 if p}o) + pgl) <r;<1

where i=1,2,--,s, j=1,2,---,D, r; is a uniform random number in [0,1], pgm) (mef0,1,-1}) is

defined as follows: In the set {dj .o, djj ar, » dijan, » dij,pro} Which is composed of the jth
elements of d. . (t), d. t),d. t) and d. 1), let num® be the number of “1”, num) be
i,ego i,alt; i,alt, i,pro
) (-1)
the number of “-17, and num®© be the number of “0”, then p?l) =%, pg_l) =%,
(0) num(o) . 1) —
j = . FOI‘ example, lf dij,ego = 1, dij,altl = _1, dij,alt2 = _1, dij,pro = O, then num( ) _1, Tlum('
_ _ w_1 _2 o_1
V=2, and num©®=1. So, p;’ = P Eh ey

2.1.4 Step length

In the SOA, only one fuzzy rule is used to determine the step length, namely, “If {objective
function value is small} (i.e., condition part), Then {step length is short} (i.e., action part)”.
Different optimization problems often have different ranges of fitness values. To design a
fuzzy system to be applicable to a wide range of optimization problems, the fitness values of
all the seekers are descendingly sorted and turned into the sequence numbers from 1 to s as
the inputs of fuzzy reasoning. The linear membership function is used in the conditional
part (fuzzification) since the universe of discourse is a given set of numbers, i.e., {1,2,*s}.
The expression is presented as (8).

s—1;
Hi = Hmax — Tll(/umax - ﬂmin) (8)
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8 Search Algorithms and Applications

where [; is the sequence number of X;(t) after sorting the fitness values, yimax is the maximum
membership degree value which is assigned by the user and equal to or a little less than 1.0.
Generally, pimayx is set at 0.95.

In the action part (defuzzification), the Gaussian membership function

2 2
4/ (297) (i=1,--,5;j=1,---,D) is used for the jth element of the ith seeker’s step

ﬂ(“z‘j) =e
length. For the Bell function, the membership degree values of the input variables beyond [-
30;, 30;] are less than 0.0111 (u(£36;)=0.0111), which can be neglected for a linguistic atom
[34]. Thus, the minimum value ymin=0.0111 is fixed. Moreover, the parameter §; of the
Gaussian membership function is the jth element of the vector & =[&;,-:-,8,] which is

given by:
5 =w- abs(a—cbest - JAcmnd) (9)

where abs( ) returns an output vector such that each element of the vector is the absolute
value of the corresponding element of the input vector, the parameter  is used to decrease
the step length with time step increasing so as to gradually improve the search precision. In
general, the w is linearly decreased from 0.9 to 0.1 during a run. The X, and %,,,; are the
best seeker and a randomly selected seeker in the same subpopulation to which the ith
seeker belongs, respectively. Notice that ¥,,,; is different from X,,,, and § is shared by all
the seekers in the same subpopulation. Then, the action part of the fuzzy reasoning (shown
in Fig. 3) gives the jth element of the ith seeker’s step length &; =[a;;, -, a;p] (i=1,2,-,s;
j=1,2,-,D):

rand

@ = 5j\/_10g(RAND(ﬂirl)) (10)

where §; is the jth element of the vector § in (9), the function log(-) returns the natural
logarithm of its input, the function RAND(y;,1) returns a uniform random number within
the range of [p;1] which is used to introduce the randomicity for each element of &;and
improve local search capability.

2.1.5 Further analysis on the SOA

Unlike GA, SOA conducts focusing search by following the promising empirical directions
until to converge to the optimum for as few generations as possible. In this way, it does not
easily get lost and then locates the region in which the global optimum exists.

Although the SOA uses the same terms of the personal/population best position as PSO and
DE, they are essentially different. As far as we know, PSO is not good at choosing step
length [35], while DE sometimes has a limited ability to move its population large distances
across the search space and would have to face with stagnation puzzledom [36]. Unlike PSO
and DE, SOA deals with search direction and step length, independently. Due to the use of
fuzzy rule: “If {fitness value is small}, Then {step length is short}”, the better the position of the
seeker is, the shorter his step length is. As a result, from the worst seeker to the best seeker,
the search is changed from a coarse one to a fine one, so as to ensure that the population can
not only keep a good search precision but also find new regions of the search space.
Consequently, at every time step, some seekers are better for “exploration”, some others
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Two Population-Based Heuristic Search Algorithms and Their Applications 9

better for “exploitation”. In addition, due to self-organized aggregation behavior and the
decreasing parameter @ in (9), the feasible search range of the seekers is decreasing with
time step increasing. Hence, the population favors “exploration” at the early stage and
“exploitation” at the late stage. In a word, not only at every time step but also within the
whole search process, the SOA can effectively balance exploration and exploitation, which
could ensure the effectiveness and efficiency of the SOA [37].

According to [38], a “nearer is better (NisB)” property is almost always assumed: most of
iterative stochastic optimization algorithms, if not all, at least from time to time look around
a good point in order to find an even better one. Furthermore, the reference [38] also pointed
out that an effective algorithm may perfectly switch from a NisB assumption to a “nearer is
worse (NisW)” one, and vice-versa. In our opinion, SOA is potentially provided with the
NisB property because of the use of fuzzy reasoning and can switch between a NisB
assumption and a NisW one. The main reason lies in the following two aspects. On the one
hand, the search direction of each seeker is based on a compromise among several empirical
directions, and different seekers often learn from different empirical points on different
dimensions instead of a single good point as mentioned by NisB assumption. On the other
hand, uncertainty reasoning (fuzzy reasoning) used by SOA would let a seeker’s step length
“uncertain”, which uncertainly lets a seeker nearer to a certain good point, or farer away from
another certain good point. Both the two aspects can boost the diversity of the population.
Hence, from Clerc’s point of view [38], it is further proved that SOA is effective.

begin
t—0;
generating s positions uniformly and randomly in search
space;
repeat
evaluating each seeker;

computing Zii (t) and @;(t) for each seeker i;
updating each seeker’s position using (1);
te—1t+1;

until the termination criterion is satisfied

end.

Fig. 1. The main step of the SOA.

Fig. 2. The proportional selection rule of search directions
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Bell function

3sg @

Fig. 3. The action part of the Fuzzy reasoning.

2.2 SOA for benchmark function optimization (Refs.[3,16, 18)

Twelve benchmark functions (listed in Table 1) are chosen from [39] to test the SOA with
comparison of PSO-w (PSO with adaptive inertia weight) [40], PSO-cf (PSO with
constriction factor) [41], CLPSO (comprehensive learning particle swarm optimizer) [42], the
original DE [9], SACP-DE (DE with self-adapting control parameters) [39] and L-SaDE (the
self-adaptive DE) [43]. The Best, Mean and Std (standard deviation) values of all the
algorithms for each function over 30 runs are summarized in Table 2. In order to determine
whether the results obtained by SOA are statistically different from the results generated by
other algorithms, the T-tests are conducted and listed in Table 2, too. An h value of one
indicates that the performances of the two algorithms are statistically different with 95%
certainty, whereas h value of zero implies that the performances are not statistically
different. The CI is confidence interval. The Table 2 indicates that SOA is suitable for solving
the employed multimodal function optimizations with the smaller Best, Mean and std values
than most of other algorithms for most of the functions. In addition, most of the / values are
equal to one, and most of the CI values are less than zero, which shows that SOA is
statistically superior to most of the other algorithms with the more robust performance. The
details of the comparison results are as follows. Compared with PSO-w, SOA has the
smaller Best, Mean and std values for all the twelve benchmark functions. Compared with
PSO-cf, SOA has the smaller Best, Mean and std values for all the twelve benchmark
functions expect that PSO-cf also has the same Best values for the functions 2-4, 6, 11 and 12.
Compared with CLPSO, SOA has the smaller Best, Mean and std values for all the twelve
benchmark functions expect that CLPSO also has the same Best values for the functions 6, 7,
9, 11 and 12. Compared with SPSO-2007, SOA has the smaller Best, Mean and std values for
all the twelve benchmark functions expect that SPSO-2007 also has the same Best values for
the functions 7-12. Compared with DE, SOA has the smaller Best, Mean and std values for all
the twelve benchmark functions expect that DE also has the same Best values for the
functions 3, 6, 9, 11 and 12. Compared with SACP-DE, SOA has the smaller Best, Mean and
std values for all the twelve benchmark functions expect that SACP-DE can also find the
global optimal solutions for function 3 and has the same Best values for the functions 6, 7, 11
and 12. Compared with L-SaDE, SOA has the smaller Best, Mean and std values for all the
twelve benchmark functions expect that L-SaDE can also find the global optimal solutions
for function 3 and has the same Best values for the functions 6, 9 and 12.
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Functions n S fmin
fi@) =30 ixt + rand[0,1) s0 12812 G g
£5(X)=-20exp(-0.2 ,llez )— exp(lzcos(Zﬂxi)) +20+e 30 [-32,32] £,0)=0
ni=1 =1
) X —600,600 =
(0= a5 Zia? T peost ) +1 0 | £,0)=0
fol@ =" (10sin* (zy2) + X} (9, = 171+ 108in? (zy;,1)] ~50,50" _
-1 + 50 [50,50] fu()=0
yn—l b+ > u(x;,10,100,4)
f5(%) =0.1{sin?(3zx; ) + 21 ( (x; - )2[1+sin2(37zxi+1)] [-50,50]" )
30 f(1,...,1)=0
+(x, —1)*[1+sin®(27zx,)]} + 3", u(x;,5,100,4)
) b2 b  fl0:1928,0.1908,0
fo@®=3"1q —M 2 4 [-5,5]" 1231,0.1358)=3.0
b +bxy + x4 749x10-4
= 2 1,16 2 4 n  f7(-0.09,0.71)=-
. n 9.42,247)=0.
fo(®) = (x5 —5—12x12 +Ex1 -6)? +10(1—i)cos(xl)+1o 2 [-5,15] ol )
4 T 87
fo(R) =[1+(x1 +x +1)%(19 ~ 1dxq + 3x1° — 14xy + 63179 + 319 )]|x
2 [22]  f(0-1)=3
[30 + (2x; —3x,)? x (18 — 32x; +12x,% + 48x, — 36x,x, + 27x,7)]
B > £,0(0.114,0.556,0
flo(x)Z—Z, _,ciexp[- Z] 15X = py) | 3 [01] 7%
f11 (5(?) — _zzzl[(x —a )(5(? . ai)T + c; ]—1 4 [0,10]1’1 fll (z 4:) =-10.40:
B, B, ; . " ~ 4)=-10.53¢
Fa®) =~ [E - a)(E - a) +e, ] 4 [orop SelxY

