
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Two Population-Based Heuristic Search
Algorithms and Their Applications

Weirong Chen, Chaohua Dai and Yongkang Zheng
Southwest JiaotongUniversity

China

1. Introduction

Search is one of the most frequently used problem solving methods in artificial intelligence

(AI) [1], and search methods are gaining interest with the increase in activities related to

modeling complex systems [2, 3]. Since most practical applications involve objective

functions which cannot be expressed in explicit mathematical forms and their derivatives

cannot be easily computed, a better choice for these applications may be the direct search

methods as defined below: A direct search method for numerical optimization is any algorithm

that depends on the objective function only through ranking a countable set of function values. Direct

search methods do not compute or approximate values of derivatives and remain popular

because of their simplicity, flexibility, and reliability [4]. Among the direct search methods,

hill climbing methods often suffer from local minima, ridges and plateaus. Hence, random

restarts in search process can be used and are often helpful. However, high-dimensional

continuous spaces are big places in which it is easy to get lost for random search.

Resultantly, augmenting hill climbing with memory is applied and turns out to be effective

[5]. In addition, for many real-world problems, an exhaustive search for solutions is not a

practical proposition. It is common then to resort to some kind of heuristic approach as

defined below: heuristic search algorithm for tackling optimization problems is any algorithm that

applies a heuristic to search through promising solutions in order to find a good solution. This

heuristic search allows the bypass of the “combinatorial explosion” problem [6]. Those

techniques discussed above are all classified into heuristics involved with random move,

population, memory and probability model [7]. Some of the best-known heuristic search

methods are genetic algorithm (GA), tabu search and simulated annealing, etc.. A standard

GA has two drawbacks: premature convergence and lack of good local search ability [8]. In

order to overcome these disadvantages of GA in numerical optimization problems,

differential evolution (DE) algorithm has been introduced by Storn and Price [9].

In the past 20 years, swarm intelligence computation [10] has been attracting more and more
attention of researchers, and has a special connection with the evolution strategy and the
genetic algorithm [11]. Swarm intelligence is an algorithm or a device and illumined by the
social behavior of gregarious insects and other animals, which is designed for solving
distributed problems. There is no central controller directing the behavior of the swarm;
rather, these systems are self-organizing. This means that the complex and constructive
collective behavior emerges from the individuals (agents) who follow some simple rules and

www.intechopen.com

Search Algorithms and Applications

4

communicate with each other and their environments. Swarms offer several advantages
over traditional systems based on deliberative agents and central control: specifically
robustness, flexibility, scalability, adaptability, and suitability for analysis. Since 1990's, two
typical swarm intelligence algorithms have emerged. One is the particle swarm optimization
(PSO) [12], and the other is the ant colony optimization (ACO) [13].
In this chapter, two recently proposed swarm intelligence algorithms are introduced. They
are seeker optimization algorithm (SOA) [3, 14-19] and stochastic focusing search (SFS) [20,
21], respectively.

2. Seeker Optimization Algorithm (SOA) and its applications

2.1 Seeker Optimization Algorithm (SOA) [3, 14-19]

Human beings are the highest-ranking animals in nature. Optimization tasks are often
encountered in many areas of human life [6], and the search for a solution to a problem is
one of the basic behaviors to all mankind [22]. The algorithm herein just focuses on human
behaviors, especially human searching behaviors, to be simulated for real-parameter
optimization. Hence, the seeker optimization algorithm can also be named as human team
optimization (HTO) algorithm or human team search (HTS) algorithm. In the SOA,
optimization process is treated as a search of optimal solution by a seeker population.

2.1.1 Human searching behaviors

Seeker optimization algorithm (SOA) models the human searching behaviors based on their
memory, experience, uncertainty reasoning and communication with each other. The
algorithm operates on a set of solutions called seeker population (i.e., swarm), and the
individual of this population are called seeker (i.e., agent). The SOA herein involves the
following four human behaviours.

A. Uncertainty Reasoning behaviours

In the continuous objective function space, there often exists a neighborhood region close to
the extremum point. In this region, the function values of the variables are proportional to
their distances from the extremum point. It may be assumed that better points are likely to
be found in the neighborhood of families of good points. In this case, search should be
intensified in regions containing good solutions through focusing search [2]. Hence, it is
believed that one may find the near optimal solutions in a narrower neighborhood of the
point with lower objective function value and find them in a wider neighborhood of the
point with higher function value.
“Uncertainty” is considered as a situational property of phenomena [23], and precise
quantitative analyses of the behavior of humanistic systems are not likely to have much
relevance to the real-world societal, political, economic, and other type of problems. Fuzzy
systems arose from the desire to describe complex systems with linguistic descriptions, and
a set of fuzzy control rules is a linguistic model of human control actions directly based on a
human thinking about the operation. Indeed, the pervasiveness of fuzziness in human
thought processes suggests that it is this fuzzy logic that plays a basic role in what may well
be one of the most important facets of human thinking [24]. According to the discussions on
the above human focusing search, the uncertainty reasoning of human search could be
described by natural linguistic variables and a simple fuzzy rule as “If {objective function
value is small} (i.e., condition part), Then {step length is short} (i.e., action part)”. The

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

5

understanding and linguistic description of the human search make a fuzzy system a good
candidate for simulating human searching behaviors.

B. Egotistic Behavior

Swarms (i.e., seeker population here) are a class of entities found in nature which specialize

in mutual cooperation among them in executing their routine needs and roles [25]. There are

two extreme types of co-operative behavior. One, egotistic, is entirely pro-self and another,

altruistic, is entirely pro-group [26]. Every person, as a single sophisticated agent, is

uniformly egotistic, believing that he should go toward his personal best

position ,i bestp
j

through cognitive learning [27].

C. Altruistic Behavior

The altruistic behavior means that the swarms co-operate explicitly, communicate with each
other and adjust their behaviors in response to others to achieve the desired goal. Hence, the
individuals exhibit entirely pro-group behavior through social learning and simultaneously
move to the neighborhood’s historical best position or the neighborhood’s current best
position. As a result, the move expresses a self-organized aggregation behavior of swarms
[28]. The aggregation is one of the fundamental self-organization behaviors of swarms in
nature and is observed in organisms ranging from unicellular organisms to social insects
and mammals [29]. The positive feedback of self-organized aggregation behaviors usually
takes the form of attraction toward a given signal source [28]. For a “black-box” problem in
which the ideal global minimum value is unknown, the neighborhood’s historical best
position or the neighborhood’s current best position is used as the only attraction signal
source for the self-organized aggregation behavior.

C. Pro-Activeness Behavior

Agents (i.e., seekers here) enjoy the properties of pro-activeness: agents do not simply act in
response to their environment; they are able to exhibit goal-directed behavior by taking the
initiative [30]. Furthermore, future behavior can be predicted and guided by past behavior
[31]. As a result, the seekers may be pro-active to change their search directions and exhibit
goal-directed behaviors according to the response to his past behaviors.

2.1.2 Implementation of Seeker Optimization Algorithm

Seeker optimization algorithm (SOA) operates on a search population of s D-dimensional

position vectors, which encode the potential solutions to the optimization problem at hand.

The position vectors are represented as 1[, , , ,],i i ij iDx x x x=j A A i=1, 2, ···, s, where xij is the

jth element of ix
j

and s is the population size. Assume that the optimization problems to be

solved are minimization problems.

The main steps of SOA are shown as Fig. 1. In order to add a social component for social

sharing of information, a neighborhood is defined for each seeker. In the present studies, the

population is randomly divided into three subpopulations (all the subpopulations have the

same size), and all the seekers in the same subpopulation constitute a neighborhood. A

search direction 1() [, ,]i i iDd t d d=
j

A and a step length vector 1() [, ,]i i iDtα α α=j A are computed

(see Section 1.1.3 and 1.1.4) for the ith seeker at time step t, where ()ij tα ≥0, ()ijd t ∈ {-1,0,1},

i=1,2,···,s; j=1,2,···,D. When () 1,ijd t = it means that the i-th seeker goes towards the positive

direction of the coordinate axis on the dimension j; when () 1,ijd t = − the seeker goes

www.intechopen.com

Search Algorithms and Applications

6

towards the negative direction; when () 0,ijd t = the seeker stays at the current position on the

corresponding dimension. Then, the jth element of the ith seeker’s position is updated by:

 (1) () () ()ij ij ij ijx t x t t d tα+ = + (1)

Since the subpopulations are searching using their own information, they are easy to converge

to a local optimum. To avoid this situation, an inter-subpopulation learning strategy is used,

i.e., the worst two positions of each subpopulation are combined with the best position of each

of the other two subpopulations by the following binomial crossover operator:

,best

,worst
,worst

if 0.5

elsen

n

lj j

k j
k j

x R
x

x

≤⎧⎪= ⎨
⎪⎩

 (2)

where Rj is a uniformly random real number within [0,1], ,worstnk jx is denoted as the jth

element of the nth worst position in the kth subpopulation, ,bestljx is the jth element of the

best position in the lth subpopulation, the indices k, n, l are constrained by the combination

(k,n,l)∈ {(1,1,2), (1,2,3), (2,1,1), (2,2,3), (3,1,1), (3,2,2)}, and j=1,···,D. In this way, the good

information obtained by each subpopulation is exchanged among the subpopulations and

then the diversity of the population is increased.

2.1.3 Search direction

The gradient has played an important role in the history of search methods [32]. The search

space may be viewed as a gradient field [33], and a so-called empirical gradient (EG) can be

determined by evaluating the response to the position change especially when the objective

function is not be available in a differentiable form at all [5]. Then, the seekers can follow an

EG to guide their search. Since the search directions in the SOA does not involve the

magnitudes of the EGs, a search direction can be determined only by the signum function of

a better position minus a worse position. For example, an empirical search direction

()d sign x x′ ′′= −
j j j

when x′j is better than x′′j , where the function sign(·) is a signum function on

each element of the input vector. In the SOA, every seeker i (i=1,2,···,s) selects his search

direction based on several EGs by evaluating the current or historical positions of himself or

his neighbors. They are detailed as follows.

According to the egotistic behavior mentioned above, an EG from ()ix t
j

to , ()i bestp t
j

can be

involved for the ith seeker at time step t. Hence, each seeker i is associated with an empirical

direction called as egotistic direction , 1, 2 , ,() [, , ,] :i ego i ego i ego iD egod t d d d=
j

A

 , ,() (() ())i ego i best id t sign p t x t= −
j j j

 (3)

On the other hand, based on the altruistic behavior, each seeker i is associated with two

optional altruistic direction, i.e.,
1, ()i altd t

j
and

2, ()i altd t
j

:

1, ,() (() ())i alt i best id t sign g t x t= −

j j j
 (4)

2, ,() (() ())i alt i best id t sign l t x t= −

j j j
 (5)

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

7

where , ()i bestg t
j

 represents the neighborhood’s historical best position up to the time step t,

, ()i bestl t
j

 represents the neighborhood’s current best position. Here, the neighborhood is the

one to which the ith seeker belongs.

Moreover, according to the pro-activeness behavior, each seeker i is associated with an

empirical direction called as pro-activeness direction , ()i prod t
j

:

 , 1 2() (() ())i pro i id t sign x t x t= −
j j j

 (6)

where 1 2, { , 1, 2},t t t t t∈ − − 1()ix t
j

and 2()ix t
j

 are the best one and the worst one in the set

{ (), (1), (2)i i ix t x t x t− −j j j
} respectively.

According to human rational judgment, the actual search direction of the ith

seeker, 1 2() [, , ,],i i i iDd t d d d=
j

A is based on a compromise among the aforementioned four

empirical directions, i.e., , ()i egod t
j

,
1, ()i altd t

j
,

2, ()i altd t
j

 and , ()i prod t
j

. In this study, the jth

element of ()id t
j

 is selected applying the following proportional selection rule (shown

as Fig. 2):

(0)

(0) (0) (1)

(0) (1)

0 if

1 if

1 if 1

j j

ij jj j j

jj j

r p

d p r p p

p p r

⎧ ≤
⎪⎪= < ≤ +⎨
⎪
− + < ≤⎪⎩

 (7)

where i=1,2,···,s, j=1,2,···,D, jr is a uniform random number in [0,1], ()m
jp ({0,1, 1})m∈ − is

defined as follows: In the set { ,ij egod ,
1,ij altd ,

2,ij altd , ,ij prod } which is composed of the jth

elements of , ()i egod t
j

,
1, ()i altd t

j
,

2, ()i altd t
j

 and , (),i prod t
j

let num(1) be the number of “1”, num(-1) be

the number of “-1”, and num(0) be the number of “0”, then
(1) (1)

(1) (1), ,
4 4

j j

num num
p p

−
−= =

(0)
(0) .

4
j

num
p = For example, if

1, ,1, 1,ij ego ij altd d= = −
2, ,1, 0,ij alt ij prod d= − = then num(1) =1, num(-

1)=2, and num(0)=1. So, (1) (1) (0)1 2 1
, , .

4 4 4
j j jp p p−= = =

2.1.4 Step length

In the SOA, only one fuzzy rule is used to determine the step length, namely, “If {objective
function value is small} (i.e., condition part), Then {step length is short} (i.e., action part)”.
Different optimization problems often have different ranges of fitness values. To design a
fuzzy system to be applicable to a wide range of optimization problems, the fitness values of
all the seekers are descendingly sorted and turned into the sequence numbers from 1 to s as
the inputs of fuzzy reasoning. The linear membership function is used in the conditional
part (fuzzification) since the universe of discourse is a given set of numbers, i.e., {1,2,···,s}.
The expression is presented as (8).

 max max min()
1
i

i

s I

s
μ μ μ μ

−
= − −

−
 (8)

www.intechopen.com

Search Algorithms and Applications

8

where Ii is the sequence number of ()ix t
j

after sorting the fitness values, Ǎmax is the maximum

membership degree value which is assigned by the user and equal to or a little less than 1.0.

