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1. Introduction 

Search is one of the most frequently used problem solving methods in artificial intelligence 

(AI) [1], and search methods are gaining interest with the increase in activities related to 

modeling complex systems [2, 3]. Since most practical applications involve objective 

functions which cannot be expressed in explicit mathematical forms and their derivatives 

cannot be easily computed, a better choice for these applications may be the direct search 

methods as defined below: A direct search method for numerical optimization is any algorithm 

that depends on the objective function only through ranking a countable set of function values. Direct 

search methods do not compute or approximate values of derivatives and remain popular 

because of their simplicity, flexibility, and reliability [4]. Among the direct search methods, 

hill climbing methods often suffer from local minima, ridges and plateaus. Hence, random 

restarts in search process can be used and are often helpful. However, high-dimensional 

continuous spaces are big places in which it is easy to get lost for random search. 

Resultantly, augmenting hill climbing with memory is applied and turns out to be effective 

[5]. In addition, for many real-world problems, an exhaustive search for solutions is not a 

practical proposition. It is common then to resort to some kind of heuristic approach as 

defined below: heuristic search algorithm for tackling optimization problems is any algorithm that 

applies a heuristic to search through promising solutions in order to find a good solution. This 

heuristic search allows the bypass of the “combinatorial explosion” problem [6]. Those 

techniques discussed above are all classified into heuristics involved with random move, 

population, memory and probability model [7]. Some of the best-known heuristic search 

methods are genetic algorithm (GA), tabu search and simulated annealing, etc.. A standard 

GA has two drawbacks: premature convergence and lack of good local search ability [8]. In 

order to overcome these disadvantages of GA in numerical optimization problems, 

differential evolution (DE) algorithm has been introduced by Storn and Price [9].  

In the past 20 years, swarm intelligence computation [10] has been attracting more and more 
attention of researchers, and has a special connection with the evolution strategy and the 
genetic algorithm [11]. Swarm intelligence is an algorithm or a device and illumined by the 
social behavior of gregarious insects and other animals, which is designed for solving 
distributed problems. There is no central controller directing the behavior of the swarm; 
rather, these systems are self-organizing. This means that the complex and constructive 
collective behavior emerges from the individuals (agents) who follow some simple rules and 
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communicate with each other and their environments. Swarms offer several advantages 
over traditional systems based on deliberative agents and central control: specifically 
robustness, flexibility, scalability, adaptability, and suitability for analysis. Since 1990's, two 
typical swarm intelligence algorithms have emerged. One is the particle swarm optimization 
(PSO) [12], and the other is the ant colony optimization (ACO) [13]. 
In this chapter, two recently proposed swarm intelligence algorithms are introduced. They 
are seeker optimization algorithm (SOA) [3, 14-19] and stochastic focusing search (SFS) [20, 
21], respectively.  

2. Seeker Optimization Algorithm (SOA) and its applications 

2.1 Seeker Optimization Algorithm (SOA) [3, 14-19] 

Human beings are the highest-ranking animals in nature. Optimization tasks are often 
encountered in many areas of human life [6], and the search for a solution to a problem is 
one of the basic behaviors to all mankind [22]. The algorithm herein just focuses on human 
behaviors, especially human searching behaviors, to be simulated for real-parameter 
optimization. Hence, the seeker optimization algorithm can also be named as human team 
optimization (HTO) algorithm or human team search (HTS) algorithm. In the SOA, 
optimization process is treated as a search of optimal solution by a seeker population.  

2.1.1 Human searching behaviors 

Seeker optimization algorithm (SOA) models the human searching behaviors based on their 
memory, experience, uncertainty reasoning and communication with each other. The 
algorithm operates on a set of solutions called seeker population (i.e., swarm), and the 
individual of this population are called seeker (i.e., agent). The SOA herein involves the 
following four human behaviours. 

A.  Uncertainty Reasoning behaviours 

In the continuous objective function space, there often exists a neighborhood region close to 
the extremum point. In this region, the function values of the variables are proportional to 
their distances from the extremum point. It may be assumed that better points are likely to 
be found in the neighborhood of families of good points. In this case, search should be 
intensified in regions containing good solutions through focusing search [2]. Hence, it is 
believed that one may find the near optimal solutions in a narrower neighborhood of the 
point with lower objective function value and find them in a wider neighborhood of the 
point with higher function value. 
“Uncertainty” is considered as a situational property of phenomena [23], and precise 
quantitative analyses of the behavior of humanistic systems are not likely to have much 
relevance to the real-world societal, political, economic, and other type of problems. Fuzzy 
systems arose from the desire to describe complex systems with linguistic descriptions, and 
a set of fuzzy control rules is a linguistic model of human control actions directly based on a 
human thinking about the operation. Indeed, the pervasiveness of fuzziness in human 
thought processes suggests that it is this fuzzy logic that plays a basic role in what may well 
be one of the most important facets of human thinking [24]. According to the discussions on 
the above human focusing search, the uncertainty reasoning of human search could be 
described by natural linguistic variables and a simple fuzzy rule as “If {objective function 
value is small} (i.e., condition part), Then {step length is short} (i.e., action part)”. The 
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understanding and linguistic description of the human search make a fuzzy system a good 
candidate for simulating human searching behaviors.  

B. Egotistic Behavior 

Swarms (i.e., seeker population here) are a class of entities found in nature which specialize 

in mutual cooperation among them in executing their routine needs and roles [25]. There are 

two extreme types of co-operative behavior. One, egotistic, is entirely pro-self and another, 

altruistic, is entirely pro-group [26]. Every person, as a single sophisticated agent, is 

uniformly egotistic, believing that he should go toward his personal best 

position ,i bestp
j

through cognitive learning [27].  

C. Altruistic Behavior 

The altruistic behavior means that the swarms co-operate explicitly, communicate with each 
other and adjust their behaviors in response to others to achieve the desired goal. Hence, the 
individuals exhibit entirely pro-group behavior through social learning and simultaneously 
move to the neighborhood’s historical best position or the neighborhood’s current best 
position. As a result, the move expresses a self-organized aggregation behavior of swarms 
[28]. The aggregation is one of the fundamental self-organization behaviors of swarms in 
nature and is observed in organisms ranging from unicellular organisms to social insects 
and mammals [29]. The positive feedback of self-organized aggregation behaviors usually 
takes the form of attraction toward a given signal source [28]. For a “black-box” problem in 
which the ideal global minimum value is unknown, the neighborhood’s historical best 
position or the neighborhood’s current best position is used as the only attraction signal 
source for the self-organized aggregation behavior.  

C. Pro-Activeness Behavior 

Agents (i.e., seekers here) enjoy the properties of pro-activeness: agents do not simply act in 
response to their environment; they are able to exhibit goal-directed behavior by taking the 
initiative [30]. Furthermore, future behavior can be predicted and guided by past behavior 
[31]. As a result, the seekers may be pro-active to change their search directions and exhibit 
goal-directed behaviors according to the response to his past behaviors.  

2.1.2 Implementation of Seeker Optimization Algorithm 

Seeker optimization algorithm (SOA) operates on a search population of s D-dimensional 

position vectors, which encode the potential solutions to the optimization problem at hand. 

The position vectors are represented as 1[ , , , , ],i i ij iDx x x x=j A A  i=1, 2, ···, s, where xij is the 

jth element of ix
j

and s is the population size. Assume that the optimization problems to be 

solved are minimization problems. 

The main steps of SOA are shown as Fig. 1. In order to add a social component for social 

sharing of information, a neighborhood is defined for each seeker. In the present studies, the 

population is randomly divided into three subpopulations (all the subpopulations have the 

same size), and all the seekers in the same subpopulation constitute a neighborhood. A 

search direction 1( ) [ , , ]i i iDd t d d=
j

A and a step length vector 1( ) [ , , ]i i iDtα α α=j A are computed 

(see Section 1.1.3 and 1.1.4) for the ith seeker at time step t, where ( )ij tα ≥0, ( )ijd t ∈ {-1,0,1}, 

i=1,2,···,s; j=1,2,···,D. When ( ) 1,ijd t = it means that the i-th seeker goes towards the positive 

direction of the coordinate axis on the dimension j; when ( ) 1,ijd t = −  the seeker goes 
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towards the negative direction; when ( ) 0,ijd t =  the seeker stays at the current position on the 

corresponding dimension. Then, the jth element of the ith seeker’s position is updated by: 

 ( 1) ( ) ( ) ( )ij ij ij ijx t x t t d tα+ = +  (1) 

Since the subpopulations are searching using their own information, they are easy to converge 

to a local optimum. To avoid this situation, an inter-subpopulation learning strategy is used, 

i.e., the worst two positions of each subpopulation are combined with the best position of each 

of the other two subpopulations by the following binomial crossover operator: 

 
,best

,worst
,worst

if 0.5

elsen

n

lj j

k j
k j

x R
x

x

≤⎧⎪= ⎨
⎪⎩

 (2) 

where Rj is a uniformly random real number within [0,1], ,worstnk jx is denoted as the jth 

element of the nth worst position in the kth subpopulation, ,bestljx  is the jth element of the 

best position in the lth subpopulation, the indices k, n, l are constrained by the combination 

(k,n,l)∈ {(1,1,2), (1,2,3), (2,1,1), (2,2,3), (3,1,1), (3,2,2)}, and j=1,···,D. In this way, the good 

information obtained by each subpopulation is exchanged among the subpopulations and 

then the diversity of the population is increased.  

2.1.3 Search direction 

The gradient has played an important role in the history of search methods [32]. The search 

space may be viewed as a gradient field [33], and a so-called empirical gradient (EG) can be 

determined by evaluating the response to the position change especially when the objective 

function is not be available in a differentiable form at all [5]. Then, the seekers can follow an 

EG to guide their search. Since the search directions in the SOA does not involve the 

magnitudes of the EGs, a search direction can be determined only by the signum function of 

a better position minus a worse position. For example, an empirical search direction 

( )d sign x x′ ′′= −
j j j

when x′j  is better than x′′j , where the function sign(·) is a signum function on 

each element of the input vector. In the SOA, every seeker i (i=1,2,···,s) selects his search 

direction based on several EGs by evaluating the current or historical positions of himself or 

his neighbors. They are detailed as follows. 

According to the egotistic behavior mentioned above, an EG from ( )ix t
j

to , ( )i bestp t
j

can be 

involved for the ith seeker at time step t. Hence, each seeker i is associated with an empirical 

direction called as egotistic direction , 1, 2 , ,( ) [ , , , ] :i ego i ego i ego iD egod t d d d=
j

A  

 , ,( ) ( ( ) ( ))i ego i best id t sign p t x t= −
j j j

 (3) 

 

On the other hand, based on the altruistic behavior, each seeker i is associated with two 

optional altruistic direction, i.e., 
1, ( )i altd t

j
and

2, ( )i altd t
j

: 

 
1, ,( ) ( ( ) ( ))i alt i best id t sign g t x t= −

j j j
 (4) 

 
2, ,( ) ( ( ) ( ))i alt i best id t sign l t x t= −

j j j
 (5) 
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where , ( )i bestg t
j

 represents the neighborhood’s historical best position up to the time step t, 

, ( )i bestl t
j

 represents the neighborhood’s current best position. Here, the neighborhood is the 

one to which the ith seeker belongs. 