Table 1. The employed benchmark functions.
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function Index  PSO-o PSO-cf  CLPSO SPSO-2007 DE  SACP-DE L-SaDE SOA
Best  27136e3 1086led 3359e3 7.6038e-3 1819503 37152e3 1.0460e3
9.7068e
Mean 712993  25423¢-3 51258e-3 502292 4.3505¢-3 55890e-3 4.2653-3
! Std  2.3404e3 9.7343e-4 1.1883e-3 3.5785e-2 1.2317e-3 1.1868e-3 1.7366e-3 4'8?5226
h 1 1 1 1 1 1 1 -
o [00081- [-0.0029- [-0.0056- [-0.0663 - [-0.0048- [-0.0060 - [-0.0050 -
0.0060]  0.0020]  0.0045]  0.0339] 0.0037] 0.0050] 0.0034]
Best  7.319e7 2.6645¢-15 6.3072e-4 1.7780e+0 8.5059%-8 5.2355¢-9 1'2?1)99’ 2'6_%56
Mean 1.7171e-6  8.0458e-1 8.2430e-4 3.1720e+0 1.6860e-7 1.12625¢-8 7'O§226' 2'6_%56
2 St 88492e7 77255e1 12733ed 912991 73328 41298e9 “110C 0
h 1 1 1 1 1 1 1 -
o [212e6- [11543- [-882e-4- [3.5853- [-2.02e7 - [131e8 - [-898e-11
132e-6]  04549]  7.67e-4] 2.7587] 1.35e-7] 9.39%e-9] -5.20e-11]
Best 22204e-15 0  17472¢7 6.6613e-16 0 0 0 0
Mean — 83744e-3 19984e2 2.4043e-6 105912 493234 0 0 0
Std  7.7104e3 21321e2 3.6467e-6 1.1158e2 22058e3 0 0 0
3 h 1 1 1 1 0 - - -
o [00118- [0.0296- [-4.06e-6- [0.0156 - é‘8'50207165_ ) ) )
0.0049] 00103 754e7] 00055 T
Best 1.278le-13 1.5705e-32 1.8074e-7 5.2094e-22 2'9?;96' 2.2953¢-17 2'52116' 1'5_?2)56
Mean 2.6878¢-10 1.1402e-1 5.7391e-7 1.3483e+0 2'52166' 1.3700e-16 s.oggze- 1'5_288e
! Std  6.7984e-10 1.8694e-1 2.4755e-7 13321e+0 1'8222"" 8.7215e-17 7'9334'3' 3'8_;(9)%
h 0 1 1 1 1 1 1 -
o [575e10 [01986- [-6.86e-7- [19513- [-34e-14- [-18e-16 - [-112e-19
3.70e-11]  0.0294]  4.62e7]  0.7453] 17e-14] 9.8e-17] -4.41e-20]
Best  1.6744e-12 1349830 4.2229¢-6 1.0379-19 2'52289' 3.8881e-16 1'02?86' 6'1_2296
Mean  1.0990e-3 1.0987e-3 6.8756e-6 1.303le+1 1'01256" 9.7736¢-16 3'4%4'3' 3'3_?2";5e
° Std  34744e-3 33818e-3 272996 1.1416e+1 7'11276' 8.4897e-16 4'7?829" 8'3_;369'
h 0 0 1 1 1 1 1 -
o 00027 [0.0026 [-811e-6- [-18.1990 - [-13e-13 - [-1de-15 - [5.62e1
4.6368e-4] 4.3212e-4] 5.64e-6] 7.8633] 69e-14] 5.9e-16] 1.31e-19]
6 Best  3.0750e-4 3.074%-4 3.0749%-4 3.0749%-4 3.074%-4 3.0749%-4 3.0749e-4 3'0_7219‘3
3.0749%
Mean 490634 444854 353294 4.9463e-4 4.4485e-4 3.0750e-4 3.0750e4 ~
9.6334e
Std  3.8608e-4 33546e-4 20478c-4 17284e-4 3.3546e-4 3.0191e-9 28726e-9 o
h 1 0 0 1 0 1 1 -
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o [B57ed- [289%e4  [-139e-4 [265e-4- [289-4 [1150-8 - [-1.14-8 -
9.49e-5]  145e-5]  4.69e-5] 1.09e-4] 145¢5] 8.74e9] 8.7e9]
Best  -1.031626 -1.031627 -1.031628 -1.031628 -1.031627 -1.031628 -1.031627 1.03162
8
Mean -1.031615 -1.031612 -1.031617 -1.031627 -1.031619 -1.031617 -1.031613 1.03162
7 8
7.6401e
Std  8.6069e-6 7.8874e-6 74529e-6 3.5817e-6 8.4157e-6 8.014%-6 9.0097e-6 "
[ 1 1 1 0 1 1 1 -
o [172e5- [200e5- [-153e-5- [247e6 [-1.28e-5 - [-152e-5 - [-1.92¢-5 -
9.49e-6]  1.28e-5] 85de-6] 7.76e-6] 5.2le-6] 7.99e-6] 1.1le-5]
Best  3.97890e-1 3.97898e-1 3.97897e-1 3.97887e-1 3'97202‘*’ 3.97888e-1 3'975158%' 3'9‘37587
Mean  3.97942-1 3.97939%-1 3.97947e-1 3.97892¢-1 3'972476’ 3.97932e-1 3'97?41& 3'9e7_§87
8 Std  33568¢5 3.0633e-5 3.1612e-5 1.8336e-5 3.0499-5 3.3786¢-5 3'76224e’ 1'2?77 te
h 1 1 1 0 1 1 1 -
o [695e5- [-652e5- [7.37e5 [1.277e-5 [-7.38¢-5 - [6.00e-5 - [-7.09%5 -
3.93e-5]  3.74e-5] 451e-5] 3.92e-6] 4.62e5] 2.94e-5] 3.69¢-5]
Best  3.0000  3.0000 3 3 3 30000 3 3
Mean 30000  3.0000 30000 3.0000 3 30000 3.0000 3
Std 4089812 3.1875e-12 1.7278¢-13 2.6936e-12 *100¢ 261458 O taooer 270le
9 15 1B 15
h 1 1 1 1 1 1 1 -
o [Bled2- [45e12- [-31e-13- [27e-12- [-85e-14 - [-2.6e-8- [-6.4e-13 -
15e-12]  1.6le-12] 16e-13]  26e-13] 7.6e-14] 26e-9] 15e-13]
Best 386174 386260 -3.86254 -386278 -3.86256 -3.86251 -3.86228 5o e
Mean  -386120 -386142 -386131 -3.86196 -386115 -3.86137 -3.86104 , o
10 Std  4.1892e-4 7.0546e-4 6.6908e-4 3.6573e-3 7.9362e-4 6.1290e-4 6.8633e-4 2‘9‘;(;2*3
h 1 1 1 0 1 1 1 -
o [00018- [0.0017- [-0.0018- [-0.0025 [-0.0020- [0.0017 - [-0.0021 -
0.0014]  0.0010]  0.0012] 8.3672e-4] 0.0013] 0.0011]  0.0014]
Best  -1.0403e+1 -1.0403e+1 -1.0403e+1-LO403e+1 | o) b e oo 1.0:1;)3(3
. Mean  -8.8741e+0 -9.3713e+0 -7.5794e+0 8.5881e+0, /o0 oot 0 1.0f§)3e
5.8647e
Std  3.2230e+0 25485e+0 3.6087e+0 3.2342e+0 6.6816e-7 1.9198¢-1 16188e-1 ")
h 1 0 1 1 1 1 1 -
o [29785- [21852 [-44570- [B.2788- [7.32¢7 [0.1828- [0.1692-
0.0791]  01220]  1.1900]  03508] -1.27e-7] 0.0090]  0.0226]
2 Best -1.0536e+1 -1.0536e+1 -10536e+1-1.0536e+1 -
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+1
Mean -8.4159e+0 -8.6726e+0 -9.2338e+0 —9.7313e+01‘0536(3_'_1 1.0432e+1 1.0437e+1 1.0ff6e
3.0218e