Generally, Ǎmax is set at 0.95.
In the action part (defuzzification), the Gaussian membership function

2 2/(2)
() (1, , ; 1, ,)ij j

ij e i s j D
α δμ α −= = =A A is used for the jth element of the ith seeker’s step

length. For the Bell function, the membership degree values of the input variables beyond [-
3δj, 3δj] are less than 0.0111 (Ǎ(±3δj)=0.0111), which can be neglected for a linguistic atom
[34]. Thus, the minimum value Ǎmin=0.0111 is fixed. Moreover, the parameter δj of the

Gaussian membership function is the jth element of the vector 1[, ,]Dδ δ δ=
j

A which is

given by:

 ()best randabs x xδ ω= ⋅ −
j j j

 (9)

where abs(·) returns an output vector such that each element of the vector is the absolute

value of the corresponding element of the input vector, the parameter ω is used to decrease

the step length with time step increasing so as to gradually improve the search precision. In

general, the ω is linearly decreased from 0.9 to 0.1 during a run. The bestx
j

and randx
j

 are the

best seeker and a randomly selected seeker in the same subpopulation to which the ith

seeker belongs, respectively. Notice that randx
j

is different from bestx
j

, and δ
j

 is shared by all

the seekers in the same subpopulation. Then, the action part of the fuzzy reasoning (shown

in Fig. 3) gives the jth element of the ith seeker’s step length 1[, ,]i i iDα α α=j A (i=1,2,···,s;

j=1,2,···,D):

 log((,1))ij j iRANDα δ μ= − (10)

where jδ is the jth element of the vectorδ
j

in (9), the function log(·) returns the natural

logarithm of its input, the function RAND(Ǎi,1) returns a uniform random number within

the range of [Ǎi,1] which is used to introduce the randomicity for each element of iα
j

and

improve local search capability.

2.1.5 Further analysis on the SOA

Unlike GA, SOA conducts focusing search by following the promising empirical directions
until to converge to the optimum for as few generations as possible. In this way, it does not
easily get lost and then locates the region in which the global optimum exists.
Although the SOA uses the same terms of the personal/population best position as PSO and

DE, they are essentially different. As far as we know, PSO is not good at choosing step

length [35], while DE sometimes has a limited ability to move its population large distances

across the search space and would have to face with stagnation puzzledom [36]. Unlike PSO

and DE, SOA deals with search direction and step length, independently. Due to the use of

fuzzy rule: “If {fitness value is small}, Then {step length is short}”, the better the position of the

seeker is, the shorter his step length is. As a result, from the worst seeker to the best seeker,

the search is changed from a coarse one to a fine one, so as to ensure that the population can

not only keep a good search precision but also find new regions of the search space.

Consequently, at every time step, some seekers are better for “exploration”, some others

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

9

better for “exploitation”. In addition, due to self-organized aggregation behavior and the

decreasing parameter ω in (9), the feasible search range of the seekers is decreasing with

time step increasing. Hence, the population favors “exploration” at the early stage and

“exploitation” at the late stage. In a word, not only at every time step but also within the

whole search process, the SOA can effectively balance exploration and exploitation, which

could ensure the effectiveness and efficiency of the SOA [37].

According to [38], a “nearer is better (NisB)” property is almost always assumed: most of

iterative stochastic optimization algorithms, if not all, at least from time to time look around

a good point in order to find an even better one. Furthermore, the reference [38] also pointed

out that an effective algorithm may perfectly switch from a NisB assumption to a “nearer is

worse (NisW)” one, and vice-versa. In our opinion, SOA is potentially provided with the

NisB property because of the use of fuzzy reasoning and can switch between a NisB

assumption and a NisW one. The main reason lies in the following two aspects. On the one

hand, the search direction of each seeker is based on a compromise among several empirical

directions, and different seekers often learn from different empirical points on different

dimensions instead of a single good point as mentioned by NisB assumption. On the other

hand, uncertainty reasoning (fuzzy reasoning) used by SOA would let a seeker’s step length

“uncertain”, which uncertainly lets a seeker nearer to a certain good point, or farer away from

another certain good point. Both the two aspects can boost the diversity of the population.

Hence, from Clerc’s point of view [38], it is further proved that SOA is effective.

begin

t←0;

generating s positions uniformly and randomly in search

space;

repeat

 evaluating each seeker;

 computing ()id t
j

 and ()i tαj for each seeker i;

 updating each seeker’s position using (1);

 t←t+1;

until the termination criterion is satisfied

end.

Fig. 1. The main step of the SOA.

Fig. 2. The proportional selection rule of search directions

www.intechopen.com

Search Algorithms and Applications

10

Fig. 3. The action part of the Fuzzy reasoning.

2.2 SOA for benchmark function optimization (Refs.[3,16, 18)

Twelve benchmark functions (listed in Table 1) are chosen from [39] to test the SOA with
comparison of PSO-w (PSO with adaptive inertia weight) [40], PSO-cf (PSO with
constriction factor) [41], CLPSO (comprehensive learning particle swarm optimizer) [42], the
original DE [9], SACP-DE (DE with self-adapting control parameters) [39] and L-SaDE (the
self-adaptive DE) [43]. The Best, Mean and Std (standard deviation) values of all the
algorithms for each function over 30 runs are summarized in Table 2. In order to determine
whether the results obtained by SOA are statistically different from the results generated by
other algorithms, the T-tests are conducted and listed in Table 2, too. An h value of one
indicates that the performances of the two algorithms are statistically different with 95%
certainty, whereas h value of zero implies that the performances are not statistically
different. The CI is confidence interval. The Table 2 indicates that SOA is suitable for solving
the employed multimodal function optimizations with the smaller Best, Mean and std values
than most of other algorithms for most of the functions. In addition, most of the h values are
equal to one, and most of the CI values are less than zero, which shows that SOA is
statistically superior to most of the other algorithms with the more robust performance. The
details of the comparison results are as follows. Compared with PSO-w, SOA has the
smaller Best, Mean and std values for all the twelve benchmark functions. Compared with
PSO-cf, SOA has the smaller Best, Mean and std values for all the twelve benchmark
functions expect that PSO-cf also has the same Best values for the functions 2-4, 6, 11 and 12.
Compared with CLPSO, SOA has the smaller Best, Mean and std values for all the twelve
benchmark functions expect that CLPSO also has the same Best values for the functions 6, 7,
9, 11 and 12. Compared with SPSO-2007, SOA has the smaller Best, Mean and std values for
all the twelve benchmark functions expect that SPSO-2007 also has the same Best values for
the functions 7-12. Compared with DE, SOA has the smaller Best, Mean and std values for all
the twelve benchmark functions expect that DE also has the same Best values for the
functions 3, 6, 9, 11 and 12. Compared with SACP-DE, SOA has the smaller Best, Mean and
std values for all the twelve benchmark functions expect that SACP-DE can also find the
global optimal solutions for function 3 and has the same Best values for the functions 6, 7, 11
and 12. Compared with L-SaDE, SOA has the smaller Best, Mean and std values for all the
twelve benchmark functions expect that L-SaDE can also find the global optimal solutions
for function 3 and has the same Best values for the functions 6, 9 and 12.

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

11

Functions n S fmin

4
1 1
() [0,1)

n
ii

f x ix rand== +∑
f

 30
[1.28,1.2−

1(0) 0f =
f

2
2

1 1

1 1
() 20exp(0.2) exp(cos(2))

n n

i i
i i

f x x x
n n

π
= =

= − − −∑ ∑
f

20 e+ + 30
[]32,32

n−

2(0) 0f =

f

2
3 1 1

1
() cos() 1

4000

nn i
ii i

x
f x x

i= == − +∑ ∏
f

 30
[600,600−

3(0) 0f =

f

12 2 2
4 1 11
() {10sin () (1) [1 10sin ()]

n
i ii

f x y y y
n

π π π−
+== + − +∑

f

 2
1

(1) } (,10,100,4)
n

n ii
y u x=+ − +∑

30
[]50,50

n−

4(1) 0f − =

f

12 2 2
5 1 11
() 0.1{sin (3) (1) [1 sin (3)]

n
i ii

f x x x xπ π−
+== + − +∑

f

 2 2
1

(1) [1 sin (2)]} (,5,100,4)
n

n n ii
x x u xπ =+ − + +∑

30
[]50,50

n−

f5(1,…,1)=0

2
11 21 2

6 1 2
3 4

()
() []i i

ii
i i

x b b x
f x a

b b x x=
+

= −
+ +

∑
f

 4 []5,5
n−

f6(0.1928,0.1908,0
.1231,0.1358)=3.0

749×10-4

2 4 6 2 4
7 1 1 1 1 2 2 2

1
() 4 2.1 4 4

3
f x x x x x x x x= − + + − +

f
 2 []5,5

n−
f7(-0.09,0.71)=-

1.031628

2 2
8 2 1 1 12

5.1 5 1
() (6) 10(1)cos() 10

84
f x x x x x

π ππ
= − + − + − +

f
 2 []5,15

n− 8(9.42,2.47) 0.f =

2 2 2
() [1 (1) (19 14 3 14 6 3)]9 1 2 1 1 2 1 2 2f x x x x x x x x x= + + + − + − + + ×
f

2 2 2

1 2 1 1 2 1 2 2[30 (2 3) (18 32 12 48 36 27)]x x x x x x x x+ − × − + + − +
2 []2,2

n− 9(0, 1) 3f − =

24 3
10 1 1

() exp[()]i ij j iji j
f x c a x p= == − − −∑ ∑

f
 3 [0,1]n 10(0.114,0.556,0f

7 1
11 1

() [()()]T
i i ii

f x x a x a c −
== − − − +∑

f j j
 4 []0,10

n 11(4) 10.402f ≈ = −
f

10 1
12 1

() [()()]T
i i ii

f x x a x a c −
== − − − +∑

f j j
 4 []0,10

n 12(4) 10.536f ≈ = −
f

Table 1. The employed benchmark functions.

www.intechopen.com

Search Algorithms and Applications

12

function Index PSO-ω PSO-cf CLPSO SPSO-2007 DE SACP-DE L-SaDE SOA

Best 2.7136e-3 1.0861e-3 3.3596e-3 7.6038e-3 1.8195e-3 3.7152e-3 1.0460e-3
4.0153e

-5

Mean 7.1299e-3 2.5423e-3 5.1258e-3 5.0229e-2 4.3505e-3 5.5890e-3 4.2653e-3
9.7068e

-5

Std 2.3404e-3 9.7343e-4 1.1883e-3 3.5785e-2 1.2317e-3 1.1868e-3 1.7366e-3
4.8022e

-5

h 1 1 1 1 1 1 1 -

1

CI
[-0.0081 -
0.0060]

[-0.0029 -
0.0020]

[-0.0056 -
0.0045]

[-0.0663 -
0.0339]

[-0.0048 -
0.0037]

[-0.0060 -
0.0050]

[-0.0050 -
0.0034]

-

Best 7.3196e-7 2.6645e-15 6.3072e-4 1.7780e+0 8.5059e-8 5.2355e-9
1.2309e-

11
2.6645e

-15

Mean 1.7171e-6 8.0458e-1 8.2430e-4 3.1720e+0 1.6860e-7 1.12625e-8
7.0892e-

11
2.6645e

-15

Std 8.8492e-7 7.7255e-1 1.2733e-4 9.1299e-1 7.3342e-8 4.1298e-9
4.1709e-

11
0

h 1 1 1 1 1 1 1 -

2

CI
[-2.12e-6 -
1.32e-6]

[-1.1543 -
0.4549]

[-8.82e-4 -
7.67e-4]

[-3.5853 -
2.7587]

[-2.02e-7 -
1.35e-7]

[-1.31e-8 -
9.39e-9]

[-8.98e-11
-5.20e-11]

-

Best 2.2204e-15 0 1.7472e-7 6.6613e-16 0 0 0 0

Mean 8.3744e-3 1.9984e-2 2.4043e-6 1.0591e-2 4.9323e-4 0 0 0

Std 7.7104e-3 2.1321e-2 3.6467e-6 1.1158e-2 2.2058e-3 0 0 0

h 1 1 1 1 0 - - - 3

CI
[-0.0118 -
0.0049]

[-0.0296 -
0.0103]

[-4.06e-6 -
7.54e-7]

[-0.0156 -
0.0055]

[-0.0015
5.0527e-

4]
- - -

Best 1.2781e-13 1.5705e-32 1.8074e-7 5.2094e-22
2.9339e-

15
2.2953e-17

2.5611e-
21

1.5705e
-32

Mean 2.6878e-10 1.1402e-1 5.7391e-7 1.3483e+0
2.5516e-

14
1.3700e-16

8.0092e-
20

1.5808e
-30

Std 6.7984e-10 1.8694e-1 2.4755e-7 1.3321e+0
1.8082e-

14
8.7215e-17

7.9594e-
20

3.8194e
-30

h 0 1 1 1 1 1 1 -

4

CI
[-5.75e-10
3.70e-11]

[-0.1986 -
0.0294]

[-6.86e-7 -
4.62e-7]

[-1.9513 -
0.7453]

[-3.4e-14 -
1.7e-14]

