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1. Introduction 

An Evolutionary Algorithm (EA) is a meta-heuristic and stochastic optimization search 
process that mimics Darwinian evolution theory and Mendel's Genetics. Each process 
facilitates (a) population(s) evolve into fittest and/or convergence by setting parameters of 
selection, mutation, crossover, population resizing, and/or many other variant operators. 
However, due to two primary identified factors, EAs are still a challenging research topic: (1) 
Value choices/ranges for parameters (i.e., parameter settings) will greatly influence the 
evolution performance of a search process in terms of fittest and/or convergence; and (2) 
Parameter settings that are good for one fitness function do not guarantee the same evolution 
performance of another fitness function. Namely, parameter settings are function-specific. 
Different functions may have various characteristics that request specific attention. In order to 
better organize and overcome the parameter setting problem, Eiben et al. have classified 
parameter settings into parameter tuning and parameter control (Eiben et al., 1999): Parameter 
tuning determines parameter values before a search process begins while parameter control 
changes parameter values during a search process. More specifically, parameter control 
adjusts parameters on-the-fly using three different approaches: (1) Deterministic approach 
alters parameters based on certain pre-determined rules or formulae; (2) Adaptive approach 
strategically adjusts parameter values based on the feedbacks of a search process. Such 
feedbacks could be fitness, diversity, distance, among others; and (3) Self-adaptive approach 
encodes parameters to be adapted and evolves them along with a search process. Yet, even 
with such a classification, to our best knowledge there is no existing tool to assist researchers 
with conducting experiments of parameter settings with ease. Namely, researchers need to 
find out appropriate places out of thousand lines of EA source code to introduce and update 
specific parameters (including feedbacks) as well as formulae and adaptive strategies. 
Additionally, a number of revisions for EA source code will be also required for different 
kinds of experiments. To EA experimenters, such endeavor is time consuming and error 
prone. To EA developers, complex and tangling source code, resulted from different 
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parameter and strategy introductions, may also cause inflexibility for further extension and 
inevitability of faulty EA source code. In order to solve the aforementioned problems, a 
programmable approach, called PPCea (Programmable Parameter Control for Evolutionary 
Algorithms) (Liu et al., 2004), is presented in this book chapter. 
PPCea is a Domain-Specific Language (DSL) (Mernik et al., 2005) for EAs. It uplifts the 
abstraction layer to a higher (i.e., domain-specific) level and introduces domain-specific 
notations (e.g., parameters and statements) as well as common linguistic elements. Namely, 
the implementation details of Genetic Algorithms (GAs) and Evolution Strategies (ESs) are 
encapsulated and hidden so that EA experimenters are able to experiment with evolutionary 
algorithms and obtain statistical results by programming a few PPCea statements. 
Additionally, the flexible programming fashion also enhances the possibility of reproducing 
existing EA experiments in a simpler PPCea source code and likely introducing new 
experiments to facilitate even better optimization search or faster convergence. 
For EA experimenters, the first part of this book chapter introduces PPCea with examples to 
demonstrate PPCea’s capabilities and usability.  Famous existing parameter tuning and 
parameter control examples are reproduced using PPCea (e.g., Fogarty’s formula (Fogarty, 
1989), PROFIGA (Eiben et al., 2004), and 1/5 success rule (Bäck & Schwefel, 1995)). 
Additionally, new examples are also demonstrated to show the flexibility of PPCea. For 
example, introducing new metrics as feedbacks for parameter control and adaptively 
switching among different operators during an evolutionary process can be done with ease. 
For EA developers, design and implementation of PPCea are covered in the second part of 
the book chapter. In this part, DSL patterns and design patterns are utilized. Coding and/or 
UML examples are presented and discussed to show how such patterns lessen the extension 
problems during development and maintenance phases. Software metrics are also measured 
to prove the effectiveness of design patterns for modularization and extension. In summary, 
PPCea is a domain-specific tool that is “win-win” to both EA experimenters and developers: 
For EA experimenters, the programmable fashion and high level abstraction allow EA users 
to conduct EA experiments in a productive manner. For EA developers, the design and 
implementation of PPCea allow evolutionary algorithms, operators, algorithms of operators 
(i.e., strategies), and parameters to be introduced or revised painlessly. 
The book chapter is organized as follows. By using grammars, code snippets, and UML 
diagrams, Sections 2 and 3 respectively introduce PPCea from the perspectives of 
experimenters and developers. Section 4 discusses related work on parameter settings in 
Evolutionary Algorithms. PPCea’s capabilities, limitations, and future directions are 
concluded in Section 5. 

2. PPCea: A Painless Problem Curer for EA users  

Because of the meta-heuristic and stochastic characteristics towards searching optimization, 
experimenters or users of EAs are inevitably requested to perform a sufficient number of 
experiments. Needless to say, there are numerous combinations and scopes of domain-
specific parameters (e.g., mutation rate, crossover rate, and selection pressure) need to be 
tuned or controlled so that fittest and/or convergence can be discovered. A primary 
objective of PPCea is to become a problem curer for EA users/experimenters to conduct 
experiments painlessly. We first introduce PPCea through a number of examples 
categorized by Eiben et al.’s classification suggestions. The grammar of PPCea is appended 
at the end of the chapter for interested readers. 

www.intechopen.com



PPCea: A Domain-Specific Language for  
Programmable Parameter Control in Evolutionary Algorithms 

 

179 

2.1 PPCea for parameter tuning 
Parameter tuning is an approach for EA experiments classified in (Eiben et al., 1999). Such a 
kind of experiments determines the parameters of an evolutionary process before it runs and 
will not change the parameter values during the process. Many of the existing EAs are 
classified into this category. Per their endeavors, common guidelines for setting mutation and 
crossover rates in GAs are as follows: mutation rate (pm) ≒ 1/(the bit length of an individual 

in genetic algorithms) and crossover rate (pc) ≒ 0.75~0.95. PPCea can reproduce such 

experiments easily. Figure 1 shows that twenty experiments of Ackley’s function from (Yao et 
al., 1999) with different parameter tuning settings are defined using Grefenstette’s guideline 
(Grefenstette, 1986). Also, if one does not want to reset different values for pm, pc, or any 
domain-specific parameters for each experiment, formulae may be defined to adjust the values 
of such parameters as seen in the italic part of Figure 1, where the if-statement within the while-
statement adjusts pm every 5 experiments. The experimental results of three reproduced 
parameter tuning-based experiments are available at (Liu, 2010). 
 