Std  3.4860e+0 3.3515e+0 2.7247e+0 2.0607e+0 4.3239e-7 3.1761e-1 1.3003e-1 11

h 1 1 1 0 1 0 1 -
o 36885~ [-33809- [25360- [1.7379 [486e-7- [-0.2481 [0.1586-
05526]  0.3467]  0.0692] 0.1277] 9.43e-8] 0.0394]  0.0409]

Table 2. The Comparisons of SOA with Other Evolutionary Methods on Benchmark
Functions

2.3 SOA for optimal reactive power dispatch (Ref.[16])

2.3.1 Problem formulation

The objective of the reactive power optimization is to minimize the active power loss in the
transmission network, which can be defined as follows:

Boss = f(F1,%2)= Y gu(Vi? +V} =2VV;cos6;) (11)
keNg
Subject to
JEN;
Qci —Qpi =Vi 2. V;(Gysin; - Bjjcos6;) i€ Np,
JeN;

Vimin < Vz < Vimax ie NB

min max (12)
TN < T, <T; keNy
Q&™ < Qg <QE™ ieNg
Qo™ <Qq <QE™ ieNc
S, < Smax leN,

where f(X;,X,) denotes the active power loss function of the transmission network, ¥; is
the control variable vector [V K; Qc]", ¥, is the dependent variable vector [V, Q:1", V¢

is the generator voltage (continuous), T, is the transformer tap (integer), Q- is the shunt
capacitor/inductor (integer), V; is the load-bus voltage, Qg is the generator reactive
power, k=(i,j), ieNg, jeN;, gis the conductance of branch k, 6; is the voltage angle
difference between bus i and j, I; is the injected active power at bus i, Pp; is the demanded
active power at bus i, V; is the voltage at bus i, G;; is the transfer conductance between bus
and j, B; is the transfer susceptance between bus i and j, Qg; is the injected reactive power
at bus i, Qp, is the demanded reactive power at bus, Ny is the set of numbers of network
branches, N PO is the set of numbers of PQ buses, N is the set of numbers of total buses,
N, is the set of numbers of buses adjacent to bus i (including bus i), N, is the set of

numbers of total buses excluding slack bus, N is the set of numbers of possible reactive
power source installation buses, N is the set of numbers of generator buses, N is the set
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of numbers of transformer branches, S; is the power flow in branch I, the superscripts
“min” and “max” in equation (12) denote the corresponding lower and upper limits,
respectively.

The first two equality constraints in (12) are the power flow equations. The rest inequality
constraints are used for the restrictions of reactive power source installation, reactive
generation, transformer tap-setting, bus voltage and power flow of each branch.

Control variables are self-constrained, and dependent variables are constrained using
penalty terms to the objective function. So the objective function is generalized as follows:

f N Ploss +A’V Z AVL2 +X’Q Z AQé (13)

Nim NG

where 1,, A, are the penalty factors, N{™ is the set of numbers of load-buses on which
voltage outside limits, [1 N gm is the set of numbers of generator buses on which injected
reactive power outside limits, AV, and AQ are defined as:

ymin_yif v, <y
AVL - max 3 max (14)
min _ : f < min
AQG:{ ¢ o Motk 15)
Qc - Qg if Qg >Qg

2.3.2 Implementation of SOA for reactive power optimization

The basic form of the proposed SOA algorithm can only handle continuous variables.

However, both tap position of transformations and reactive power source installation are

discrete or integer variables in optimal reactive power dispatch problem. To handle integer

variables without any effect on the implementation of SOA, the seekers will still search in a

continuous space regardless of the variable type, and then truncating the corresponding

dimensions of the seekers’ real-value positions into the integers [44] is only performed in
evaluating the objective function.

The fitness value of each seeker is calculated by using the objective function in (13). The real-

value position of the seeker consists of three parts: generator voltages, transformer taps and

shunt capacitors/inductors. After the update of the position, the main program is turned to
the sub-program for evaluating the objective function where the latter two parts of the
position are truncated into the corresponding integers as [44]. Then, the real-value position
is changed into a mixed-variable vector which is used to calculate the objective function
value by equation (13) based on Newton-Raphson power flow analysis [45]. The reactive

power optimization based on SOA can be described as follows [16].

Step 1. Read the parameters of power system and the proposed algorithm, and specify the
lower and upper limits of each variable.

Step 2. Initialize the positions of the seekers in the search space randomly and uniformly.
Set the time step t=0.

Step 3. Calculate the fitness values of the initial positions using the objective function in
(13) based on the results of Newton-Raphson power flow analysis [45]. The initial
historical best position among the population is achieved. Set the personal historical
best position of each seeker to his current position.
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Step4. Lett=t+1.

Step 5. Select the neighbors of each seeker.

Step 6. Determine the search direction and step length for each seeker, and update his
position.

Step 7. Calculate the fitness values of the new positions using the objective function based
on the Newton-Raphson power flow analysis results. Update the historical best
position among the population and the historical best position of each seeker.

Step 8. Go to Step 4 until a stopping criterion is satisfied.

2.3.3 Simulation results

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power
optimization approach, standard IEEE 57-bus power system is used.

Since proposed in 1995, PSO [46] and DE [9, 47] have received increasing interest from the
evolutionary computation community as two of the relatively new and powerful
population-based heuristic algorithms, and they both have been successfully applied to
reactive power optimization problems [12, 48-53]. So, the proposed method is compared
mainly with the two algorithms and their recently modified versions.

Since the original PSO proposed in [46] is prone to suffer from the so-called “explosion”
phenomena [41], two improved versions of PSO: PSO with adaptive inertia weight (PSO-w)
and PSO with a constriction factor (PSO-cf), were proposed by Shi, et al. [40] and Clerc, et al.
[41], respectively. Considering that the PSO algorithm may easily get trapped in a local
optimum when solving complex multimodal problems, Liang, et al. [42] proposed a variant
of PSO called comprehensive learning particle swarm optimizer (CLPSO), which is adept at
complex multimodal problems. Furthermore, in the year of 2007, Clerc, et al. [54] developed
a “real standard” version of PSO, SPSO-07, which was specially prepared for the researchers
to compare their algorithms. So, the compared PSOs includes PSO-w(learning rate c; = ¢;=2,
inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the maximum
velocity vmax is set at 20% of the dynamic range of the variable on each dimension) [40], PSO-
cf (c1= 2=2.01 and constriction factor y=0.729844) [41], CLPSO(its parameters follow the
suggestions from [42] except that the refreshing gap m=2) and SPSO-07 [54].

Since the control parameters and learning strategies in DE are highly dependent on the
problems under consideration, and it is not easy to select the correct parameters in practice,
Brest, et al. [39] presented a version of DE with self-adapting control parameters (SACP-DE)
based on the self-adaptation of the two control parameters: the crossover rate CR and the
scaling factor F, while Qin, et al. [43] proposed a self-adaptive differential evolution (SaDE)
where the choice of learning strategy and the two control parameters F and CR are not
required to be pre-specified. So, the compared set of DEs consists of the original DE (DE:
DE/rand/1/bin, F=0.5, CR=0.9) [9]), SACP-DE [39] and SaDE [43]. For the afore-mentioned
DEs, since the local search schedule used in [43] can clearly improve their performances, the
improved versions of the three DEs with local search, instead of their corresponding original
versions, are used in this study and denoted as L-DE, L-SACP-DE and L-SaDE, respectively.
Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA)
introduced in [55] are implemented for comparison with SOA. The fmincon-based nonlinear
programming method (NLP) [45, 56] is also considered.

All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G
512MB RAM. For all the evolutionary methods in the experiments, the same population size
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popsize=60 except SPSO-2007 whose popsize is automatically computed by the algorithm,
total 30 runs and the maximum generations of 300 are made. The NLP method uses a
different uniformly random number in the search space as its start point in each run. The
transformer taps and the reactive power compensation are discrete variables with the
update step of 0.01p.u. and 0.048 p.u., respectively. The penalty factors Ay and Ag in (13) are
both set to 500.

The IEEE 57-bus system shown in Fig. 4 consists of 80 branches, 7 generator-buses and 15
branches under load tap setting transformer branches. The possible reactive power
compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and V0-bus as
follows: PV-buses: bus 2, 3, 6, 8, 9, 12; V0-bus: bus 1. The others are PQ-buses. The system
data, variable limits and the initial values of control variables were given in [57]. In this case,
the search space has 25 dimensions, i.e., the 7 generator voltages, 15 transformer taps, and 3
capacitor banks. The variable limits are given in Table 3.

5 4 3 2 1 16
D
2
345 15 17
6 18 ?19 20 o
14 13 12
o
’ (€
46
47
44 4o 50
o
26 24 49
23 22
2
25
27
:I 30 33 35
o
28 31 32 34

.7 ?29 ?52 ?53 ?54 55
8 9 105 551

Fig. 4. Network configuration of IEEE 57-bus power system
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Limits of Generation Reactive Power
Bus 1 2 3 6 8 9 12

Qi 15 05 06 025 20 009 155

QM 02 017 01 008 -14 003 -5
Limits of Voltage and Tap Setting

max min max min max min
VG VG ‘/PQ VPQ T;{ T;{

1.06 094 106 094 1.1 0.9
Limits of Reactive Power Sources
Bus 18 25 53
o 0.1 0.059 0.063
QM 0.0 0.0 0.0

Table 3. The Variable Limits (p.u.)