Moreover, according to the pro-activeness behavior, each seeker i is associated with an 

empirical direction called as pro-activeness direction , ( )i prod t
j

: 

 , 1 2( ) ( ( ) ( ))i pro i id t sign x t x t= −
j j j

 (6) 

where 1 2, { , 1, 2},t t t t t∈ − −  1( )ix t
j

and 2( )ix t
j

 are the best one and the worst one in the set 

{ ( ), ( 1), ( 2)i i ix t x t x t− −j j j
} respectively. 

According to human rational judgment, the actual search direction of the ith 

seeker, 1 2( ) [ , , , ],i i i iDd t d d d=
j

A  is based on a compromise among the aforementioned four 

empirical directions, i.e., , ( )i egod t
j

, 
1, ( )i altd t

j
,

2, ( )i altd t
j

 and , ( )i prod t
j

. In this study, the jth 

element of ( )id t
j

 is selected applying the following proportional selection rule (shown  

as Fig. 2): 

 

(0)

(0) (0) (1)

(0) (1)

0 if 

1 if 

1 if 1

j j

ij jj j j

jj j

r p

d p r p p

p p r

⎧ ≤
⎪⎪= < ≤ +⎨
⎪
− + < ≤⎪⎩

 (7) 

where i=1,2,···,s, j=1,2,···,D, jr is a uniform random number in [0,1], ( )m
jp  ( {0,1, 1})m∈ −  is 

defined as follows: In the set { ,ij egod ,
1,ij altd , 

2,ij altd , ,ij prod } which is composed of the jth 

elements of , ( )i egod t
j

, 
1, ( )i altd t

j
,

2, ( )i altd t
j

 and , ( ),i prod t
j

let num(1) be the number of “1”, num(-1) be 

the number of “-1”, and num(0) be the number of “0”, then 
(1) ( 1)

(1) ( 1), ,
4 4

j j

num num
p p

−
−= =  

(0)
(0) .

4
j

num
p = For example, if 

1, ,1, 1,ij ego ij altd d= = −  
2, ,1, 0,ij alt ij prod d= − = then num(1) =1, num(-

1)=2, and num(0)=1. So, (1) ( 1) (0)1 2 1
, , .

4 4 4
j j jp p p−= = =  

2.1.4 Step length 

In the SOA, only one fuzzy rule is used to determine the step length, namely, “If {objective 
function value is small} (i.e., condition part), Then {step length is short} (i.e., action part)”. 
Different optimization problems often have different ranges of fitness values. To design a 
fuzzy system to be applicable to a wide range of optimization problems, the fitness values of 
all the seekers are descendingly sorted and turned into the sequence numbers from 1 to s as 
the inputs of fuzzy reasoning. The linear membership function is used in the conditional 
part (fuzzification) since the universe of discourse is a given set of numbers, i.e., {1,2,···,s}. 
The expression is presented as (8). 

 max max min( )
1
i

i

s I

s
μ μ μ μ

−
= − −

−
 (8) 
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where Ii is the sequence number of ( )ix t
j

after sorting the fitness values, Ǎmax is the maximum 

membership degree value which is assigned by the user and equal to or a little less than 1.0. 

Generally, Ǎmax is set at 0.95. 
In the action part (defuzzification), the Gaussian membership function 

2 2/(2 )
( )  ( 1, , ; 1, , )ij j

ij e i s j D
α δμ α −= = =A A  is used for the jth element of the ith seeker’s step 

length. For the Bell function, the membership degree values of the input variables beyond [-
3δj, 3δj] are less than 0.0111 (Ǎ(±3δj)=0.0111), which can be neglected for a linguistic atom 
[34]. Thus, the minimum value Ǎmin=0.0111 is fixed. Moreover, the parameter δj of the 

Gaussian membership function is the jth element of the vector 1[ , , ]Dδ δ δ=
j

A  which is  

given by: 

 ( )best randabs x xδ ω= ⋅ −
j j j

 (9) 

where abs(·) returns an output vector such that each element of the vector is the absolute 

value of the corresponding element of the input vector, the parameter ω is used to decrease 

the step length with time step increasing so as to gradually improve the search precision. In 

general, the ω is linearly decreased from 0.9 to 0.1 during a run. The bestx
j

and randx
j

 are the 

best seeker and a randomly selected seeker in the same subpopulation to which the ith 

seeker belongs, respectively. Notice that randx
j

is different from bestx
j

, and δ
j

 is shared by all 

the seekers in the same subpopulation. Then, the action part of the fuzzy reasoning (shown 

in Fig. 3) gives the jth element of the ith seeker’s step length 1[ , , ]i i iDα α α=j A  (i=1,2,···,s; 

j=1,2,···,D): 

 log( ( ,1))ij j iRANDα δ μ= −  (10) 

where jδ  is the jth element of the vectorδ
j

in (9), the function log(·) returns the natural 

logarithm of its input, the function RAND(Ǎi,1) returns a uniform random number within 

the range of [Ǎi,1] which is used to introduce the randomicity for each element of iα
j

and 

improve local search capability. 

2.1.5 Further analysis on the SOA 

Unlike GA, SOA conducts focusing search by following the promising empirical directions 
until to converge to the optimum for as few generations as possible. In this way, it does not 
easily get lost and then locates the region in which the global optimum exists.  
Although the SOA uses the same terms of the personal/population best position as PSO and 

DE, they are essentially different. As far as we know, PSO is not good at choosing step 

length [35], while DE sometimes has a limited ability to move its population large distances 

across the search space and would have to face with stagnation puzzledom [36]. Unlike PSO 

and DE, SOA deals with search direction and step length, independently. Due to the use of 

fuzzy rule: “If {fitness value is small}, Then {step length is short}”, the better the position of the 

seeker is, the shorter his step length is. As a result, from the worst seeker to the best seeker, 

the search is changed from a coarse one to a fine one, so as to ensure that the population can 

not only keep a good search precision but also find new regions of the search space. 

Consequently, at every time step, some seekers are better for “exploration”, some others 
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better for “exploitation”. In addition, due to self-organized aggregation behavior and the 

decreasing parameter ω  in (9), the feasible search range of the seekers is decreasing with 

time step increasing. Hence, the population favors “exploration” at the early stage and 

“exploitation” at the late stage. In a word, not only at every time step but also within the 

whole search process, the SOA can effectively balance exploration and exploitation, which 

could ensure the effectiveness and efficiency of the SOA [37]. 

According to [38], a “nearer is better (NisB)” property is almost always assumed: most of 

iterative stochastic optimization algorithms, if not all, at least from time to time look around 

a good point in order to find an even better one. Furthermore, the reference [38] also pointed 

out that an effective algorithm may perfectly switch from a NisB assumption to a “nearer is 

worse (NisW)” one, and vice-versa. In our opinion, SOA is potentially provided with the 

NisB property because of the use of fuzzy reasoning and can switch between a NisB 

assumption and a NisW one. The main reason lies in the following two aspects. On the one 

hand, the search direction of each seeker is based on a compromise among several empirical 

directions, and different seekers often learn from different empirical points on different 

dimensions instead of a single good point as mentioned by NisB assumption. On the other 

hand, uncertainty reasoning (fuzzy reasoning) used by SOA would let a seeker’s step length 

“uncertain”, which uncertainly lets a seeker nearer to a certain good point, or farer away from 

another certain good point. Both the two aspects can boost the diversity of the population. 

Hence, from Clerc’s point of view [38], it is further proved that SOA is effective. 

 

begin 

t←0; 

generating s positions uniformly and randomly in search 

space; 

repeat 

          evaluating each seeker; 

          computing ( )id t
j

 and ( )i tαj  for each seeker i; 

          updating each seeker’s position using (1); 

          t←t+1; 

until the termination criterion is satisfied 

end. 

Fig. 1. The main step of the SOA. 

 

 

Fig. 2. The proportional selection rule of search directions 
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Fig. 3. The action part of the Fuzzy reasoning. 

2.2 SOA for benchmark function optimization (Refs.[3,16, 18) 

Twelve benchmark functions (listed in Table 1) are chosen from [39] to test the SOA with 
comparison of PSO-w (PSO with adaptive inertia weight) [40], PSO-cf (PSO with 
constriction factor) [41], CLPSO (comprehensive learning particle swarm optimizer) [42], the 
original DE [9], SACP-DE (DE with self-adapting control parameters) [39] and L-SaDE (the 
self-adaptive DE) [43]. The Best, Mean and Std (standard deviation) values of all the 
algorithms for each function over 30 runs are summarized in Table 2. In order to determine 
whether the results obtained by SOA are statistically different from the results generated by 
other algorithms, the T-tests are conducted and listed in Table 2, too. An h value of one 
indicates that the performances of the two algorithms are statistically different with 95% 
certainty, whereas h value of zero implies that the performances are not statistically 
different. The CI is confidence interval. The Table 2 indicates that SOA is suitable for solving 
the employed multimodal function optimizations with the smaller Best, Mean and std values 
than most of other algorithms for most of the functions. In addition, most of the h values are 
equal to one, and most of the CI values are less than zero, which shows that SOA is 
statistically superior to most of the other algorithms with the more robust performance. The 
details of the comparison results are as follows. Compared with PSO-w, SOA has the 
smaller Best, Mean and std values for all the twelve benchmark functions. Compared with 
PSO-cf, SOA has the smaller Best, Mean and std values for all the twelve benchmark 
functions expect that PSO-cf also has the same Best values for the functions 2-4, 6, 11 and 12. 
Compared with CLPSO, SOA has the smaller Best, Mean and std values for all the twelve 
benchmark functions expect that CLPSO also has the same Best values for the functions 6, 7, 
9, 11 and 12. Compared with SPSO-2007, SOA has the smaller Best, Mean and std values for 
all the twelve benchmark functions expect that SPSO-2007 also has the same Best values for 
the functions 7-12. Compared with DE, SOA has the smaller Best, Mean and std values for all 
the twelve benchmark functions expect that DE also has the same Best values for the 
functions 3, 6, 9, 11 and 12. Compared with SACP-DE, SOA has the smaller Best, Mean and 
std values for all the twelve benchmark functions expect that SACP-DE can also find the 
global optimal solutions for function 3 and has the same Best values for the functions 6, 7, 11 
and 12. Compared with L-SaDE, SOA has the smaller Best, Mean and std values for all the 
twelve benchmark functions expect that L-SaDE can also find the global optimal solutions 
for function 3 and has the same Best values for the functions 6, 9 and 12. 
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Table 1. The employed benchmark functions. 
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function Index PSO-ω PSO-cf CLPSO SPSO-2007 DE SACP-DE L-SaDE SOA 

Best 2.7136e-3 1.0861e-3 3.3596e-3 7.6038e-3 1.8195e-3 3.7152e-3 1.0460e-3 
4.0153e

-5 

Mean 7.1299e-3 2.5423e-3 5.1258e-3 5.0229e-2 4.3505e-3 5.5890e-3 4.2653e-3 
9.7068e

-5 

Std 2.3404e-3 9.7343e-4 1.1883e-3 3.5785e-2 1.2317e-3 1.1868e-3 1.7366e-3 
4.8022e

