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1. Introduction 

Functional decomposition is a logic synthesis method that has recently gained much 
recognition. The main reason is the evolution of field programmable gate-arrays (FPGAs) as 
a new technology for digital system implementation. Architecture of FPGA is based on the 
lookup table (LUT) as basic building block. An n-input LUT is capable of implementing any 
Boolean function of up to n variables. Thus, logic synthesis for LUT-based FPGAs must 
transform a logic network into network that consists of nodes with up to n inputs only. Each 
node of such network can be then implemented by a single LUT. For this reason, for the case 
of implementation targeting FPGA structure, decomposition is a very efficient method. 
Modern FPGA devices have very complex structure. Today's FPGAs are entire 
programmable systems on a chip (SoC) which are able to cover an extremely wide range of 
applications. The Altera Stratix III and Xilinx Virtex-5 families of devices, both using a 65 
nm manufacture process, can be used as examples of contemporary FPGAs. The basic 
architecture of FPGAs has not changed dramatically since their introduction in the 1980s. 
Early FPGAs used a logic cell consisting of a 4-input lookup table and register. Present 
devices employ larger numbers of inputs (6-input for Virtex-5 and 7-input for Stratix III) and 
have other associated circuitry. Another enhancement extensively used in modern FPGAs 
are specialized embedded blocks, serving to improve delay, power and area if utilized by 
the application, but waste area and power if unused. Early embedded blocks included fast 
carry chains, memories, phase locked loops, delay locked loops, boundary scan testing and 
multipliers. More recently, multipliers have been replaced by digital signal processing (DSP) 
blocks which add support for logical operations, shifting, addition, multiply-add, complex 
multiplication etc. Some architectures even contain hardware CPU cores. This greatly 
extends the space of possible solution during the process of mapping the design into FPGA 
structure with such embedded blocks. Unfortunately such heterogeneous structure of 
available logic resources greatly increases the complexity of mapping algorithms. The 
existing CAD tools are not well suited to utilize all possibilities that such modern 
programmable structures offer due to the lack of appropriate logic synthesis methods. 
Functional decomposition is perceived as one of the best logic synthesis methods targeted 
FPGAs. It relies on breaking down a complex system into a network of smaller and 
relatively independent co-operating subsystems, in such a way that the original system’s 
behavior is preserved. A system is decomposed into a set of smaller subsystems, such that 
each of them is easier to analyze, understand and synthesize. Decomposition allows 
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synthesizing the Boolean function into multilevel structure that is built of components, each 
of which is in the form of LUT logic block specified by truth tables.  
Since the Ashenhurst-Curtis decomposition have been proposed, the research has been 

focused in forming new decomposition techniques (Łuba & Selvaraj, 1995; Sasao et al., 2001; 

Scholl, 2001; Brzozowski & Łuba, 2003; Rawski, 2007a). The researchers have developed 

many types of decompositions, but they are still based on Ashenhurst’s ideas. Thanks to the 

fact that the functional decomposition gives very good results in the logic synthesis of 

combinational circuits, it is viewed for the most part, as a synthesis method for 

implementing combinational functions into FPGA-based architectures (Wurth et al, 1999; 

Scholl, 2001; Rawski et al., 2007). However, the decomposition-based method can be used 

beyond this field. Decomposition-like synthesis methods are not limited only to logic 

synthesis of digital circuits. The strong motivation for developing decomposition techniques 

comes recently from modern research areas such as pattern recognition, knowledge 

discovery and machine learning in artificial intelligence (Perkowski  et al. 1997).  

The practical usefulness of functional decomposition for very complex systems is limited by 
the lack of an efficient method for the construction of the high quality subsystems. In the 
subsystem construction process the following three factors play an extremely important 
role: an appropriate input support selection for subsystems, decision which (multi-valued) 
function will be computed by a certain subsystem and encoding of the subsystem’s function 
with binary output variables. For large functions the solution space is so huge that heuristic 
method for solving this problem has to be used. This is an NP-hard problem and thus 
heuristic methods have to be used to efficiently and effectively search for optimal or near-
optimal solutions. 
There are two types of algorithms solving input variable partitioning problem. The 
algorithms finding decompositions without using any search heuristics. The basic idea of 
these algorithms is to limit the search to some input variable partitions. This is done by 
using different functional methods to choose which partitions will be evaluated. These 
methods select partitions through Reed-Muller expansions, Fourier transforms, binary 
difference equations, and technology-based mappings (Łuba et al., 1995; Perkowski, 1994; 
Steinbach & Stokert, 1994). The second type of algorithms utilize different heuristic 
methods. In (Rawski et al., 2001) input variable partitioning method based on information 
relationship measures was presented, which produced optimal or sub-optimal results for 
factions of considerable size. 
In recent years the use of the genetic algorithms has received widespread attention. An 

evolutionary computing is inspired by Darwin's theory of evolution. In other words, problems 

are solved by an evolutionary process resulting in the best (fittest) solution (survivor) – the 

solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland (Holland, 1975). 

The evolutionary algorithm is one of heuristics, which not necessarily provides the best 

possible solution. However, these sub-optimal solutions are considered as acceptable, because 

in many problems it is not possible to find the best solution in reasonable time. It means that 

evolutionary algorithms are especially useful for problems with a vast search space and non-

polynomial time algorithms solving the given problem. 