The system loads are given as follows:

Pload=12.508 p.u., Qload =3.364 p.u.

The initial total generations and power losses are as follows:
Y Pc=12.7926 p.u., Y Qc=3.4545 p.u.,

P]oss=0.28462 p.u., Q]oss= "1.2427 p.u.

There are five bus voltages outside the limits in the network: V25=0.938, V3,=0.920,
V31=0.900, V32=0.926, V33= 0.924.

To compare the proposed method with other algorithms, the concerned performance
indexes including the best active power losses (Best), the worst active power losses (IWorst),
the mean active power losses (Mean) and the standard deviation (Std) are summarized in
Table 4 over total 30 runs. In order to determine whether the results obtained by SOA are
statistically different from the results generated by other algorithms, the T-tests are
conducted, and the corresponding / and CI values are presented in Table 4, too. Table 4
indicates that SOA has the smallest Best, Mean and Std. values than all the listed other
algorithms, all the / values are equal to one, and all the confidence intervals are less than
zero and don’t contain zero. Hence, the conclusion can be drawn that SOA is significantly
better and statistically more robust than all the other listed algorithms in terms of global
search capacity and local search precision.

The best reactive power dispatch solutions from 30 runs for various algorithms are
tabulated in Table 5 and Table 6. The Psave% in Table 6 denotes the saving percent of the
reactive power losses. Table 6 demonstrates that a power loss reduction of 14.7443% (from
0.28462 p.u. to 0.2426548 p.u.) is accomplished using the SOA approach, which is the biggest
reduction of power loss than that obtained by the other approaches. The corresponding bus
voltages are illustrated in Fig. 5 - Fig.8 for various methods. From Fig. 8, it can be seen that
all the bus voltages optimized by SOA are kept within the limits, which implies that the
proposed approach has better performance in simultaneously achieving the two goals of
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voltage quality improvement and power loss reduction than the other approaches on the
employed test system.

The convergence graphs of the optimized control variables by the SOA are depicted in Fig. 9
- Fig. 11 with respect to the number of generations. From these figures, it can be seen that,
due to the good global search ability of the proposed method, the control variables have a
serious vibration at the early search phase, and then converge to a steady state at the late
search phase, namely, a near optimum solution found by the method.

In this experiment, the computing time at every function evaluation is recorded for various
algorithms. The total time of each algorithm is summarized in Table 7. Furthermore, the
average convergence curves with active power loss vs. computing time are depicted for all
the algorithms in Fig. 12. From Table 7, it can be seen that the computing time of SOA is less
than that of the other evolutionary algorithms except SPSO-07 because of its smaller
population size. However, Fig. 12 shows that, compared with SPSO-07, SOA has faster
convergence speed and, on the contrary, needs less time to achieve the power loss level of
SPSO-07. At the same time, SOA has better convergence rate than CLPSO and three versions
of DE. Although PSO-w and PSO-cf have faster convergence speed at the earlier search
phase, the two versions of PSO rapidly get trapped in premature convergence or search
stagnation with the bigger final power losses than that of SOA. Hence, from the simulation
results, SOA is synthetically superior to the other algorithms in computation complexity and
convergence rate.

Algorithms Best Worst Mean Std. h CI

NLP 02500231 03085436 02785842 1.1677x102 1 [_éfg’;f:fg]’
CGA 02524411 02750772 0.2629356 6.2951x103 1 [12822250;:11(?22]
AGA 02456484 02676169 02512784 6.0068x10° 1 [_—61,'60;55955118:]'
PSO-w 02427052 02615279 02472596 7.0143x103 1 [2637912161:11(?33
PSO-cf 02428022 02603275 02469805 6.6294x103 1 [2623;13955113:]
CLPSO 02451520 0.2478083 02467307 9.3415x104 1 [';‘,‘:;’31)117:}8_';]’ '
SPSO-07 02443043 02545745 02475227 2.8330x103 1 {gffg;:f&?
L-DE 02781264 0.4190941 03317783 4.7072x102 1 [-—712)5?85165118;]/
POACKT 02791553 03697873 03103260 3.2232x102 1 [577765;70:11(?;]
L-SaDE 02426739 02439142 02431129 4.8156x104 1 [2555:58;511%
SOA 02426548 0.2428046 02427078 4.2081x105 - ]

Table 4. Comparisons of the Results of Various Methods on IEEE 57-Bus System over 30
Runs (p.u.)
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Algorithms Y Pc YQc Pross Qloss Psave
NLP 12.7687 3.1578 0.2590231 -1.1532 8.9934
CGA 12.7604 3.0912 0.2524411 -1.1176 11.3059
AGA 12.7536 3.0440 0.2456484 -1.1076 13.6925
PSO-w 12.7507 3.0300 0.2427052 -1.0950 14.7266
PSO-cf 12.7508 2.9501 0.2428022 -1.0753 14.6925
CLPSO 12.7531 3.0425 0.2451520 -1.0853 13.8669
SPSO-07 12.7523 3.0611 0.2443043 -1.0845 14.1647
L-DE 12.7861 3.3871 0.2781264 -1.2158 2.28150
L-SACP-DE 12.7871 3.2712 0.2791553 -1.2042 1.92000
L-SaDE 12.7507 2.9855 0.2426739 -1.0758 14.7376
SOA 12.7507 2.9684 0.2426548 -1.0756 14.7443

Table 6. The Best Solutions for All the Methods on IEEE 57-Bus System (p.u.)

Algorithms Shortest time (s) Longest time (s) Average time (s)
CGA 353.08 487.14 411.38
AGA 367.31 471.86 449.28
PSO-w 406.42 411.66 408.48
PSO-cf 404.63 410.36 408.19
CLPSO 423.30 441.98 426.85
SPSO-07 121.98 166.23 137.35
L-DE 426.97 443.22 431.41
L-SACP-DE 427.23 431.16 428.98
L-SaDE 408.97 413.03 410.14
SOA 382.23 411.02 391.32

Table 7. The Average Computing Time for Various Algorithms
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Fig. 5. Bus voltage profiles for NLP and GAs on IEEE 57-bus system
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Fig. 8. Bus voltage profiles before and after optimization for SOA on IEEE 57-bus system
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2.4 SOA for multi-objective reactive power dispatch

2.4.1 Problem formulation

The multi-objective functions of the ORPD include the technical and economic goals. The
economic goal is mainly to minimize the active power transmission loss. The technical goals
are to minimize the load bus voltage deviation from the ideal voltage and to improve the
voltage stability margin (VSM) [58]. Hence, the objectives of the ORPD model in this chapter
are active power loss (Pioss), voltage deviation (A V1) and voltage stability margin (VSM).
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A. The Active Power Loss

The active power loss minimization in the transmission network can be defined as follows
[16,17, 44]:

min By, = f(¥1,%)= 2 gk(viz + ij —2V;V; cosb;) (16)
keNg
Subject to
jeN;
Qe —Qpi =V, Z]:\, Vi(Gjsing,; —Bjjcosf;) ieNpg
JEN;
Vimin < Vz < Vimax = NB
min max (17)

QEIN < Q. < QEax ieNg
Q™ < Qg <QE™ ieNc
Sl < Slrnax l S Nl

where f(X;,X,) denotes the active power loss function of the transmission network, X; is
the control variable vector [V K; Q-] , ¥, is the dependent variable vector [V, Q:1", V,
is the generator voltage (continuous), T, is the transformer tap (integer), Q. is the shunt
capacitor/inductor (integer), V; is the load-bus voltage, Q; is the generator reactive
power, k=(ij), ieNg, jeN;, gis the conductance of branch k, §; is the voltage angle
difference between bus i and j, I, is the injected active power at bus i, Pp; is the demanded
active power at bus i, V; is the voltage at bus i, G; is the transfer conductance between bus i
and j, B; is the transfer susceptance between bus i and j, Q; is the injected reactive power
at bus i, Qp,; is the demanded reactive power at bus , N is the set of numbers of network
branches, N po 18 the set of numbers of PQ buses, Nj is the set of numbers of total buses,
N, is the set of numbers of buses adjacent to bus i (including bus i), N, is the set of
numbers of total buses excluding slack bus, N is the set of numbers of possible reactive
power source installation buses, N is the set of numbers of generator buses, N is the set
of numbers of transformer branches, S; is the power flow in branch I, the superscripts
“min” and “max” in equation (17) denote the corresponding lower and upper limits,

respectively.
B. Voltage Deviation

Treating the bus voltage limits as constraints in ORPD often results in all the voltages
toward their maximum limits after optimization, which means the power system lacks the
required reserves to provide reactive power during contingencies. One of the effective ways
to avoid this situation is to choose the deviation of voltage from the desired value as an
objective function [59], i.e.:

N
min AV, =)’
i=1

Vi-V/|/N, (18)
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where AV is the per unit average voltage deviation, Ny is the total number of the system
load buses, V; and V;* are the actual voltage magnitude and the desired voltage magnitude
at bus i.