[-1.8e-16 -
9.8e-17]

[-1.12e-19
-4.41e-20]

-

Best 1.6744e-12 1.3498e-30 4.2229e-6 1.0379e-19
2.5008e-

14
3.8881e-16

1.0668e-
21

6.1569e
-32

Mean 1.0990e-3 1.0987e-3 6.8756e-6 1.3031e+1
1.0165e-

13
9.7736e-16

3.4614e-
19

3.3345e
-29

Std 3.4744e-3 3.3818e-3 2.7299e-6 1.1416e+1
7.1107e-

14
8.4897e-16

4.7602e-
19

8.3346e
-29

h 0 0 1 1 1 1 1 -

5

CI
[-0.0027

4.6368e-4]
[-0.0026

4.3212e-4]
[-8.11e-6 -
5.64e-6]

[-18.1990 -
7.8633]

[-1.3e-13 -
6.9e-14]

[-1.4e-15 -
5.9e-16]

[-5.62e-1
1.31e-19]

-

Best 3.0750e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4 3.0749e-4
3.0749e

-4

Mean 4.9063e-4 4.4485e-4 3.5329e-4 4.9463e-4 4.4485e-4 3.0750e-4 3.0750e-4
3.0749e

-4

Std 3.8608e-4 3.3546e-4 2.0478e-4 1.7284e-4 3.3546e-4 3.0191e-9 2.8726e-9
9.6334e

-20

6

h 1 0 0 1 0 1 1 -

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

13

CI

[-3.57e-4 -
9.49e-5]

[-2.89e-4
1.45e-5]

[-1.39e-4
4.69e-5]

[-2.65e-4 -
1.09e-4]

[-2.89e-4
1.45e-5]

[-1.15e-8 -
8.74e-9]

[-1.14e-8 -
8.7e-9]

-

Best -1.031626 -1.031627 -1.031628 -1.031628 -1.031627 -1.031628 -1.031627
-

1.03162
8

Mean -1.031615 -1.031612 -1.031617 -1.031627 -1.031619 -1.031617 -1.031613
-

1.03162
8

Std 8.6069e-6 7.8874e-6 7.4529e-6 3.5817e-6 8.4157e-6 8.0149e-6 9.0097e-6
7.6401e

-13

h 1 1 1 0 1 1 1 -

7

CI
[-1.72e-5 -
9.49e-6]

[-2.00e-5 -
1.28e-5]

[-1.53e-5 -
8.54e-6]

[-2.47e-6
7.76e-6]

[-1.28e-5 -
5.21e-6]

[-1.52e-5 -
7.99e-6]

[-1.92e-5 -
1.11e-5]

-

Best 3.97890e-1 3.97898e-1 3.97897e-1 3.97887e-1
3.97902e-

1
3.97888e-1

3.97889e-
1

3.97887
e-1

Mean 3.97942e-1 3.97939e-1 3.97947e-1 3.97892e-1
3.97947e-

1
3.97932e-1

3.97941e-
1

3.97887
e-1

Std 3.3568e-5 3.0633e-5 3.1612e-5 1.8336e-5 3.0499e-5 3.3786e-5
3.76524e-

5
1.2874e

-7

h 1 1 1 0 1 1 1 -

8

CI
[-6.95e-5 -
3.93e-5]

[-6.52e-5 -
3.74e-5]

[-7.37e-5
4.51e-5]

[-1.277e-5
3.92e-6]

[-7.38e-5 -
4.62e-5]

[-6.00e-5 -
2.94e-5]

[-7.09e-5 -
3.69e-5]

-

Best 3.0000 3.0000 3 3 3 3.0000 3 3

Mean 3.0000 3.0000 3.0000 3.0000 3 3.0000 3.0000 3

Std 4.0898e-12 3.1875e-12 1.7278e-13 2.6936e-12
9.9103e-

15
2.6145e-8

5.4283e-
13

2.7901e
-15

h 1 1 1 1 1 1 1 -

9

CI
[-5.1e-12 -
1.5e-12]

[-4.5e-12 -
1.61e-12]

[-3.1e-13 -
1.6e-13]

[-2.7e-12 -
2.6e-13]

[-8.5e-14 -
7.6e-14]

[-2.6e-8 -
2.6e-9]

[-6.4e-13 -
1.5e-13]

-

Best -3.86174 -3.86260 -3.86254 -3.86278 -3.86256 -3.86251 -3.86228
-

3.86278

Mean -3.86120 -3.86142 -3.86131 -3.86196 -3.86115 -3.86137 -3.86104
-

3.86278

Std 4.1892e-4 7.0546e-4 6.6908e-4 3.6573e-3 7.9362e-4 6.1290e-4 6.8633e-4
2.0402e

-15

h 1 1 1 0 1 1 1 -

10

CI
[-0.0018 -
0.0014]

[-0.0017 -
0.0010]

[-0.0018 -
0.0012]

[-0.0025
8.3672e-4]

[-0.0020 -
0.0013]

[-0.0017 -
0.0011]

[-0.0021 -
0.0014]

-

Best -1.0403e+1 -1.0403e+1 -1.0403e+1 -1.0403e+1
-

1.0403e+1
-

1.0403e+1
-

1.0402e+1

-
1.0403e

+1

Mean -8.8741e+0 -9.3713e+0 -7.5794e+0 -8.5881e+0
-

1.0403e+1
-

1.0307e+1
-

1.0307e+1

-
1.0403e

+1

Std 3.2230e+0 2.5485e+0 3.6087e+0 3.2342e+0 6.6816e-7 1.9198e-1 1.6188e-1
5.8647e

-11

h 1 0 1 1 1 1 1 -

11

CI
[-2.9785 -
0.0791]

[-2.1852
0.1220]

[-4.4570 -
1.1900]

[-3.2788 -
0.3508]

[-7.32e-7
-1.27e-7]

[-0.1828 -
0.0090]

[-0.1692 -
0.0226]

-

12
Best -1.0536e+1 -1.0536e+1 -1.0536e+1 -1.0536e+1 -

1.0536e+1
-

1.0536e+1
-

1.0534e+1
-

1.0536e

www.intechopen.com

Search Algorithms and Applications

14

+1

Mean -8.4159e+0 -8.6726e+0 -9.2338e+0 -9.7313e+0
-

1.0536e+1
-

1.0432e+1
-

1.0437e+1

-
1.0536e

+1

Std 3.4860e+0 3.3515e+0 2.7247e+0 2.0607e+0 4.3239e-7 3.1761e-1 1.3003e-1
3.0218e

-11

h 1 1 1 0 1 0 1 -

CI
[-3.6885 -
0.5526]

[-3.3809 -
0.3467]

[-2.5360 -
0.0692]

[-1.7379
0.1277]

[-4.86e-7 -
9.43e-8]

[-0.2481
0.0394]

[-0.1586 -
0.0409]

-

Table 2. The Comparisons of SOA with Other Evolutionary Methods on Benchmark
Functions

2.3 SOA for optimal reactive power dispatch (Ref.[16])
2.3.1 Problem formulation

The objective of the reactive power optimization is to minimize the active power loss in the
transmission network, which can be defined as follows:

 2 2
loss 1 2(,) (2 cos)

E

k i j i j ij
k N

P f x x g V V VV θ
∈

= = + −∑
f f

 (11)

Subject to

0

min max

min max

min max

min max

max

(cos sin)

(sin cos)
i

i

Gi Di i j ij ij ij ij
j N

Gi Di i j ij ij ij ij PQ
j N

i i i B

k k k T

Gi Gi Gi G

Ci Ci Ci C

l l l

P P V V G B i N

Q Q V V G B i N

V V V i N

T T T k N

Q Q Q i N

Q Q Q i N

S S l N

θ θ

θ θ
∈

∈

− = + ∈⎧
⎪
⎪ − = − ∈⎪
⎪
⎪ ≤ ≤ ∈⎪
⎨

≤ ≤ ∈⎪
⎪ ≤ ≤ ∈⎪
⎪ ≤ ≤ ∈
⎪
⎪ ≤ ∈⎩

∑

∑

 (12)

where 1 2(,)f x x
f f

denotes the active power loss function of the transmission network, 1x
f

 is

the control variable vector []TG T CV K Q , 2x
f

 is the dependent variable vector []TL GV Q , GV

is the generator voltage (continuous), kT is the transformer tap (integer), CQ is the shunt

capacitor/inductor (integer), LV is the load-bus voltage, GQ is the generator reactive

power, k=(i,j), Bi N∈ , ij N∈ , kg is the conductance of branch k, ijθ is the voltage angle

difference between bus i and j, GiP is the injected active power at bus i, DiP is the demanded

active power at bus i, iV is the voltage at bus i, ijG is the transfer conductance between bus i

and j, ijB is the transfer susceptance between bus i and j, GiQ is the injected reactive power

at bus i, DiQ is the demanded reactive power at bus , EN is the set of numbers of network

branches, PQN is the set of numbers of PQ buses, BN is the set of numbers of total buses,

iN is the set of numbers of buses adjacent to bus i (including bus i), 0N is the set of

numbers of total buses excluding slack bus, CN is the set of numbers of possible reactive

power source installation buses, GN is the set of numbers of generator buses, TN is the set

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

15

of numbers of transformer branches, lS is the power flow in branch l, the superscripts

“min” and “max” in equation (12) denote the corresponding lower and upper limits,

respectively.
The first two equality constraints in (12) are the power flow equations. The rest inequality
constraints are used for the restrictions of reactive power source installation, reactive
generation, transformer tap-setting, bus voltage and power flow of each branch.
Control variables are self-constrained, and dependent variables are constrained using
penalty terms to the objective function. So the objective function is generalized as follows:

lim lim

2 2

V Q

loss V L Q G
N N

f P V Qλ λ= + Δ + Δ∑ ∑ (13)

where Vλ , Qλ are the penalty factors, lim
VN is the set of numbers of load-buses on which

voltage outside limits, � lim
QN is the set of numbers of generator buses on which injected

reactive power outside limits, LVΔ and GQΔ are defined as:

min min

max max

if

if

L L L L
L

L L L L

V V V V
V

V V V V

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (14)

min min

max max

if

if

G G G G
G

G G G G

Q Q Q Q
Q

Q Q Q Q

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (15)

2.3.2 Implementation of SOA for reactive power optimization
The basic form of the proposed SOA algorithm can only handle continuous variables.
However, both tap position of transformations and reactive power source installation are
discrete or integer variables in optimal reactive power dispatch problem. To handle integer
variables without any effect on the implementation of SOA, the seekers will still search in a
continuous space regardless of the variable type, and then truncating the corresponding
dimensions of the seekers’ real-value positions into the integers [44] is only performed in
evaluating the objective function.
The fitness value of each seeker is calculated by using the objective function in (13). The real-
value position of the seeker consists of three parts: generator voltages, transformer taps and
shunt capacitors/inductors. After the update of the position, the main program is turned to
the sub-program for evaluating the objective function where the latter two parts of the
position are truncated into the corresponding integers as [44]. Then, the real-value position
is changed into a mixed-variable vector which is used to calculate the objective function
value by equation (13) based on Newton-Raphson power flow analysis [45]. The reactive
power optimization based on SOA can be described as follows [16].
Step 1. Read the parameters of power system and the proposed algorithm, and specify the

lower and upper limits of each variable.
Step 2. Initialize the positions of the seekers in the search space randomly and uniformly.

Set the time step t=0.
Step 3. Calculate the fitness values of the initial positions using the objective function in

(13) based on the results of Newton-Raphson power flow analysis [45]. The initial
historical best position among the population is achieved. Set the personal historical
best position of each seeker to his current position.

www.intechopen.com

Search Algorithms and Applications

16

Step 4. Let 1t t= + .

Step 5. Select the neighbors of each seeker.
Step 6. Determine the search direction and step length for each seeker, and update his

position.
Step 7. Calculate the fitness values of the new positions using the objective function based

on the Newton-Raphson power flow analysis results. Update the historical best
position among the population and the historical best position of each seeker.

Step 8. Go to Step 4 until a stopping criterion is satisfied.

2.3.3 Simulation results

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power
optimization approach, standard IEEE 57-bus power system is used.
Since proposed in 1995, PSO [46] and DE [9, 47] have received increasing interest from the
evolutionary computation community as two of the relatively new and powerful
population-based heuristic algorithms, and they both have been successfully applied to
reactive power optimization problems [12, 48-53]. So, the proposed method is compared
mainly with the two algorithms and their recently modified versions.
Since the original PSO proposed in [46] is prone to suffer from the so-called “explosion”
phenomena [41], two improved versions of PSO: PSO with adaptive inertia weight (PSO-w)
and PSO with a constriction factor (PSO-cf), were proposed by Shi, et al. [40] and Clerc, et al.
[41], respectively. Considering that the PSO algorithm may easily get trapped in a local
optimum when solving complex multimodal problems, Liang, et al. [42] proposed a variant
of PSO called comprehensive learning particle swarm optimizer (CLPSO), which is adept at
complex multimodal problems. Furthermore, in the year of 2007, Clerc, et al. [54] developed

a “real standard” version of PSO, SPSO-07, which was specially prepared for the researchers
to compare their algorithms. So, the compared PSOs includes PSO-w(learning rate c1 = c2=2,
inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the maximum
velocity vmax is set at 20% of the dynamic range of the variable on each dimension) [40], PSO-
cf (c1= c2=2.01 and constriction factor χ=0.729844) [41], CLPSO(its parameters follow the
suggestions from [42] except that the refreshing gap m=2) and SPSO-07 [54].
Since the control parameters and learning strategies in DE are highly dependent on the

problems under consideration, and it is not easy to select the correct parameters in practice,

Brest, et al. [39] presented a version of DE with self-adapting control parameters (SACP-DE)

based on the self-adaptation of the two control parameters: the crossover rate CR and the

scaling factor F, while Qin, et al. [43] proposed a self-adaptive differential evolution (SaDE)

where the choice of learning strategy and the two control parameters F and CR are not

required to be pre-specified. So, the compared set of DEs consists of the original DE (DE:

DE/rand/1/bin, F=0.5, CR=0.9) [9]), SACP-DE [39] and SaDE [43]. For the afore-mentioned

DEs, since the local search schedule used in [43] can clearly improve their performances, the

improved versions of the three DEs with local search, instead of their corresponding original

versions, are used in this study and denoted as L-DE, L-SACP-DE and L-SaDE, respectively.

Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA)
introduced in [55] are implemented for comparison with SOA. The fmincon-based nonlinear
programming method (NLP) [45, 56] is also considered.
All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G

512MB RAM. For all the evolutionary methods in the experiments, the same population size

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

17

popsize=60 except SPSO-2007 whose popsize is automatically computed by the algorithm,

total 30 runs and the maximum generations of 300 are made. The NLP method uses a

different uniformly random number in the search space as its start point in each run. The

transformer taps and the reactive power compensation are discrete variables with the

update step of 0.01p.u. and 0.048 p.u., respectively. The penalty factors ǌV and ǌQ in (13) are

both set to 500.

The IEEE 57-bus system shown in Fig. 4 consists of 80 branches, 7 generator-buses and 15

branches under load tap setting transformer branches. The possible reactive power

compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and Vθ-bus as

follows: PV-buses: bus 2, 3, 6, 8, 9, 12; Vθ-bus: bus 1. The others are PQ-buses. The system

data, variable limits and the initial values of control variables were given in [57]. In this case,

the search space has 25 dimensions, i.e., the 7 generator voltages, 15 transformer taps, and 3

capacitor banks. The variable limits are given in Table 3.

G GG

G

G

G G

5

17

30

25

5429 5352

27

28

26 24

21

23 22

201918

5110

7

8 9

1234

6

35

34

33

3231

38

37

36

14 13 12

15

16

46

44

45

49

48

47

50

40

5739

55

41

42

56
11

43

2

2

Fig. 4. Network configuration of IEEE 57-bus power system

www.intechopen.com

Search Algorithms and Applications

18

Table 3. The Variable Limits (p.u.)

The system loads are given as follows:

Pload=12.508 p.u., Qload =3.364 p.u.

The initial total generations and power losses are as follows:

∑PG=12.7926 p.u., ∑QG=3.4545 p.u.,

Ploss=0.28462 p.u., Qloss= -1.2427 p.u.

There are five bus voltages outside the limits in the network: V25=0.938, V30=0.920,
V31=0.900, V32=0.926, V33= 0.924.
To compare the proposed method with other algorithms, the concerned performance
indexes including the best active power losses (Best), the worst active power losses (Worst),
the mean active power losses (Mean) and the standard deviation (Std) are summarized in
Table 4 over total 30 runs. In order to determine whether the results obtained by SOA are
statistically different from the results generated by other algorithms, the T-tests are
conducted, and the corresponding h and CI values are presented in Table 4, too. Table 4
indicates that SOA has the smallest Best, Mean and Std. values than all the listed other
algorithms, all the h values are equal to one, and all the confidence intervals are less than
zero and don’t contain zero. Hence, the conclusion can be drawn that SOA is significantly
better and statistically more robust than all the other listed algorithms in terms of global
search capacity and local search precision.
The best reactive power dispatch solutions from 30 runs for various algorithms are
tabulated in Table 5 and Table 6. The PSAVE% in Table 6 denotes the saving percent of the
reactive power losses. Table 6 demonstrates that a power loss reduction of 14.7443% (from
0.28462 p.u. to 0.2426548 p.u.) is accomplished using the SOA approach, which is the biggest
reduction of power loss than that obtained by the other approaches. The corresponding bus
voltages are illustrated in Fig. 5 - Fig.8 for various methods. From Fig. 8, it can be seen that
all the bus voltages optimized by SOA are kept within the limits, which implies that the
proposed approach has better performance in simultaneously achieving the two goals of

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

19

voltage quality improvement and power loss reduction than the other approaches on the
employed test system.
The convergence graphs of the optimized control variables by the SOA are depicted in Fig. 9

- Fig. 11 with respect to the number of generations. From these figures, it can be seen that,

due to the good global search ability of the proposed method, the control variables have a

serious vibration at the early search phase, and then converge to a steady state at the late

search phase, namely, a near optimum solution found by the method.

In this experiment, the computing time at every function evaluation is recorded for various

algorithms. The total time of each algorithm is summarized in Table 7. Furthermore, the

average convergence curves with active power loss vs. computing time are depicted for all

the algorithms in Fig. 12. From Table 7, it can be seen that the computing time of SOA is less

than that of the other evolutionary algorithms except SPSO-07 because of its smaller

population size. However, Fig. 12 shows that, compared with SPSO-07, SOA has faster

convergence speed and, on the contrary, needs less time to achieve the power loss level of

SPSO-07. At the same time, SOA has better convergence rate than CLPSO and three versions

of DE. Although PSO-w and PSO-cf have faster convergence speed at the earlier search

phase, the two versions of PSO rapidly get trapped in premature convergence or search

stagnation with the bigger final power losses than that of SOA. Hence, from the simulation

results, SOA is synthetically superior to the other algorithms in computation complexity and

convergence rate.

Algorithms Best Worst Mean Std. h CI

NLP 0.2590231 0.3085436 0.2785842 1.1677×10-2 1
[-4.4368×10-2,
-3.4656×10-2]

CGA 0.2524411 0.2750772 0.2629356 6.2951×10-3 1
[-2.2203×10-2,
-1.8253×10-2]

AGA 0.2456484 0.2676169 0.2512784 6.0068×10-3 1
[-1.0455×10-2,
-6.6859×10-3]

PSO-w 0.2427052 0.2615279 0.2472596 7.0143×10-3 1
[-6.7111×10-3,
-2.3926×10-3]

PSO-cf 0.2428022 0.2603275 0.2469805 6.6294×10-3 1
[-6.3135×10-3,
-2.2319×10-3]

CLPSO 0.2451520 0.2478083 0.2467307 9.3415×10-4 1
[-4.3117×10-3, -

3.7341×10-3]

SPSO-07 0.2443043 0.2545745 0.2475227 2.8330×10-3 1
[-5.6874×10-3,
-3.9425×10-3]

L-DE 0.2781264 0.4190941 0.3317783 4.7072×10-2 1
[-1.0356×10-1,
-7.4581×10-2]

L-SACP-
DE

0.2791553 0.3697873 0.3103260 3.2232×10-2 1
[-7.7540×10-2,
-5.7697×10-2]

L-SaDE 0.2426739 0.2439142 0.2431129 4.8156×10-4 1
[-5.5584×10-4,
-2.5452×10-4]

SOA 0.2426548 0.2428046 0.2427078 4.2081×10-5 - -

Table 4. Comparisons of the Results of Various Methods on IEEE 57-Bus System over 30
Runs (p.u.)

www.intechopen.com

Search Algorithms and Applications

20

Table 5. Values of Control Variable & Ploss After Optimization by Various Methods for IEEE
57-Bus Sytem (p.u.)

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

21

Algorithms ∑PG ∑QG Ploss Qloss PSAVE%

NLP 12.7687 3.1578 0.2590231 -1.1532 8. 9934
CGA 12.7604 3.0912 0.2524411 -1.1176 11.3059
AGA 12.7536 3.0440 0.2456484 -1.1076 13.6925
PSO-w 12.7507 3.0300 0.2427052 -1.0950 14.7266
PSO-cf 12.7508 2.9501 0.2428022 -1.0753 14.6925
CLPSO 12.7531 3.0425 0.2451520 -1.0853 13.8669
SPSO-07 12.7523 3.0611 0.2443043 -1.0845 14.1647
L-DE 12.7861 3.3871 0.2781264 -1.2158 2.28150
L-SACP-DE 12.7871 3.2712 0.2791553 -1.2042 1.92000
L-SaDE 12.7507 2.9855 0.2426739 -1.0758 14.7376
SOA 12.7507 2.9684 0.2426548 -1.0756 14.7443

Table 6. The Best Solutions for All the Methods on IEEE 57-Bus System (p.u.)

Algorithms Shortest time (s) Longest time (s) Average time (s)

CGA 353.08 487.14 411.38
AGA 367.31 471.86 449.28
PSO-w 406.42 411.66 408.48
PSO-cf 404.63 410.36 408.19
CLPSO 423.30 441.98 426.85
SPSO-07 121.98 166.23 137.35
L-DE 426.97 443.22 431.41
L-SACP-DE 427.23 431.16 428.98
L-SaDE 408.97 413.03 410.14
SOA 382.23 411.02 391.32

Table 7. The Average Computing Time for Various Algorithms

Fig. 5. Bus voltage profiles for NLP and GAs on IEEE 57-bus system

www.intechopen.com

Search Algorithms and Applications

22

Fig. 6. Bus voltage profiles for PSOs on IEEE 57-bus system

Fig. 7. Bus voltage profiles for DEs on IEEE 57-bus system

Fig. 8. Bus voltage profiles before and after optimization for SOA on IEEE 57-bus system

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

23

(a)

(b)

Fig. 9. Convergence of generator voltages VG for IEEE 57-bus system

www.intechopen.com

Search Algorithms and Applications

24

(a)

(b)

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

25

(c)

Fig. 10. Convergence of transformer taps T for IEEE 57-bus system

Fig. 11. Convergence of shunt capacitor QC for IEEE 57-bus system

www.intechopen.com

Search Algorithms and Applications

26

Fig. 12. Convergence graphs of various algorithms on IEEE 57-bus system (power loss vs.
time)

2.4 SOA for multi-objective reactive power dispatch
2.4.1 Problem formulation

The multi-objective functions of the ORPD include the technical and economic goals. The
economic goal is mainly to minimize the active power transmission loss. The technical goals
are to minimize the load bus voltage deviation from the ideal voltage and to improve the
voltage stability margin (VSM) [58]. Hence, the objectives of the ORPD model in this chapter
are active power loss (Ploss), voltage deviation (ΔVL) and voltage stability margin (VSM).

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

27

A. The Active Power Loss

The active power loss minimization in the transmission network can be defined as follows
[16, 17, 44]:

 min 2 2
loss 1 2(,) (2 cos)

E

k i j i j ij
k N

P f x x g V V VV θ
∈

= = + −∑
f f

 (16)

Subject to

0

min max

min max

min max

min max

max

(cos sin)

(sin cos)
i

i

Gi Di i j ij ij ij ij
j N

Gi Di i j ij ij ij ij PQ
j N

i i i B

k k k T

Gi Gi Gi G

Ci Ci Ci C

l l l

P P V V G B i N

Q Q V V G B i N

V V V i N

T T T k N

Q Q Q i N

Q Q Q i N

S S l N

θ θ

θ θ
∈

∈

− = + ∈⎧
⎪
⎪ − = − ∈⎪
⎪
⎪ ≤ ≤ ∈⎪
⎨

≤ ≤ ∈⎪
⎪ ≤ ≤ ∈⎪
⎪ ≤ ≤ ∈
⎪
⎪ ≤ ∈⎩

∑

∑

 (17)

where 1 2(,)f x x
f f

denotes the active power loss function of the transmission network, 1x
f

 is

the control variable vector []TG T CV K Q , 2x
f

 is the dependent variable vector []TL GV Q , GV

is the generator voltage (continuous), kT is the transformer tap (integer), CQ is the shunt

capacitor/inductor (integer), LV is the load-bus voltage, GQ is the generator reactive

power, k=(i,j), Bi N∈ , ij N∈ , kg is the conductance of branch k, ijθ is the voltage angle

difference between bus i and j, GiP is the injected active power at bus i, DiP is the demanded

active power at bus i, iV is the voltage at bus i, ijG is the transfer conductance between bus i

and j, ijB is the transfer susceptance between bus i and j, GiQ is the injected reactive power

at bus i, DiQ is the demanded reactive power at bus , EN is the set of numbers of network

branches, PQN is the set of numbers of PQ buses, BN is the set of numbers of total buses,

iN is the set of numbers of buses adjacent to bus i (including bus i), 0N is the set of

numbers of total buses excluding slack bus, CN is the set of numbers of possible reactive

power source installation buses, GN is the set of numbers of generator buses, TN is the set

of numbers of transformer branches, lS is the power flow in branch l, the superscripts

“min” and “max” in equation (17) denote the corresponding lower and upper limits,

respectively.

B. Voltage Deviation

Treating the bus voltage limits as constraints in ORPD often results in all the voltages
toward their maximum limits after optimization, which means the power system lacks the
required reserves to provide reactive power during contingencies. One of the effective ways
to avoid this situation is to choose the deviation of voltage from the desired value as an
objective function [59], i.e.:

 min *

1

/
LN

L i i L
i

V V V N
=

Δ = −∑ (18)

www.intechopen.com

Search Algorithms and Applications

28

where ΔVL is the per unit average voltage deviation, NL is the total number of the system
load buses, Vi and Vi* are the actual voltage magnitude and the desired voltage magnitude
at bus i.