The evolutionary algorithms need individuals that represent a solution attempt to the 
problem they are trying to solve. The population needs to be tested to find how well 
individuals perform, and new individuals are created that are combinations of existing good 
solutions with some occasional variations. The cycle of testing and creation of new 
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individuals is repeated until a suitable solution is found, all the individuals represent the 
same solutions, or the search is abandoned.  
This approach has been used to find approximate solutions to NP-complete optimization 
problems (Khuri, 1994). There have been attempts to apply genetic algorithms to functional 
decomposition (Noviskey et al., 1994). In (Rawski et al., 2004) the application of 
evolutionary algorithms was proposed to solve input support selection problem for 
functional decomposition based on blanket calculus. The solution has been extended to 
decomposition based on BDDs (Morawiecki  & Rawski, 2008) 
In this chapter an application of evolutionary algorithm for functional decomposition-based 
logic synthesis will be discussed. First an introduction to functional decomposition  based 
on cubes and BDDs will be given. Next basics of evolutionary algorithms will be outlined. 
Subsequently the heuristic input partitioning method will be presented. Following that 
some experimental results will be discussed. The experimental results demonstrate that the 
proposed method is able to construct optimal or near optimal decompositions efficiently, 
even for large systems.  

2. Basic information 

In this section, only information that is necessary for an understanding of this chapter is 
reviewed. More detailed description of functional decomposition based on partition calculus 
can be found in (Brzozowski & Łuba, 2003), functional decomposition based on BDD in 
(Scholl, 2001). 

2.1 Functional decomposition 

The set X of input variables of Boolean function is partitioned into two subsets: free variables 

U and bound variables V, such that U ∪ V = X. Assume that the input variables x1, ..., xn have 
been relabeled in such a way, that: 
U = {x1, ..., xr} and  
V = {xn–s+1, ..., xn}. 
Consequently, for an n-tuple x, the first r components are denoted by xU and the last s 
components are denoted by xV. 
 

 

Fig. 1. Schematic representation of the functional decomposition. 
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Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets 
defined above. Assume that F is specified by a set of the function’s cubes. Let G be a 
function with s inputs and p outputs, and let H be a function with r + p inputs and m 
outputs. The pair (G, H) represents a serial decomposition of F with respect to (U, V), if for 

every minterm b relevant to F, G(bV) is defined, G(bV) ∈ {0, 1}p, and F(b) = H(bU, G(bV)). G and 
H are called blocks of the decomposition (Fig. 1). 

2.2 Functional decomposition based on blanket calculus 

A Boolean function can be specified using the concept of cubes (input patterns) representing 
some specific sub-sets of minterms (Tab. 1.). In a minterm, each input variable position has a 
well-specified value. In a cube, positions of some input variables can remain unspecified 
and they represent “any value” or “don’t care” (–). A cube may be interpreted as a p-
dimensional subspace of the n-dimensional Boolean space or as a product of n – p variables 
in Boolean algebra (p denotes the number of components that are ’–’). For function from 
Table 1 truth table with 24 = 16 rows would be required to describe the function using 
minterms. Since cube represents a set of minterms, application of cubes allows for much 
more compact description in comparison with minterm representation. For example cube 
10–0 from row 2 of truth table from Table 1 represents set of two minterms {1000, 1010 }. 
 

 x1 x2 x3 x4 y 

1 0 0 – 0 1 
2 1 0 – 0 1 
3 – 0 0 – 1 
4 – – 1 1 0 
5 – 1 1 0 0 
6 1 1 – 1 0 
7 0 – 0 1 1 
8 – 1 0 0 0 

Table 1. Example function. 

For pairs of cubes and for a certain input subset B, we define the compatibility relation 

COM as follows: each two cubes S and T are compatible (i.e. S, T ∈ COM(B)) if and only if 

x(S) ~ x(T) for every x ⊆ B. The compatibility relation ~ on {0, –, 1) is defined as follows [1]: 0 
~ 0, – ~ –, 1 ~ 1, 0 ~ –, 1 ~ –, – ~ 0, – ~ 1, but the pairs (1, 0) and (0, 1) are not related by ~. The 
compatibility relation on cubes is reflexive and symmetric, but not necessarily transitive. In 
general, it generates a “partition” with non-disjoint blocks on the set of cubes representing a 
certain Boolean function F. The cubes contained in a block of the “partition” are all 
compatible with each other. 
”Partitions” with non-disjoint blocks are referred to as blankets (Brzozowski & Łuba, 2003). 
The concept of blanket is a simple extension of ordinary partition and typical operations on 
blankets are strictly analogous to those used in the ordinary partition algebra. 
Definition 1. Blanket 
A blanket on a set S is such a collection of (not necessary disjoint) distinct subsets Bi of S, 
called blocks, that  

 i
i

B   S=∪  (1) 
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Each block Bi of blanket has its cube representative r(Bi) that indicates the value of variables 
inducing blanket corresponding to this block. 
Example 1 (Blanket-based representation of Boolean functions). 
For function F from Table 1, the blankets induced by particular input and output variables 
and by the two-output function on the set of function F’s input patterns (cubes) are as 
follows: 

 1 {1  3,  4,  5,  7,  8; 2,  3, 4,  5,  6,  8},x ,β =  (2) 

 2 {1, 2, 3, 4, 7; 4, 5, 6, 7, 8},xβ =  (3) 

 3 {1, 2, 3, 6, 7, 8; 1, 2, 4, 5, 6},xβ =  (4) 

 4 {1, 2, 3, 5, 8; 3, 4, 6, 7},xβ =  (5) 

 {4, 5, 6, 8 ; 1, 2, 3, 7}.yβ =  (6) 

The product of two blankets β1 and β2 is defined as follows: 

 β1 • β2 = { Bi ∩ Bj | Bi ∈ β1 and Bj ∈β2 }.  (7) 

For two blankets we write β1 ≤ β2 if and only if for each Bi in β1 there exists a Bj in β2 such 

that Bi ⊆ Bj. The relation ≤ is reflexive and transitive. 
For example: 

 2 3 2 3 {1, 2, 3, 7; 1, 2, 4; 6, 7, 8; 4, 5, 6 },x x x xβ β β= • =  (8) 

 2 3 2 .x x xβ β≤  (9) 

Information on the input patterns of a certain function F is delivered by the function’s inputs 

and used by its outputs with precision to the blocks of the input and output blankets. 