 

Fig. 1. Parameter tuning using PPCea 

2.2 PPCea for deterministic parameter control 
 

 

Fig. 2. Deterministic parameter control using PPCea 

genetic  
//skip initializing Round, Maxgen, Popsize, Epoch, pm, alpha, beta, gamma, length, r, g 

while ( r < Round ) do 
  init; //initialize population 
       while ( g < Maxgen ) do 
     callGA; //invoke an evolutionary process of GA 
      pm := sqrt(alpha / beta) * exp((0 – gamma)*g/2) / (Popsize / length); 

// the above formula is from Hessen & Manner 

// pm := 1 / (2+(( length-2 )/Maxgen)* g ) 

// the above formula is from Bäck & Schütz  

    g := g + Epoch // Generation stride for parameter control adaptation 
 end;  

r := r + 1 
end; 
writeresult //output the experimental results to text and Excel files 

end genetic 

genetic  
    readfile weightF10.txt; //load coeff. of Ackley’s function from Yao et al., 1999 
    Function := 10; //load Ackley’s function from Yao et al., 1999 
    Round := 20; //number of experiments 
    Maxgen := 1000; //maximum generation of an evolutionary process 
    pm := 0.001; //set mutation rate 
    pc := 0.95; //set crossover rate 
    r := 0;  
    while ( r < Round ) do 
  init; //initialize population 
 callGA; //invoke an evolutionary process of GA 
  if (( r % 5) == 0) then  
     pm := pm + 0.001 //change pm every 5 experiments 
      fi;  

r := r + 1 
end; 
writeresult //output the experimental results to text and Excel files 

end genetic 
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An important advantage of PPCea over other EA frameworks or software is its capability of 
performing parameter changes on-the-fly through a programmable fashion. Deterministic 
parameter control is an approach that defines how to change parameters during an 
evolutionary process using formulae. Fogarty (Fogarty, 1989) proposed one of the earliest 
deterministic approaches that adjusts mutation rate to a smaller value along with 
generations in order to tend from exploration towards exploitation. Liu et al. has published 
the experimental results of five unimodal and seven multimodal functions using Fogarty’s 
mutation rate formula in (Liu et al., 2009). Figure 2 reproduces (Hesser & Männer, 1991)’s 
and (Bäck & Schütz, 1996)’s mutation formulae to show that PPCea is capable of 
representing more sophisticated cases.  

2.3 PPCea for adaptive parameter control 
Different from deterministic parameter control that does not interact with the evolutionary 

process that it controls, adaptive parameter control utilizes the analysis results from the 

evolutionary process and then determines which directions the evolutionary process may 

move forward by changing the parameters of associated operators. PPCea has reproduced 

1/5 success rule (Bäck & Schwefel, 1995) and population resizing (Smith & Smuda, 1995) 

and introduced an entropy-driven approach (Liu et al., 2009) to adapt an evolutionary 

process. Figure 3 shows that PROFIGA (Eiben et al., 2004) is reproduced by PPCea.  

PROFIGA is a GA that utilizes population resizing to balance between exploration and 
exploitation. As seen in the first if-statement in the figure, if the best fitness is improved, 
then population size will be increased proportionally so that more exploration can be 
promoted. Similarly, if the evolutionary process is not improved every kgen generations, the 
population size will be proportionally increased using the same factor (growFactorX). The 
second if-statement performs such an objective. Note that growFactorX is a negative value so 
that the formula within the second resize uses subtract operator. Lastly, the last if-statement 
shows that if neither the first nor the second conditions hold, the evolutionary process will 
tend to exploitation by shrinking the population size. 
Of course, PPCea is not almighty. For example, GAVaPS (Arabas et al., 1994) and APGA 
(Bäck et al., 2000) perform population resizing based on aging concept. Such algorithms 
cannot be reproduced by current PPCea due to absence of age in individuals. Yet, once age 
is introduced along with associated operators, PPCea is capable of performing GAVaPS and 
APGA without a doubt. Similarly, parameter-less GA (Harik & Lubo, 1999) introduces a 
number of populations with different sizes to compete with each other. Because PPCea 
currently does not introduce multi-populations, reproducing parameter-less GA is also 
questionable. Because the design and implementation of PPCea facilitate extension and 
evolution, new algorithms like GAVaPS, APGA, parameter-less GA, and other EAs may be 
introduced with ease. More discussions on how to utilize such design and implementation 
advantages to introduce new algorithms will be covered in Section 3. 

2.4 PPCea for adaptive operator control 
Adapting parameters on-the-fly is not new in EAs. What about adapting operators on-the-
fly? Adapting operators may be classified into three categories:  
1. Operator adaptation is delegated to parameter control. Such an adaptation is done by 

adjusting parameters associated to specific operators. For example, 1/5 success rule 

utilizes mutation success rate to determine if mutation rate needs to be tuned up or 
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Fig. 3. PROFIGA reproduction using PPCea 

down. Similarly, selection pressure assists in adjusting the performance of selection 
operator in terms of fitting offspring. Usually adaptation in this category is classified as 
parameter control (Eiben et al., 1999);  

2. Instead of focusing on the effectiveness of a specific operator using parameter control, 
an evolutionary process may switch among different operators based on certain real-
time feedbacks. For example, Ursem (Ursem, 2002) introduced Diversity-Guided 
Evolutionary Algorithm (DGEA) that splits an evolutionary process into exploration 
and exploitation modes based on diversity. Under exploitation mode, recombination 
and selection are active. Otherwise, mutation is in charge; 

3. Adaptation can be also done by switching among different variants of the same type of 
operators (Herrera & Lozano, 1996). For example, switching from one-point mutation to 
N-point mutation may result in more exploration during an evolutionary process, and 
switching from linear selection to non-linear one may change the influence weight of 
certain portion of individuals.  