C. Voltage Stability Margin

Voltage stability problem has a closely relationship with the reactive power of the system,
and the voltage stability margin is inevitably affected in optimal reactive power flow (ORPF)
[58]. Hence, the maximal voltage stability margin should be one of the objectives in ORPF
[49, 58, 59]. In the literature, the minimal eigenvalue of the non-singular power flow
Jacobian matrix has been used by many researchers to improve the voltage stability margin
[58]. Here, it is also employed [58]:

 max max(min eig())VSM Jacobi= (19)

where Jacobi is the power flow Jacobian matrix, eig(Jacobi) returns all the eigenvalues of the
Jacobian matrix, min(eig(Jacobi)) is the minimum value of eig(Jacobi), max(min(eig(Jacobi))) is
to maximize the minimal eigenvalue in the Jacobian matrix.

D. Multi-objective Conversion

Considering different sub-objective functions have different ranges of function values, every
sub-objective uses a transform to keep itself within [0,1]. The first two sub-objective
functions, i.e., active power loss and voltage deviation, are normalized:

min

min

min max

max min

max

loss loss

loss loss
1 loss loss loss

loss loss

loss loss

0 if

if

1 if

P P

P P
f P P P

P P

P P

⎧ <
⎪

−⎪
= ≤ ≤⎨

−⎪
⎪ >⎩

 (20)

min

min

min max

max min

max

2

0 if

if

1 if

L L

L L
L L L

L L

L L

ΔV ΔV

ΔV ΔV
f ΔV ΔV ΔV

ΔV ΔV

ΔV ΔV

⎧ <
⎪

−⎪
= ≤ ≤⎨

−⎪
⎪ >⎩

 (21)

where the subscripts “min” and “max” in equations (20) and (21) denote the corresponding

expectant minimum and possible maximum value, respectively.

Since voltage stability margin sub-objective function is a maximization optimization

problem, it is normalized and transformed into a minimization problem using the following

equation:

max

3 max

max min

0 if

else

VSM VSM

f VSM VSM

VSM VSM

>⎧
⎪= −⎨
⎪ −⎩

 (22)

where the subscripts “min” and “max” in equation (22) denote the possible minimum and

expectant maximum value, respectively.

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

29

Control variables are self-constrained, and dependent variables are constrained using

penalty terms. Then, the overall objective function is generalized as follows:

 min
lim lim

2 2
1 1 2 2 3 3

V Q

V L Q G
N N

f f f f V Qω ω ω λ λ= + + + Δ + Δ∑ ∑ (23)

where ωi (i=1,2,3) is the user-defined constants which are used to weigh the contributions

from different sub-objectives; Vλ , Qλ are the penalty factors; lim
VN is the set of numbers of

load-buses on which voltage outside limits, � lim
QN is the set of numbers of generator buses

on which injected reactive power outside limits; LVΔ and GQΔ are defined as:

min min

max max

if

if

L L L L
L

L L L L

V V V V
V

V V V V

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (24)

min min

max max

if

if

G G G G
G

G G G G

Q Q Q Q
Q

Q Q Q Q

⎧ − <⎪Δ = ⎨
− >⎪⎩

 (25)

2.4.2 Implementation of SOA for reactive power optimization

The fitness value of each seeker is calculated by using the objective function in (23). The real-

value position of the seeker consists of three parts: generator voltages, transformer taps and

shunt capacitors/inductors. According to the section 3.4 of this paper, after the update of the

position, the main program is turned to the sub-program for evaluating the objective

function where the latter two parts of the position are truncated into the corresponding

integers as [44, 55]. Then, the real-value position is changed into a mixed-variable vector

which is used to calculate the objective function value by equation (23) based on Newton-

Raphson power flow analysis [45]. The reactive power optimization based on SOA can be

described as follows [17].

Step 1. Read the parameters of power system and the proposed algorithm, and specify the

lower and upper limits of each variable.

Step 2. Initialize the positions of the seekers in the search space randomly and uniformly.

Set the time step t=0.

Step 3. Calculate the fitness values of the initial positions using the objective function in

(23) based on the results of Newton-Raphson power flow analysis [45]. The initial

historical best position among the population is achieved. Set the historical best

position of each seeker to his current position.

Step 4. Let t=t+1.
Step 5. Determine the neighbors, search direction and step length for each seeker.

Step 6. Update the position of each seeker.

Step 7. Calculate the fitness values of the new positions using the objective function based

on the Newton-Raphson power flow analysis results. Update the historical best

position among the population and the historical best position of each seeker.

Step 8. Go to Step 4 until a stopping criterion is satisfied.

www.intechopen.com

Search Algorithms and Applications

30

2.4.3 Simulation results

To evaluate the effectiveness and efficiency of the proposed SOA-based reactive power
optimization approach, the standard IEEE 57-bus power system is used as the test system.
For the comparisons, the following algorithms are also considered: PSO-w (learning rate c1 =
c2=2, inertia weight linearly decreased from 0.9 to 0.4 with run time increasing, the
maximum velocity vmax is set at 20% of the dynamic range of the variable on each
dimension) [40], PSO-cf (c1= c2=2.01 and constriction factor χ=0.729844) [41], CLPSO (its
parameters follow the suggestions from [42] except that the refreshing gap m=2) and SPSO-
07 [54], the original DE (DE: DE/rand/1/bin, F=0.5, CR=0.9) [39]), SACP-DE and SaDE. For
the afore-mentioned DEs, since the local search schedule used in [43] can clearly improve
their performances, the improved versions of the three DEs with local search, instead of
their corresponding original versions, are used in this study and denoted as L-DE, L-SACP-
DE and L-SaDE, respectively.
Moreover, a canonical genetic algorithm (CGA) and an adaptive genetic algorithm (AGA)
introduced in [55] are considered for comparison with SOA.
All the algorithms are implemented in Matlab 7.0 and run on a PC with Pentium 4 CPU 2.4G
512MB RAM. In the experiments, the same population size popsize=60 for the IEEE 57-bus
system except SPSO-2007 whose popsize is automatically computed by the algorithm, total
30 runs and the maximum generations of 300 are made. The transformer taps and the
reactive power compensation are discrete variables with the update step of 0.01p.u. and
0.048 p.u., respectively.
The main parameters involved in SOA include: the population size s, the number of
subpopulations, and the parameters of membership function of Fuzzy reasoning (including
the limits of membership degree value, i.e., Ǎmax and Ǎmin in (8) and the limits of ω, i.e., ωmax
and ωmin in (9)). In this paper, s=60 for IEEE 57-bus system and s=80 for IEEE 118-bus
system, K=3, Ǎmax=0.95, Ǎmax=0.0111, ωmax=0.8, ωmin=0.2 for both the test systems.
The IEEE 57-bus system [45] shown in Fig. 4 consists of 80 branches, 7 generator-buses and
15 branches under load tap setting transformer branches. The possible reactive power
compensation buses are 18, 25 and 53. Seven buses are selected as PV-buses and Vθ-bus as
follows: PV-buses: bus 2, 3, 6, 8, 9, 12; Vθ-bus: bus 1. The others are PQ-buses. The system
data, operating conditions, variable limits and the initial generator bus voltages and
transformer taps were given in [57], or can be obtained from the authors of this paper on
request. The model parameters in the equations (20)-(23) are set as:

max min
0.5, 0.2,loss lossP P= =

max
1, LVΔ =

min
0,LVΔ = VSMmax=0.4, VSMmin=0.05, ω1=0.6, ω2=0.2,

ω3=0.2, ǌV=500 and ǌQ=500.
The system loads are : Pload=12.508 p.u., Qload =3.364 p.u. The initial total generations and

power losses are: ∑PG=12.7926 p.u., ∑QG=3.4545 p.u., Ploss=0.28462 p.u., Qloss= -1.2427 p.u.

There are five bus voltages outside the limits: V25=0.938, V30=0.920, V31=0.900, V32=0.926,

V33= 0.924.

To compare the proposed method with other algorithms, the concerned performance
indexes including the best, worst, mean and standard deviation (Std.) of the overall and sub-
objective function values are summarized in Tables 8 - 11. In order to determine whether the
results obtained by SOA are statistically different from the results generated by other
algorithms, the T-tests [56] are conducted. An h value of one indicates that the performances
of the two algorithms are statistically different with 95% certainty, whereas h value of zero
implies that the performances are not statistically different. The CI is confidence interval.

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

31

The corresponding h and CI values for overall function values and active power losses are
presented in Tables 8 and 9, respectively. The best reactive power dispatch solutions from 30
runs for various algorithms are tabulated in Table 12 where PSAVE% denotes the saving
percent of the reactive power losses. The corresponding bus voltages are illustrated in Fig.
13. The total time of each algorithm is summarized in Table 13. The average convergence
curves for overall function value vs. computing time and active power loss vs. computing
time are depicted for all the algorithms in Figs. 14 and 15, respectively.
Table 8 indicates that SOA has the smallest Best, Mean, Worst and Std. values of overall

function than all the listed other algorithms except that SOA has the a little larger Worst

value than that of PSO-w, only the h values for SOA vs. CLPSO and SOA vs. L-SaDE are

equal to zeroes (Accordingly, their confidence intervals contain zero). Table 9 indicates that

SOA has the smallest Best, Mean, Worst and Std. values of power loss than all the listed other

algorithms except that SOA has the a little larger Worst value than that of L-SaDE with h=0

and CI containing zero. Tables 10 and 11 show that SOA has the better or comparable other

two sub-objective values, i.e., voltage stability margin (VSM) and voltage deviation (ΔVL).

Table 12 demonstrates that a power loss reduction of 13.4820% (from 0.28462 p.u. to

0.246248 p.u.) is accomplished using the SOA approach, which is the biggest reduction of

power loss than that obtained by the other approaches. Hence, the conclusion can be drawn

that SOA is better than, or comparable to, all the other listed algorithms in terms of global

search capacity and local search precision. Furthermore, from Fig. 13, it can be seen that all

the bus voltages optimized by SOA are acceptably kept within the limits.

From Table 13, it can be seen that the average computing time of SOA is less than that of

other algorithms except SPSO-07 because of its smaller population size. However, Figs. 14

and 15 show that, compared with SPSO-07, SOA has faster convergence speed and, on the

contrary, needs less time to achieve the overall function value and power loss level achieved

by SPSO-07. At the same time, SOA also has better convergence rate than GAs, DEs

and PSOs.

Algorithms Best Worst Mean Std. h CI

CGA 0.192750 0.195206 0.194024 4.8798×10-4 1 [-0.0684, -0.0378]

AGA 0.192284 0.193994 0.193030 4.4517×10-4 1 [-0.0674, -0.0368]

PSO-w 0.191851 0.191977 0.191901 4.2691×10-5 1 [-0.0727, -0.0292,]

PSO-cf 0.116954 0.192593 0.188312 16797×10-2 1 [-0.0634, -0.0314]

CLPSO 0.120773 0.192739 0.148663 3.3476×10-2 0 [-0.0257, 0.0102]

SPSO-2007 0.191918 0.193559 0.192551 3.9668×10-4 1 [-0.0669, -0.0363,]

L-DE 0.232519 0.388413 0.314205 4.0455×10-2 1 [-0.1923, -0.1543]

L-SACP-DE 0.237277 0.395611 0.317571 4.1949×10-2 1 [-0.1959, -0.1574]

L-SaDE 0.116819 0.192131 0.154692 3.8257×10-2 0 [-0.0324, 0.0049]

SOA 0.116495 0.192083 0.140927 3.4163×10-2 - -

Table 8. The Results of Overall Objective Function Values for Various Algorithms on IEEE
57-bus System over 30 Runs (p.u.)

www.intechopen.com

Search Algorithms and Applications

32

Algorithms Best Worst Mean Std. h CI

CGA 0.267170 0.419747 0.323181 4.2147×10-2 1 [-0.0787, -0.0529]

AGA 0.258072 0.369785 0.296744 3.5776×10-2 1 [-0.0507, -0.0280,]

PSO-w 0.259729 0.324923 0.283945 2.2313×10-2 1 [-0.0363 -0.0168]

PSO-cf 0.247866 0.393221 0.297066 3.2551×10-2 1 [-0.0502, -0.0291,]

CLPSO 0.257968 0.340029 0.273334 1.9252×10-2 1 [-0.0235, -0.0083,]

SPSO-2007 0.274210 0.386235 0.307093 2.7961×10-2 1 [-0.0591, -0.0402]

L-DE 0.291864 0.5069975 0.373198 5.4894×10-2 1 [-0.1320, -0.0996]

L-SACP-DE 0.273183 0.4438575 0.343407 4.5156×10-2 1 [-0.0997, -0.0723]

L-SaDE 0.246712 0.282335 0.260983 1.3426×10-2 0 [-0.0101, 0.0030]

SOA 0.246248 0.287541 0.257410 1.1918×10-2 - -

Table 9. The Results of Active Power Loss for Various Algorithms on IEEE 57-bus System
over 30 Runs (p.u.)

Algorithms Best Worst Mean Std.

CGA 0.186249 0.173969 0.1798794 2.4399×10-3

AGA 0.188582 0.180030 0.1848524 2.2259×10-3

PSO-w 0.190745 0.190117 0.1904974 2.1346×10-4

PSO-cf 0.190754 0.1870317 0.1895324 122285×10-3

CLPSO 0.187857 0.1783987 0.183922 3.0781×10-3

SPSO-2007 0.190411 0.182206 0.187245 1.9834×10-3

L-DE 0.1778431 0.165211 0.171368 3.4560×10-3

L-SACP-DE 0.183051 0.159702 0.170998 5.7523×10-3

L-SaDE 0.190638 0.1853272 0.1882648 1.9748×10-3

SOA 0.190709 0.176374 0.187451 2.6388×10-3

Table 10. The Results of Voltage Stability Margin for Various Algorithms on IEEE 57-bus
System over 30 Runs (p.u.)