Knowing the block of a certain blanket, one is able to distinguish the elements of this block 

from all other elements, but is unable to distinguish between elements of the given block. In 

this way, information in various points and streams of discrete information systems can be 

modeled using blankets. 

Theorem 1. Existence of the serial decomposition (Brzozowski & Łuba, 2003). 
Let F be a Boolean function with n inputs and m outputs and let (U, V) be the pair of sets: 

free variables U and bound variables V, such that U ∪ V = X. Let βV, βU, and βF be blankets 

induced on the function F’s input cubes by the input sub-sets V and U, and outputs of F, 

respectively. 

If there exists a blanket βG on the set of function F’s input cubes such that βV ≤ βG, and  

βU • βG ≤ βF, then F has a serial decomposition with respect to (U, V). 
Proof of Theorem 1 can be found in (Brzozowski & Łuba, 2003). 
As follows from Theorem 1 the main task in constructing a serial decomposition of a function 

F with given sets U and V is to find a blanket βG which satisfies the condition of the theorem. 

Since βG must be ≥ βV, it is constructed by merging blocks of βV as much as possible. 
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Two blocks Bi and Bj of blanket βV are compatible (mergeable), if blanket γij obtained from 

blanket βV by merging Bi and Bj into a single block satisfies the second condition of 

Theorem 1, that is, if βU • γij ≤ βF. Otherwise blocks Bi and Bj are incompatible (unmergeable). 

A subset δ of blocks of the blanket βV is a compatible class of blocks if the blocks in δ are pair 
wise compatible. A compatible class is maximal if it is not contained in any other compatible 
class. 
From the computational point of view, finding maximal compatible classes is equivalent to 

finding maximal cliques in a graph Γ = (N, E), where the set N of vertices is the set of blocks 

of βV and set E of edges is formed by set of compatible pairs. 

The next step in the calculation of βG is the selection of a set of maximal classes, with 

minimal cardinality, that covers all the blocks of βV. The minimal cardinality ensures that 

the number of blocks of βG, and hence the number of outputs of the function G, is as small as 

possible. 

In certain heuristic strategies, both procedures (finding maximal compatible classes and 
then finding the minimal cover) can be reduced to the graph coloring problem. 

Calculating βG corresponds to finding the minimal number k of colors for graph Γ = (N, E).  
Example 2. For the function from Table 1 specified by a set F of cubes numbered 1 through 

8, consider a serial decomposition with U = {x1} and V = {x2, x3, x4}. 

We find  

 1 {1 3 4,5,7,8 2,3 4,5,6,8 },U x , , ; ,β β= =  (10) 

 2 3 4 {1 2 3 3 7;  1,2; 4;  6,7; 5; 4,6 },V x x x , , ; ,β β= =  (11) 

 {4, 5, 6, 8; 1, 2, 3, 7}.F yβ β= =  (12) 

Let βG  be as follows: 

 {1 2,3,7 4,5,6,8 6,7}.G , ; ; β =  (13) 

It is easily verified that βG satisfies the condition of Theorem 1 (more detailed description of 
partition calculus can be found in (Brzozowski & Łuba, 2003)). Thus function F has a serial 
decomposition with respect to (U, V). 

Number of blocks in blanket βG determines the number of outputs of block G: 

 p= ⎡log2(q)⎤, (14) 

where q is the number of blocks in blanket βG. 

Since in example βG has 3 blocks, to encode blocks of this blanket two encoding bits g1 and g2 

have to be used. To define a function G by a set of cubes we calculate cube representatives, 

r(Bi), assigned to each block Bi of βV. The relationship between blocks of βV and their cube 

representatives, r(Bi), relies on containment of block Bi in blocks of βxj from xj ∈ V. Finally, 

the value of function G is obtained on the basis of containment of blocks Bi in blocks of βG. 

To compute the cubes for function H we consider each block of the product βU • βG. Their 

representatives are calculated in the same fashion. Finally, the outputs of H are calculated 

with respect to βF 
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The process of functional decomposition based on blanket calculus consists of the following 
steps: 
- the selection of an appropriate input support V for block G (input variable partitioning), 

- the calculation of the blankets βU, βV and βF, 

- the construction of an appropriate multi-block blanket βG (this corresponds to the 
construction of the multi-valued function of block G), 

- the creation of the binary functions H and G by representing the multi-block blanket βG 
as the product of a number of certain two-block blankets (this is equivalent to encoding 

the multi-valued function of block G defined by blanket βG with a number of binary 
output variables). 