-5 

h 1 1 1 1 1 1 1 - 

1 

CI 
[-0.0081 -
0.0060] 

[-0.0029 -
0.0020] 

[-0.0056 -
0.0045] 

[-0.0663 -
0.0339] 

[-0.0048 -
0.0037] 

[-0.0060 -
0.0050] 

[-0.0050 -
0.0034] 

- 

Best 7.3196e-7 2.6645e-15 6.3072e-4 1.7780e+0 8.5059e-8 5.2355e-9
1.2309e-

11 
2.6645e

-15 

Mean 1.7171e-6 8.0458e-1 8.2430e-4 3.1720e+0 1.6860e-7 1.12625e-8
7.0892e-

11 
2.6645e

-15 

Std 8.8492e-7 7.7255e-1 1.2733e-4 9.1299e-1 7.3342e-8 4.1298e-9
4.1709e-

11 
0 

h 1 1 1 1 1 1 1 - 

2 

CI 
[-2.12e-6 -
1.32e-6] 

[-1.1543 -
0.4549] 

[-8.82e-4 -
7.67e-4] 

[-3.5853 -
2.7587] 

[-2.02e-7 -
1.35e-7]

[-1.31e-8 -
9.39e-9]

[-8.98e-11 
-5.20e-11] 

- 

Best 2.2204e-15 0 1.7472e-7 6.6613e-16 0 0 0 0 

Mean 8.3744e-3 1.9984e-2 2.4043e-6 1.0591e-2 4.9323e-4 0 0 0 

Std 7.7104e-3 2.1321e-2 3.6467e-6 1.1158e-2 2.2058e-3 0 0 0 

h 1 1 1 1 0 - - - 3 

CI 
[-0.0118 -
0.0049] 

[-0.0296 -
0.0103] 

[-4.06e-6 -
7.54e-7] 

[-0.0156 -
0.0055] 

[-0.0015 
5.0527e-

4] 
- - - 

Best 1.2781e-13 1.5705e-32 1.8074e-7 5.2094e-22
2.9339e-

15 
2.2953e-17

2.5611e-
21 

1.5705e
-32 

Mean 2.6878e-10 1.1402e-1 5.7391e-7 1.3483e+0
2.5516e-

14 
1.3700e-16

8.0092e-
20 

1.5808e
-30 

Std 6.7984e-10 1.8694e-1 2.4755e-7 1.3321e+0
1.8082e-

14 
8.7215e-17

7.9594e-
20 

3.8194e
-30 

h 0 1 1 1 1 1 1 - 

4 

CI 
[-5.75e-10 
3.70e-11] 

[-0.1986 -
0.0294] 

[-6.86e-7 -
4.62e-7] 

[-1.9513 -
0.7453] 

[-3.4e-14 -
1.7e-14]

[-1.8e-16 -
9.8e-17]

[-1.12e-19 
-4.41e-20] 

- 

Best 1.6744e-12 1.3498e-30 4.2229e-6 1.0379e-19
2.5008e-

14 
3.8881e-16

1.0668e-
21 

6.1569e
-32 

Mean 1.0990e-3 1.0987e-3 6.8756e-6 1.3031e+1
1.0165e-

13 
9.7736e-16

3.4614e-
19 

3.3345e
-29 

Std 3.4744e-3 3.3818e-3 2.7299e-6 1.1416e+1
7.1107e-

14 
8.4897e-16

4.7602e-
19 

8.3346e
-29 

h 0 0 1 1 1 1 1 - 

5 

CI 
[-0.0027 

4.6368e-4]
[-0.0026 

4.3212e-4]
[-8.11e-6 -
5.64e-6] 

[-18.1990 -
7.8633] 

[-1.3e-13 -
6.9e-14]

[-1.4e-15 -
5.9e-16]

[-5.62e-1 
1.31e-19] 

- 

Best 3.0750e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4 
3.0749e

-4 

Mean 4.9063e-4 4.4485e-4 3.5329e-4 4.9463e-4 4.4485e-4 3.0750e-4 3.0750e-4 
3.0749e

-4 

Std 3.8608e-4 3.3546e-4 2.0478e-4 1.7284e-4 3.3546e-4 3.0191e-9 2.8726e-9 
9.6334e

-20 

6 

h 1 0 0 1 0 1 1 - 
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CI 

[-3.57e-4 -
9.49e-5] 

[-2.89e-4 
1.45e-5] 

[-1.39e-4 
4.69e-5] 

[-2.65e-4 -
1.09e-4] 

[-2.89e-4 
1.45e-5]

[-1.15e-8 -
8.74e-9]

[-1.14e-8 -
8.7e-9] 

- 

Best -1.031626 -1.031627 -1.031628 -1.031628 -1.031627 -1.031628 -1.031627 
-

1.03162
8 

Mean -1.031615 -1.031612 -1.031617 -1.031627 -1.031619 -1.031617 -1.031613 
-

1.03162
8 

Std 8.6069e-6 7.8874e-6 7.4529e-6 3.5817e-6 8.4157e-6 8.0149e-6 9.0097e-6 
7.6401e

-13 

h 1 1 1 0 1 1 1 - 

7 

CI 
[-1.72e-5 -
9.49e-6] 

[-2.00e-5 -
1.28e-5] 

[-1.53e-5 -
8.54e-6] 

[-2.47e-6 
7.76e-6] 

[-1.28e-5 -
5.21e-6]

[-1.52e-5 -
7.99e-6]

[-1.92e-5 -
1.11e-5] 

- 

Best 3.97890e-1 3.97898e-1 3.97897e-1 3.97887e-1
3.97902e-

1 
3.97888e-1

3.97889e-
1 

3.97887
e-1 

Mean 3.97942e-1 3.97939e-1 3.97947e-1 3.97892e-1
3.97947e-

1 
3.97932e-1

3.97941e-
1 

3.97887
e-1 

Std 3.3568e-5 3.0633e-5 3.1612e-5 1.8336e-5 3.0499e-5 3.3786e-5
3.76524e-

5 
1.2874e

-7 

h 1 1 1 0 1 1 1 - 

8 

CI 
[-6.95e-5 -
3.93e-5] 

[-6.52e-5 -
3.74e-5] 

[-7.37e-5 
4.51e-5] 

[-1.277e-5 
3.92e-6] 

[-7.38e-5 -
4.62e-5]

[-6.00e-5 -
2.94e-5]

[-7.09e-5 -
3.69e-5] 

- 

Best 3.0000 3.0000 3 3 3 3.0000 3 3 

Mean 3.0000 3.0000 3.0000 3.0000 3 3.0000 3.0000 3 

Std 4.0898e-12 3.1875e-12 1.7278e-13 2.6936e-12
9.9103e-

15 
2.6145e-8

5.4283e-
13 

2.7901e
-15 

h 1 1 1 1 1 1 1 - 

9 

CI 
[-5.1e-12 -
1.5e-12] 

[-4.5e-12 -
1.61e-12]

[-3.1e-13 -
1.6e-13] 

[-2.7e-12 -
2.6e-13] 

[-8.5e-14 -
7.6e-14]

[-2.6e-8 -
2.6e-9] 

[-6.4e-13 -
1.5e-13] 

- 

Best -3.86174 -3.86260 -3.86254 -3.86278 -3.86256 -3.86251 -3.86228 
-

3.86278 

Mean -3.86120 -3.86142 -3.86131 -3.86196 -3.86115 -3.86137 -3.86104 
-

3.86278 

Std 4.1892e-4 7.0546e-4 6.6908e-4 3.6573e-3 7.9362e-4 6.1290e-4 6.8633e-4 
2.0402e

-15 

h 1 1 1 0 1 1 1 - 

10 

CI 
[-0.0018 -
0.0014] 

[-0.0017 -
0.0010] 

[-0.0018 -
0.0012] 

[-0.0025 
8.3672e-4]

[-0.0020 -
0.0013] 

[-0.0017 -
0.0011] 

[-0.0021 -
0.0014] 

- 

Best -1.0403e+1 -1.0403e+1 -1.0403e+1 -1.0403e+1
-

1.0403e+1
-

1.0403e+1
-

1.0402e+1 

-
1.0403e

+1 

Mean -8.8741e+0 -9.3713e+0 -7.5794e+0 -8.5881e+0
-

1.0403e+1
-

1.0307e+1
-

1.0307e+1 

-
1.0403e

+1 

Std 3.2230e+0 2.5485e+0 3.6087e+0 3.2342e+0 6.6816e-7 1.9198e-1 1.6188e-1 
5.8647e

-11 

h 1 0 1 1 1 1 1 - 

11 

CI 
[-2.9785 -
0.0791] 

[-2.1852  
0.1220] 

[-4.4570 -
1.1900] 

[-3.2788 -
0.3508] 

[-7.32e-7  
-1.27e-7]

[-0.1828 -
0.0090] 

[-0.1692 -
0.0226] 

- 

12 
Best -1.0536e+1 -1.0536e+1 -1.0536e+1 -1.0536e+1 -

1.0536e+1
-

1.0536e+1
-

1.0534e+1 
-

1.0536e
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+1 

Mean -8.4159e+0 -8.6726e+0 -9.2338e+0 -9.7313e+0
-

1.0536e+1
-

1.0432e+1
-

1.0437e+1 

-
1.0536e

+1 

Std 3.4860e+0 3.3515e+0 2.7247e+0 2.0607e+0 4.3239e-7 3.1761e-1 1.3003e-1 
3.0218e

-11 

h 1 1 1 0 1 0 1 - 

CI 
[-3.6885 -
0.5526] 

[-3.3809 -
0.3467] 

[-2.5360 -
0.0692] 

[-1.7379  
0.1277] 

[-4.86e-7 -
9.43e-8]

[-0.2481 
0.0394] 

[-0.1586 -
0.0409] 

- 

Table 2. The Comparisons of SOA with Other Evolutionary Methods on Benchmark 
Functions 

2.3 SOA for optimal reactive power dispatch (Ref.[16]) 
2.3.1 Problem formulation 

The objective of the reactive power optimization is to minimize the active power loss in the 
transmission network, which can be defined as follows: 

 2 2
loss 1 2( , ) ( 2 cos )

E

k i j i j ij
k N

P f x x g V V VV θ
∈

= = + −∑
f f

 (11) 

Subject to 

 

0

min max

min max

min max

min max

max

( cos sin )

( sin cos )
i

i

Gi Di i j ij ij ij ij
j N

Gi Di i j ij ij ij ij PQ
j N

i i i B

k k k T

Gi Gi Gi G

Ci Ci Ci C

l l l

P P V V G B i N

Q Q V V G B i N

V V V i N

T T T k N

Q Q Q i N

Q Q Q i N

S S l N

θ θ

θ θ
∈

∈

− = + ∈⎧
⎪
⎪ − = − ∈⎪
⎪
⎪ ≤ ≤ ∈⎪
⎨

≤ ≤ ∈⎪
⎪ ≤ ≤ ∈⎪
⎪ ≤ ≤ ∈
⎪
⎪ ≤ ∈⎩

∑

∑

 (12) 