Algorithms CGA AGA
PSO-

w
PSO-

cf
CLPSO

SPSO-
2007

LDE
L-SACP-

DE
L-

SaDE
SOA

Best 0 0 0 0 0 0 2.886554 2.317914 0 0

Worst 0 0 0 0 0.291757 0 0.561878 0.634840 0 0

Mean 0 0 0 0 0.014588 0 1.777176 1.890710 0 0

Std. 0 0 0 0 6.5239×10-2 0 6.0402×10-1 7.9319×10-1 0 0

Table 11. The Results of Voltage Deviation for Various Algorithms on IEEE 57-bus System
over 30 Runs (p.u.)

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

33

Algorithms ∑PG ∑QG Ploss Qloss PSAVE% VSM ΔVL

CGA 12.7752 3.1744 0.267170 -1.1565 6.1308 0.179828 0

AGA 12.7661 3.0679 0.258072 -1.1326 9.3276 0.185845 0

PSO-w 12.7677 3.1026 0.259729 -1.1598 8.7453 0.190117 0

PSO-cf 12.7559 3.0157 0.247866 -1.1137 12.9132 0.1870317 0

CLPSO 12.7660 3.1501 0.257968 -1.1295 9.3642 0.1849117 0.291757

SPSO-2007 12.7822 3.1818 0.274210 -1.2532 3.6576 0.1877947 0

L-DE 12.7999 3.3656 0.291864 -1.2158 -1.2380 0.1701207 2.886554

L-SACP-DE 12.7812 3.2085 0.273183 -1.1868 4.0185 0.183051 4.282957

L-SaDE 12.7549 3.0191 0.246712 -1.1209 13.2696 0.186182 0

SOA 12.7543 2.9837 0.246248 -1.0914 13.4820 0.186895 0

Table 12. The Best Dispatch Solutions for Various Algorithms on IEEE 57-bus System (p.u.)

Algorithms CGA AGA PSO-w PSO-cf CLPSO
SPSO-
2007

LDE
L-SACP-

DE
L-

SaDE
SOA

Shortest
time (s)

1265.34 1273.44 1216.91 1188.45 1399.48 433.36 1210.73 1212.95 1273.42 1192.83

Longest
time (s)

1295.02 1323.91 1244.64 1268.00 1448.84 495.97 1239.86 1235.03 1368.03 1288.66

Average
time (s)

1284.11 1293.78 1229.98 1225.14 1426.19 480.94 1224.27 1221.51 1306.86 1221.10

Table 13. The Computing Time for Various Algorithms on IEEE 57-bus System over 30 Runs

(a)

www.intechopen.com

Search Algorithms and Applications

34

(b)

(c)

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

35

(d)

Fig. 13. Bus voltage profiles for various algorithms on IEEE 57-bus

Fig. 14. Convergence Graphs of various algorithms on IEEE 57-bus (overall objective
function values vs. time)

www.intechopen.com

Search Algorithms and Applications

36

Fig. 15. Convergence Graphs of various algorithms on IEEE 57-bus (power loss vs. time)

3. Stochastic Focusing Search (SFS) and its application

3.1 Stochastic Focusing Search (SFS) (Ref.[20, 21])

Stochastic focusing search (SFS) is a simplified and improved version of PSO. In the SFS,
particles make a focusing search around the best position so far and stochastically update
their positions within a neighborhood of the best position with a decreasing search radius.
Unlike PSO, the velocity and position iteration of the SFS is implemented according to the
following equations:

() ((1)) if ((1)) ((2))

()
(1) if ((1)) ((2))

ti i i i
i

i i i

Rand R x t fun x t fun x t
v t

v t fun x t fun x t

× − − − ≥ −⎧
= ⎨ − − < −⎩

j j j
j

j j j (26)

 () () (1)i i ix t v t x t= + −j j j
 (27)

where ()Rand returns a uniformly random number in the range [0, 1], (()) ifun x t
j

 is

the objective function value of ()ix t
j

, tiR is a random selected point (position)

in the neighborhood space tR of bestg
j

. tR is defined as:

min max
1 1

max min max min

() ()
,

() ()
best best

best bestw w

w g x w x g
g g

x x x x− −

⎡ ⎤− −
− +⎢ ⎥

− −⎢ ⎥⎣ ⎦

j j j jj j
j j j j , where maxx

j
 and minx

j
 are the search space

borders. When w is linearly decreased from 1 to 0, tR is deflated from the entire search

space to the best point bestg
j

.

According to Eq. (26), if a particle holds a good velocity at the time step t-1 (i.e.,

((1)) ((2))i ifun x t fun x t− < −j j
), its velocity keeps the same one as the past; else, the particle

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

37

randomly selects a position within a neighborhood of the best position so far. Moreover, the

SFS also uses a greedy selection, namely: if the new position obtained by Eq. (27) is worse

the early position (i.e., ((1)) (())i ifun x t fun x t− <j j
), the particle will come back to the early

position (i.e., () (1)i ix t x t= −j j
).

According to Eqs. (26) and (27), it can be seen that each individual particle makes a search in

a decreasing tR with time step increasing. It is of significance to select an appropriate w to

not only assure the global convergence ability but also avoid a local extremum. In this study,

w is defined as:

 ()
G t

w
G

δ−
= (28)

where G is the maximum generation, δ is a positive number. It is indicated that w is
decreased from 1 to 0 with the increasing of time step t.
To improve the global searching ability and avoid a local extremum, the particles are
categorized into multiple subpopulations. The number of subpopulations Ǎ is decreasing
from particles size s to 1 according to the indexes of the particles with the inertia weight 'w .

 '' ()
G t

w
G

δ−
= (29)

 ' 1w sμ = +⎢ ⎥⎣ ⎦ (30)

It can be seen that 'w has the same form of w from equation (29). 'w decreases with the

run time increasing so as to decrease the subpopulations Ǎ. In every subpopulation, there

will be a different bestg
j

, which is the best position of the subpopulation. The pseudocode of

the SFS is presented in Fig. 16.

begin
 t←0;
 generating s positions uniformly and randomly in the whole search space;
 evaluating each particle;
 repeat
 t←t+1;

 finding the respective bestg
j

 in every subpopulation;

 updating and evaluating each particle’s position using (3) and (4) with the
 greedy selection;
 until the stop condition is satisfied
end.

Fig. 16. The pseudo code of the main algorithm

3.2 SFS for benchmark function optimization (Ref.[20])
3.2.1 The benchmark functions

In order to evaluate the novel algorithm, a test suite of benchmark functions previously
introduced by Yao, Liu and Lin [60] was used (listed in Table 14), the ranges of their search
spaces, their dimensionalities, and their global minimum function values (ideal values) are

www.intechopen.com

Search Algorithms and Applications

38

Functions n S fmin
2

1 1
()

n
ii

f x x==∑
f

 30 []5.12,5.12
n−

1(0) 0f =
f

2 1 1
()

nn
i ii i

f x x x= == +∑ ∏
f

 30 []10,10
n− 2(0) 0f =

f

2

3 1 1
() ()

n i
ji j

f x x= ==∑ ∑
f

 30 []100,100
n− 3(0) 0f =

f

{ }4() max ,1i
i

f x x i n= ≤ ≤
f

 30 []100,100
n− 4(0) 0f =

f

1 2 2 2
5 11
() (100() (1))

n
i i ii

f x x x x
−

+== − + −∑
f

 30 []30,30
n− 5(1) 0f =

f

2

6 1
() (0.5)

n
ii

f x x== +⎢ ⎥⎣ ⎦∑
f

 30 []100,100
n− 6() 0,f p =

f
0.5 0.5ip− ≤ ≤

4
7 1
() [0,1)

n
ii

f x ix rand== +∑
f

 30 []1.28,1.28
n− 7(0) 0f =

f

8 1
() (sin())

n
i ii

f x x x== −∑
f

 30 []500,500
n− 8(420.97)f =

f
12569.5−

2
9 1
() (10 cos(2) 10)

n
i ii

f x x xπ== − +∑
f

 30 []5.12,5.12
n− 9(0) 0f =

f

2
10

1

1

1
() 20exp(0.2)

1
exp(cos(2)) 20

n

i
i

n

i
i

f x x
n

x e
n

π

=

=

= − −

− + +

∑

∑

f

 30 []32,32
n− 10(0) 0f =

f

2
11 1 1

1
() cos() 1

4000

nn i
ii i

x
f x x

i= == − +∑ ∏
f

 30 []600,600
n− 11(0) 0f =

f

2
12 1

1 2 2
11

() {10sin ()

(1) [1 10sin ()]
n

i ii

f x y
n

y y

π π

π−
+=

=

+ − +∑

f

2
1

(1) } (,10,100,4)
n

n ii
y u x=+ − +∑

30 []50,50
n− 12(1) 0f − =

f

2
13 1

1 2 2
11

() 0.1{sin (3)

(1) [1 sin (3)]
n

i ii

f x x

x x

π

π−
+=

=

+ − +∑

f

2 2

1

(1) [1 sin (2)]}

(,5,100,4)

n n

n
ii

x x

u x

π

=

+ − +

+∑

30 []50,50
n− f13(1,…,1)=0

14

25 2 6 1 1
1 1

() (0.002

(()))i ijj i

f x

j x a − −
= =

=

+ + −∑ ∑

f

 2
[-65.54,
65.54]n 14(31.95) 0.998f − =

f

2
11 21 2

15 1 2
3 4

()
() []i i

ii
i i

x b b x
f x a

b b x x=
+

= −
+ +

∑
f

 4 []5,5
n−

f15(0.1928,0.1908,0.1231,0.1358)
=3.075×10-4

2 4 6 2 4
16 1 1 1 1 2 2 2

1
() 4 2.1 4 4

3
f x x x x x x x x= − + + − +

f
2 []5,5

n− f16(-0.09,0.71)=-1.0316

2 2
17 2 1 12

1

5.1 5
() (6)

4
1

10(1)cos() 10
8

f x x x x

x

ππ

π

= − + −

+ − +

f

 2 []5,15
n− 17(9.42,2.47) 0.398f =

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

39

2 2
18 1 2 1 1() [1 (1) (19 14 3f x x x x x= + + + − + −

f

2 2
2 1 2 2 1 214 6 3)] [30 (2 3)x x x x x x+ + × + − ×

2 2
1 1 2 1 2 2(18 32 12 48 36 27)]x x x x x x− + + − +

2 []2,2
n− 18(0, 1) 3f − =

24 3
19 1 1

() exp[()]i ij j iji j
f x c a x p= == − − −∑ ∑

f
 3 [0,1]n 19(0.114,0.556,0.852)

3.86

f

= −

24 6
20 1 1

() exp[()]i ij j iji j
f x c a x p= == − − −∑ ∑

f
 6 [0,1]n 20

(0.201, 0.15,0.477,0.275, 0.311,0.657)f

3.32= −
5 1

21 1
() [()()]T

i i ii
f x x a x a c −

== − − − +∑
f j j

 4 []0,10
n

 21(4) 10.3f ≈ = −
f

7 1
22 1

() [()()]T
i i ii

f x x a x a c −
== − − − +∑

f j j
 4 []0,10

n
 21(4) 10.6f ≈ = −

f

10 1
23 1

() [()()]T
i i ii

f x x a x a c −
== − − − +∑

f j j
 4 []0,10

n
 21(4) 10.7f ≈ = −

f

Table 14. The 23 Benchmark Functions

also included in Table 14. The problem set contains a diverse set of problems, including
unimodal as well as multimodal functions, and functions with correlated and uncorrelated
variables. Functions f1 - f5 are unimodal. Function f6 is the step function, which has one
minimum and is discontinuous. Function f7 is a noisy quartic function. Functions f8 - f13 are
multimodal functions where the number of local minima increases exponentially with the
problem dimension. Functions f14 - f23 are low-dimensional functions which have only a few
local minima. As still a preliminary study on the new algorithm, the optimization problems
listed above are considered in this paper, and the more experiments are needed for future
studies.

Where n is the dimension size of the functions, fmin is the ideal function value, and
nS R∈ (search space).

Where G is the maximum generation, Func. = Functions, Algo. = Algorithms, Accuracy stands
for the fixed accuracy level, Best stands for the best function value over 30 runs, Mean indicates
the mean best function values, Std. Dev. stands for the standard deviation, Time stands for the
average CPU time (seconds) consumed within the fixed number of generations. Succ.Gens.
and Succ. Time stand for the average generation and average CPU time (seconds) achieving
the fixed accuracy, Succ. Runs stands for the success number over 30 runs.