2.3 Functional decomposition based on BDDs 

A Boolean function can be represented using binary decision diagrams. BDDs as a method 
of representation of single-output Boolean functions were introduced by Lee (Lee, 1959) and 
later Ackers (Ackers, 1978).  
Definition 2. Binary decision diagram (BDD)  
Binary decision diagram is a rooted directed acyclic graph Γ = (V, E) with node (vertex) set V 

and arc set E. The graph has terminal nodes called leaves. To each leaf node there is 

assigned a value 0 or 1. Each non terminal node v ∈ V is labeled with a Boolean variable 

var(v) and has arcs directed towards two children: low(v) ∈ V corresponding to the case 

where the variable is assigned 0, and high(v) ∈ V corresponding to the case where the 

variable is assigned 1.  

When a Boolean function is represented by binary decision diagram with a given 

assignment to the variables, the value yielded by the function is determined by tracing a 

path from the root to a terminal vertex, following the branches indicated by the values 

assigned to the variables. The function value is then given by the terminal vertex label.  

Definition 3. Ordered binary decision diagram (OBDD) 
An ordered binary decision diagram is a BDD where an ordering < over set of variables 
is defined, and for any node v and either nonterminal child u, their respective variables must 

be ordered  var(v) < var (u). 

In (Bryant, 1986) Bryant presented algorithms that efficiently manipulated BDDs assuming 

ordering of the variables. He developed a method to reduce the size of BDDs by removing 

‘redundant’ nodes and subgraphs which occur more than once. Bryant also proved that the 

reduced representation is canonical in respect to a given variable ordering.  

Definition 4: Reduced Ordered Binary Decision Diagram (ROBDD) is an OBDD, that  has 

no vertex v such that low(v) = high(v) and for no pair {u, v} sub-graphs rooted in v and u are 

isomorphic. 

Binary decision diagrams made it possible to develop new algorithms for decomposition, 

feasible for much larger functions than previously possible. In a BDD, the decomposition 

can be easily computed by moving the bound variables V to the upper part of the graph and 

counting the number of children below the boundary line, usually called cut line.  

Definition 5. Cut-set 
Let Γ be the ROBDD representing a function F with variable ordering O, let cut_set(Γ,O, l) 

denote the set of nodes whose levels are greater than l and have edges from nodes of level 

lower or equal to l (top node has level 1).  
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Theorem 2. Existence of the serial decomposition. 
Let F be Boolean function and (U, V) be the pair of sets: free variables and bound variables. Let 
Γ be ROBDD representing function F with variable ordering such that bound variables are in 
upper part of Γ.  Let 

 p=⎡log2(|cut_set(Γ,O, l)|)⎤ (15) 

If p < l, there exists decomposition in the form F(X) = H(U, G(V)), where  function G has p 
outputs. 
The size of cut_set from (15) plays the same role in BDD-based function decomposition as 
number of blocks in blanket βG from (14). 
Detailed description of functional decomposition based on BDD can be found in (Scholl, 
2001). 
Decomposition algorithms following a BDD-cut strategy proved to be orders of magnitude 
faster than those based on decomposition charts and cube representations. However, they 
require a reordering of the BDD to move the target set of variables to the top of the graph. 
 

 

Fig. 2. ROBDD for function from Table 1. 

Example 3. The ROBDD diagram Γ presented on Fig. 2 represents function F from Table 1 
for ordering O={ x2, x3, x4, x1}. Let consider two cut-lines: at level 2 (dotted line) and at level 3 
(dashed line). We have: 

 q1=|cut_set(Γ,O, 2)| = 4, (16) 

 q2=|cut_set(Γ,O, 3)| = 3. (17) 
Following (15): 

 p1=⎡log2(q1)⎤=2, (18) 

 P2=⎡log2(q2)⎤=2. (19) 
According to Theorem 2 decomposition with U = {x4, x1} and V = {x2, x3} does not exist since 
p1 does not satisfy condition p1 < l, where l = 2. Block G would require 2 outputs, while 
having 2 inputs. 
However there exists decomposition with U = {x1} and V = {x2, x3, x4}, since p1= 2 and l = 3. 
The size of block G will be 3 inputs and 2 outputs. 
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2.4 Evolutionary algorithms 

An evolutionary computing is inspired by Darwin's theory of evolution. In other words, 
problems are solved by an evolutionary process resulting in the best (fittest) solution 
(survivor) – the solution is evolved. ‘Genetic algorithm’ term was introduced by John Holland 
(Holland, 1975 ). Here an evolutionary algorithm is used, which is more general term.  
The evolutionary algorithm is the heuristics, which not necessarily provides the best 
possible solution. However, these sub-optimal solutions are considered as acceptable, 
because in many problems it is not possible to find the best solution in reasonable time. It 
means that evolutionary algorithms are especially useful for problems with a vast search 
space and non-polynomial time algorithms solving the given problem. 
The evolutionary algorithms need individuals that represent a solution attempt to the 
problem they are trying to solve. The construction of an algorithm starts with mapping a 
problem into a set of chromosome representations. The population needs to be tested to find 
how well individuals perform, and new individuals are created that are combinations of 
existing good solutions with some occasional variations. The cycle of testing and creation of 
new individuals is repeated until a suitable solution is found, all the individuals represent 
the same solutions, or the search is abandoned. The basic steps of an evolutionary algorithm 
are presented on Fig. 3.  
To construct the algorithm following qualities have to be defined:  

• a population of individuals, where each individual represents an encoded form of a 
possible solution to the problem being solved, 

• methods for testing individual solutions and assigning fitness (how good the solution is),  

• methods for selecting suitable parents that will be used to produce new individuals 
(offspring), 

• methods for manipulating the encoded forms of individuals, often called “genetic 
operators”; these operators are used to create new children from parents (for example, 
“crossover” techniques), and for introducing other variations (such as “mutation”) into 
the population, 

• parameters to manipulate the probability and effect of operators. 
 