 

where 1 2( , )f x x
f f

denotes the active power loss function of the transmission network, 1x
f

 is 

the control variable vector [ ]TG T CV K Q , 2x
f

 is the dependent variable vector [ ]TL GV Q , GV  

is the generator voltage (continuous), kT  is the transformer tap (integer), CQ  is the shunt 

capacitor/inductor (integer), LV  is the load-bus voltage, GQ  is the generator reactive 

power, k=(i,j), Bi N∈ , ij N∈ , kg is the conductance of branch k, ijθ  is the voltage angle 

difference between bus i and j, GiP  is the injected active power at bus i, DiP  is the demanded 

active power at bus i, iV  is the voltage at bus i, ijG  is the transfer conductance between bus i 

and j, ijB  is the transfer susceptance between bus i and j, GiQ  is the injected reactive power 

at bus i, DiQ  is the demanded reactive power at bus , EN  is the set of numbers of network 

branches, PQN  is the set of numbers of PQ buses, BN  is the set of numbers of total buses, 

iN  is the set of numbers of buses adjacent to bus i (including bus i), 0N  is the set of 

numbers of total buses excluding slack bus, CN is the set of numbers of possible reactive 

power source installation buses, GN  is the set of numbers of generator buses, TN  is the set 
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of numbers of transformer branches, lS  is the power flow in branch l, the superscripts 

“min” and “max” in equation (12) denote the corresponding lower and upper limits, 

respectively.  
The first two equality constraints in (12) are the power flow equations. The rest inequality 
constraints are used for the restrictions of reactive power source installation, reactive 
generation, transformer tap-setting, bus voltage and power flow of each branch. 
Control variables are self-constrained, and dependent variables are constrained using 
penalty terms to the objective function. So the objective function is generalized as follows: 

 
lim lim

2 2

V Q

loss V L Q G
N N

f P V Qλ λ= + Δ + Δ∑ ∑  (13) 

where Vλ , Qλ  are the penalty factors, lim
VN  is the set of numbers of load-buses on which 

voltage outside limits, � lim
QN  is the set of numbers of generator buses on which injected 

reactive power outside limits, LVΔ and GQΔ  are defined as: 

 
min min

max max

if 

if 

L L L L
L

L L L L

V V V V
V

V V V V

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (14) 

 
min min

max max

if  

if  

G G G G
G

G G G G

Q Q Q Q
Q

Q Q Q Q

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (15) 

2.3.2 Implementation of SOA for reactive power optimization 
The basic form of the proposed SOA algorithm can only handle continuous variables. 
However, both tap position of transformations and reactive power source installation are 
discrete or integer variables in optimal reactive power dispatch problem. To handle integer 
variables without any effect on the implementation of SOA, the seekers will still search in a 
continuous space regardless of the variable type, and then truncating the corresponding 
dimensions of the seekers’ real-value positions into the integers [44] is only performed in 
evaluating the objective function. 
The fitness value of each seeker is calculated by using the objective function in (13). The real-
value position of the seeker consists of three parts: generator voltages, transformer taps and 
shunt capacitors/inductors. After the update of the position, the main program is turned to 
the sub-program for evaluating the objective function where the latter two parts of the 
position are truncated into the corresponding integers as [44]. Then, the real-value position 
is changed into a mixed-variable vector which is used to calculate the objective function 
value by equation (13) based on Newton-Raphson power flow analysis [45]. The reactive 
power optimization based on SOA can be described as follows [16]. 
Step 1. Read the parameters of power system and the proposed algorithm, and specify the 

lower and upper limits of each variable. 
Step 2. Initialize the positions of the seekers in the search space randomly and uniformly. 

Set the time step t=0. 
Step 3. Calculate the fitness values of the initial positions using the objective function in 

(13) based on the results of Newton-Raphson power flow analysis [45]. The initial 
historical best position among the population is achieved. Set the personal historical 
best position of each seeker to his current position. 
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Step 4. Let 1t t= + .  

Step 5. Select the neighbors of each seeker. 
Step 6. Determine the search direction and step length for each seeker, and update his 

position. 
Step 7. Calculate the fitness values of the new positions using the objective function based 

on the Newton-Raphson power flow analysis results. Update the historical best 
position among the population and the historical best position of each seeker. 

Step 8. Go to Step 4 until a stopping criterion is satisfied. 

2.3.3 Simulation results 

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power 
optimization approach, standard IEEE 57-bus power system is used. 
Since proposed in 1995, PSO [46] and DE [9, 47] have received increasing interest from the 
evolutionary computation community as two of the relatively new and powerful 
population-based heuristic algorithms, and they both have been successfully applied to 
reactive power optimization problems [12, 48-53]. So, the proposed method is compared 
mainly with the two algorithms and their recently modified versions. 
Since the original PSO proposed in [46] is prone to suffer from the so-called “explosion” 
phenomena [41], two improved versions of PSO: PSO with adaptive inertia weight (PSO-w) 
and PSO with a constriction factor (PSO-cf), were proposed by Shi, et al. [40] and Clerc, et al. 
[41], respectively. Considering that the PSO algorithm may easily get trapped in a local 
optimum when solving complex multimodal problems, Liang, et al. [42] proposed a variant 
of PSO called comprehensive learning particle swarm optimizer (CLPSO), which is adept at 
complex multimodal problems. Furthermore, in the year of 2007, Clerc, et al. [54] developed 

a “real standard” version of PSO, SPSO-07, which was specially prepared for the researchers 
to compare their algorithms. So, the compared PSOs includes PSO-w(learning rate c1 = c2=2, 
inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the maximum 
velocity vmax is set at 20% of the dynamic range of the variable on each dimension) [40], PSO-
cf (c1= c2=2.01 and constriction factor χ=0.729844) [41], CLPSO(its parameters follow the 
suggestions from [42] except that the refreshing gap m=2) and SPSO-07 [54]. 
Since the control parameters and learning strategies in DE are highly dependent on the 

problems under consideration, and it is not easy to select the correct parameters in practice, 

Brest, et al. [39] presented a version of DE with self-adapting control parameters (SACP-DE) 

based on the self-adaptation of the two control parameters: the crossover rate CR and the 

scaling factor F, while Qin, et al. [43] proposed a self-adaptive differential evolution (SaDE) 

where the choice of learning strategy and the two control parameters F and CR are not 

required to be pre-specified. So, the compared set of DEs consists of the original DE (DE: 

DE/rand/1/bin, F=0.5, CR=0.9) [9]), SACP-DE [39] and SaDE [43]. For the afore-mentioned 

DEs, since the local search schedule used in [43] can clearly improve their performances, the 

improved versions of the three DEs with local search, instead of their corresponding original 

versions, are used in this study and denoted as L-DE, L-SACP-DE and L-SaDE, respectively. 

Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA) 
introduced in [55] are implemented for comparison with SOA. The fmincon-based nonlinear 
programming method (NLP) [45, 56] is also considered. 
All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G 

512MB RAM. For all the evolutionary methods in the experiments, the same population size 
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popsize=60 except SPSO-2007 whose popsize is automatically computed by the algorithm, 

total 30 runs and the maximum generations of 300 are made. The NLP method uses a 

different uniformly random number in the search space as its start point in each run. The 

transformer taps and the reactive power compensation are discrete variables with the 

update step of 0.01p.u. and 0.048 p.u., respectively. The penalty factors ǌV and ǌQ in (13) are 

both set to 500. 

The IEEE 57-bus system shown in Fig. 4 consists of 80 branches, 7 generator-buses and 15 

branches under load tap setting transformer branches. The possible reactive power 

compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and Vθ-bus as 

follows: PV-buses: bus 2, 3, 6, 8, 9, 12; Vθ-bus: bus 1. The others are PQ-buses. The system 

data, variable limits and the initial values of control variables were given in [57]. In this case, 

the search space has 25 dimensions, i.e., the 7 generator voltages, 15 transformer taps, and 3 

capacitor banks. The variable limits are given in Table 3. 
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Fig. 4. Network configuration of IEEE 57-bus power system 
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Table 3. The Variable Limits (p.u.) 

The system loads are given as follows: 

Pload=12.508 p.u., Qload =3.364 p.u. 

The initial total generations and power losses are as follows: 

∑PG=12.7926 p.u., ∑QG=3.4545 p.u., 

Ploss=0.28462 p.u., Qloss= -1.2427 p.u. 

There are five bus voltages outside the limits in the network: V25=0.938, V30=0.920, 
V31=0.900, V32=0.926, V33= 0.924. 
To compare the proposed method with other algorithms, the concerned performance 
indexes including the best active power losses (Best), the worst active power losses (Worst), 
the mean active power losses (Mean) and the standard deviation (Std) are summarized in 
Table 4 over total 30 runs. In order to determine whether the results obtained by SOA are 
statistically different from the results generated by other algorithms, the T-tests are 
conducted, and the corresponding h and CI values are presented in Table 4, too. Table 4 
indicates that SOA has the smallest Best, Mean and Std. values than all the listed other 
algorithms, all the h values are equal to one, and all the confidence intervals are less than 
zero and don’t contain zero. Hence, the conclusion can be drawn that SOA is significantly 
better and statistically more robust than all the other listed algorithms in terms of global 
search capacity and local search precision. 
The best reactive power dispatch solutions from 30 runs for various algorithms are 
tabulated in Table 5 and Table 6. The PSAVE% in Table 6 denotes the saving percent of the 
reactive power losses. Table 6 demonstrates that a power loss reduction of 14.7443% (from 
0.28462 p.u. to 0.2426548 p.u.) is accomplished using the SOA approach, which is the biggest 
reduction of power loss than that obtained by the other approaches. The corresponding bus 
voltages are illustrated in Fig. 5 - Fig.8 for various methods. From Fig. 8, it can be seen that 
all the bus voltages optimized by SOA are kept within the limits, which implies that the 
proposed approach has better performance in simultaneously achieving the two goals of 
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voltage quality improvement and power loss reduction than the other approaches on the 
employed test system. 
The convergence graphs of the optimized control variables by the SOA are depicted in Fig. 9 

- Fig. 11 with respect to the number of generations. From these figures, it can be seen that, 

due to the good global search ability of the proposed method, the control variables have a 

serious vibration at the early search phase, and then converge to a steady state at the late 

search phase, namely, a near optimum solution found by the method. 

In this experiment, the computing time at every function evaluation is recorded for various 

algorithms. The total time of each algorithm is summarized in Table 7. Furthermore, the 

average convergence curves with active power loss vs. computing time are depicted for all 

the algorithms in Fig. 12. From Table 7, it can be seen that the computing time of SOA is less 

than that of the other evolutionary algorithms except SPSO-07 because of its smaller 

population size. However, Fig. 12 shows that, compared with SPSO-07, SOA has faster 

convergence speed and, on the contrary, needs less time to achieve the power loss level of 

SPSO-07. At the same time, SOA has better convergence rate than CLPSO and three versions 

of DE. Although PSO-w and PSO-cf have faster convergence speed at the earlier search 

phase, the two versions of PSO rapidly get trapped in premature convergence or search 

stagnation with the bigger final power losses than that of SOA. Hence, from the simulation 

results, SOA is synthetically superior to the other algorithms in computation complexity and 

convergence rate. 