C. Voltage Stability Margin

Voltage stability problem has a closely relationship with the reactive power of the system,
and the voltage stability margin is inevitably affected in optimal reactive power flow (ORPF)
[58]. Hence, the maximal voltage stability margin should be one of the objectives in ORPF
[49, 58, 59]. In the literature, the minimal eigenvalue of the non-singular power flow
Jacobian matrix has been used by many researchers to improve the voltage stability margin
[58]. Here, it is also employed [58]:

max VSM =max(min |eig(]acobi)|) (19)

where Jacobi is the power flow Jacobian matrix, eig(Jacobi) returns all the eigenvalues of the
Jacobian matrix, min(eig(Jacobi)) is the minimum value of eig(Jacobi), max(min(eig(Jacobi))) is
to maximize the minimal eigenvalue in the Jacobian matrix.

D. Multi-objective Conversion

Considering different sub-objective functions have different ranges of function values, every
sub-objective uses a transform to keep itself within [0,1]. The first two sub-objective
functions, i.e., active power loss and voltage deviation, are normalized:

0 If IJIOSS < IJIOSSmin
Boss Py,

fl = 0% % min lf IDIOSSmm S 1)1055 S IJIOSSmax (20)
Plossmax - Plossmin
1 if Ploss > Plossmax
0 ifAV, <AV,

— min i < <

f2 A VLmax -A VLmin g ] " .

1 itAV, > AV,

where the subscripts “min” and “max” in equations (20) and (21) denote the corresponding
expectant minimum and possible maximum value, respectively.

Since voltage stability margin sub-objective function is a maximization optimization
problem, it is normalized and transformed into a minimization problem using the following
equation:

0 if VSM > VSM,.
fy=1 VSM,_ . -VSM
VSM,,.. - VSM

else (22)

max min

where the subscripts “min” and “max” in equation (22) denote the possible minimum and
expectant maximum value, respectively.
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Control variables are self-constrained, and dependent variables are constrained using
penalty terms. Then, the overall objective function is generalized as follows:

min f =@, f; + oy fy + o5 fs + Ay D, AVL2 +4g > AQé (23)

Nim Ng®

where w; (i=1,2,3) is the user-defined constants which are used to weigh the contributions
from different sub-objectives; 4, /1Q are the penalty factors; N %}m is the set of numbers of
load-buses on which voltage outside limits, [ Ngm is the set of numbers of generator buses

on which injected reactive power outside limits; AV, and AQ are defined as:

Vmin -V f V., < Vrnin
AV, = L L WVp<Vvp (24)
V, SV, s pma
min f < min
AQ { ¢ e BN @)
Qs —Qc™ if Qc>Qg

2.4.2 Implementation of SOA for reactive power optimization

The fitness value of each seeker is calculated by using the objective function in (23). The real-

value position of the seeker consists of three parts: generator voltages, transformer taps and

shunt capacitors/inductors. According to the section 3.4 of this paper, after the update of the
position, the main program is turned to the sub-program for evaluating the objective
function where the latter two parts of the position are truncated into the corresponding
integers as [44, 55]. Then, the real-value position is changed into a mixed-variable vector
which is used to calculate the objective function value by equation (23) based on Newton-

Raphson power flow analysis [45]. The reactive power optimization based on SOA can be

described as follows [17].

Step 1. Read the parameters of power system and the proposed algorithm, and specify the
lower and upper limits of each variable.

Step 2. Initialize the positions of the seekers in the search space randomly and uniformly.
Set the time step t=0.

Step 3. Calculate the fitness values of the initial positions using the objective function in
(23) based on the results of Newton-Raphson power flow analysis [45]. The initial
historical best position among the population is achieved. Set the historical best
position of each seeker to his current position.

Step 4. Let t=t+1.

Step 5. Determine the neighbors, search direction and step length for each seeker.

Step 6. Update the position of each seeker.

Step 7. Calculate the fitness values of the new positions using the objective function based
on the Newton-Raphson power flow analysis results. Update the historical best
position among the population and the historical best position of each seeker.

Step 8. Go to Step 4 until a stopping criterion is satisfied.
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2.4.3 Simulation results

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power
optimization approach, the standard IEEE 57-bus power system is used as the test system.
For the comparisons, the following algorithms are also considered: PSO-w (learning rate c; =
=2, inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the
maximum velocity vUmax is set at 20% of the dynamic range of the variable on each
dimension) [40], PSO-cf (c1= ¢2=2.01 and constriction factor ¥=0.729844) [41], CLPSO (its
parameters follow the suggestions from [42] except that the refreshing gap m=2) and SPSO-
07 [54], the original DE (DE: DE/rand/1/bin, F=0.5, CR=0.9) [39]), SACP-DE and SaDE. For
the afore-mentioned DEs, since the local search schedule used in [43] can clearly improve
their performances, the improved versions of the three DEs with local search, instead of
their corresponding original versions, are used in this study and denoted as L-DE, L-SACP-
DE and L-SaDE, respectively.

Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA)
introduced in [55] are considered for comparison with SOA.

All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G
512MB RAM. In the experiments, the same population size popsize=60 for the IEEE 57-bus
system except SPSO-2007 whose popsize is automatically computed by the algorithm, total
30 runs and the maximum generations of 300 are made. The transformer taps and the
reactive power compensation are discrete variables with the update step of 0.01p.u. and
0.048 p.u., respectively.

The main parameters involved in SOA include: the population size s, the number of
subpopulations, and the parameters of membership function of Fuzzy reasoning (including
the limits of membership degree value, i.e., ymax and Yimin in (8) and the limits of ®, i.e., Pmax
and @min in (9)). In this paper, s=60 for IEEE 57-bus system and s=80 for IEEE 118-bus
system, K=3, imax=0.95, #max=0.0111, ©max=0.8, ®min=0.2 for both the test systems.

The IEEE 57-bus system [45] shown in Fig. 4 consists of 80 branches, 7 generator-buses and
15 branches under load tap setting transformer branches. The possible reactive power
compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and V8-bus as
follows: PV-buses: bus 2, 3, 6, 8, 9, 12; Vb-bus: bus 1. The others are PQ-buses. The system
data, operating conditions, variable limits and the initial generator bus voltages and
transformer taps were given in [57], or can be obtained from the authors of this paper on
request. The model parameters in the equations (20)-(23) are set as:
Py, =05,Bp =02, AV, =1, AV} =0, VSMma=0.4, VSMmnin=0.05, ©1=0.6, ©»=0.2,

@3=0.2, Ay=500 and Ao=500.

The system loads are : Pioag=12.508 p.u., Qioad =3.364 p.u. The initial total generations and
power losses are: ) P=12.7926 p.u., Y Qc=3.4545 p.u., Pi5ss=0.28462 p.u., Qoss= -1.2427 p.u.
There are five bus voltages outside the limits: V25=0.938, V30=0.920, V3=0.900, V3,=0.926,
V33= 0.924.

To compare the proposed method with other algorithms, the concerned performance
indexes including the best, worst, mean and standard deviation (Std.) of the overall and sub-
objective function values are summarized in Tables 8 - 11. In order to determine whether the
results obtained by SOA are statistically different from the results generated by other
algorithms, the T-tests [56] are conducted. An h value of one indicates that the performances
of the two algorithms are statistically different with 95% certainty, whereas h value of zero
implies that the performances are not statistically different. The CI is confidence interval.
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The corresponding h and CI values for overall function values and active power losses are
presented in Tables 8 and 9, respectively. The best reactive power dispatch solutions from 30
runs for various algorithms are tabulated in Table 12 where Psave% denotes the saving
percent of the reactive power losses. The corresponding bus voltages are illustrated in Fig.
13. The total time of each algorithm is summarized in Table 13. The average convergence
curves for overall function value vs. computing time and active power loss vs. computing
time are depicted for all the algorithms in Figs. 14 and 15, respectively.

Table 8 indicates that SOA has the smallest Best, Mean, Worst and Std. values of overall
function than all the listed other algorithms except that SOA has the a little larger Worst
value than that of PSO-w, only the i values for SOA vs. CLPSO and SOA vs. L-SaDE are
equal to zeroes (Accordingly, their confidence intervals contain zero). Table 9 indicates that
SOA has the smallest Best, Mean, Worst and Std. values of power loss than all the listed other
algorithms except that SOA has the a little larger IWorst value than that of L-SaDE with h=0
and CI containing zero. Tables 10 and 11 show that SOA has the better or comparable other
two sub-objective values, i.e., voltage stability margin (VSM) and voltage deviation (AVL).
Table 12 demonstrates that a power loss reduction of 13.4820% (from 0.28462 p.u. to
0.246248 p.u.) is accomplished using the SOA approach, which is the biggest reduction of
power loss than that obtained by the other approaches. Hence, the conclusion can be drawn
that SOA is better than, or comparable to, all the other listed algorithms in terms of global
search capacity and local search precision. Furthermore, from Fig. 13, it can be seen that all
the bus voltages optimized by SOA are acceptably kept within the limits.

From Table 13, it can be seen that the average computing time of SOA is less than that of
other algorithms except SPSO-07 because of its smaller population size. However, Figs. 14
and 15 show that, compared with SPSO-07, SOA has faster convergence speed and, on the
contrary, needs less time to achieve the overall function value and power loss level achieved
by SPSO-07. At the same time, SOA also has better convergence rate than GAs, DEs

and PSOs.