For (1), it has been discussed in the previous subsection. This subsection first reproduces 
DGEA falling into category (2) and then proposes how PPCea expresses experiments in 
category (3).  
DGEA introduces a new diversity metric that computes the distance of all individuals to the 
average point of an N-dimensional search space. Exploration mode is identified if the 
diversity metric is lower than a predefined lower bound, and exploitation mode is 
recognized as the metric is higher than a predefined higher bound. Selection and crossover 
are applied to explore search space while mutation is treated as exploitation operator. 
Figure 4 shows the reproduction of DGEA, where dLow and dHigh are user-defined 
parameters and DistanceToAvgPt is computed by PPCea. changeStrategy is a PPCea statement 

genetic  
// initialize all needed parameters. bestImproved and noImprovedForLong are false  

init; 
initBest := Best; // best fitness from initial population 
nextBest := initBest; 
while (g < Maxgen) do 

currBest := nextBest; // best fitness from the current population 
callGA; // invoke an evolutionary process 

   nextBest := Best;  // best fitness from the population of next generation 
growFactorX := factor * (Maxgen - g )* Popsize * (nextBest - currBest) / 
initBest; 
if ((nextBest - currBest) > 0) then //best fitness improved 

resize(Popsize * (1 + growFactorX)); 
bestImproved := true 

fi;  
   if ((nextBest - currBest) < 0 ) then //best fitness not improved for kgen 

i := i + 1; 
if ( i == kgen ) then 

        i := 0 
fi; 
resize(Popsize * (1 – growFactorX)); //Popsize increase 

    noImprovedForLong := true 
   fi;         
   if ((bestImproved != true) && (noImprovedForLong != true)) then 

    resize(Popsize * (1 - 0.05)) 
   fi; 
   g := g + Epoch; 
    end 
end genetic 
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that switches between operators. For example, within exploration mode, tournament 
selection and 1-point crossover are active and mutation is halted. Conversely, mutation is 
the only active operator while selection and crossover are halted by the two keywords 
specified within the second changeStrategy. 
 

 

Fig. 4. DGEA reproduction using PPCea 

The previous example shows that PPCea can swap between different operators when 

needed. Halting an operator under a specific condition is also feasible by setting 

GA_HALT_SELECTION, GA_HALT_MUTATION, and GA_HALT_CROSSOVER, among 

others. When PPCea interpreter identifies such keywords, the operators will not be executed 

until they are reactivated by next changeStrategy statement. More details about how these are 

implemented will be covered in Section 3.  

As mentioned before, DGEA is within category (2). A PPCea example classified within 
category (3) is introduced in Figure 5. Initially, context, a PPCea statement,  defines specific 
operators will be executed by the evolutionary process. Line 1 shows that linear selection, 1-
point mutation, and n-point crossover are picked to perform optimization search at the 
beginning. Lines 5 to 10 shows that two operator pairs (TOURNAMENT_SELECTION, 
N_PT_MUTATION) and (RANK_SELECTION, ONE_PT_MUTATION) will be swapped 
every 10 generations until 95th generation. Mutation will be stopped at the last 5 
generations. Because N_PT_CROSSOVER never appears in the pairs of changeStrategy, this 
operator will remain active during the entire evolutionary process. How PPCea interpreter 
executes such operator adaptation will be also covered in Section 3.  

2.5 Summary 
As can be seen in the previous examples, the programming fashion of PPCea facilitates 
introducing a number of experiments with same or different settings by writing a few lines 
of code. Each evolutionary process run by PPCea can also be controlled deterministically or 
adaptively through parameter and/or operator adaptation. For space consideration, the 
experimental results of the examples, acting as a proof of feasibility of PPCea, are available 
at (Liu, 2010).  Note that the previous examples also show some EAs cannot be reproduced 
easily derived from lacking needed attributes, multi-populations, parameters analyzed from 
an evolutionary process or operators. Section 3 attempts to address such problems from the 
perspective of EA developers. Lastly, categories of adaptive representation and adaptive 
fitness are also introduced in (Herrera & Lozano, 1996). They could be also potentially 
addressed by PPCea. Due to time constraint, they are left as one of our future work. 

genetic  
// initialize all needed parameters including dLow, dHigh 

init; 
while ( g < Maxgen ) do 

callGA; 
if ( DistanceToAvgPt < dLow ) then // exploration mode 
    changeStrategy(TOURNAMENT_SELECTION, GA_HALT_MUTATION, 
ONE_PT_CROSSOVER)  

    fi; 
    if ( DistanceToAvgPt > dHigh ) then // exploitation mode 
           changeStrategy(GA_HALT_SELECTION, ONE_PT_MUTATION, GA_HALT_CROSSOVER) 
    fi; 
    g := g + 1 

end 
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Fig. 5. Operator adaptation using PPCea 

3. PPCea: A Portable Pattern-driven Contrivance for EA developers 

Conducting parameter control experiments is always a time consuming task due to a variety of 
possible parameter combinations that may affect the convergence and optimization of an 
evolution process in different magnitudes. One may concentrate on a limited set of parameters 
to “de-scope” the problem (Harik & Lobo, 1999). Even so, a sufficient number of experiments 
are still needed due to heuristic nature of EAs. Per Aristotle, the aforementioned problems are 
essential difficulties (Brooks, 1987) inherent in EAs.  Conversely, code snippets for computing 
metrics and programming logics for adapting an evolution process on-the-fly based on such 
metrics still scatter and tangle with other EA source code. Such inflexibility for further 
extension and inevitability of faulty EA source code are accidental difficulties (Brooks, 1987) 
that may be solved by the approaches hiding such difficulties. 
A DSL is a modeling/programming language that shields accidental difficulties by 
introducing a higher level abstraction. It has been proved that DSLs may facilitate 
productivity (up to 10 times improvement), reliability, maintenability, and portability to 
domain users (Mernik et al., 2005). However, DSLs that are implemented by compiler or 
interpreter approaches may result in extension and evolution difficulties (Gray et al., 2008). 
For example, if a new mutation operator is introduced to PPCea, not only new syntax and 
semantics need to be introduced, but exsiting source code may be also affected due to 
inappropriate modularization in many compiler/interpreter-based DSLs including PPCea. 
Moreover, as mentioned in (Harik & Lobo, 1999), Holland would have never thought of a 
plentiful number of parameters are presented – Parameters are good for assisting in getting 
insight of an evolution process or helping control the process. Yet, EA computation may 
become overwhelmly slow resulted from parameter explosion. In summary, an objective of 
this section is to remedy the obstacles dervied from the introduction, extension, or evolution 
of parameters and operators in PPCea. 

3.1 Design of PPCea 
In order to design and implement PPCea in a manageable and systematic way, DSL patterns 
(Mernik et al., 2005) and design patterns (Gamma et al., 1995) are followed. Table 1 
summarizes the DSL patterns that PPCea applies.  