 

Algorithms Best Worst Mean Std. h CI 

NLP 0.2590231 0.3085436 0.2785842 1.1677×10-2 1 
[-4.4368×10-2,  
-3.4656×10-2] 

CGA 0.2524411 0.2750772 0.2629356 6.2951×10-3 1 
[-2.2203×10-2, 
-1.8253×10-2] 

AGA 0.2456484 0.2676169 0.2512784 6.0068×10-3 1 
[-1.0455×10-2,  
-6.6859×10-3] 

PSO-w 0.2427052 0.2615279 0.2472596 7.0143×10-3 1 
[-6.7111×10-3,  
-2.3926×10-3] 

PSO-cf 0.2428022 0.2603275 0.2469805 6.6294×10-3 1 
[-6.3135×10-3,  
-2.2319×10-3] 

CLPSO 0.2451520 0.2478083 0.2467307 9.3415×10-4 1 
[-4.3117×10-3, - 

3.7341×10-3] 

SPSO-07 0.2443043 0.2545745 0.2475227 2.8330×10-3 1 
[-5.6874×10-3,  
-3.9425×10-3] 

L-DE 0.2781264 0.4190941 0.3317783 4.7072×10-2 1 
[-1.0356×10-1,  
-7.4581×10-2] 

L-SACP-
DE 

0.2791553 0.3697873 0.3103260 3.2232×10-2 1 
[-7.7540×10-2,  
-5.7697×10-2] 

L-SaDE 0.2426739 0.2439142 0.2431129 4.8156×10-4 1 
[-5.5584×10-4,  
-2.5452×10-4] 

SOA 0.2426548 0.2428046 0.2427078 4.2081×10-5 - - 
 

Table 4. Comparisons of the Results of Various Methods on IEEE 57-Bus System over 30 
Runs (p.u.) 
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Table 5. Values of Control Variable & Ploss After Optimization by Various Methods for IEEE 
57-Bus Sytem (p.u.) 
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Algorithms ∑PG ∑QG Ploss Qloss PSAVE% 

NLP 12.7687 3.1578 0.2590231 -1.1532 8. 9934 
CGA 12.7604 3.0912 0.2524411 -1.1176 11.3059 
AGA 12.7536 3.0440 0.2456484 -1.1076 13.6925 
PSO-w 12.7507 3.0300 0.2427052 -1.0950 14.7266 
PSO-cf 12.7508 2.9501 0.2428022 -1.0753 14.6925 
CLPSO 12.7531 3.0425 0.2451520 -1.0853 13.8669 
SPSO-07 12.7523 3.0611 0.2443043 -1.0845 14.1647 
L-DE 12.7861 3.3871 0.2781264 -1.2158 2.28150 
L-SACP-DE 12.7871 3.2712 0.2791553 -1.2042 1.92000 
L-SaDE 12.7507 2.9855 0.2426739 -1.0758 14.7376 
SOA 12.7507 2.9684 0.2426548 -1.0756 14.7443 

Table 6. The Best Solutions for All the Methods on IEEE 57-Bus System (p.u.) 

 

Algorithms Shortest time (s) Longest time (s) Average time (s) 

CGA 353.08 487.14 411.38 
AGA 367.31 471.86 449.28 
PSO-w 406.42 411.66 408.48 
PSO-cf 404.63 410.36 408.19 
CLPSO 423.30 441.98 426.85 
SPSO-07 121.98 166.23 137.35 
L-DE 426.97 443.22 431.41 
L-SACP-DE 427.23 431.16 428.98 
L-SaDE 408.97 413.03 410.14 
SOA 382.23 411.02 391.32 

Table 7. The Average Computing Time for Various Algorithms 

 

 

Fig. 5. Bus voltage profiles for NLP and GAs on IEEE 57-bus system 
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Fig. 6. Bus voltage profiles for PSOs on IEEE 57-bus system 
 

 

Fig. 7. Bus voltage profiles for DEs on IEEE 57-bus system 
 

 

Fig. 8. Bus voltage profiles before and after optimization for SOA on IEEE 57-bus system 
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Fig. 9. Convergence of generator voltages VG for IEEE 57-bus system 
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(c) 

Fig. 10. Convergence of transformer taps T for IEEE 57-bus system 

 
 
 
 
 
 

 

Fig. 11. Convergence of shunt capacitor QC for IEEE 57-bus system 
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Fig. 12. Convergence graphs of various algorithms on IEEE 57-bus system (power loss vs. 
time) 

2.4 SOA for multi-objective reactive power dispatch 
2.4.1 Problem formulation 

The multi-objective functions of the ORPD include the technical and economic goals. The 
economic goal is mainly to minimize the active power transmission loss. The technical goals 
are to minimize the load bus voltage deviation from the ideal voltage and to improve the 
voltage stability margin (VSM) [58]. Hence, the objectives of the ORPD model in this chapter 
are active power loss (Ploss), voltage deviation (ΔVL) and voltage stability margin (VSM).  
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A. The Active Power Loss 

The active power loss minimization in the transmission network can be defined as follows 
[16, 17, 44]: 

 min 2 2
loss 1 2( , ) ( 2 cos )

E

k i j i j ij
k N

P f x x g V V VV θ
∈

= = + −∑
f f

 (16) 

Subject to 

 

0

min max

min max

min max

min max

max

( cos sin )

( sin cos )
i

i

Gi Di i j ij ij ij ij
j N

Gi Di i j ij ij ij ij PQ
j N

i i i B

k k k T

Gi Gi Gi G

Ci Ci Ci C

l l l

P P V V G B i N

Q Q V V G B i N

V V V i N

T T T k N

Q Q Q i N

Q Q Q i N

S S l N

θ θ

θ θ
∈

∈

− = + ∈⎧
⎪
⎪ − = − ∈⎪
⎪
⎪ ≤ ≤ ∈⎪
⎨

≤ ≤ ∈⎪
⎪ ≤ ≤ ∈⎪
⎪ ≤ ≤ ∈
⎪
⎪ ≤ ∈⎩

∑

∑

 (17) 

where 1 2( , )f x x
f f

denotes the active power loss function of the transmission network, 1x
f

 is 

the control variable vector [ ]TG T CV K Q , 2x
f

 is the dependent variable vector [ ]TL GV Q , GV  

is the generator voltage (continuous), kT  is the transformer tap (integer), CQ  is the shunt 

capacitor/inductor (integer), LV  is the load-bus voltage, GQ  is the generator reactive 

power, k=(i,j), Bi N∈ , ij N∈ , kg is the conductance of branch k, ijθ  is the voltage angle 

difference between bus i and j, GiP  is the injected active power at bus i, DiP  is the demanded 

active power at bus i, iV  is the voltage at bus i, ijG  is the transfer conductance between bus i 

and j, ijB  is the transfer susceptance between bus i and j, GiQ  is the injected reactive power 

at bus i, DiQ  is the demanded reactive power at bus , EN  is the set of numbers of network 

branches, PQN  is the set of numbers of PQ buses, BN  is the set of numbers of total buses, 

iN  is the set of numbers of buses adjacent to bus i (including bus i), 0N  is the set of 

numbers of total buses excluding slack bus, CN is the set of numbers of possible reactive 

power source installation buses, GN  is the set of numbers of generator buses, TN  is the set 

of numbers of transformer branches, lS  is the power flow in branch l, the superscripts 

“min” and “max” in equation (17) denote the corresponding lower and upper limits, 

respectively. 

B. Voltage Deviation 

Treating the bus voltage limits as constraints in ORPD often results in all the voltages 
toward their maximum limits after optimization, which means the power system lacks the 
required reserves to provide reactive power during contingencies. One of the effective ways 
to avoid this situation is to choose the deviation of voltage from the desired value as an 
objective function [59], i.e.: 

 min *

1

/
LN

L i i L
i

V V V N
=

Δ = −∑  (18) 
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where ΔVL is the per unit average voltage deviation, NL is the total number of the system 
load buses, Vi and Vi* are the actual voltage magnitude and the desired voltage magnitude 
at bus i. 

C. Voltage Stability Margin 

Voltage stability problem has a closely relationship with the reactive power of the system, 
and the voltage stability margin is inevitably affected in optimal reactive power flow (ORPF) 
[58]. Hence, the maximal voltage stability margin should be one of the objectives in ORPF 
[49, 58, 59]. In the literature, the minimal eigenvalue of the non-singular power flow 
Jacobian matrix has been used by many researchers to improve the voltage stability margin 
[58]. Here, it is also employed [58]: 

 max max(min  eig( ) )VSM Jacobi=  (19) 

where Jacobi is the power flow Jacobian matrix, eig(Jacobi) returns all the eigenvalues of the 
Jacobian matrix, min(eig(Jacobi)) is the minimum value of eig(Jacobi), max(min(eig(Jacobi))) is 
to maximize the minimal eigenvalue in the Jacobian matrix. 

D. Multi-objective Conversion 

Considering different sub-objective functions have different ranges of function values, every 
sub-objective uses a transform to keep itself within [0,1]. The first two sub-objective 
functions, i.e., active power loss and voltage deviation, are normalized: 

 

min

min

min max

max min

max

loss loss

loss loss
1 loss loss loss

loss loss

loss loss

0 if 

if 

1 if 

P P

P P
f P P P

P P

P P

⎧ <
⎪

−⎪
= ≤ ≤⎨

−⎪
⎪ >⎩

 (20) 

 

min

min

min max

max min

max

2

0 if 

if 

1 if 

L L

L L
L L L

L L

L L

ΔV ΔV

ΔV ΔV
f ΔV ΔV ΔV

ΔV ΔV

ΔV ΔV

⎧ <
⎪

−⎪
= ≤ ≤⎨

−⎪
⎪ >⎩

 (21) 

where the subscripts “min” and “max” in equations (20) and (21) denote the corresponding 

expectant minimum and possible maximum value, respectively.  

Since voltage stability margin sub-objective function is a maximization optimization 

problem, it is normalized and transformed into a minimization problem using the following 

equation: 

 
max

3 max

max min

0 if 

else

VSM VSM

f VSM VSM

VSM VSM

>⎧
⎪= −⎨
⎪ −⎩

 (22) 

where the subscripts “min” and “max” in equation (22) denote the possible minimum and 

expectant maximum value, respectively. 
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Control variables are self-constrained, and dependent variables are constrained using 

penalty terms. Then, the overall objective function is generalized as follows: 

 min 
lim lim

2 2
1 1 2 2 3 3

V Q

V L Q G
N N

f f f f V Qω ω ω λ λ= + + + Δ + Δ∑ ∑  (23) 

 

where ωi (i=1,2,3) is the user-defined constants which are used to weigh the contributions 

from different sub-objectives; Vλ , Qλ  are the penalty factors; lim
VN  is the set of numbers of 

load-buses on which voltage outside limits, � lim
QN  is the set of numbers of generator buses 

on which injected reactive power outside limits; LVΔ and GQΔ  are defined as: 
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max max
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2.4.2 Implementation of SOA for reactive power optimization 

The fitness value of each seeker is calculated by using the objective function in (23). The real-

value position of the seeker consists of three parts: generator voltages, transformer taps and 

shunt capacitors/inductors. According to the section 3.4 of this paper, after the update of the 

position, the main program is turned to the sub-program for evaluating the objective 

function where the latter two parts of the position are truncated into the corresponding 

integers as [44, 55]. Then, the real-value position is changed into a mixed-variable vector 

which is used to calculate the objective function value by equation (23) based on Newton-

Raphson power flow analysis [45]. The reactive power optimization based on SOA can be 

described as follows [17]. 