Algorithms Best Worst Mean Std. h CI

CGA 0.192750  0.195206  0.194024  4.8798x10-4 1 [-0.0684, -0.0378]
AGA 0.192284  0.193994  0.193030 4.4517x104 1 [-0.0674, -0.0368]
PSO-w 0.191851  0.191977 0.191901 4.2691x10-5 1 [-0.0727, -0.0292,]
PSO-cf 0116954  0.192593  0.188312 16797x10-2 1 [-0.0634, -0.0314]
CLPSO 0.120773  0.192739  0.148663  3.3476x10-2 0 [-0.0257, 0.0102]
SPSO-2007 0.191918  0.193559  0.192551 3.9668x10-4 1 [-0.0669, -0.0363,]
L-DE 0.232519  0.388413  0.314205 4.0455x10-2 1 [-0.1923, -0.1543]
L-SACP-DE 0.237277  0.395611  0.317571 4.1949x10-2 1 [-0.1959, -0.1574]
L-SaDE 0.116819  0.192131 0.154692 3.8257x10-2 0 [-0.0324, 0.0049]
SOA 0.116495  0.192083  0.140927 3.4163x10-2 - -

Table 8. The Results of Overall Objective Function Values for Various Algorithms on IEEE
57-bus System over 30 Runs (p.u.)
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Algorithms  Best Worst Mean Std. h CI

CGA 0.267170  0.419747  0.323181 4.2147x102 1 [-0.0787, -0.0529]
AGA 0.258072  0.369785  0.296744  3.5776x102 1 [-0.0507, -0.0280,]
PSO-w 0.259729  0.324923  0.283945 2.2313x102 1 [-0.0363 -0.0168]
PSO-cf 0.247866  0.393221  0.297066  3.2551x102 1 [-0.0502, -0.0291,]
CLPSO 0.257968  0.340029  0.273334  1.9252x102 1 [-0.0235, -0.0083,]
SPSO-2007 0.274210  0.386235  0.307093  2.7961x102 1 [-0.0591, -0.0402]
L-DE 0.291864  0.5069975 0.373198  5.4894x102 1 [-0.1320, -0.0996]
L-SACP-DE  0.273183  0.4438575 0.343407 4.5156x102 1 [-0.0997, -0.0723]
L-SaDE 0.246712  0.282335  0.260983  1.3426x102 0 [-0.0101, 0.0030]
SOA 0.246248  0.287541  0.257410 1.1918x102 - -

Table 9. The Results of Active Power Loss for Various Algorithms on IEEE 57-bus System
over 30 Runs (p.u.)

Algorithms Best Worst Mean Std.
CGA 0.186249 0.173969 0.1798794 2.4399x10-3
AGA 0.188582 0.180030 0.1848524 2.2259%103
PSO-w 0.190745 0.190117 0.1904974 2.1346x104
PSO-cf 0.190754 0.1870317 0.1895324 122285x10-3
CLPSO 0.187857 0.1783987 0.183922 3.0781x103
SPSO-2007 0.190411 0.182206 0.187245 1.9834x10-3
L-DE 0.1778431 0.165211 0.171368 3.4560%10-3
L-SACP-DE 0.183051 0.159702 0.170998 5.7523x103
L-SaDE 0.190638 0.1853272 0.1882648 1.9748x10-3
SOA 0.190709 0.176374 0.187451 2.6388%103

Table 10. The Results of Voltage Stability Margin for Various Algorithms on IEEE 57-bus
System over 30 Runs (p.u.)

Algorithms CGA AGA PSV?' Pi?‘ CLPSO S;)SO(;' LDE L'SSECP i SaLI; SOA
Best 0 0 0 0 0 0 2886554 2317914 0 0
Worst 0 0 0 0 0291757 0 0561878 0.634840 0 0
Mean 0 0 0 0 0014588 0 1777176 1.890710 0 0
Std. 0 0 0 0 65239x102 0  6.0402x101 7.9319x100 0 0

Table 11. The Results of Voltage Deviation for Various Algorithms on IEEE 57-bus System
over 30 Runs (p.u.)
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Al gorithms ZP G ZQG Pioss Qloss Psave% VSM AV
CGA 12.7752 3.1744  0.267170 -1.1565  6.1308 0.179828 0
AGA 12.7661 3.0679  0.258072 -1.1326  9.3276 0.185845 0

PSO-w 12.7677 3.1026  0.259729 -1.1598  8.7453 0.190117 0
PSO-cf 12.7559 3.0157  0.247866 -1.1137 129132 0.1870317 0
CLPSO 12.7660 3.1501  0.257968 -1.1295 9.3642  0.1849117 0.291757

SPSO-2007  12.7822 3.1818  0.274210 -1.2532  3.6576  0.1877947 0

L-DE 12.7999 3.3656  0.291864 -1.2158 -1.2380 0.1701207 2.886554

L-SACP-DE 12.7812 3.2085 0.273183 -1.1868  4.0185 0.183051  4.282957
L-SaDE 12.7549 3.0191 0.246712 -1.1209 13.2696  0.186182 0
SOA 12.7543 29837  0.246248 -1.0914 13.4820 (.186895 0

Table 12. The Best Dispatch Solutions for Various Algorithms on IEEE 57-bus System (p.u.)

SPSO- L-SACP- L-

Algorithms CGA AGA PSO-w PSO-cf CLPSO 2007 LDE DE SaDE SOA
Shortest
time (s) 1265.34 1273.44 1216.91 1188.45 1399.48 433.36 1210.73 1212.95 1273.42 1192.83
Longest
time (s) 1295.02 1323.91 1244.64 1268.00 1448.84 495.97 1239.86 1235.03 1368.03 1288.66
Average
time (s) 1284.11 1293.78 1229.98 1225.14 1426.19 480.94 122427 1221.51 1306.86 1221.10

Table 13. The Computing Time for Various Algorithms on IEEE 57-bus System over 30 Runs
1.1

1.05

055
=
=
» 09
=z
=]
T 08
0.8
High & | I limi = CeA
075k I ow voltage limits D AGA
Cad
D?’ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
13 B 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 &7
bus number
(@)

www.intechopen.com



34 Search Algorithms and Applications

1.1r
High & lowe voltage limits
1.08
1.06 =i
1.04
= 1.02
2k}
=
= 1
=
0.93
0.95
—+— PE0-cf
094 —k— CLPS0
—B— SPS0-07
I:Igz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 B 9 1215 18 21 24 27 30 33 35 39 42 45 48 51 54 57
bus number
(b)
1.1r
High & lowe voltage limits
n
1.05 -
1
El
=
o 0.95
=
=
(R
0.85 s—L-DE
—4— -SACPDE
—B—L-5alE
I:IB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 6B 9 1215 18 21 24 27 30 33 35 39 42 45 48 51 54 57
bus number
(©)

www.intechopen.com



Two Population-Based Heuristic Search Algorithms and Their Applications

35

111

1.08

High & low voltage limits ~-{1---Base case

1.06

1.04

1.02

voltage (pou)

0.96
0.54
052
I:Ig 1 1 1 1 1 1 1 1 1 1 Ih 1 1 1 1 1
13 B 9 121518 2 24 27 30 33 36 39 42 45 48 51 54 57
bus number
(d)

Fig. 13. Bus voltage profiles for various algorithms on IEEE 57-bus
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3. Stochastic Focusing Search (SFS) and its application

3.1 Stochastic Focusing Search (SFS) (Ref.[20, 21])

Stochastic focusing search (SFS) is a simplified and improved version of PSO. In the SFS,
particles make a focusing search around the best position so far and stochastically update
their positions within a neighborhood of the best position with a decreasing search radius.
Unlike PSO, the velocity and position iteration of the SFS is implemented according to the
following equations:

oy RO (R = -1) i fun(e (1) > un(r(1-2)
L i fun, (1)) < fun(r(t-2) )
X (H)=7;(t)+x;(t-1) (27)

where Rand() returns a uniformly random number in the range [0, 1], fun(x;(t)) is
the objective function value of X;(t), R, is a random selected point (position)

in the neighborhood space R, of s - R, is defined as:
- w = =
[ best et ~ mlln)w s 8best + & max gbelst)w , where X, and X, are the search space
( max xmm) (xmax - xmin)

borders. When w is linearly decreased from 1 to 0, R, is deflated from the entire search
space to the best point g;,.; -

According to Eq. (26), if a particle holds a good velocity at the time step t-1 (ie.,
fun(X;(t—1)) < fun(X;(t-2))), its velocity keeps the same one as the past; else, the particle
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randomly selects a position within a neighborhood of the best position so far. Moreover, the
SFS also uses a greedy selection, namely: if the new position obtained by Eq. (27) is worse
the early position (i.e., fun(X;(t-1)) < fun(x;(t))), the particle will come back to the early
position (i.e., X;(t) =X;(t—-1)).

According to Egs. (26) and (27), it can be seen that each individual particle makes a search in
a decreasing R, with time step increasing. It is of significance to select an appropriate w to
not only assure the global convergence ability but also avoid a local extremum. In this study,
w is defined as:

w=(E 9

where G is the maximum generation, & is a positive number. It is indicated that w is
decreased from 1 to 0 with the increasing of time step ¢.