3.2.2 Experimental setup

The algorithms used for comparison are differential evolution (DE) algorithm [47], particle
swarm optimization with inertia weight (PSO-w) [40], PSO with constriction factor (PSO-cf)
[41], and comprehensive learning particle swarm optimizer (CLPSO) [42]. In all the
experiments, the same population size popsize=100, total 30 runs are made, and the
experiments results are listed in Table 15 -Table 17. The initial population is generated
uniformly and randomly in the range as specified in Table 14. The parameters of the PSO-w
are that: learning rate c1=c2=2, inertia weight linearly decreased from 0.9 to 0.4 with run time
increasing, the maximum velocity vmax is set at 20% of the dynamic range of the variable on
each dimension; the parameters of the PSO-cf are that: c1= c2=2.01 and constriction factor
χ=0.729844. The parameters of the CLPSO follow the suggestions from [42] except that the

refreshing gap m=2 for functions f14-f23. The parameters of the SFS are that: ' 14δ δ= = . All

the algorithms are run on a PC with Pentium 4 CPU 2.4GHz.

www.intechopen.com

Search Algorithms and Applications

40

Func. Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens. Succ. Time Succ. Runs

DE 5.20e-14 3.74e-13 3.94e-13 5.4 933.4 3.7 30

PSO-w 1.79e-15 1.66e-13 4.59e-13 18.2 1056.3 12.1 30

PSO-cf 4.50e-45 2.28e-41 4.54e-41 19.8 349.8 4.3 30

CLPSO 3.22e-13 2.73e-12 1.68e-12 24.4 924.6 16.3 30

f1
(G =1500)

1e-6

SFS 5.40e-34 8.78e-32 3.06e-31 18.5 573.8 7.55 30

DE 6.17e-10 3.74e-09 2.20e-09 9.0 1553.9 7.6 30

PSO-w 5.36e-12 6.67e-11 7.98e-11 26.2 1545.7 19.3 30

PSO-cf 3.29e-29 1.60e-00 4.22e-00 30.1 1612.7 22.5 23

CLPSO 1.63e-09 3.82e-09 1.73e-09 33.6 1453.8 21.3 30

f2

(G =2000)
1e-6

SFS 3.36e-18 1.34e-14 7.28e-14 27.18 1323.7 18.7 30

DE 1.10e-11 1.85e-10 1.49e-10 32.8 3762.0 25.9 30

PSO-w 2.00e-02 2.40e-01 2.23e-01 75.0 5000 75.0 0

PSO-cf 3.01e-19 3.33e+02 1.78e+03 86.3 2736.1 42.5 26

CLPSO 3.37e-02 4.20 e-01 3.62e-01 93.9 5000 93.9 0

f3

(G=5000)
1e-6

SFS 4.02e-23 3.03e-21 3.11e-21 81.1 2093.7 35.6 30

DE 6.83e-13 3.10e-02 8.70e-02 23.9 4423.3 20.2 9

PSO-w 1.18e-02 7.02e-02 4.66e-02 63.4 5000 63.4 0

PSO-cf 1.48e-16 7.13e-13 2.19e-12 73.2 2893.4 42.4 30

CLPSO 6.88e-04 2.05e-03 1.25e-03 83.9 5000 83.9 0

f4
(G =5000)

1e-6

SFS 6.97e-19 3.77e-17 5.31e-17 68.5 2970.6 40.7 30

DE 0 3.47e-31 2.45e-30 84.1 3966 16.2 30

PSO-w 1.05e-02 1.82e+03 1.27e+03 251.5 20000 251.5 0

PSO-cf 1.87e-12 7.32e+03 2.46e+03 271.8 17837 242.4 9

CLPSO 1.68e-01 3.63e+01 3.12e+01 349.1 20000 349.1 0

f5
(G

=20000)
1e-6

SFS 7.00e-21 6.56e-16 1.81e-15 241.1 13827 172.4 30

DE 0 0 0 7.3 357.0 1.6 30

PSO-w 0 0 0 19.3 921.7 12.7 30

PSO-cf 0 0 0 20.7 189.0 2.6 30

CLPSO 0 0 0 25.7 723.5 12.5 30

f6
(G =1500)

1e-6

SFS 0 0 0 21.8 109.9 1.52 30

DE 1.97e-03 4.66e-03 1.30e-03 29.5 5000 29.5 0

PSO-w 2.99e-03 6.28e-03 2.17e-03 72.5 5000 72.5 0

PSO-cf 9.86e-04 2.45e-03 1.38e-03 75.0 5000 75.0 0

CLPSO 1.03e-03 2.98e-03 9.72e-04 93.5 5000 93.5 0

f7
(G =5000)

1e-4

SFS 4.74e-05 9.53e-05 3.26e-05 73.9 3860.8 64.1 18

Table 15. The simulation results for f1-f7

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

41

Func.

Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens Succ. Time Succ. Runs

DE -11719 -11234 455.5 41.5 5000 41.5 0

PSO-w -10495 -9363.3 445.3 72.8 5000 72.8 0

PSO-cf -10398 -9026.1 656.9 83.3 5000 83.3 0

CLPSO -12569 -12271 177.8 92.1 1774.2 28.4 30

f8
(G =5000)

-12000

SFS -8952 -7216 721.9 74.3 5000 74.3 0

DE 9.95e-00 8.10e+01 3.23e+01 36.1 5000 36.1 0

PSO-w 7.96e-00 2.10e+01 8.01e-00 67.0 5000 67.0 0

PSO-cf 2.69e+01 6.17e+01 1.84e+01 78.9 5000 78.9 0

CLPSO 9.91e-01 4.13e+00 1.79e+00 84.3 5000 84.3 0

f9
(G =5000)

1e-3

SFS 2.98e-00 6.93e-00 1.68e-00 75.6 5000 75.6 0

DE 5.79e-08 1.71e-07 7.66e-08 7.7 844.5 4.4 30

PSO-w 1.39e-07 1.66e-06 2.66e-06 21.0 1344.3 18.6 30

PSO-cf 2.67e-15 5.59e-01 7.30e-01 22.5 845.4 12.6 19

CLPSO 3.31e-06 6.81e-06 1.94e-06 27.1 1334.6 23.9 30

f10
(G =1500)

1e-3

SFS 2.66e-15 8.82e-15 3.95e-15 21.5 552.8 8.2 30

DE 0 4.44e-04 1.77e-03 10.8 714.4 4.0 30

PSO-w 0 1.59e-01 2.19e-02 28.5 1833.7 25.3 7

PSO-cf 0 1.11e-02 1.25e-02 30.9 1351.5 21.1 7

CLPSO 1.64e-14 2.96e-04 1.46e-03 36.7 1423.7 25.3 29

f11
(G =2000)

1e-3

SFS 0 0 0 30.4 337.2 5.1 30

DE 3.40e-15 3.67e-14 4.07e-14 9.5 594.7 3.8 30

PSO-w 8.85e-15 2.21 e-00 5.52e-00 29.0 1154.6 21.4 30

PSO-cf 1.57e-32 1.66e+01 1.81 e+01 31.9 698.1 15.7 21

CLPSO 8.80e-12 4.80e-11 3.96e-11 35.2 1023.9 23.5 30

f12
(G =1500)

1e-3

SFS 2.60e-32 7.51e-31 2.08e-30 22.5 201.9 3.2 30

DE 4.13e-14 2.91e-13 2.88e-13 9.8 748.8 5.0 30

PSO-w 8.23e-07 5.72e+02 3.57e+02 37.0 778.7 18.8 29

PSO-cf 1.35e-32 2.40e+02 2.40e+02 33.6 606.8 13.6 22

CLPSO 1.18e-10 6.42e-10 4.46e-10 38.6 637.3 16.7 30

f13
(G=1500)

1e-3

SFS 2.21e-32 4.90e-31 1.37e-30 22.4 266.5 4.2 30

Table 16. The simulation results for f8-f13

Func. Accuracy Algo. Best Mean Std. Dev. Time Succ.Gens
Succ.
Time

Succ.
Runs

DE 0.998 0.998 2.88e-16 1.2 32.5 0.3 30

PSO-w 0.998 1.026 1.52e-01 1.4 43.4 0.7 30

PSO-cf 0.998 0.998 8.69e-13 1.52 19.9 0.3 30

CLPSO 0.998 0.998 5.63e-10 2.1 37.5 0.8 30

f14
(G=100)

0.998+1e-3

SFS 0.998 0.998 1.43e-16 1.8 25.6 0.4 30

DE 3.0749e-04 4.7231e-02 3.55e-04 31.5 3859.7 29.9 2

PSO-w 3.0749e-04 2.0218e-03 5.47e-03 40.3 2837.0 29.0 22

PSO-cf 3.0749e-04 2.0225e-03 5.47e-03 43.1 824.5 8.9 27

CLPSO 3.2847e-04 5.3715e-04 6.99e-05 67.7 1413.7 24.1 29

f15
(G =4000)

3.175×1e-4

SFS 3.0749e-04 3.0749e-04 2.01e-19 54.5 612.9 8.7 30

www.intechopen.com

Search Algorithms and Applications

42

DE -1.0316 -1.0316 6.77e-13 0.6 24.7 0.1 30

PSO-w -1.0316 -1.0316 8.80e-12 0.9 20.7 0.2 30

PSO-cf -1.0316 -1.0316 5.92e-12 0.9 20.6 0.2 30

CLPSO -1.0316 -1.0316 8.50e-14 1.5 79.4 1.3 30

f16
(G =100)

-1.0317

SFS -1.0316 -1.0316 5.90e-16 1.1 15.2 0.2 30

DE 0.3979 0.3979 1.14e-08 0.6 37.6 0.2 30

PSO-w 0.3979 0.3979 2.33e-12 0.9 32.4 0.3 30

PSO-cf 0.3979 0.3979 5.25e-12 0.9 21.4 0.2 30

CLPSO 0.3979 0.3979 1.08e-13 1.5 83.8 1.4 30

f17
(G =100)

0.3981

SFS 0.3979 0.3979 0 1.1 16.2 0.2 30

DE 3 3 3.31e-15 0.7 25.8 0.1 30

PSO-w 3 3 2.50e-11 1.0 48.1 0.5 30

PSO-cf 3 3 2.05e-11 1.0 31.1 0.3 30

CLPSO 3 3 5.54e-13 1.6 49.1 0.8 30

f18
(G =100)

3+1e-4

SFS 3 3 3.33e-15 1.1 24.8 0.2 30

DE -3.8628 -3.8628 1.97e-15 0.7 14.6 0.1 30

PSO-w -3.8628 -3.8628 2.66e-11 1.1 14.9 0.2 30

PSO-cf -3.8628 -3.8628 2.92e-12 1.1 9.1 0.1 30

CLPSO -3.8628 -3.8628 6.07e-12 1.7 28.2 0.4 30

f19
(G =100)

-3.86+1e-4

SFS -3.8628 -3.8621 2.60e-15 1.1 17.1 0.2 30

DE -3.322 -3.215 0.036 1.4 188.1 1.3 19

PSO-w -3.322 -3.256 0.066 2.8 141.7 2.1 17

PSO-cf -3.322 -3.277 0.058 2.8 91.2 1.3 15

CLPSO -3.322 -3.274 0.059 3.5 122.2 2.1 13

f20
(G =200)

-3.32+0.01

SFS -3.322 -3.322 1.36e-15 2.4 44.9 0.55 30

DE -10.15 -10.15 4.67e-06 1.0 48.2 0.5 30

PSO-w - 6.57 - 2.01 1.10e-00 1.2 100 1.2 0

PSO-cf -10.15 - 6.23 3.25e-00 1.3 86.4 1.1 13

CLPSO -10.14 - 9.57 4.28e-01 1.8 80.2 1.5 17

f21
(G =100)

-10

SFS -10.15 -10.15 5.70e-15 1.6 21.1 0.3 30

DE -10.40 -10.40 2.07e-07 1.2 39.5 0.5 30

PSO-w - 4.61 - 2.14 8.34e-01 1.2 100 1.2 0

PSO-cf -10.40 - 6.47 3.56e-00 1.4 49.5 0.7 21

CLPSO -10.34 - 9.40 1.12e-00 1.9 43.2 0.8 23

f22
(G =100)

-10

SFS -10.40 -10.40 4.66e-16 1.6 19.2 0.3 30

DE -10.54 -10.54 3.21e-06 1.3 38.1 0.5 30

PSO-w - 6.63 - 2.20 1.01e-00 1.4 100 1.4 0

PSO-cf -10.54 - 8.11 3.47e-01 1.8 51.5 0.9 19

CLPSO -10.46 - 9.47 1.25e-00 2.0 47.4 1.0 25

f23

(G =100)
-10

SFS -10.54 -10.54 1.65e-15 1.7 18.0 0.3 30

Table 17. The simulation results for f14-f23

3.2.3 Unimodal functions

The results of 30 independent runs for functions f1 - f7 are summarized in Table 15. From
Table 15, SFS is successful over all the 30 runs for f1 - f6. For f7, it is successful in 18 runs but
all the PSOs failed over all the runs. Moreover, PSOs has more time consumption of

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

43

achieving the fixed accuracy than that of SFS except that PSO-cf has smaller time
consumption for f1. Although DE has less time consumption within the fixed number of
generations than SFS and PSOs, it failed in 21 runs for f4 and all the 30 runs for f7.

3.2.4 Multimodal functions

1. Multimodal functions with many local minima: Multimodal functions with many local
minima are often regarded as being difficult to optimize. f8 - f13 are such functions
where the number of local minima increases exponentially as the dimension of the
function increases. The dimensions of f8-f13 were all set to 30 in our experiments as [60].
Table 16 gives the results of 30 independent runs. From Table 16, SFS is successful over
all the 30 runs for functions f10-f13 but f8 and f9. For functions f10-f13, SFS has faster
convergence speed with the fewer generations and computation time to achieve the
fixed accuracy level than DE and PSOs except DE for f10 and f11.

2. Multimodal functions with only a few local minima: For functions f14-f23, the number of
local minima and the dimension are small. Table 17 summarizes the results over 30
runs. From Table 17, it is apparent that SFS performs better than DE and PSOs for
functions f14-f23.