Evolutionary algorithm()  
begin 

t := 0 
P 0 :=  create_initial_population() 
evaluate_fitnes(P 0) 
while  (no_improvement_iterations > threshold) do
begin 

T t  := selection_operator ( P t) 
O t  := crossover_operator ( T t) 
evaluate_fitnes(O t )   
if (mutation_condition) then  

O t := mutation_operator ( O t) 
P t +1 := O t  
t  := t  +1 

end 
end  

Fig. 3. Outline of an evolutionary algorithm. 
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3. Evolutionary algorithm for input variable partitioning 

The practical usefulness of functional decomposition for very complex systems is limited by 
lack of an efficient method for the construction of the high quality subsystems (G function 
from Fig. 1). In the subsystem construction process the following three factors play an 
extremely important role: an appropriate input support selection for subsystems, decision 
which (multi-valued) function will be computed by a certain subsystem and encoding of the 
subsystem’s function with binary output variables. For function F of n input variables and the 
size k of input set of subsystem the number of possible solution is described by formula (20). 

 
n n!

l    
k (n k)! k!

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠

 (20) 

For large functions the solution space is so huge that heuristic method for solving this 
problem has to be used.  
 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

|U| = 10, |V| = 3, |βG| = 5 
1 1 1 1 1 1 0 1 1 1 1 0 0 
1 1 1 1 1 1 0 1 1 1 0 1 0 
1 1 1 1 1 1 0 1 1 1 0 0 1 
1 1 1 1 1 0 0 1 1 1 1 0 1 
1 1 1 1 0 1 0 1 1 1 1 0 1 
1 1 1 1 0 0 1 1 1 1 1 0 1 
1 1 1 0 1 1 0 1 1 1 1 1 0 
0 1 1 1 1 1 1 1 1 1 1 0 0 
0 1 1 1 1 1 1 1 1 0 1 1 0 
0 1 1 1 1 1 1 1 1 0 1 0 1 
0 1 1 1 1 1 1 0 1 1 1 1 0 
0 1 1 1 1 1 1 0 1 1 1 0 1 
0 1 1 1 1 1 1 0 1 0 1 1 1 
0 1 1 1 1 1 0 1 1 1 1 1 0 
0 1 1 1 1 1 0 1 1 1 1 0 1 
0 1 1 1 1 0 1 1 1 1 1 0 1 
0 1 1 1 0 1 1 1 1 1 1 0 1 
0 1 1 0 1 1 1 1 1 1 1 1 0 

|U| = 9, |V| = 4, |βG| = 7 
0 1 1 1 1 1 0 1 1 1 1 0 0 

|U| = 8, |V| = 5, |βG| = 11 
0 1 1 1 1 1 0 1 1 1 0 0 0 
0 1 1 1 1 1 0 1 1 0 1 0 0 
0 1 1 1 1 1 0 0 1 1 1 0 0 

|U| = 7, |V| = 6, |βG| = 17 
0 1 1 0 1 1 0 1 1 0 1 0 0 

Frequency of appearance in V set. 
16 0 0 3 3 3 13 4 0 5 3 16 13 

Table 2. Best input variable partitioning problem solutions of plan example. 
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The analysis of best possible solutions for given Boolean function results in interesting 
observations (Rawski, 2007b). Table 2 presents the best solutions of input variable 
partitioning for plan example Boolean function from standard Microelectronics Center of 
North Carolina benchmark set (Yang, 1991). This function has 13 inputs and 25 outputs.  
Each row of Table 2 describes one partitioning of input variable set X = {x1, …,x13} into 
variables belonging to set U (marked by digit ‘1’) and belonging to set V that leads to 

optimal decomposition (according to the number of blanket βG’s blocks). It presents the best 
solutions for different sizes of sets V and U, as well as the frequency of appearance of given 
input variable in V set. It can be easily noticed that certain  variables appear in bound set 
often than others. For example variable x1 appears in V set for 16 solutions listed in Table 2, 
while x2 does not belong to V set for any of the best solutions. This suggests that some 
variables are more predestined to be included in V and other to be included in U set when 
constructing good input variable partitions. 
There is another interesting observation that can be made analyzing this example. Let us 
assume that the size of V set is 4. Now, let us create an input variable partitioning in such 
way that V set consists of variables that according to Table 2 are least appropriate to be in 
bund set: V = {x2, x3, x4, x9} and U = {x1, x5, x6, x7, x8, x10, x11, x12, x13}. As we could expect, the 
quality of decomposition (according to the number of blanket βG’s blocks) is 16 – the worst 
possible for this size of V set. However let us move “good” variable x1 from set U to set V 
and “bad” variable x2 from set V to set U. The quality of decomposition is now 15, so it has 
improved. If we now swap variables x3 and x12, the decomposition will have quality 11, so 
further improvement has been obtained. 
Let us assume that we have two variable partitioning solution (V1, U1) and (V2, U2). We can 
create another solution by taking part of variables from V1 and part from V2 and construct 
V3 (similarly for U3). Taking observation described above into account we can suspect that 
after such variable exchange it is probable that “good” variables from V1 and V2 will be 
included in V3. This should improve the quality of new solution in comparison to solution 
used as “parents”. If we preserve improved solutions and eliminate worsen solution we can 
apply this approach again. Such behavior is characteristic for evolutionary algorithms. This 
means that evolutionary algorithm may be an efficient way for solving input variable 
partitioning problem.  
In (Rawski et al., 2004) the evolutionary algorithm has been proposed that solves input 
variable partitioning problem for functional decomposition. The evolutionary algorithm 
maintains a population of individuals (chromosomes), that represent potential solutions of a 
given optimization problem (Fig. 3). A survival of the fittest individuals is implemented by 
the selection mechanism. For the next population, as potential solutions, such single 
organisms are chosen, which adaptation to the environment is the best. The adaptation 
(quality) of a specific chromosome is evaluated by a fitness function. The chromosomes are 
evolving through the process of selection, recombination (crossover) and mutation. After a 
given number of algorithm loops (generations), it is expected that the algorithm has found a 
satisfactory solution. Details of the evolutionary algorithm solving input variable 
partitioning problem are discussed below. 