1  context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER); 
2  init; 
3  while (g <= Maxgen ) do //assume t = 1 initially and Maxgen = 100 
4      callGA; 
5      if (( g % 10) == 0) then 
6          changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION) 
       //swap to tournament selection every 10 generations starting at g = 10 
7      fi; 
8      if (( g % 20) == 0) then 
9          changeStrategy(RANK_SELECTION, ONE_PT_MUTATION)  
       //swap to rank selection every 10 generations starting at g = 20 
10     fi; 
11     if (g > 95) then 
12         changeStrategy(GA_HALT_MUTATION)  
       //swap to temporarily stop mutation between generations 95 and 100 
13     fi; 
14     g = g + 1 
15 end; 
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Workflow Pattern Description 

Decision Task automation 
System front-end 

When and why to have PPCea 

Analysis FODA (Kang et al., 
1990) 

Find the common and variable features of EAs 

Design Denotational 
Semantics 
Design Patterns 
(Gamma et al., 1995) 

Formally define syntax and semantics of PPCea 
PPCea applies composite, visitor, strategy, 
decorator and singleton patterns to address 
introduction, extension, and evolution problems. 

Implementati
on 

Interpreter Introduce PPCea interpreter to conduct EA 
experiments 

Table 1. The DSL patterns applied in PPCea 

Decision patterns specify when and why a new DSL is essential. In order to provide an 

adaptable mechanism to solve such parameter control/setting problems, task automation 

and system front-end decision patterns are chosen. Task automation decision pattern hides 

the implementation details of EAs. Without browsing and understanding lengthy source 

code encapsulated in EAs, users omit the complex implementation but concentrate on the 

parameters and operators that lead to the optimization and/or convergence of EAs. 

Secondly, PPCea follows system front-end decision pattern that primarily handles 

configurations. Time-consuming and error-prone overhead can be reduced or avoided. As 

for analysis, PPCea utilizes Feature-Oriented Domain Analysis (Kang et al., 1990) to perform 

formal domain analysis so that common and variable features of EAs can be systematically 

identified.  With such, PPCea can be formally defined using denotational semantics (Aho et 

al., 2007) and designed using design patterns (Gamma et al., 1995). Lastly, interpreter 

pattern is utilized to implement PPCea. An overview of PPCea interpreter is shown in 

Figure 6. 

The interpreter is constructed with the assists of JFlex (Klein, 2010) and Construction of 

Useful Parsers (CUP) (Hudson, 2010). JFlex is a fast scanner generator for Java whose 

purpose is to generate a lexer that performs tokenization process for PPCea programs. CUP 

is a parser generator that introduces a bottom-up parser that performs syntax analysis. Such 

a parser may be integrated with user-defined semantics written in Java, accompanying with 

options to introduce syntax trees and symbol tables. The linguistic elements include 

commonly-seen constructs such as if-else, loop, and assignment statements as well as 

expressions and operators to perform necessary parameter adjustments. Additionally, 

domain-specific elements to describe an EA are presented: init statement initializes a 

population, callGA statement performs a GA, callES statement performs an ES, resize 

statement allows population resizing, changeStrategy statement offers the potentials to 

switch between different operators on-the-fly, context statement determines the operators 

that constitutes an EA, and require statement determines which domain-specific parameters 

to be computed. Such parameters are either the results from an evolutionary process that 

can be also acted as metrics or feedbacks to assist parameter control. There are also 

miscellaneous statements for various purposes (e.g., IOStatement). Interested readers may 

find more information on the PPCea web page (Liu, 2010). All the above linguistic elements  
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Fig. 6. An overview of PPCea interpreter (* means ongoing/future tasks) 

are represented as Java classes embedded with associated semantics. The interpreter 

currently accepts parameter tuning, deterministic, and adaptive PPCea programs as inputs, 

as seen at the top of the figure. The outputs, at the bottom of the figure generated by the 

interpreter, comprise best, average, worst fitness, standard deviation and Euclidean distance 

(i.e., diversity), entropy (Liu et al., 2009), and the success rates of crossover and mutation, 

among others. More domain-specific constructs and parameters can be introduced, 

extended and evolved following the design patterns introduced in the subsequent 

subsections. 

3.2 Evolutionary Algorithm and operator introductions 
Since Evolutionary Algorithms (EAs) were coined, there have been a variety of algorithms, 

operators, and parameters proposed in order to apply to a various number of applications 

and experiments as well as further improve optimal results and/or convergence rate of such 

algorithms. For example, different from the general sketches of GAs in (Michalewicz, 1996), 

Bi-population GA (Tsutsui et al., 1997), aGA (Ghosh et al., 1996), and PROFIGA (Eiben et al., 

2004), among others are variations that respectively introduces new algorithmic strategies 

(e.g., splitting populations into exploration and exploitation modes), new attributes (e.g., 

ages for individuals) or new operators (population resizing) to facilitate optimization 

and/or convergence. Additionally, DGEA, Evolution Strategies using Cauchy Distribution 

(Yao et al., 1999), Particle Swamp Optimization (Kennedy and Eberhart, 2001), and 

Differential Evolution (Storn & Price, 1997), to name a few, are also categorized in EAs that 

solve optimization problems from other perspectives. In addition to algorithm 
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introductions, many variations of existing operators and domain-specific parameters are 

also introduced (e.g., tournament selection, linear selection, uniform crossover, intermediate 

crossover, diversity-to-average measure (Ursem, 2002), and cluster entropy (Liu et al., 

2009)). PPCea has anticipated such extension and evolution potentials and hence adopted 

design patterns so that future changes can be addressed with ease. 

3.2.1 Evolutionary Algorithm and operator introductions using composite pattern 
Because PPCea is developed by following the interpreter/compiler pattern (Mernik et al., 
2005), inevitably, the syntactical representation of a PPCea program is expressed as a syntax 
tree structure (Aho et al., 2007). However, a commonly-seen implementation issue existing 
in such a tree structure is to deal with the composite-atomic hierarchies (i.e., whole-part 
hierarchies). For example, PPCea comprises if-else and loop statements that may embrace 
zero or more composite and/or atomic statements as child nodes (e.g., a nested if-else 
statement); and conversely, assignment and domain-specific statements are atomic ones that 
cannot hold any statement nested within their bodies. Because composite statements are 
derived from recursive productions defined in PPCea grammar (see appendix), they do not 
posses concrete semantics as other statements do. To reduce implementation complexity, a 
synergistic objective needs to be fulfilled: How to uniformly treat composite and atomic 
language constructs in the tree structure  (i.e., hide the differences), while distinctions 
between these two types of language constructs can still be easily made if necessary (i.e., 
behave as atomic and composite ones as supposed). 
A primary objective of composite pattern (Gamma et al., 1995) is to represent whole-part 
hierarchies and achieve the synergistic objective mentioned above. Figure 7 shows the 
implementation of composite pattern applied to PPCea interpreter, where IStmt is an 
abstract class that defines the interface and common behavior of both atomic (i.e., Stmt) and 
composite (i.e., Series) statements. The advantages of composite pattern mainly lie in the 
introduction of IStmt and the composition between Series and zero to more IStmt objects, 
which will be later identified as Series or Stmt concrete objects using polymorphism.  
 