To improve the global searching ability and avoid a local extremum, the particles are
categorized into multiple subpopulations. The number of subpopulations y is decreasing
from particles size s to 1 according to the indexes of the particles with the inertia weight w'.

w=(Cy 29)

p=|w's+1| (30)

It can be seen that w' has the same form of w from equation (29). w' decreases with the
run time increasing so as to decrease the subpopulations y. In every subpopulation, there
will be a different g,,.,, which is the best position of the subpopulation. The pseudocode of
the SFS is presented in Fig. 16.

begin
t<—0;
generating s positions uniformly and randomly in the whole search space;
evaluating each particle;
repeat
te—1t+1;
finding the respective g, in every subpopulation;

updating and evaluating each particle’s position using (3) and (4) with the
greedy selection;
until the stop condition is satisfied
end.

Fig. 16. The pseudo code of the main algorithm

3.2 SFS for benchmark function optimization (Ref.[20])

3.2.1 The benchmark functions

In order to evaluate the novel algorithm, a test suite of benchmark functions previously
introduced by Yao, Liu and Lin [60] was used (listed in Table 14), the ranges of their search
spaces, their dimensionalities, and their global minimum function values (ideal values) are
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Functions n S finin
fi®) =X 30 [-512,512]" f,6)=0
>l + Tl 30 [-10,10]"  f,(0)=

AE=3L ) x) 30 [<100,100]"  f,(0)=
f4(®) = max{fx;|, 1<i <nf 30 [-100,100]"  £,(G)=0
f5(%) = 215 (100(x;,, —x7)* +(x;~1)%) 30 [-30,30]"  f5(1)=0
fo@ =" (% +05)) 30 [-100,100]"  f;()=0, -05<p; <05
fr(®)=X" ix} +rand[0,1) 30 [-1.28,1.28]" £,(0)=0
fo(®) =-31, (x;sin(y/|xi]) 30 [-500,500]"  f4(420.97) = ~12569.5
fo(®) =31, (x} —10cos(27x;) +10) 30 [-5.12,5.12]" £,(0)=0
F1o(F) = —20exp(~0.2 %éxf) n ]

L 1 30 [-32,32] f10(0) =
—exp(— zl cos(27x;)) +20 + e
(%)= 40100 > -TIL 1cos(\xﬁ)+1 30 [-600,600]"  f,;(0)=0
Fial x)— {10sin?(zy,)

£y, 1)1+ 10sin? (zy,.)] 30 [-50,50]"  fpp(-1)=0

+(y, — 1} + 21 u(x;,10,100, 4)
f13(¥)=01 Sin2(37rx1)

2 (x
+(x, — 1)2[1 +sin?(27x, )]}
+3° u(x;,5,100,4)

f14(x) = (0.002

+Z]2'i1(j + X (=)

f15(%) = Zilil[ai —M 2

1)[1+sin*(37x;,)]

bl-2 +b;x5 + x4
f16(X) = 4xf - 2.13(11 + %x? + X%,

5.1 5
fi7(X) = (x; 3 xl =X - 6)2
47z V4

+10(1 - i) cos(x;)+10
87

2 4
—4x5 +4x,

30 [-50,50]"

[-65.54,

2 65.54]n

4 [-5,5]"

2 [-5,5]

2 [-5,15]"

fi13(1,...,1)=0

f14(-31.95) = 0.998

£15(0.1928,0.1908,0.1231,0.1358)
=3.075x104

£16(-0.09,0.71)=-1.0316

£17(9.42,2.47)=0.398
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14x, +6x7x, +3%,7)]x[30 + (2%, =3x,)* x 2 [-2,2]" f18(0,-1)=3
(18 — 32, +12x,% + 48x, — 36x,X, +27x,°)]
) 2 £1(0.114,0.556,0.852)
fro(X) = _Zil Ci exp[_Z?ﬂai]’(xj -pij) | 3 [01] :133.86
- 2 £,,(0.201,0.15,0.477,0.275,0.311, 0.657)
foo(X) = —ZL Ci eXP[—Z?ﬂ a;(x; = pi) ] 6 [01] a3
fan@ =2 1@ -a)(@-a) +¢ ] 4 [o,10]" fa(=4)=-103
[ (X) = _21‘7:1[(55 —a;)(X - ai)T T I 4 [Orlo]n fa(> ‘1) =-10.6
fas(%)= _2331[(97 —a)(x-a)" +c]" 4 [0,10]" fn(=4)=-107

Table 14. The 23 Benchmark Functions

also included in Table 14. The problem set contains a diverse set of problems, including
unimodal as well as multimodal functions, and functions with correlated and uncorrelated
variables. Functions f; - fs are unimodal. Function fs is the step function, which has one
minimum and is discontinuous. Function f; is a noisy quartic function. Functions fs - fi3 are
multimodal functions where the number of local minima increases exponentially with the
problem dimension. Functions fi4 - fo3 are low-dimensional functions which have only a few
local minima. As still a preliminary study on the new algorithm, the optimization problems
listed above are considered in this paper, and the more experiments are needed for future
studies.

Where n is the dimension size of the functions, fmin is the ideal function value, and
S e R" (search space).

Where G is the maximum generation, Func. = Functions, Algo. = Algorithms, Accuracy stands
for the fixed accuracy level, Best stands for the best function value over 30 runs, Mean indicates
the mean best function values, Std. Dev. stands for the standard deviation, Time stands for the
average CPU time (seconds) consumed within the fixed number of generations. Succ.Gens.
and Succ. Time stand for the average generation and average CPU time (seconds) achieving
the fixed accuracy, Succ. Runs stands for the success number over 30 runs.

3.2.2 Experimental setup

The algorithms used for comparison are differential evolution (DE) algorithm [47], particle
swarm optimization with inertia weight (PSO-w) [40], PSO with constriction factor (PSO-cf)
[41], and comprehensive learning particle swarm optimizer (CLPSO) [42]. In all the
experiments, the same population size popsize=100, total 30 runs are made, and the
experiments results are listed in Table 15 -Table 17. The initial population is generated
uniformly and randomly in the range as specified in Table 14. The parameters of the PSO-w
are that: learning rate c1=c,=2, inertia weight linearly decreased from 0.9 to 0.4 with run time
increasing, the maximum velocity vmax is set at 20% of the dynamic range of the variable on
each dimension; the parameters of the PSO-cf are that: c1= ¢,=2.01 and constriction factor
x=0.729844. The parameters of the CLPSO follow the suggestions from [42] except that the
refreshing gap m=2 for functions fi4-f3. The parameters of the SFS are that: 6 =5'=14. All
the algorithms are run on a PC with Pentium 4 CPU 2.4GHz.
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Func. Accuracy Algo. Best  Mean Std. Dev. Time Succ.Gens. Succ. Time Succ. Runs
DE 5.20e-14 3.74e-13 3.94e-13 54 933.4 3.7 30
PSO-w 1.79e-15 1.66e-13 4.59%-13 18.2  1056.3 12.1 30
G =f11500) le-6  PSO-cf 4.50e-45 2.28e-41 4.54e-41 19.8  349.8 43 30
CLPSO 3.22e-13 2.73e-12 1.68e-12 244  924.6 16.3 30
SFS 5.40e-34 8.78e-32 3.06e-31 185  573.8 7.55 30
DE 6.17e-10 3.74e-09 2.20e-09 9.0  1553.9 7.6 30
PSO-w 5.36e-12 6.67e-11 7.98e-11 26.2  1545.7 19.3 30
G =j;000) le-6  PSO-cf 3.29e-29 1.60e-00 4.22e-00 30.1  1612.7 22.5 23
CLPSO 1.63e-09 3.82e-09 1.73e-09 33.6  1453.8 213 30
SFS 3.36e-18 1.34e-14 7.28e-14 27.18 1323.7 18.7 30
DE 1.10e-11 1.85e-10 1.49e-10 32.8  3762.0 25.9 30
PSO-w 2.00e-02 2.40e-01 2.23e-01 75.0 5000 75.0 0
( G=j523000) le-6  PSO-cf 3.01e-19 3.33e+02 1.78e+03 86.3  2736.1 42.5 26
CLPSO 3.37e-02 4.20 e-01 3.62e-01 93.9 5000 93.9 0
SFS  4.02e-23 3.03e-21 3.11e-21 81.1  2093.7 35.6 30
DE 6.83e-13 3.10e-02 8.70e-02 23.9  4423.3 20.2 9
PSO-w 1.18e-02 7.02e-02 4.66e-02 63.4 5000 63.4 0
G =J§OOO) le-6  PSO-cf 1.48e-16 7.13e-13 2.19e-12 73.2  2893.4 424 30
CLPSO 6.88e-04 2.05e-03 1.25e-03 83.9 5000 83.9 0
SFS 6.97e-19 3.77e-17 5.31e-17 685 2970.6 40.7 30
DE 0  347e-31 245e-30 841 3966 16.2 30
f5 PSO-w 1.05e-02 1.82e+03 1.27e+03 251.5 20000 2515 0
G le-6  PSO-cf 1.87e-12 7.32e+03 2.46e+03 271.8 17837 242 4 9
=20000) CLPSO 1.68e-01 3.63e+01 3.12e+01 349.1 20000 349.1 0
SFS 7.00e-21 6.56e-16 1.81e-15 241.1 13827 172.4 30
DE 0 0 0 7.3 357.0 1.6 30
PSO-w 0 0 0 193 9217 12.7 30
G =j;6500) le-6 PSO-cf 0 0 0 20.7  189.0 2.6 30
CLPSO 0 0 0 257 7235 12.5 30
SFS 0 0 0 21.8  109.9 1.52 30
DE 1.97e-03 4.66e-03 1.30e-03 29.5 5000 29.5 0
PSO-w 2.99e-03 6.28e-03 2.17e-03 72.5 5000 72.5 0
G =J;7000) le-4  PSO-cf 9.86e-04 2.45e-03 1.38e-03 75.0 5000 75.0 0
CLPSO 1.03e-03 2.98e-03 9.72e-04 93.5 5000 93.5 0
SFS 4.74e-05 9.53e-05 3.26e-05 73.9  3860.8 64.1 18

Table 15. The simulation results for fi-f7
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Accuracy Algo. Best Mean  Std. Dev. Time Succ.Gens Succ. Time Succ. Runs

Func.