Step 1. Read the parameters of power system and the proposed algorithm, and specify the 

lower and upper limits of each variable. 

Step 2. Initialize the positions of the seekers in the search space randomly and uniformly. 

Set the time step t=0. 

Step 3. Calculate the fitness values of the initial positions using the objective function in 

(23) based on the results of Newton-Raphson power flow analysis [45]. The initial 

historical best position among the population is achieved. Set the historical best 

position of each seeker to his current position. 

Step 4. Let t=t+1.  
Step 5. Determine the neighbors, search direction and step length for each seeker. 

Step 6. Update the position of each seeker. 

Step 7. Calculate the fitness values of the new positions using the objective function based 

on the Newton-Raphson power flow analysis results. Update the historical best 

position among the population and the historical best position of each seeker. 

Step 8. Go to Step 4 until a stopping criterion is satisfied. 
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2.4.3 Simulation results 

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power 
optimization approach, the standard IEEE 57-bus power system is used as the test system. 
For the comparisons, the following algorithms are also considered: PSO-w (learning rate c1 = 
c2=2, inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the 
maximum velocity vmax is set at 20% of the dynamic range of the variable on each 
dimension) [40], PSO-cf (c1= c2=2.01 and constriction factor χ=0.729844) [41], CLPSO (its 
parameters follow the suggestions from [42] except that the refreshing gap m=2) and SPSO-
07 [54], the original DE (DE: DE/rand/1/bin, F=0.5, CR=0.9) [39]), SACP-DE and SaDE. For 
the afore-mentioned DEs, since the local search schedule used in [43] can clearly improve 
their performances, the improved versions of the three DEs with local search, instead of 
their corresponding original versions, are used in this study and denoted as L-DE, L-SACP-
DE and L-SaDE, respectively. 
Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA) 
introduced in [55] are considered for comparison with SOA. 
All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G 
512MB RAM. In the experiments, the same population size popsize=60 for the IEEE 57-bus 
system except SPSO-2007 whose popsize is automatically computed by the algorithm, total 
30 runs and the maximum generations of 300 are made. The transformer taps and the 
reactive power compensation are discrete variables with the update step of 0.01p.u. and 
0.048 p.u., respectively.  
The main parameters involved in SOA include: the population size s, the number of 
subpopulations, and the parameters of membership function of Fuzzy reasoning (including 
the limits of membership degree value, i.e., Ǎmax and Ǎmin in (8) and the limits of ω, i.e., ωmax 
and ωmin in (9)). In this paper, s=60 for IEEE 57-bus system and s=80 for IEEE 118-bus 
system, K=3, Ǎmax=0.95, Ǎmax=0.0111, ωmax=0.8, ωmin=0.2 for both the test systems. 
The IEEE 57-bus system [45] shown in Fig. 4 consists of 80 branches, 7 generator-buses and 
15 branches under load tap setting transformer branches. The possible reactive power 
compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and Vθ-bus as 
follows: PV-buses: bus 2, 3, 6, 8, 9, 12; Vθ-bus: bus 1. The others are PQ-buses. The system 
data, operating conditions, variable limits and the initial generator bus voltages and 
transformer taps were given in [57], or can be obtained from the authors of this paper on 
request. The model parameters in the equations (20)-(23) are set as: 

max min
0.5, 0.2,loss lossP P= =

max
1,  LVΔ =  

min
0,LVΔ = VSMmax=0.4, VSMmin=0.05, ω1=0.6, ω2=0.2, 

ω3=0.2,  ǌV=500 and ǌQ=500. 
The system loads are : Pload=12.508 p.u., Qload =3.364 p.u. The initial total generations and 

power losses are: ∑PG=12.7926 p.u., ∑QG=3.4545 p.u., Ploss=0.28462 p.u., Qloss= -1.2427 p.u. 

There are five bus voltages outside the limits: V25=0.938, V30=0.920, V31=0.900, V32=0.926, 

V33= 0.924. 

To compare the proposed method with other algorithms, the concerned performance 
indexes including the best, worst, mean and standard deviation (Std.) of the overall and sub-
objective function values are summarized in Tables 8 - 11. In order to determine whether the 
results obtained by SOA are statistically different from the results generated by other 
algorithms, the T-tests [56] are conducted. An h value of one indicates that the performances 
of the two algorithms are statistically different with 95% certainty, whereas h value of zero 
implies that the performances are not statistically different. The CI is confidence interval. 
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The corresponding h and CI values for overall function values and active power losses are 
presented in Tables 8 and 9, respectively. The best reactive power dispatch solutions from 30 
runs for various algorithms are tabulated in Table 12 where PSAVE% denotes the saving 
percent of the reactive power losses. The corresponding bus voltages are illustrated in Fig. 
13. The total time of each algorithm is summarized in Table 13. The average convergence 
curves for overall function value vs. computing time and active power loss vs. computing 
time are depicted for all the algorithms in Figs. 14 and 15, respectively. 
Table 8 indicates that SOA has the smallest Best, Mean, Worst and Std. values of overall 

function than all the listed other algorithms except that SOA has the a little larger Worst 

value than that of PSO-w, only the h values for SOA vs. CLPSO and SOA vs. L-SaDE are 

equal to zeroes (Accordingly, their confidence intervals contain zero). Table 9 indicates that 

SOA has the smallest Best, Mean, Worst and Std. values of power loss than all the listed other 

algorithms except that SOA has the a little larger Worst value than that of L-SaDE with h=0 

and CI containing zero. Tables 10 and 11 show that SOA has the better or comparable other 

two sub-objective values, i.e., voltage stability margin (VSM) and voltage deviation (ΔVL). 

Table 12 demonstrates that a power loss reduction of 13.4820% (from 0.28462 p.u. to 

0.246248 p.u.) is accomplished using the SOA approach, which is the biggest reduction of 

power loss than that obtained by the other approaches. Hence, the conclusion can be drawn 

that SOA is better than, or comparable to, all the other listed algorithms in terms of global 

search capacity and local search precision. Furthermore, from Fig. 13, it can be seen that all 

the bus voltages optimized by SOA are acceptably kept within the limits. 

From Table 13, it can be seen that the average computing time of SOA is less than that of 

other algorithms except SPSO-07 because of its smaller population size. However, Figs. 14 

and 15 show that, compared with SPSO-07, SOA has faster convergence speed and, on the 

contrary, needs less time to achieve the overall function value and power loss level achieved 

by SPSO-07. At the same time, SOA also has better convergence rate than GAs, DEs  

and PSOs.  

 

Algorithms Best Worst Mean Std. h CI 

CGA 0.192750 0.195206 0.194024 4.8798×10-4 1 [-0.0684, -0.0378] 

AGA 0.192284 0.193994 0.193030 4.4517×10-4 1 [-0.0674, -0.0368] 

PSO-w 0.191851 0.191977 0.191901 4.2691×10-5 1 [-0.0727, -0.0292,] 

PSO-cf 0.116954 0.192593 0.188312 16797×10-2 1 [-0.0634, -0.0314] 

CLPSO 0.120773 0.192739 0.148663 3.3476×10-2 0 [-0.0257, 0.0102] 

SPSO-2007 0.191918 0.193559 0.192551 3.9668×10-4 1 [-0.0669, -0.0363,] 

L-DE 0.232519 0.388413 0.314205 4.0455×10-2 1 [-0.1923, -0.1543] 

L-SACP-DE 0.237277 0.395611 0.317571 4.1949×10-2 1 [-0.1959, -0.1574] 

L-SaDE 0.116819 0.192131 0.154692 3.8257×10-2 0 [-0.0324, 0.0049] 

SOA 0.116495 0.192083 0.140927 3.4163×10-2 - - 

Table 8. The Results of Overall Objective Function Values for Various Algorithms on IEEE 
57-bus System over 30 Runs (p.u.) 
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Algorithms Best Worst Mean Std. h CI 

CGA 0.267170 0.419747 0.323181 4.2147×10-2 1 [-0.0787, -0.0529] 

AGA 0.258072 0.369785 0.296744 3.5776×10-2 1 [-0.0507, -0.0280,] 

PSO-w 0.259729 0.324923 0.283945 2.2313×10-2 1 [-0.0363 -0.0168] 

PSO-cf 0.247866 0.393221 0.297066 3.2551×10-2 1 [-0.0502, -0.0291,] 

CLPSO 0.257968 0.340029 0.273334 1.9252×10-2 1 [-0.0235, -0.0083,] 

SPSO-2007 0.274210 0.386235 0.307093 2.7961×10-2 1 [-0.0591, -0.0402] 

L-DE 0.291864 0.5069975 0.373198 5.4894×10-2 1 [-0.1320, -0.0996] 

L-SACP-DE 0.273183 0.4438575 0.343407 4.5156×10-2 1 [-0.0997, -0.0723] 

L-SaDE 0.246712 0.282335 0.260983 1.3426×10-2 0 [-0.0101, 0.0030] 

SOA 0.246248 0.287541 0.257410 1.1918×10-2 - - 

Table 9. The Results of Active Power Loss for Various Algorithms on IEEE 57-bus System 
over 30 Runs (p.u.) 

 
 

Algorithms Best Worst Mean Std. 

CGA 0.186249 0.173969 0.1798794 2.4399×10-3 

AGA 0.188582 0.180030 0.1848524 2.2259×10-3 

PSO-w 0.190745 0.190117 0.1904974 2.1346×10-4 

PSO-cf 0.190754 0.1870317 0.1895324 122285×10-3 

CLPSO 0.187857 0.1783987 0.183922 3.0781×10-3 

SPSO-2007 0.190411 0.182206 0.187245 1.9834×10-3 

L-DE 0.1778431 0.165211 0.171368 3.4560×10-3 

L-SACP-DE 0.183051 0.159702 0.170998 5.7523×10-3 

L-SaDE 0.190638 0.1853272 0.1882648 1.9748×10-3 

SOA 0.190709 0.176374 0.187451 2.6388×10-3 

Table 10. The Results of Voltage Stability Margin for Various Algorithms on IEEE 57-bus 
System over 30 Runs (p.u.) 