 

Fig. 7. Composite pattern applied to PPCea intepreter 

www.intechopen.com



PPCea: A Domain-Specific Language for  
Programmable Parameter Control in Evolutionary Algorithms 

 

187 

Composite pattern also follows open-close principle (Meyer, 2000). Such a principle 

advocates “open for extension and close for modification”: New statements can be added 

through inheritance; and modification on interface is closed and modification on 

implementation is isolated to associated methods only. For example, if one requests to 

introduce callPSO statement for Particle Swamp Optimization (Kennedy & Eberhart, 2001) 

in PPCea, three steps will be needed at the lexical, syntactical and semantic levels: (1) 

callPSO needs to be introduced as a token in PPCea.jlex (as seen in Figure 6); (2) A terminal 

that represents callPSO statement and the associated syntax are requested in PPCea.cup (can 

be found in Figure 6 too); and (3) Introduce a CallPSOStmt class inherited from CallEAStmt. 

Such a class defines the semantics/algorithms of Particle Swamp Optimization. A new 

operator that does not relate to any specific algorithm may be also introduced in the same 

manner. With such, introducing new algorithms or operators will not interfere with the 

remaining parts of PPCea. Extension and evolution of evolutionary algorithms and 

operators will be introduced next. Introducing evolutionary operators and parameters 

comprises the same steps as mentioned. For example, because ResizeStmt and 

ChangeStrategyStmt are two operators that can be applied to various EAs, they are not 

encapsulated into specific EA statements. For EA-specific operators, from the 

implementation’s perspective, they can be introduced as standalone statements like resize 

and changeStrategy or they can be encapsulated as methods in associated EA statement 

classes. For the sake of better design to satisfy high cohesion and responsibility driven 

concepts (Schach, 2010), such operators are encapsulated into EA associated statements. 

3.3 Evolutionary Algorithm and operator extensions/evolutions using visitor pattern 
Although composite pattern achieves the synergistic objective that allows uniformed 

treatments and making distinctions on atomic and composite statements when needed, 

extending or evolving methods encapsulated in EA statements is difficult. (Ironically, they 

are resulted from following good design principles as mentioned in the previous section). 

For example, semanticWithConguration in CallEAStmt is derived from IStmt that defines the 

semantics of a statement by executing a set of evolutionary operators (e.g., mutation, 

crossover, and selection). If a new operator, e.g., elite or n-point mutation, is introduced in 

CallEAStmt and invoked by semanticWithConguration, all CallEAStmt’s subclasses will be 

affected and recompilation is requested. Additionally, any evolution change to the existing 

algorithms and operators may be scattered around the entire class, which could be error-

prone and resulted in regression faults. Because visitor pattern (Gamma et al., 1995) has 

succeeded in solving such tree-related problems with composite pattern (e.g., Wu et al., 

2005), PPCea adopts visitor pattern so that the aforementioned extension and evolution 

problem can be solved.  

As shown in Figure 8, PPCea introduces a super class, called StmtVisitor, which comprises 

two subclasses: EAStmtVisitor and GenericStmtVisitor, where the former one is to define the 

semantics of EA-specific operators and the latter one is to define the semantics of generic or 

non-EA-specific operators. For EA-specific operators, three important evolutionary 

operators (selection, crossover, and mutation) and two utility operators (eval and getStat) are 

introduced as EAStmtVisitor’s subclasses, where eval is to compute the fitness value of each 

individual and getStat is to compute the statistical data of an EA that are shown at the 

bottom of Figure 6. For generic operators, population initialization (init), population resizing 
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(resize), strategy changing (changeStrategy) for adapting different evolutionary operators on-

the-fly, are introduced. Note that Context class introduced in Figure 8 is initialized by 

ContextStmt in Figure 7 that will store the current statement (or EA operator) that PPCea 

interpreter is executing and the resultant population. The usage of this class will be 

explained in more details in the next subsection. 

 

 

Fig. 8. Visitor pattern applied to PPCea 

Readers who are not familiar with design patterns may find it difficult to see how composite 

and visitor patterns work together to tackle introduction, extension, and evolution problems 

by decoupling the syntax tree structure and operators within each statement, while at the 

same time allow the semantics of each statement as well as the entire program to be 

functioned correctly. To explain such correlation, the first step is to understand how CUP 

works with associated semantics written in Java classes. Because CUP is a compiler 

generator that generates a bottom-up parser, when each non-terminal is traversed, the 

corresponding Java class is instantiated. All the necessary classes (statements, expressions, 

and operators as seen in Figure 6) that define associated semantics will be available after the 

root of the parse tree is traversed. Then the root node will trigger semantics of each line of 

program to be interpreted and executed. When a statement, called init, is reached, the 

semanticWithConfiguration method within such a class will invoke a private method, called 

accept with an object of InitVisitor class passed in (see Figure 7). Within the accept method, 

visitInitStmt method of InitVisitor class will perform node/statement identification, called 

double dispatch (Gamma et al., 1995). If the current statement to be executed is init, 

visitInitStmt will execute the semantics of population initialization accordingly. Similarly, if 

callGA (or callES) is executed, objects of EvalVisitor, SelectionVisitor, MutationVisitor, 

CrossoverVisitor, and GetStatVisitor will be passed as parameters of accept method. The 

semantics defined in each visitor subclass will be executed after callGA statement is 

identified by double dispatch. 

Important advantages that visitor pattern is capable of attacking extension and evolution 

problem can be expressed as the following three examples:  
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1. If a new EA-related operator is requested (e.g., clone or repair), we do not introduce an 
operator in CallEAStmt, CallGAStmt or CallESStmt, which will result in recompilation of 
almost the entire composite class hierarchy of Figure 7, as mentioned in the previous 
subsection. Instead, a subclass of EAStmtVisitor that defines the semantics of the newly 
introduced operator can be extended/introduced without affecting the remaining part 
of PPCea. There is no need to revise any part of JFlex and CUP files of PPCea either;  

2. If a new generic operator is needed (e.g., randomize that introduces new random 

individuals into current population), a subclass that defines such an operator can be 

inherited from GenericStmtVisitor without editing other parts. If the new operator is also 

requested to be added to PPCea grammar, there is a need to introduce an associated 

token, syntax, and a subclass of Stmt respectively at the lexical, syntactical and semantic 

levels. Note, however, such extensions will still not interfere other parts of the existing 

code; and  

3. If an existing EA-specific or generic operator is requested to be changed (i.e., evolution), 
the focus will be only on the specific subclass. Other parts will not be emphasized so the 
opportunities of regression faults will be minimized.  