3.1 Chromosome encoding 

The single chromosome (organism) represents one, possible solution of the input variable 
partitioning problem. In the method presented in this paper chromosomes are encoded by 
the integer numbers, each of which represents the number of the input variable assigned to 
the set V (bound variables) of the decomposition.  
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Example 4. 
For 4-input function F from Table 1 a possible solution of the variable partitioning problem 
can be represented by the set U = {x1} and set V = {x2, x3, x3}. 
The corresponding chromosome encoding is {2 3 4}. 

3.2 Fitness function 

In (Rawski et al., 1999) has been shown that there is a strong correlation of number of values in 
the sub-functions of the serial functional decomposition (represented by the number of blocks 

in βG or size of cut_set) with the decomposition's quality. However this number strongly 
depends on the input variable partitioning chosen for the decomposition process. Therefore, 

the number of blocks in the βG blanket or size of cut_set  can be used as a good quality measure 
of the input variable partitioning. In the presented method the fitness function depends on this 
number – the less the number the better fitness of a given chromosome. 

For the chromosome from Example 4 the number of blocks in a blanket βG is k = 3 (Example 2). 

3.3 Initial population selection 

The initial population P 0 is created randomly. Once it is completed, the algorithm checks 
whether all the inputs (single genes) have been chosen at least once. If some are missing, the 
additional organism is created with genes which are not included in other organisms of the 
population. 

3.4 Selection method 

The selection method is combination of tournament selection and elitism. Tournament 
selection chooses randomly two organisms from the population P t, compares them and 
takes the better one to the T t population. The number of times such a tournament has to be 
done to complete whole T t population depends on the population size. Elitism guarantees 
that the best organism from P t is taken to T t population regardless it was taking part at any 
tournaments or not. 

3.5 Crossover (recombination) 

Crossover operator chooses randomly two organism (called ‘parents’) and crosses their genetic 
material (Fig. 4). The crossover probability parameter specifies how often the crossover 
operator is performed. In proposed method this parameter is set to 0.9. The algorithm checks 
whether parents have the same genes or not. If so, the crossover operator is not launched and 
the other potential parents are chosen. If crossover is performed, two new organisms are 
created (and taken to O t population). Otherwise parents are taken to O t population. 
 

 

Fig. 4. Schematic representation of the crossover operator. 
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3.6 Mutation 
Usually, mutation changes a single gene with very small probability (0.001). However, as 
experiments proved, in the case of the variable partitioning problem this kind of mutation 
does not bring any considerable profit for the algorithm performance. 
The main problem with the presented algorithm is that it converges very fast to the local 
optimum. Once the algorithm gets to this area, it is very unlikely to find the better solution 
than this local optimum. To solve this problem, the special kind of mutation was 
implemented. If the average fitness among the population is very close to the best organism 
fitness, it is very likely the algorithm got stuck in the local optimum area. Then the special 
mutation is performed. One gene in each organism is mutated so the mutation probability is 
very high. As a result, the average fitness degenerates rapidly, but the algorithm gets out of 
the local optimum area and in many cases the better solution is found. 

4. Input variable partitioning algorithm for heterogeneous LUTs 

The methods presented in (Rawski et al., 2004), as well as in (Morawiecki & Rawski, 2008) 
were designed to solve the problem of input variable partitioning for given size of bound 
variable set V. In practice, during decomposition process there is a need to check existence 
of functional decomposition for several different sizes of V set before selecting the 
appropriate one. This is the case of applying functional decomposition in logic synthesis for 
FPGA architectures with heterogeneous logic resources. Such architectures are composed of 
adaptive logic elements that can be configured as LUTs of different sizes. In such situation 
application of concept presented in (Rawski et al., 2004) or (Morawiecki & Rawski, 2008) 
comes down to executing the algorithm for every possible LUT size. 
However, the careful analysis of best possible solutions for plan example presented in Tab. 2 
yields in interesting observation. Input variables that are present in bound set of best 
decompositions for set V of size k are often present in bound set of best decompositions for 
set V of size k – 1.  
For example there is only one best solution for decomposition with set V of size 6 where 
V = {x1, x4, x7, x10, x12, x13} and U = {x2, x3, x5, x6, x8, x9, x11 }. If we remove variable x4 from set 
V and move it to set U we will obtain input variable partitioning that is one of 3 best 
solutions  for decomposition with set V of size 5.  
 