Table 15 - Table 17 indicates that SFS is suitable for solving the most employed unimodal
and multimodal function optimizations with better convergence ability. Compared with the
three modified PSOs, SFS has better global search ability with more successful runs for the
benchmark functions. The Tables also show that SFS has often higher computational
complexity with more time consumption within the given generations than DE but PSO-cf
and CLPSO.

4. References

[1] Andrew Sohn. Parallel bidirectional heuristic search on the EM-4 multiprocessor. In:
Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Processing,
Dallas, TX, USA, 1994, pp. 100-107.

[2] Raphael B., Smith I.F.C.. A direct stochastic algorithm for global search. Applied
Mathematics and Computation, 2003, vol.146, issues 2-3, pp. 729–758.

[3] Chaohua Dai, Weirong Chen, Yonghua Song and Yunfang Zhu. Seeker optimization
algorithm: A novel stochastic search algorithm for global numerical optimization,
Journal of Systems Engineering and Electronics, 2010, vol. 21, no. 2, pp. 300-311.

[4] Robert Michael Lewisa, Virginia Torczon, Michael W. Trosset. Direct search methods:
then and now. Journal of Computational and Applied Mathematics, 2000, vol.124,
issues 1-2, pp.191-207.

[5] Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach. Second
Edition. Hongkong: Pearson Education Asia Limited and Beijing: Tsinghua
University Press, 2006, pp.120-122.

[6] Mathias Kern. Parameter adaptation in heuristic search: a population-based approach.
Ph.D. thesis, Department of Computer Science, University of Essex, 2006.

[7] Mills Patrick, Tsang Edward, Zhang Qingfu, et al. A survey of AI-based meta-heuristics
for dealing with local optima in local search. Technical Report Series, Report
Number CSM-416, September 2004. Department of Computer Science, University
of Essex, Colchester CO4 3SQ. (Available: http://cswww.essex.ac.uk/CSP/)

www.intechopen.com

Search Algorithms and Applications

44

[8] Nurhan Karaboga. Digital IIR filter design using differential evolution algorithm.
EURASIP Journal on Applied Signal Processing, 2005, no.8, pp. 1269-1276.

[9] Storn R. and Price K.. Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 1997, vol.11,
no. 4, pp.341-359.

[10] Kennedy, J., Eberhart, R., and Shi, Yu. Swarm Intelligence. Morgan Kaufmann, San
Francisco, CA, 2001.

[11] Bonabeau E., Dorigo M., Theraulaz G.. Inspiration for optimization from social insect
behavior. Nature, 2002, vol.406, no.6, pp.39-42.

[12] Valle Y. del, Venayagamoorthy G., Mohagheghi S., et al. Particle swarm optimization:
basic concepts, variants and applications in power systems. IEEE Transactions on
Evolutionary Computation, 2008, vol.12, no.2, pp.171-195.

[13] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant colony optimization: artificial
ants as a computational intelligence technique. IEEE Computing Intelligence
Magazine, 2006, vol.1, no.4, pp.28-39.

[14] Chaohua Dai, Yunfang Zhu and Weirong Chen. Seeker optimization algorithm, Lecture
Notes in Artificial Intelligence, Y. Wang, Y. Cheung, and H. Liu (Eds.), Springer-
Verlag Berlin Heidelberg: Revised selected paper from CIS 2006, pp. 167–176, 2007.

[15] Chaohua Dai, Weirong Chen, and Yunfang Zhu. Seeker optimization algorithm for
digital IIR filter design, IEEE Transactions on Industrial Electronics, 2010, vol. 57,
no. 5, pp. 1710-1718.

[16] Chaohua Dai, Weirong Chen, Yunfang Zhu and Xuexia Zhang. Seeker optimization
algorithm for optimal reactive power dispatch, IEEE Transactions on Power
Systems, 2009, vol. 24, no. 3, pp. 1218-1231.

[17] Chaohua Dai, Weirong Chen, Yunfang Zhu and Xuexia Zhang. Reactive power dispatch
considering voltage stability with seeker optimization algorithm, Electric Power
System Research, 2009, vol. 79, no. 10, pp. 1462-1471.

[18] Chaohua Dai, Weirong Chen, Zhanli Cheng, et al. Seeker Optimization Algorithm for
Global Optimization: a Case Study on Optimal Modeling of Proton Exchange
Membrane Fuel Cell (PEMFC). International Journal of Electrical Power and Energy
Systems, accepted.

[19] Chaohua Dai, Weirong Chen, Yunfang Zhu, et al. Seeker optimization algorithm for
tuning the structure and parameters of neural networks. Neurocomputing,
accepted.

[20] Yongkang Zheng, Weirong Chen, Chaohua Dai, Weibo Wang. Stochastic focusing
search: A novel optimization algorithm for real-parameter optimization. Journal of
Systems Engineering and Electronics, 2009, vol. 20, no. 4, pp. 869-876.

[21] Yongkang Zheng, Weirong Chen, Chaohua Dai, et al. Optimization algorithm with
stochastic focusing search (in Chinese). Control Theory & Applications, 2009, vol.
26, no. 8, pp. 915-917.

[22] Donald A. Pierre. Optimization Theory with Applications. New York: Dover
Publications, Inc., 1986.

[23] Zimmermann Hans-Jürgen. “A fresh perspective on uncertainty modeling: uncertainty
vs. uncertainty modeling,” in Fuzzy sets and operations research for decision
support. Edited by Da Ruan, Chonghu Huang, Beijing: Beijing Normal University
Press, 2000, pp.40-57.

[24] Zadeh L. A.. The concept of linguistic variable and its application to approximate
reasoning. Information Science, 1975, vol.8, no. 3, pp.199-246.

www.intechopen.com

Two Population-Based Heuristic Search Algorithms and Their Applications

45

[25] Vignesh Kumar, Ferat Sahin. Cognitive maps in swarm robots for the mine detection
application. in Proc. of IEEE International Conference on Systems, Man and
Cybernetics, 2003, vol.4, pp.3364-3369.

[26] Eustace D, Barnes DP, Gray JO. Co-operant mobile robots for industrial applications. in
Proc. of the Inter. Conf. on Industrial Electronics, Control, and Instrumentation,
1993, vol.1, Maui, HI, USA , pp.39-44.

[27] James Kennedy. The particle swarm: Social adaptation of knowledge. In: Proceedings of
IEEE International Conference on Evolutionary Computation, 1997, Indianapolis,
IN, USA, pp. 303-308.

[28] Vito Trianni, Roderich Groß, Thomas H. Labella, et al. Evolving aggregation behaviors
in a swarm of robots. W. Banzhaf et al. (Eds.): ECAL 2003, LNAI 2801, pp.865–874.

[29] Camazine S., Deneubourg J.-L., Franks N., Sneyd J., Theraulaz G., and Bonabeau E. Self-
Organization in Biological Systems. Princeton University Press, Princeton, NJ, 2001.

[30] Wooldridge M., Jennings N. R.. Intelligent agents: theory and practice. The Knowledge
Engineering Review, 1995, vol.10, no.2, pp.115-152.

[31] Icek Ajzen. Residual effects of past on later behavior: Habituation and reasoned action
perspectives. Personality and Social Psychology Review, 2002, vol.6, no.2, pp.107–122.

[32] Joel D. Hewlett, Bogdan M. Wilamowski, and Günhan Dündar. Optimization using a
modified second-order approach with evolutionary enhancement. IEEE Trans. Ind.
Electron., vol.55, no.9, pp.3374-3380, 2008.

[33] Steels L. Cooperation between distributed agents through self organization. in
Dernazean Y, Müller J-P, eds. Decentralized AI: Proc. of the First European
Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW-
89), pp.175-196, 1990.

[34] Deyi Li. Uncertainty reasoning based on cloud models in controllers. Computers and
Mathematics with Applications, vol.35, no.3, pp.99-123, 1998.

[35] Yu Liu, Zheng gin, and Zhewen Shi. Hybrid particle swarm optimizer with line search.
in Proc. of the 2004 IEEE Inter. Conf. on Systems, Man and Cybernetics, pp.3751-
3755, 2004.

[36] W. B. Langdon and Riccardo Poli. Evolving problems to learn about particle swarm and
other optimizers. CEC-2005, vol.1, pp.81-88, 2005.

[37] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.
Reading, MA: Addison Wesley, 1989.

[38] Clerc, M. “When nearer is better,” Online at https://hal.archives-ouvertes.fr/hal-
00137320, 2007.

[39] J. Brest, S. Greiner, B. Bošković, et al. Self-adapting control parameters in differential
evolution: a comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput., vol.10, no.6, pp. 646-657, 2006.

[40] Y. Shi and R. Eberhart, A modified particle swarm optimizer. in Proc. IEEE World
Congr. Comput. Intell., pp.69-73, May 1998.

[41] M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. Evol. Comput., vol.6, no.1, pp.58-73,
Feb. 2002.

[42] J. J. Liang, A.K. Qin, Ponnuthurai Nagaratnam Suganthan, et al. Comprehensive
learning particle swarm optimizer for global optimization of multimodal functions.
IEEE Trans. Evol. Comput., vol.10, no.3, pp.67-82, 2006.

[43] A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for
numerical optimization. in Proc. of IEEE Congress on Evolutionary Computation,
Edinburgh, Scotland, pp.1785-1791, 2005.

www.intechopen.com

Search Algorithms and Applications

46

[44] B. Zhao, C.X. Guo, Y.J. Cao, A multi-agent based particle swarm optimization approach
for reactive power dispatch. IEEE Trans. Power Syst., vol.20, no.2, pp.1070-1078,
2005.

[45] Ray D. Zimmerman, Carlos E. Murillo-Sánchez and Deqiang Gan. Matlab Power
System Simulation Package (Version 3.1b2), Available at
http://www.pserc.cornell.edu/matpower/, 2006.

[46] J. Kennedy and R. Eberhart, Particle swarm optimization. in Proc. IEEE Int. Conf.
Neural Netw., vol.4, pp.1942-1948, Nov. 1995.

[47] R. Storn and K. Price. Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Tech. Rep. TR-95-012, International
Computer Science Institute, Berkeley, Calif, USA, March 1995.

[48] Manoj Fozdar, C. M. Arora and V. R. Gottipati. Recent trends in intelligent techniques
to power systems. in Proc. of the 42nd International Universities Power Engineering
Conference, pp.580-591, 2007.

[49] H. Yoshida, Y. Fukuyama, K. Kawata, et al. A particle swarm optimization for reactive
power and voltage control considering voltage security assessment. IEEE Trans.
Power Syst., 2001, vol.15, no.4, pp.1232-1239.

[50] Ahmed A. A. Esmin, Germano Lambert-Torres, Antônio C. Zambroni de Souza. “A
hybrid particle swarm optimization applied to loss power minimization,” IEEE
Trans. Power Syst., 2005, vol.20, no.2, pp.859-866.

[51] John G. Vlachogiannis and Kwang Y. Lee. “A comparative study on particle swarm
optimization for optimal steady-state performance of power systems,” IEEE Trans.
Power Syst., 2006, vol.21, no.4, pp.1718-1728.

[52] M. Varadarajan, K.S. Swarup, Network loss minimization with voltage security using
differential evolution. Electric Power Systems Research, 2008, vol.78, pp.815-823.

[53] M. Varadarajan, K.S. Swarup, Differential evolutionary algorithm for optimal reactive
power dispatch. Int. J. Electr. Power Energ. Syst, 2008, vol. 30, no. 8, pp. 435-441.

[54] Standard PSO 2007 (SPSO-07) on the Particle Swarm Central, Programs section:
http://www.particleswarm.info, 2007.

[55] Q. H. Wu, Y. J. Cao, and J. Y. Wen, Optimal reactive power dispatch using an adaptive
genetic algorithm. Int. J. Elect. Power Energy Syst., 1998, vol.20, no. 8, pp.563-569.

[56] Statistics Toolbox 5.0, The MathWorks, Inc.
[57] Juan Yu, “New models and algorithms of optimal reactive power flow and applications

in voltage stability risk assessment,” A Ph.D. thesis submitted to Chongqing
University, pp:107-112, Chongqing, China, 2008. (in Chinese).

[58] Xiong Hugang, Cheng Haozhong, Li Haiyu. Optimal reactive power flow incorporating
static voltage stability based on multi-objective adaptive immune algorithm.
Energy Conversion and Management, 2008, vol. 49, no. 5, pp. 1175-1181.

[59] Wen Zhang and Yutian Liu. Multi-objective reactive power and voltage control based
on fuzzy optimization strategy and fuzzy adaptive particle swarm. Int. J. Electr.
Power Energy Syst., 2008, vol. 30, no. 9, pp. 525-532.

[60] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE
Transactions on Evolutionary Computation, 1999, vol. 3, no. 2, pp. 82-102.

www.intechopen.com

Search Algorithms and Applications

Edited by Prof. Nashat Mansour

ISBN 978-953-307-156-5

Hard cover, 494 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution

search space or among a collection of objects. A solution can be a set of value assignments to variables that

will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search

algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book

demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical

solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of

readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search

algorithms and applications. The chapters are organized into three parts: Population-based and quantum

search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Weirong Chen, Chaohua Dai and Yongkang Zheng (2011). Two Population-Based Heuristic Search Algorithms

and Their Applications, Search Algorithms and Applications, Prof. Nashat Mansour (Ed.), ISBN: 978-953-307-

156-5, InTech, Available from: http://www.intechopen.com/books/search-algorithms-and-applications/two-

population-based-heuristic-search-algorithms-and-their-applications

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