Although utilizing composite and visitor patterns to solve tree structure problems is not 

new, our implementation slightly varies the traditional solution and results in an additional 

advantage that can be observed in Figure 8: Even though introducing an EA at the statement 

level (e.g., callGA) may give readers impression that it is inflexible to control lower level 

evolutionary operators. Instead, it is a wrong impression! The visitor pattern utilized in 

PPCea is a variant – it is implemented along with strategy pattern (Gamma et al., 1995), 

where different evolutionary operators can be controlled through changeStrategy at the 

granularity of operator rather than algorithm. Such implementation avoids possible 

frequent recompilation while allowing ease of extension and evolution. Namely, only when 

a new EA, for example, callPSO, is introduced, existing subclasses of EAStmtVisitor need to 

add and compile a new operator, called visitCallPSO. More discussions will be covered in 

Section 3.5. 

3.4 Strategic operator adaptation 
Section 2.4 introduced three categories of operator adaptation: (1) Adaptation delegated to 

parameters (i.e., parameter control); (2) Adaptation among different types of operators; and 

(3) Adaptation among same types of operators. Strategy pattern (Gamma et al., 1995) is 

applied and integrated with visitor pattern to realize categories (2) and (3). 

A primary objective of strategy pattern is to introduce a set of functionalities that can be 

interchanged upon request. Different kinds of evolutionary operators for GAs and ESs are 

introduced as subclasses of Strategy class in Figures 9 and 10, respectively. For example, 

we have implemented linear, non-linear, ranking, tournament and roulette wheel selections 

as subclasses of GASelectionStrategy. Similarly, the implementation of one-point  

and n-point mutation/crossover is defined in the associated subclasses of 

GAMutationStrategy/GACrossoverStrategy. If there is more than one way to initialize 

population, subclasses that specify such differences can be inherited from GAInitStrategy. 

Extension and evolution to different algorithms of an operator can be also easily done by 
introducing subclasses. For example, fitness proportional selection may be introduced as a 
subclass of GASelectionStrategy without interfering the remaining parts of the source code; 
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and revising existing strategies will be isolated in their own classes – Again, this design 
follows open-close principle. 
Figure 5 in Section 2.4 has presented how to adapt operators using PPCea. The dynamics of 
such code snippet with respect to strategy pattern is summarized as follows. Figure 10 is a 
simplified version of Figure 5 for ease of reading. Line 1 sets the default operators for 
selection, mutation, and crossover into context. A Context object will be instantiated with the 
Strategy objects of linear selection, 1-point mutation and n-point crossover as parameters.  
 

 

Fig. 9. Strategy pattern applied to GAs in PPCea 

 
 
 

 

Fig. 10. Strategy pattern applied to ESs in PPCea 
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Line 2 initializes a population for the GA. Then callGA performs the GA using such strategies. 
Namely, CallGA statement in Figure 7 will invoke its semanticWithConfiguration method that 
accepts objects of SelectionVisitor, MutationVisitor, CrossoverVisitor, EvalVisitor, and 
GetStatVisitor shown in Figure 8. Each visitor object accesses the Context object and executes 
the associated Strategy object within visitCallGAStmt method. For example, the object of 
SelectionVisitor by default will execute an object of LinearSelection set in Line 1 of Figure 11. 
Between two if-statements, by using changeStrategy selection operator switches between 
tournament and rank selections every 10 generations.  Additionally, mutation also switches 
between 1-point and n-point mutations every 10 generations. Crossover, on the other hand, 
will remain during the entire evolutionary process. Such behaviour is performed based on the 
following steps: (1) ChangeStrategy statement accepts an object of ChangeStrategyVisitor, which 
allows new Strategy objects (e.g., rank selection and n-point mutation at generation 10) to 
interchange with the existing Strategy object (e.g., linear selection and 1-point mutation). After 
exchange, Context object will execute new strategies. Note that, to avoid class explosion, 
Singleton pattern (Gamma et al., 1995) is applied to force each operator only has one associated 
object instantiated all the time. So that when the strategy pairs (tournament selection and n-
point mutation) and (rank selection and 1-point mutation) are swapped every 10 generations, 
there is no new object instantiated, but the existing ones are reused. Halting an operator 
temporarily is also a feasible solution by replacing the current Strategy object to HaltSelection, 
HaltMutation, or HaltCrossover, which simply choose not to execute the current strategies. With 
such, EAs categorized as uni-process approaches in (Liu et al., 2009) can be reproduced using 
PPCea (e.g., DGEA in Figure 4). 
 

 

Fig. 11. A simplified version of Figure 5. 

3.5 Parameter extension and evolution 
Domain-specific parameters are those predefined in a DSL grammar and may facilitate 

productivity and other advantages of DSLs mentioned before. In PPCea, domain-specific 

parameters, shown in Table 2, can be categorized in two groups: (1) Parameters that are 

used for controlling an evolutionary process; and (2) Parameters that are computed at the 

end of each generation and may be treated as feedback to adjust an evolutionary process.  

As seen in Table 2, parameters in group (1) are quite diverse. Some may be accessed across 

the entire project (e.g., Popsize, Maxgen, and Epoch) and others may be used by specific 

operators (e.g., Alpha, Beta, Miu, and Lamda). From the perspective of compiler/interpreter 

implementation, this kind of parameters usually already has identities stored in a symbol 

table (i.e., predefined). When such parameters are initialized by assignment statement, their 

values are stored in the symbol table accordingly. Whenever and wherever needed, the 

1 context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER); 
  //... skip some code 
2 callGA; 
3 if (( t % 10) == 0) then 
4     changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION) then 
5 fi; 
6 if (( t % 20) == 0) then 
7     changeStrategy(RANK_SELECTION, ONE_PT_MUTATION) then 
8 fi; 
  //...skip some code 
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values can be accessed through the symbol table. Extension of parameters falling in group 

(1) usually means introducing new domain-specific notations at the lexical, syntactical and 

semantic levels, which therefore has the same way of implementing domain-specific 

statements. Conversely, evolution for such a kind of parameters is usually renaming and  

 

Group Parameter Name Description 

Function Fitness function to be evaluated (Obtained from (Yao et al., 

1999)) 