extended_evo_ivp( F , VSizeMin , VSizeMax )  
begin 

VVSizeMax  := evo_ivp( F, VSizeMax ) 
for  k from  VSizeMax– 1  downto  VSizeMin do
begin  

for  i from  1  to  k +1  do 
begin  

Vtmp  := VVSizeMax  –  { v i } 
if  (quality( V tmp ) > best_quality) then

Vbest  := V tmp  
best_quality := quality( V tmp ) 

end 
Vk :=  V best  

end 
end  

Fig. 5. Outline of algorithm that solves the problem of input variable partitioning for 
decomposition with V set of different  sizes. 
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This can be used to construct the algorithm that applies evolutionary concept to find 

solution for largest size of set V only, and uses the found solution to construct solutions for 

decomposition with smaller set V. Let assume that we have evolutionary algorithm 

evo_ivp(F, VSize) that solves the problem of input variable partitioning for decomposition of 

function F with the bound set V of size VSize. To find good quality functional 

decompositions for V set of size from VSizeMin to VSizeMax the extended algorithm first 

will find solution (V set) for VSizeMax and then, by removing appropriate variables from 

found V set, it will construct solutions for decompositions with smaller sets V. The outline of 

the algorithm is presented on Fig. 5. The algorithm returns a list of V sets (Vk, where k = 

{VSizeMin, …, VSizeMax}) 

5. Results 

The efficiency of evolutionary algorithm solving input variable partitioning problem for 

functional decomposition has been verified in (Rawski et al., 2004). This method was 

applied for number of combinational functions from MCNC logic synthesis benchmark set 

(Yang, 1991) and results ware compared with those obtained with the method based o 

information relationship measures presented in (Rawski et al., 2001) and with the systematic 

method. The systematic method is based on searching through the whole solution space and 

choosing an input support that produces blanket βG with minimum possible number of 

blocks. All experiments were preformed on the computer with 512 Mbytes of RAM and 

AMD Athlon XP 3200. 

Table 3 shows the comparison of the number of blanket βG blocks for all methods for 

examples from MCNC logic synthesis benchmark set converted to truth table format 

(required by method from (Rawski et al., 2001). The results were obtained for 

decompositions with 3, 4, 5, and 6 input variables in set V. For these experiments the 

number of generations in the method based on the evolutionary algorithm was set to 30 and 

the size of a population was set to 40. Results obtained by the decomposition with the 

systematic search are optimal in the sense of the number of blocks of βG. The method based 

on the evolutionary algorithm despite of its heuristic character produces results similar to 

the systematic method. 

Table 4 present the minimum number of blocks of blanket βG obtained by method based on 

the evolutionary algorithm for few large examples. The comparison with other two methods 

was impossible due to unacceptably long computation time for systematic method and due 

to the fact that method from (Rawski, 2001) accepts only truth table format. However 

examples from MCNC benchmark set are presented in espresso format, which in most cases 

is not truth table format and it is very difficult to convert such description for large multi-

output systems into truth tables. 

In Table 5 the comparison of execution time of the systematic method and the evolutionary-

based algorithm is presented for different sizes of set V. As can be noticed, for large Boolean 

functions, method based on evolutionary algorithm is many times faster than the exact 

method. The difference in processing time between these two methods grows very fast with 

the function size. For the largest functions tried, the heuristic method was many thousands 

times faster.  
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 Size Systematic method

Heuristic based on 

information 

relationship measures

Heuristic based on 

evolutionary 

algorithm 

 inputs outputs terms 3 4 5 6 3 4 5 6 3 4 5 6 

Con1 7 2 20 5 6 6 5 5 7 7 5 5 6 6 5 

Donfl 7 6 64 8 14 25 37 8 14 25 37 8 14 25 37 

z4 7 4 128 4 6 8 12 4 6 8 12 4 6 8 12 

Misex1 8 7 18 4 6 7 9 4 6 7 9 4 6 7 9 

Root 8 5 71 5 9 15 17 5 9 15 17 5 9 15 17 

Sqrt 8 4 53 3 4 7 12 3 4 7 12 3 4 7 12 

Opus 9 10 23 4 6 8 10 4 6 8 10 4 6 8 10 

9sym 9 1 191 4 5 6 7 4 5 6 7 4 5 6 7 

Clip 9 5 430 6 10 14 18 6 10 14 21 6 10 14 18 

Mark1 9 20 27 4 6 8 10 4 6 8 10 4 6 8 10 

Alu2 10 3 391 6 12 24 43 6 12 24 43 6 12 24 43 

Sao2 10 4 60 4 6 9 11 4 6 9 11 4 6 9 11 

Cse 11 11 86 3 4 6 9 3 4 6 9 3 4 6 9 

Sse 11 11 39 4 6 8 11 4 6 8 11 4 6 8 11 

Keyb 12 7 147 6 9 13 19 6 9 13 19 6 9 13 19 

S1 13 11 110 5 8 13 19 6 8 13 19 5 8 13 19 

Plan 13 25 115 5 7 11 17 5 7 11 18 5 7 11 17 

Styr 14 15 140 4 6 9 13 5 7 10 14 4 6 9 13 

Ex1 14 24 127 4 6 8 11 4 6 8 11 4 6 8 11 

Kirk 16 10 304 4 4 5 6 4 5 5 7 4 4 5 6 

Duke2_7 18 1 64 3 4 4 4 4 5 5 5 3 4 4 4 

Vg2_2 25 1 56 3 3 3 3 4 4 4 4 3 3 3 3 

Apex3_3 34 1 208 2 3 4 5 4 4 4 6 2 3 4 5 

Seq_2 36 1 211 2 2 3 –*) 3 4 4 6 2 2 3 5 

Seq_1 37 1 286 2 3 3 3 3 3 3 4 2 3 3 3 

Apex3_7 39 1 227 3 4 4 5 4 5 6 7 3 4 4 5 

Table 3. Comparison of the number of blocks in blanket βG obtained by the systematic 
method, heuristic method based on information relationship measures and heuristic method 
based on evolutionary algorithm for different size of set V. *) – too long computation time. 
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 Size Heuristic based on evolutionary algorithm 

 inputs outputs terms 3 4 5 6 

duke2 22 29 405 4 5 7 8 

misex2 25 18 102 2 2 2 2 

seq 41 35 3137 4 5 5 5 

apex1 45 45 1440 4 5 6 7 

apex3 54 50 1036 4 5 7 8 

e64 65 65 327 4 5 5 7 

apex5 117 88 2849 1 3 4 3 

Table 4. The number of blocks in blanket βG obtained by heuristic method based on 
evolutionary algorithm for different size of set V. 