DE -11719  -11234 4555 415 5000 41.5 0

PSO-w -10495 -9363.3 4453 728 5000 72.8 0

G =J§OOO) -12000 PSO-cf -10398 -9026.1 6569 83.3 5000 83.3 0
CLPSO -12569 -12271 177.8 921 17742 28.4 30

SFS -8952 -7216 7219 743 5000 74.3 0

DE 9.95e-00 8.10e+01 3.23e+01 36.1 5000 36.1 0

PSO-w 7.96e-00 2.10e+01 8.01e-00 67.0 5000 67.0 0

G =f59000) le-3  PSO-cf 2.69e+01 6.17e+01 1.84e+01 78.9 5000 78.9 0
CLPSO 9.91e-01 4.13e+00 1.79e+00 84.3 5000 84.3 0

SFS 2.98e-00 6.93e-00 1.68e-00 75.6 5000 75.6 0

DE 5.79e-08 1.71e-07 7.66e-08 7.7 844.5 44 30

PSO-w 1.39e-07 1.66e-06 2.66e-06 21.0 1344.3 18.6 30

G Z 110500) le-3  PSO-cf 2.67e-15 5.59e-01 7.30e-01 225  845.4 12.6 19
CLPSO 3.31e-06 6.81e-06 1.94e-06 27.1 1334.6 239 30

SFS 2.66e-15 8.82e-15 3.95e-15 21.5  552.8 8.2 30

DE 0 4.44e-04 1.77e-03 10.8 714.4 4.0 30

PSO-w 0 1.59e-01 2.19e-02 285 1833.7 25.3 7

G 5121000) le-3  PSO-cf 0 1.11e-02 1.25e-02 30.9 13515 21.1 7
CLPSO 1.64e-14 2.96e-04 1.46e-03 36.7 1423.7 25.3 29

SFS 0 0 0 304 3372 5.1 30

DE 3.40e-15 3.67e-14 4.07e-14 9.5 594.7 3.8 30

PSO-w 8.85e-15 2.21 e-00 5.52e-00 29.0 1154.6 21.4 30

C 5112500) le-3  PSO-cf 1.57e-32 1.66e+01 1.81e+01 31.9  698.1 15.7 21
CLPSO 8.80e-12 4.80e-11 3.96e-11 35.2 1023.9 23.5 30

SFS 2.60e-32 7.51e-31 2.08e-30 225 2019 3.2 30

DE 4.13e-14 291e-13 2.88e-13 9.8 748.8 5.0 30

PSO-w 8.23e-07 5.72e+02 3.57e+02 37.0 778.7 18.8 29

(G=f}3500) le-3  PSO-cf 1.35e-32 2.40e+02 2.40e+02 33.6  606.8 13.6 22
CLPSO 1.18e-10 6.42e-10 4.46e-10 38.6  637.3 16.7 30

SFS 2.21e-32 4.90e-31 1.37e-30 224  266.5 4.2 30

Table 16. The simulation results for fs-f13

Succ. Succ.

Func.  Accuracy Algo. Best Mean  Std. Dev. Time Succ.Gens ..
Time Runs
DE 0.998 0.998 2.88e-16 1.2 32.5 0.3 30
f PSO-w  0.998 1.026 1.52e-01 14 43.4 0.7 30
(G=11400) 0.998+1e-3 PSO-cf  0.998 0.998 8.69e-13 1.52 19.9 0.3 30
CLPSO  0.998 0.998 5.63e-10 2.1 37.5 0.8 30
SFS 0.998 0.998 1.43e-16 1.8 25.6 0.4 30

DE 3.0749e-04 4.7231e-02 3.55e-04 31.5  3859.7 29.9 2

PSO-w 3.0749e-04 2.0218e-03 5.47e-03 40.3  2837.0 29.0 22

G 515000) 3.175x1e-4 PSO-cf 3.0749e-04 2.0225e-03 5.47e-03 43.1 824.5 8.9 27
CLPSO 3.2847e-04 5.3715e-04 6.99e-05 67.7  1413.7 241 29

SFS  3.0749e-04 3.0749e-04 2.01e-19 54.5 612.9 8.7 30
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DE -1.0316 -1.0316  6.77e-13 0.6 247 0.1 30
PSO-w  -1.0316 -1.0316  8.80e-12 0.9 20.7 0.2 30

(G]jiOO) -1.0317 PSO-cf -1.0316  -1.0316 59212 09 206 02 30
CLPSO -1.0316  -1.0316 850e-14 15 794 13 30
SFS  -1.0316  -1.0316 590e-16 1.1 152 02 30
DE 03979 03979 114e-08 06  37.6 02 30
PSO-w 03979 03979 23312 09 324 03 30
(GinO) 03981 PSO-cf 03979 03979 525e12 09 214 02 30
CLPSO 03979 03979 1.08e-13 15 838 14 30
SFS 03979  0.3979 0 11 162 02 30
DE 3 3 33le-15 07 258 01 30
PSO-w 3 3 250e-11 1.0 481 05 30
(G]jiOO) 3+le-4 PSO-cf 3 3 2.05e-11 1.0 311 03 30
CLPSO 3 3 554e-13 16 491 08 30
SFS 3 3 333e15 11 248 02 30
DE  -3.8628  -3.8628 197e-15 07 146 01 30
PSO-w -3.8628  -3.8628 2.66e-11 11 149 02 30
(Gfioo) -3.86+1e-4 PSO-cf -3.8628  -3.8628 2.92e-12 1.1 9.1 01 30
CLPSO -3.8628  -3.8628 6.07e-12 17 282 04 30
SFS  -3.8628  -3.8621 2.60e-15 11  17.1 02 30
DE 332 3215 003 14 181 13 19

PSO-w  -3.322 -3.256 0.066 2.8 141.7 21 17
fo -3.32+0.01 PSO-cf -3.322 -3.277 0.058 2.8 91.2 1.3 15

(G =200) CLPSO 3322 3274 0059 35 1222 21 13
SFS 3322 3322 136e15 24 449 055 30

DE  -1015 _ -1015 467¢06 10 _ 482 _ 05 30

PSO-w - 657  -201 110e00 12 100 120

fa 10  PSO-cf -1015 - 623 32500 13 84 11 13
(G =100) CLPSO -1014 - 957 428e-01 18 802 15 17
SFS  -1015  -1015 5.70e-15 1.6 211 03 30

DE 1040  -1040 207e07 12 _ 395 05 30

PSO-w - 461  -214 834e01 12 100 12 0

f2 10  PSO<f -1040 - 647 356e00 14 495 07 21
(G =100) CLPSO -1034 - 940 11200 19 432 08 23
SFS 1040  -1040 466e16 16 192 03 30

DE 1054  -1054 321e06 13 381 05 30

PSO-w - 663  -220 101e00 14 100 14 0

f» 10  PSO-cf -1054 - 811 34701 18 515 09 19
(G =100) CLPSO -1046 - 947 125¢-00 20 474 10 25
SFS  -1054  -1054 16515 17 180 03 30

Table 17. The simulation results for fi4-f»

3.2.3 Unimodal functions

The results of 30 independent runs for functions f; - f; are summarized in Table 15. From
Table 15, SFS is successful over all the 30 runs for f; - fs. For f;, it is successful in 18 runs but
all the PSOs failed over all the runs. Moreover, PSOs has more time consumption of
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achieving the fixed accuracy than that of SFS except that PSO-cf has smaller time
consumption for f;. Although DE has less time consumption within the fixed number of
generations than SFS and PSOs, it failed in 21 runs for f; and all the 30 runs for f;.

3.2.4 Multimodal functions

1. Multimodal functions with many local minima: Multimodal functions with many local
minima are often regarded as being difficult to optimize. fs - fi3 are such functions
where the number of local minima increases exponentially as the dimension of the
function increases. The dimensions of fs-f13 were all set to 30 in our experiments as [60].
Table 16 gives the results of 30 independent runs. From Table 16, SFS is successful over
all the 30 runs for functions fio-fi3 but fs and fo. For functions fio-fi3, SFS has faster
convergence speed with the fewer generations and computation time to achieve the
fixed accuracy level than DE and PSOs except DE for fip and fi;.

2. Multimodal functions with only a few local minima: For functions fi4-f23, the number of
local minima and the dimension are small. Table 17 summarizes the results over 30
runs. From Table 17, it is apparent that SFS performs better than DE and PSOs for
functions fis-fos.

Table 15 - Table 17 indicates that SFS is suitable for solving the most employed unimodal
and multimodal function optimizations with better convergence ability. Compared with the
three modified PSOs, SFS has better global search ability with more successful runs for the
benchmark functions. The Tables also show that SFS has often higher computational
complexity with more time consumption within the given generations than DE but PSO-cf
and CLPSO.
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