Popsize Number of individuals of a population 

Maxgen Maximum number of generation for an evolutionary  process 

Epoch Generation stride for parameter control adaptation 

pm Mutation rate 

pc Crossover rate 

psr Stochastic ranking rate 

Alpha Selection pressure (Ǐ) for linear/nonlinear selection  

Beta Selection pressure (ǐ) for linear/nonlinear selection 

Miu Selection parameter (ǚ) for ESs 

Lambda Selection parameter (Ǚ) for ESs 

TourQ Selection parameter for tournament selection 

 

 

 

 

 

 

(1) 

KMeans Number of centroids for clustering entropy 

Best Best fitness value of all individuals 

Average Average fitness value of all individuals 

Worst Worst fitness value of all individuals 

RatioM Success mutation rate 

RatioC Success crossover rate 

Stdv Standard deviation of all individuals 

Euclidean Euclidean distance of all individuals 

LinearEntropy Linear Entropy (Liu et al., 2009) 

RoscaEntropy Rosca Entropy (Liu et al., 2009) 

GaussianEntropy Gaussian Entropy (Liu et al., 2009)  

FitProEntropy Fitness Proportional Entropy (Liu et al., 2009) 

 

 

 

 

 

 

 

 

(2) 

ClusterEntropy Clustering Entropy (Liu et al., 2009) 
 

Table 2. Current domain-specific parameters introduced in PPCea 
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changing valid scope based on our experience. Hence, refactoring (Fowler, 1999) may be 

applied to the lexical, syntactical and semantic levels to tackle evolution. Parameters in 

group (2) are computational results analyzed from population either after every (several) 

generation(s) or at the end of an entire evolutionary process. However, not all of such 

parameters are needed all the time. For example, for parameter tuning approaches, readers 

may be interested in fitness-related parameters only. Similarly, for non-entropy-driven 

approaches, one may avoid the computation of the five entropies shown in Table 2 and 

hence improve the performance. To achieve such a “pay-as-you-go” objective, decorator 

pattern is applied. As seen in Figure 12, Parameter class is introduced as a super class that 

applies singleton pattern to avoid more than one instance instantiated during an 

evolutionary process. Decoratee class is a “decoratee” super class, which means that all the 

objects of the subclasses inherited from Decoratee are mandatory to be provided by PPCea 

interpreter. Conversely, DecoratorParameter represents a super class whose subclass objects 

can be optionally computed upon requests. 

The dynamics of how “pay-as-you-go” is achieved may be further observed by the code 

snippet shown in Figure 13: visitCallGAStmt is a method defined within GetStatVisitor class, 

accepted by CallGAStmt as described before, whose purpose is to analyze statistical results 

of a population. Lines 3 to 5 specify the mandatory domain-specific parameters to be 

computed. From lines 6 to 20, users may determine if any object of Decorator requires 

computation or not either directly defined in PPCea code (e.g., require(LINEAR_ENTROPY, 

FITPRO_ENTROPY, ROSCA_ENTROPY);) or through the graphical user interface we developed 

for PPCea interpreter. For example, if linear, fitness proportional and Rosca entropies are 

 

 
 

Fig. 12. Decorator pattern applied to PPCea. 
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selected by users (as seen above), when line 21 of Figure 13 is invoked, the calculate methods 
in Best, Worst, Average, LinearEntropy, FitProEntropy, and RoscaEntropy will be executed in a 
cascading and sequential order (see the notes in Figure 12). 
How does decorator pattern address the extension and evolution problems of parameters in 
group (2)? For extension, if a new parameter is mandatory, a subclass should be inherited 
from Decoratee class. Conversely, if users are in charge of the computation necessities of 
newly introduced parameters, subclasses of Decorator will be introduced. The computational 
algorithms of the new parameters will be defined in their own calculate methods, along with 
an invocation to its super class’ calculate method. One drawback of applying Decorator 
pattern is that when extension (i.e., introducing a new domain-specific parameter of group 
(2)) occurs, inevitably Figure 13 needs to be revised to incorporate such a change. It is 
because the purpose of the if-statements is to retrieve the answer of optional parameters that 
users determine to include. As for evolution, if any computational algorithm of a parameter 
changes, it is isolated in the associated calculate method. 
 

 

Fig. 13. Decorator pattern applied to PPCea. 

3.6 Software metrics 
Software metrics (Lincke et al., 2008) are measures that assist in providing comprehensibility 
of software being assessed. Therefore, the quality of the software can be observed through 
such metrics. PPCea utilizes Eclipse Metrics plug-in (Sauer, 2010) to compare the current 
version implemented with DSL and design patterns and the original version introduced in 
(Liu et al., 2004), shown in Figure 14. 
As seen in the figure, PPCea using patterns has much higher design and implementation 
quality in terms of Method lines of code, McCabe cyclomatic complexity (suggested 
maximum value: 10), and weighted methods per class. All other metrics listed in Figure 14 
surpass the suggested maximum values. Namely, the design and implementation of PPCea 
with patterns is in good quality and refactoring may not be necessary. 

1 Individual[] visitCallGAStmt(CallGAStmt gaStmt){  
2   /* skip the code of retrieving parameters from symbol table ...*/ 
3   Parameter decorator = new Best(); //required parameter 
4   decorator = new Worst(decorator); //required parameter 
5   decorator = new Average (decorator); //required parameter 
6   if (Linear_Entropy == 1) { 
7 decorator = new LinearEntropy(decorator); //optional parameter 
8   } 
9   if (Gaussian_Entropy == 1) { 
10 decorator = new GaussianEntropy(decorator); //optional parameter 
11  } 
12  if (FitPro_Entropy == 1) { 
13 decorator = new FitProEntropy(decorator); //optional parameter 
14  } 
15  if (Rosca_Entropy == 1) { 
16 decorator = new RoscaEntropy(decorator); //optional parameter 
17  } 
18  if (Cluster_Entropy == 1) { 
19 decorator = new ClusterEntropy(decorator); //optional parameter 
20  } 
21  decorator.calculate(population); 
22  return population; 
23 } 
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Fig. 14. Metrics comparison between old and new PPCea 

3.7 Potentials of PPCea 
The first five subsections discuss how to overcome introduction, extension and evolution 

problems in four specific levels: (1) Evolutionary algorithms; (2) Evolutionary and generic 

operators; (3) Functionalities (i.e., strategies) of an operator; and (3) Domain-specific 

parameters. For (1), composite pattern facilitates the introduction/extension of evolutionary 

algorithms by introducing EAs as domain-specific statements, subclasses inherited from 

IStmt. For (2), visitor pattern promotes introduction/extension of evolutionary and generic 

operators by introducing subclasses of StmtVisitor. If evolutionary algorithms or its 

operators evolve, the changes will be isolated in the subclasses of StmtVisitor (or associated 

strategies), because such subclasses define the semantics of PPCea statements. Additionally, 

the decision of not introducing EA-specific operators at the PPCea statement level reduces 

the possibility of frequent changes/recompilation of the StmtVisitor and its subclasses. For 

(3), strategy pattern assists introduction/extension of different algorithmic strategies of an 

operator by introducing subclasses of Strategy. Evolution of such strategies is also isolated in 

associated classes. Also, PPCea is capable of adapting with operators on-the-fly under the 

support of strategy pattern. Lastly, decorator pattern addresses the problem of 

introduction/extension and evolution of domain-specific parameters by introducing 

subclasses of Decorator and Decoratee. Users are also allowed to determine which parameters 

to be analyzed so that unnecessary computation cost can be reduced.  