 
 
 

Algorithms CGA AGA
PSO-

w 
PSO-

cf 
CLPSO 

SPSO-
2007

LDE 
L-SACP-

DE 
L-

SaDE 
SOA 

Best 0 0 0 0 0 0 2.886554 2.317914 0 0 

Worst 0 0 0 0 0.291757 0 0.561878 0.634840 0 0 

Mean 0 0 0 0 0.014588 0 1.777176 1.890710 0 0 

Std. 0 0 0 0 6.5239×10-2 0 6.0402×10-1 7.9319×10-1 0 0 

Table 11. The Results of Voltage Deviation for Various Algorithms on IEEE 57-bus System 
over 30 Runs (p.u.) 
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Algorithms ∑PG ∑QG Ploss Qloss PSAVE% VSM ΔVL 

CGA 12.7752 3.1744 0.267170 -1.1565 6.1308 0.179828 0 

AGA 12.7661 3.0679 0.258072 -1.1326 9.3276 0.185845 0 

PSO-w 12.7677 3.1026 0.259729 -1.1598 8.7453 0.190117 0 

PSO-cf 12.7559 3.0157 0.247866 -1.1137 12.9132 0.1870317 0 

CLPSO 12.7660 3.1501 0.257968 -1.1295 9.3642 0.1849117 0.291757 

SPSO-2007 12.7822 3.1818 0.274210 -1.2532 3.6576 0.1877947 0 

L-DE 12.7999 3.3656 0.291864 -1.2158 -1.2380 0.1701207 2.886554 

L-SACP-DE 12.7812 3.2085 0.273183 -1.1868 4.0185 0.183051 4.282957 

L-SaDE 12.7549 3.0191 0.246712 -1.1209 13.2696 0.186182 0 

SOA 12.7543 2.9837 0.246248 -1.0914 13.4820 0.186895 0 

Table 12. The Best Dispatch Solutions for Various Algorithms on IEEE 57-bus System (p.u.) 

 

Algorithms CGA AGA PSO-w PSO-cf CLPSO
SPSO-
2007 

LDE 
L-SACP-

DE 
L-

SaDE 
SOA 

Shortest  
time (s) 

1265.34 1273.44 1216.91 1188.45 1399.48 433.36 1210.73 1212.95 1273.42 1192.83 

Longest  
time (s) 

1295.02 1323.91 1244.64 1268.00 1448.84 495.97 1239.86 1235.03 1368.03 1288.66 

Average  
time (s) 

1284.11 1293.78 1229.98 1225.14 1426.19 480.94 1224.27 1221.51 1306.86 1221.10 

Table 13. The Computing Time for Various Algorithms on IEEE 57-bus System over 30 Runs 

 

 
(a) 
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(d) 

Fig. 13. Bus voltage profiles for various algorithms on IEEE 57-bus 

 

 

Fig. 14. Convergence Graphs of various algorithms on IEEE 57-bus (overall objective 
function values vs. time)  
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Fig. 15. Convergence Graphs of various algorithms on IEEE 57-bus (power loss vs. time) 

3. Stochastic Focusing Search (SFS) and its application 

3.1 Stochastic Focusing Search (SFS) (Ref.[20, 21]) 

Stochastic focusing search (SFS) is a simplified and improved version of PSO. In the SFS, 
particles make a focusing search around the best position so far and stochastically update 
their positions within a neighborhood of the best position with a decreasing search radius. 
Unlike PSO, the velocity and position iteration of the SFS is implemented according to the 
following equations: 

 
() ( ( 1))      if ( ( 1))   ( ( 2))

( )
( 1)                                if ( ( 1))   ( ( 2))

ti i i i
i

i i i

Rand R x t fun x t fun x t
v t

v t fun x t fun x t

× − − − ≥ −⎧
= ⎨ − − < −⎩

j j j
j

j j j  (26) 

 ( ) ( ) ( 1)i i ix t v t x t= + −j j j
 (27) 

where ()Rand returns a uniformly random number in the range [0, 1], ( ( )) ifun x t
j

 is  

the objective function value of ( )ix t
j

, tiR  is a random selected point (position)  

in the neighborhood space tR  of bestg
j

.  tR  is defined as: 

min max
1 1

max min max min

( ) ( )
,

( ) ( )
best best

best bestw w

w g x w x g
g g

x x x x− −

⎡ ⎤− −
− +⎢ ⎥

− −⎢ ⎥⎣ ⎦

j j j jj j
j j j j , where maxx

j
 and minx

j
 are the search space 

borders. When w  is linearly decreased from 1 to 0, tR  is deflated from the entire search 

space to the best point bestg
j

. 

According to Eq. (26), if a particle holds a good velocity at the time step t-1 (i.e., 

( ( 1))   ( ( 2))i ifun x t fun x t− < −j j
), its velocity keeps the same one as the past; else, the particle 
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randomly selects a position within a neighborhood of the best position so far. Moreover, the 

SFS also uses a greedy selection, namely: if the new position obtained by Eq. (27) is worse 

the early position (i.e., ( ( 1))   ( ( ))i ifun x t fun x t− <j j
), the particle will come back to the early 

position (i.e., ( ) ( 1)i ix t x t= −j j
). 

According to Eqs. (26) and (27), it can be seen that each individual particle makes a search in 

a decreasing tR  with time step increasing. It is of significance to select an appropriate w  to 

not only assure the global convergence ability but also avoid a local extremum. In this study, 

w  is defined as: 

 ( )
G t

w
G

δ−
=  (28) 

where G  is the maximum generation, δ  is a positive number. It is indicated that w  is 
decreased from 1 to 0 with the increasing of time step t.  
To improve the global searching ability and avoid a local extremum, the particles are 
categorized into multiple subpopulations. The number of subpopulations Ǎ is decreasing 
from particles size s to 1 according to the indexes of the particles with the inertia weight 'w .  

 '' ( )
G t

w
G

δ−
=  (29) 

 ' 1w sμ = +⎢ ⎥⎣ ⎦  (30) 

It can be seen that 'w  has the same form of w  from equation (29). 'w  decreases with the 

run time increasing so as to decrease the subpopulations Ǎ. In every subpopulation, there 

will be a different bestg
j

, which is the best position of the subpopulation. The pseudocode of 

the SFS is presented in Fig. 16. 
 

begin 
         t←0; 
        generating s positions uniformly and randomly in the whole search space; 
        evaluating each particle; 
        repeat 
                t←t+1; 

                finding the respective bestg
j

 in every subpopulation; 

                updating and evaluating each particle’s position using (3) and (4) with the 
                greedy selection; 
         until the stop condition is satisfied 
end. 

Fig. 16. The pseudo code of the main algorithm 

3.2 SFS for benchmark function optimization (Ref.[20]) 
3.2.1 The benchmark functions 

In order to evaluate the novel algorithm, a test suite of benchmark functions previously 
introduced by Yao, Liu and Lin [60] was used (listed in Table 14), the ranges of their search 
spaces, their dimensionalities, and their global minimum function values (ideal values) are 
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Functions n S fmin 
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2 2
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Table 14. The 23 Benchmark Functions 

also included in Table 14. The problem set contains a diverse set of problems, including 
unimodal as well as multimodal functions, and functions with correlated and uncorrelated 
variables. Functions f1 - f5 are unimodal. Function f6 is the step function, which has one 
minimum and is discontinuous. Function f7 is a noisy quartic function. Functions f8 - f13 are 
multimodal functions where the number of local minima increases exponentially with the 
problem dimension. Functions f14 - f23 are low-dimensional functions which have only a few 
local minima. As still a preliminary study on the new algorithm, the optimization problems 
listed above are considered in this paper, and the more experiments are needed for future 
studies. 

Where n is the dimension size of the functions, fmin is the ideal function value, and 
nS R∈ (search space). 

Where G is the maximum generation, Func. = Functions, Algo. = Algorithms, Accuracy stands 
for the fixed accuracy level, Best stands for the best function value over 30 runs, Mean indicates 
the mean best function values, Std. Dev. stands for the standard deviation, Time stands for the 
average CPU time (seconds) consumed within the fixed number of generations. Succ.Gens. 
and Succ. Time stand for the average generation and average CPU time (seconds) achieving 
the fixed accuracy, Succ. Runs stands for the success number over 30 runs. 

3.2.2 Experimental setup 

The algorithms used for comparison are differential evolution (DE) algorithm [47], particle 
swarm optimization with inertia weight (PSO-w) [40], PSO with constriction factor (PSO-cf) 
[41], and comprehensive learning particle swarm optimizer (CLPSO) [42]. In all the 
experiments, the same population size popsize=100, total 30 runs are made, and the 
experiments results are listed in Table 15 -Table 17. The initial population is generated 
uniformly and randomly in the range as specified in Table 14. The parameters of the PSO-w 
are that: learning rate c1=c2=2, inertia weight linearly decreased from 0.9 to 0.4 with run time 
increasing, the maximum velocity vmax is set at 20% of the dynamic range of the variable on 
each dimension; the parameters of the PSO-cf are that: c1= c2=2.01 and constriction factor 
χ=0.729844. The parameters of the CLPSO follow the suggestions from [42] except that the 

refreshing gap m=2 for functions f14-f23. The parameters of the SFS are that: ' 14δ δ= = . All 

the algorithms are run on a PC with Pentium 4 CPU 2.4GHz. 
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Func. Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens. Succ. Time Succ. Runs 

DE 5.20e-14 3.74e-13 3.94e-13 5.4 933.4 3.7 30 

PSO-w 1.79e-15 1.66e-13 4.59e-13 18.2 1056.3 12.1 30 

PSO-cf 4.50e-45 2.28e-41 4.54e-41 19.8 349.8 4.3 30 

CLPSO 3.22e-13 2.73e-12 1.68e-12 24.4 924.6 16.3 30 

f1 
(G =1500) 

1e-6 

SFS 5.40e-34 8.78e-32 3.06e-31 18.5 573.8 7.55 30 

DE 6.17e-10 3.74e-09 2.20e-09 9.0 1553.9 7.6 30 

PSO-w 5.36e-12 6.67e-11 7.98e-11 26.2 1545.7 19.3 30 

PSO-cf 3.29e-29 1.60e-00 4.22e-00 30.1 1612.7 22.5 23 

CLPSO 1.63e-09 3.82e-09 1.73e-09 33.6 1453.8 21.3 30 

f2 

(G =2000) 
1e-6 

SFS 3.36e-18 1.34e-14 7.28e-14 27.18 1323.7 18.7 30 

DE 1.10e-11 1.85e-10 1.49e-10 32.8 3762.0 25.9 30 

PSO-w 2.00e-02 2.40e-01 2.23e-01 75.0 5000 75.0 0 

PSO-cf 3.01e-19 3.33e+02 1.78e+03 86.3 2736.1 42.5 26 

CLPSO 3.37e-02 4.20 e-01 3.62e-01 93.9 5000 93.9 0 

f3 

(G=5000) 
1e-6 

SFS 4.02e-23 3.03e-21 3.11e-21 81.1 2093.7 35.6 30 

DE 6.83e-13 3.10e-02 8.70e-02 23.9 4423.3 20.2 9 

PSO-w 1.18e-02 7.02e-02 4.66e-02 63.4 5000 63.4 0 

PSO-cf 1.48e-16 7.13e-13 2.19e-12 73.2 2893.4 42.4 30 

CLPSO 6.88e-04 2.05e-03 1.25e-03 83.9 5000 83.9 0 

f4 
(G =5000) 

1e-6 

SFS 6.97e-19 3.77e-17 5.31e-17 68.5 2970.6 40.7 30 

DE 0 3.47e-31 2.45e-30 84.1 3966 16.2 30 

PSO-w 1.05e-02 1.82e+03 1.27e+03 251.5 20000 251.5 0 

PSO-cf 1.87e-12 7.32e+03 2.46e+03 271.8 17837 242.4 9 

CLPSO 1.68e-01 3.63e+01 3.12e+01 349.1 20000 349.1 0 

f5 
(G 

=20000) 
1e-6 

SFS 7.00e-21 6.56e-16 1.81e-15 241.1 13827 172.4 30 

DE 0 0 0 7.3 357.0 1.6 30 

PSO-w 0 0 0 19.3 921.7 12.7 30 

PSO-cf 0 0 0 20.7 189.0 2.6 30 

CLPSO 0 0 0 25.7 723.5 12.5 30 

f6 
(G =1500) 

1e-6 

SFS 0 0 0 21.8 109.9 1.52 30 

DE 1.97e-03 4.66e-03 1.30e-03 29.5 5000 29.5 0 

PSO-w 2.99e-03 6.28e-03 2.17e-03 72.5 5000 72.5 0 

PSO-cf 9.86e-04 2.45e-03 1.38e-03 75.0 5000 75.0 0 

CLPSO 1.03e-03 2.98e-03 9.72e-04 93.5 5000 93.5 0 

f7 
(G =5000) 

1e-4 

SFS 4.74e-05 9.53e-05 3.26e-05 73.9 3860.8 64.1 18 

 
 
 
 
 

Table 15. The simulation results for f1-f7 
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Func. 

Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens Succ. Time Succ. Runs 

DE -11719 -11234 455.5 41.5 5000 41.5 0 

PSO-w -10495 -9363.3 445.3 72.8 5000 72.8 0 

PSO-cf -10398 -9026.1 656.9 83.3 5000 83.3 0 

CLPSO -12569 -12271 177.8 92.1 1774.2 28.4 30 

f8 
(G =5000) 

-12000 

SFS -8952 -7216 721.9 74.3 5000 74.3 0 

DE 9.95e-00 8.10e+01 3.23e+01 36.1 5000 36.1 0 

PSO-w 7.96e-00 2.10e+01 8.01e-00 67.0 5000 67.0 0 

PSO-cf 2.69e+01 6.17e+01 1.84e+01 78.9 5000 78.9 0 

CLPSO 9.91e-01 4.13e+00 1.79e+00 84.3 5000 84.3 0 

f9 
(G =5000) 

1e-3 

SFS 2.98e-00 6.93e-00 1.68e-00 75.6 5000 75.6 0 

DE 5.79e-08 1.71e-07 7.66e-08 7.7 844.5 4.4 30 

PSO-w 1.39e-07 1.66e-06 2.66e-06 21.0 1344.3 18.6 30 

PSO-cf 2.67e-15 5.59e-01 7.30e-01 22.5 845.4 12.6 19 

CLPSO 3.31e-06 6.81e-06 1.94e-06 27.1 1334.6 23.9 30 

f10 
(G =1500) 

1e-3 

SFS 2.66e-15 8.82e-15 3.95e-15 21.5 552.8 8.2 30 

DE 0 4.44e-04 1.77e-03 10.8 714.4 4.0 30 

PSO-w 0 1.59e-01 2.19e-02 28.5 1833.7 25.3 7 

PSO-cf 0 1.11e-02 1.25e-02 30.9 1351.5 21.1 7 

CLPSO 1.64e-14 2.96e-04 1.46e-03 36.7 1423.7 25.3 29 

f11 
(G =2000) 

1e-3 

SFS 0 0 0 30.4 337.2 5.1 30 

DE 3.40e-15 3.67e-14 4.07e-14 9.5 594.7 3.8 30 

PSO-w 8.85e-15 2.21 e-00 5.52e-00 29.0 1154.6 21.4 30 

PSO-cf 1.57e-32 1.66e+01 1.81 e+01 31.9 698.1 15.7 21 

CLPSO 8.80e-12 4.80e-11 3.96e-11 35.2 1023.9 23.5 30 

f12 
(G =1500) 

1e-3 

SFS 2.60e-32 7.51e-31 2.08e-30 22.5 201.9 3.2 30 

DE 4.13e-14 2.91e-13 2.88e-13 9.8 748.8 5.0 30 

PSO-w 8.23e-07 5.72e+02 3.57e+02 37.0 778.7 18.8 29 

PSO-cf 1.35e-32 2.40e+02 2.40e+02 33.6 606.8 13.6 22 

CLPSO 1.18e-10 6.42e-10 4.46e-10 38.6 637.3 16.7 30 

f13 
(G=1500) 

1e-3 

SFS 2.21e-32 4.90e-31 1.37e-30 22.4 266.5 4.2 30 

Table 16. The simulation results for f8-f13 

 

Func. Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens
Succ. 
Time 

Succ. 
Runs 

DE 0.998 0.998 2.88e-16 1.2 32.5 0.3 30 

PSO-w 0.998 1.026 1.52e-01 1.4 43.4 0.7 30 

PSO-cf 0.998 0.998 8.69e-13 1.52 19.9 0.3 30 

CLPSO 0.998 0.998 5.63e-10 2.1 37.5 0.8 30 

f14 
(G=100) 

0.998+1e-3

SFS 0.998 0.998 1.43e-16 1.8 25.6 0.4 30 

DE 3.0749e-04 4.7231e-02 3.55e-04 31.5 3859.7 29.9 2 

PSO-w 3.0749e-04 2.0218e-03 5.47e-03 40.3 2837.0 29.0 22 

PSO-cf 3.0749e-04 2.0225e-03 5.47e-03 43.1 824.5 8.9 27 

CLPSO 3.2847e-04 5.3715e-04 6.99e-05 67.7 1413.7 24.1 29 

f15 
(G =4000) 

3.175×1e-4

SFS 3.0749e-04 3.0749e-04 2.01e-19 54.5 612.9 8.7 30 
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DE -1.0316 -1.0316 6.77e-13 0.6 24.7 0.1 30 

PSO-w -1.0316 -1.0316 8.80e-12 0.9 20.7 0.2 30 

PSO-cf -1.0316 -1.0316 5.92e-12 0.9 20.6 0.2 30 

CLPSO -1.0316 -1.0316 8.50e-14 1.5 79.4 1.3 30 

f16 
(G =100) 

-1.0317 

SFS -1.0316 -1.0316 5.90e-16 1.1 15.2 0.2 30 

DE 0.3979 0.3979 1.14e-08 0.6 37.6 0.2 30 

PSO-w 0.3979 0.3979 2.33e-12 0.9 32.4 0.3 30 

PSO-cf 0.3979 0.3979 5.25e-12 0.9 21.4 0.2 30 

CLPSO 0.3979 0.3979 1.08e-13 1.5 83.8 1.4 30 

f17 
(G =100) 

0.3981 

SFS 0.3979 0.3979 0 1.1 16.2 0.2 30 

DE 3 3 3.31e-15 0.7 25.8 0.1 30 

PSO-w 3 3 2.50e-11 1.0 48.1 0.5 30 

PSO-cf 3 3 2.05e-11 1.0 31.1 0.3 30 

CLPSO 3 3 5.54e-13 1.6 49.1 0.8 30 

f18 
(G =100) 

3+1e-4 

SFS 3 3 3.33e-15 1.1 24.8 0.2 30 

DE -3.8628 -3.8628 1.97e-15 0.7 14.6 0.1 30 

PSO-w -3.8628 -3.8628 2.66e-11 1.1 14.9 0.2 30 

PSO-cf -3.8628 -3.8628 2.92e-12 1.1 9.1 0.1 30 

CLPSO -3.8628 -3.8628 6.07e-12 1.7 28.2 0.4 30 

f19 
(G =100) 

-3.86+1e-4

SFS -3.8628 -3.8621 2.60e-15 1.1 17.1 0.2 30 

DE -3.322 -3.215 0.036 1.4 188.1 1.3 19 

PSO-w -3.322 -3.256 0.066 2.8 141.7 2.1 17 

PSO-cf -3.322 -3.277 0.058 2.8 91.2 1.3 15 

CLPSO -3.322 -3.274 0.059 3.5 122.2 2.1 13 

f20 
(G =200) 

-3.32+0.01

SFS -3.322 -3.322 1.36e-15 2.4 44.9 0.55 30 

DE -10.15 -10.15 4.67e-06 1.0 48.2 0.5 30 

PSO-w -  6.57 -  2.01 1.10e-00 1.2 100 1.2 0 

PSO-cf -10.15 -  6.23 3.25e-00 1.3 86.4 1.1 13 

CLPSO -10.14 -  9.57 4.28e-01 1.8 80.2 1.5 17 

f21 
(G =100) 

-10 

SFS -10.15 -10.15 5.70e-15 1.6 21.1 0.3 30 

DE -10.40 -10.40 2.07e-07 1.2 39.5 0.5 30 

PSO-w -  4.61 -  2.14 8.34e-01 1.2 100 1.2 0 

PSO-cf -10.40 -  6.47 3.56e-00 1.4 49.5 0.7 21 

CLPSO -10.34 -  9.40 1.12e-00 1.9 43.2 0.8 23 

f22 
(G =100) 

-10 

SFS -10.40 -10.40 4.66e-16 1.6 19.2 0.3 30 

DE -10.54 -10.54 3.21e-06 1.3 38.1 0.5 30 

PSO-w -  6.63 -  2.20 1.01e-00 1.4 100 1.4 0 

PSO-cf -10.54 -  8.11 3.47e-01 1.8 51.5 0.9 19 

CLPSO -10.46 -  9.47 1.25e-00 2.0 47.4 1.0 25 

f23 

(G =100) 
-10 

SFS -10.54 -10.54 1.65e-15 1.7 18.0 0.3 30 

Table 17. The simulation results for f14-f23 

3.2.3  Unimodal functions 

The results of 30 independent runs for functions f1 - f7 are summarized in Table 15. From 
Table 15, SFS is successful over all the 30 runs for f1 - f6. For f7, it is successful in 18 runs but 
all the PSOs failed over all the runs. Moreover, PSOs has more time consumption of 
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achieving the fixed accuracy than that of SFS except that PSO-cf has smaller time 
consumption for f1. Although DE has less time consumption within the fixed number of 
generations than SFS and PSOs, it failed in 21 runs for f4 and all the 30 runs for f7. 

3.2.4 Multimodal functions 

1. Multimodal functions with many local minima: Multimodal functions with many local 
minima are often regarded as being difficult to optimize. f8 - f13 are such functions 
where the number of local minima increases exponentially as the dimension of the 
function increases. The dimensions of f8-f13 were all set to 30 in our experiments as [60]. 
Table 16 gives the results of 30 independent runs. From Table 16, SFS is successful over 
all the 30 runs for functions f10-f13 but f8 and f9. For functions f10-f13, SFS has faster 
convergence speed with the fewer generations and computation time to achieve the 
fixed accuracy level than DE and PSOs except DE for f10 and f11. 

2. Multimodal functions with only a few local minima: For functions f14-f23, the number of 
local minima and the dimension are small. Table 17 summarizes the results over 30 
runs. From Table 17, it is apparent that SFS performs better than DE and PSOs for 
functions f14-f23. 

Table 15 - Table 17 indicates that SFS is suitable for solving the most employed unimodal 
and multimodal function optimizations with better convergence ability. Compared with the 
three modified PSOs, SFS has better global search ability with more successful runs for the 
benchmark functions. The Tables also show that SFS has often higher computational 
complexity with more time consumption within the given generations than DE but PSO-cf 
and CLPSO. 
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