 

 Systematic method * 
Heuristic based on evolutionary 

algorithm 
[s] 

 3 4 5 6 3 4 5 6 

duke2 31s 2m 40s 10m 58s 34m 56s 37,7 38,9 40,4 58,5 

misex2 10s 40s 4m 4s 13m 52s 10,2 12,4 14,9 24,9 

seq > 2 h > 1 day > 8 days > 59 days 1656,8 1692,9 1704 1712,9 

apex1 > 1 hour > 12 hours > 4 days > 39 days 463,3 506,3 506 524,6 

apex3 > 1 hour > 16 hours > 8 days > 81 days 324 316,5 325 328,7 

e64 31m 53s > 8 hours > 5 days > 68 days 136,5 137,1 79 191,2 

apex5 > 6 days > 185 days > 11 years > 221 years 2849 3772,6 3799,5 3901,8 

Table 5. Comparison of computation time of systematic method and heuristic method based 
on evolutionary algorithm for different sizes of set V. 

In (Morawiecki & Rawski, 2008) the input selection method based on evolutionary 
algorithm was applied for decomposition based on BDDs. For manipulation on decision 
diagrams CUDD package was used. All the experiments were performed on the computer 
with 512 Mbytes of RAM and Pentium4 @ 2.8GHz. 
 

 inputs terms Systematic method Heuristic based on evolutionary algorithm 

duke2_7 18 64 4 5 

vg2_2 25 56 3 3 

seq_2 36 211 2 4 

apex1_16 38 179 2 3 

apex1_23 39 2216 2 3 

Table 6. The  sizes of cut_set obtained by the systematic method and heuristic method based 
on evolutionary algorithm for size of set V equal to 4. 
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Table 6 presents the comparison of results obtained for single-output functions by applying 

the exhaustive search and evolutionary algorithm. The size of V set was 4 (typical value for 

FPGA-based synthesis). The size of cut_set is used as a quality measure. Results provided by 

the exhaustive search method can be considered as optimal. The results obtained by 

applying the evolutionary algorithm are very close to optimal or even optimal. 

 

 Systematic method 
Heuristic based on evolutionary algorithm 

[s] 

duke2_7 80 sec 70 

vg2_2 6,5 min 90 

seq_2 31,5 min 75 

apex1_16 46 min 120 

apex1_23 49 min 130 

Table 7. Comparison of computation time of systematic method and heuristic method based 
on evolutionary algorithm for sizes of set V equal to 4. 

The comparison of execution time of the exhaustive search method and evolutionary 

algorithm has been presented in Table 7. It can be noticed that advantage of heuristic 

algorithm over exhaustive search grows fast with the size of decomposed Boolean function.  

 

 Evolutionary algorithm Extended evolutionary algorithm 

 3 4 5 6 3 4 5 6 

duke2_7 4 4 5 5 4 4 4 5 

vg2_2 3 3 3 3 3 3 3 4 

seq_2 4 3 4 6 2 3 4 5 

apex1_16 3 5 3 3 2 2 2 2 

apex1_23 3 4 4 3 2 2 3 4 

Table 8. Comparison of results of heuristic method based on evolutionary algorithm and its 
improved version. 

Table 8 presents the comparison of results obtained with evolutionary algorithm and 

extended algorithm (Fig. 5) in case when existence of functional decomposition for several 

different sizes of V set has to be checked. It can be noticed that both methods provide results 

of comparable quality. However improved algorithm does it faster (Table 9). All the 

experiments were performed on the computer with 6 Gbytes of RAM and Intel 

Q9550 @ 2.83 GHz.  

It has to be stressed that the multilevel decomposition consists of many single serial 

decomposition steps. Thus, application of the heuristic methods can speed up the multi-

level decomposition process dramatically. 
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 Evolutionary algorithm 
[s] 

Extended evolutionary algorithm 
[s] 

 3 4 5 6 Total Total 

duke2_7 17.5 16.6 16.7 15.6 66.6 16.0 

vg2_2 21.5 20.9 20.2 20.2 83.0 20.5 

seq_2 15.9 16.0 15.1 16.1 63.3 16.6 

apex1_16 17.1 16.6 15.7 14.6 64.2 16.0 

apex1_23 17.1 15.2 15.1 15.4 63.0 15.5 

Table 9. Comparison of computation time of heuristic method based on evolutionary 
algorithm and its improved version. 

6. Conclusion 

The heuristic method of variable partitioning based on the evolutionary algorithm turns out 
to be very efficient when applied for decomposition method based on cubes (Rawski, 
2007a), as well on ROBDDs (Morawiecki  & Rawski, 2008). The method delivers results of 
similar or comparable  quality to results obtained from the exhaustive search, but does it 
many times faster. The algorithm parameters (the number of generations and the size of 
population) can be used to control the trade-off between the search time and quality of 
solutions. These features make the proposed heuristic method very useful for 
decomposition-based synthesis of large systems.  
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