To illustrate how a new EA can be introduced or an existing EA can be reproduced, let us 

use GAVaPS as an example. The algorithm of GAVaPS is as follows. 
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Fig. 15. The GAVaPS algorithm from (Arabas et al., 1994) 

Based on (Arabas et al., 1994), recombine in Figure 15 performs normal mutation and 

crossover and then selection chooses offspring from all individuals with equal opportunity. 

As for remove, it will kill all individuals older than a predefined lifetime threshold. The 

population will be then resized based on the formula defined in the paper. To realize 

GAVaPS using PPCea, age attribute needs to be introduced in Individual class. Also, lifetime 

parameter may be introduced as a parameter in group (1). With such, users can adjust the 

value of lifetime by PPCea code. Then GAVaPSSelection, inherited from GASelectionStrategy in 

Figure 9, implements selection mechanism with equal opportunity and increments age if 

needed. Because there is more than one resize algorithm, a ResizeStrategy subclass may be 

inherited from Strategy. Then ResizeByAge may be introduced as a subclass of ResizeStrategy 

that kills all overage individuals and randomly introduces the number of new individuals 

using the formula if needed. Figure 16 is a pseudo PPCea code to simulate Figure 15 under 

the assumption all necessary subclasses are introduced in PPCea. Another possible 

implementation option is to introduce an entire new PPCea statement, called callGAVaPS. 

Nothing is really different except that callGAVaPS encapsulates all needed Visitor objects, 

which invoke objects of GAVaPSSelection, OnePointMutation, OnePointCrossover, and 

ResizeByAge. 

 

 

Fig. 16. The pseudo PPCea code that reproduces GAVaPS 

In summary, PPCea utilizes DSL patterns and five design patterns so that the 

introduction/extension and evolution problems at the algorithm, operator, strategy, and 

parameter levels can be respectively addressed. 

begin 
  t=O 
  initialize P(t) 
  evaluate P(t) 
  while (not termination-condition) do 
    begin 
    t = t + l 
    increase the age of each individual by 1 
    recombine P(t) 
    evaluate P(t) 

remove from P(t) all individuals with age greater than the lifetime 
  end 
end 

Lifetime := 5; // any individual older than 5 will be killed 
context(GAVAPS_SELECTION, ONE_PT_MUTATION, ONE_PT_CROSSOVER, 
RESIZE_BY_AGE); 
init; 
while ( g < Maxgen ) do 
  callGA; 
  Popsize := ... // ... means the formulae from Arabas et al. 94 
  resize( Popsize );  
  g := g + 1 
end 
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4. Related work 

Evolving Objects (Keijzer et al., 2002) is an evolutionary computation framework that 

constructs an EA through component composition. Namely, each EA operator/statement is 

considered as a component and users need to select which specific components (similar to 

strategies) to be filled in to a specific spot of an evolutionary process. User defined 

parameters can be introduced to a file, which will be interpreted by the framework. ECJ 

(Luke et al., 2010) is a Java-based evolutionary computation system that requests users to 

describe an EA in Java by reusing/invoking a great number of packages for different EA 

operators. A set of predefined parameters with fixed identities also need to be defined in a 

specific file, acting like domain-specific parameters in PPCea. ESDL (Dower & Woodward, 

2010) is a DSL that introduces SQL-like syntax for users to construct EAs. Name conventions 

for both EA operators and parameters need to be followed, which is same as PPCea. Because 

of interoperability advantage of XML, Veenhuis et al. introduced EAML (Veenhuis et al., 

2000), a modeling language that utilizes XML to represent an EA. With such, different EA 

framework/software may introduce their own evolutionary processes by interpreting 

EAML files. There are also many EA framework or software that the book chapter is not able 

to fully cover. We leave this part to interested readers. 

5. Conclusion 

Controlling parameter settings to reach optimization and/or convergence of an EA has been 

a challenging topic in the evolutionary computation community. Firstly, due to meat-

heuristic and stochastic nature, there is a need to conduct a sufficient number of 

experiments of an EA under different parameter settings. Additionally, many practitioners 

and scholars have put forth various algorithms, operators, and parameters to improve the 

optimization and/or convergence. Without automatic tools for EA users, conducting EA 

experiments would become tedious and error-prone. Without capabilities to extend and 

evolve automatic tools, EA developers would not be able to invent new algorithms, 

operators, strategies, and parameters. PPCea offers a synergistic solution to address the 

aforementioned problems from the perspectives of both users and developers. The 

contributions of PPCea are three-folds: (1) PPCea is an automatic EA tool in a language 

format that assists EA users to conduct experiments using three parameter setting 

approaches introduced by Eiben et al.; (2) PPCea is an open-ended EA tool that allows EA 

developers to introduce, extend and evolve EA constructs in algorithm, operator, strategy 

and parameter levels; and (3) PPCea offers a fair platform to perform EA comparison – both 

reproduced algorithms and new algorithms can be described in PPCea code and run under 

PPCea interpreter. 

We have identified several future directions: (1) Multi-populations and multi-objective EAs 

are missing in current version. With such, more EAs can be reproduced (e.g., parameter-less 

GA) and invented; (2) As can be seen in Figure 6, PPCea currently cannot handle self 

adaptation algorithms. How to represent such algorithms and still offer open-end solutions 

is an emerging issue to tackle; (3) With the metrics from (Črepinšek et al., in press) 

introduced to PPCea, explicit balance between evolutionary and exploitation in a 

programmable fashion can be foreseen; and (4) Existing algorithms, operators, and 

strategies are effective in the individual granularity. Similar algorithms, operators, and 
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strategies working at the genotypical level may result in finer-grained experiments. With the 

aforementioned issues resolved, more EA users and developers may be benefited by PPCea. 

Appendix: PPCea Grammar 
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