
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

PPCea: A Domain-Specific Language for
Programmable Parameter Control in

Evolutionary Algorithms

Shih-Hsi Liu1, Marjan Mernik2, Mohammed Zubair1,
Matej Črepinšek2 and Barrett R. Bryant3

1California State University, Fresno,
2University of Maribor,

3University of Alabama at Birmingham,
1,3USA

2Slovenia

1. Introduction

An Evolutionary Algorithm (EA) is a meta-heuristic and stochastic optimization search
process that mimics Darwinian evolution theory and Mendel's Genetics. Each process
facilitates (a) population(s) evolve into fittest and/or convergence by setting parameters of
selection, mutation, crossover, population resizing, and/or many other variant operators.
However, due to two primary identified factors, EAs are still a challenging research topic: (1)
Value choices/ranges for parameters (i.e., parameter settings) will greatly influence the
evolution performance of a search process in terms of fittest and/or convergence; and (2)
Parameter settings that are good for one fitness function do not guarantee the same evolution
performance of another fitness function. Namely, parameter settings are function-specific.
Different functions may have various characteristics that request specific attention. In order to
better organize and overcome the parameter setting problem, Eiben et al. have classified
parameter settings into parameter tuning and parameter control (Eiben et al., 1999): Parameter
tuning determines parameter values before a search process begins while parameter control
changes parameter values during a search process. More specifically, parameter control
adjusts parameters on-the-fly using three different approaches: (1) Deterministic approach
alters parameters based on certain pre-determined rules or formulae; (2) Adaptive approach
strategically adjusts parameter values based on the feedbacks of a search process. Such
feedbacks could be fitness, diversity, distance, among others; and (3) Self-adaptive approach
encodes parameters to be adapted and evolves them along with a search process. Yet, even
with such a classification, to our best knowledge there is no existing tool to assist researchers
with conducting experiments of parameter settings with ease. Namely, researchers need to
find out appropriate places out of thousand lines of EA source code to introduce and update
specific parameters (including feedbacks) as well as formulae and adaptive strategies.
Additionally, a number of revisions for EA source code will be also required for different
kinds of experiments. To EA experimenters, such endeavor is time consuming and error
prone. To EA developers, complex and tangling source code, resulted from different

www.intechopen.com

 Evolutionary Algorithms

178

parameter and strategy introductions, may also cause inflexibility for further extension and
inevitability of faulty EA source code. In order to solve the aforementioned problems, a
programmable approach, called PPCea (Programmable Parameter Control for Evolutionary
Algorithms) (Liu et al., 2004), is presented in this book chapter.
PPCea is a Domain-Specific Language (DSL) (Mernik et al., 2005) for EAs. It uplifts the
abstraction layer to a higher (i.e., domain-specific) level and introduces domain-specific
notations (e.g., parameters and statements) as well as common linguistic elements. Namely,
the implementation details of Genetic Algorithms (GAs) and Evolution Strategies (ESs) are
encapsulated and hidden so that EA experimenters are able to experiment with evolutionary
algorithms and obtain statistical results by programming a few PPCea statements.
Additionally, the flexible programming fashion also enhances the possibility of reproducing
existing EA experiments in a simpler PPCea source code and likely introducing new
experiments to facilitate even better optimization search or faster convergence.
For EA experimenters, the first part of this book chapter introduces PPCea with examples to
demonstrate PPCea’s capabilities and usability. Famous existing parameter tuning and
parameter control examples are reproduced using PPCea (e.g., Fogarty’s formula (Fogarty,
1989), PROFIGA (Eiben et al., 2004), and 1/5 success rule (Bäck & Schwefel, 1995)).
Additionally, new examples are also demonstrated to show the flexibility of PPCea. For
example, introducing new metrics as feedbacks for parameter control and adaptively
switching among different operators during an evolutionary process can be done with ease.
For EA developers, design and implementation of PPCea are covered in the second part of
the book chapter. In this part, DSL patterns and design patterns are utilized. Coding and/or
UML examples are presented and discussed to show how such patterns lessen the extension
problems during development and maintenance phases. Software metrics are also measured
to prove the effectiveness of design patterns for modularization and extension. In summary,
PPCea is a domain-specific tool that is “win-win” to both EA experimenters and developers:
For EA experimenters, the programmable fashion and high level abstraction allow EA users
to conduct EA experiments in a productive manner. For EA developers, the design and
implementation of PPCea allow evolutionary algorithms, operators, algorithms of operators
(i.e., strategies), and parameters to be introduced or revised painlessly.
The book chapter is organized as follows. By using grammars, code snippets, and UML
diagrams, Sections 2 and 3 respectively introduce PPCea from the perspectives of
experimenters and developers. Section 4 discusses related work on parameter settings in
Evolutionary Algorithms. PPCea’s capabilities, limitations, and future directions are
concluded in Section 5.

2. PPCea: A Painless Problem Curer for EA users

Because of the meta-heuristic and stochastic characteristics towards searching optimization,
experimenters or users of EAs are inevitably requested to perform a sufficient number of
experiments. Needless to say, there are numerous combinations and scopes of domain-
specific parameters (e.g., mutation rate, crossover rate, and selection pressure) need to be
tuned or controlled so that fittest and/or convergence can be discovered. A primary
objective of PPCea is to become a problem curer for EA users/experimenters to conduct
experiments painlessly. We first introduce PPCea through a number of examples
categorized by Eiben et al.’s classification suggestions. The grammar of PPCea is appended
at the end of the chapter for interested readers.

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

179

2.1 PPCea for parameter tuning
Parameter tuning is an approach for EA experiments classified in (Eiben et al., 1999). Such a
kind of experiments determines the parameters of an evolutionary process before it runs and
will not change the parameter values during the process. Many of the existing EAs are
classified into this category. Per their endeavors, common guidelines for setting mutation and
crossover rates in GAs are as follows: mutation rate (pm) ≒ 1/(the bit length of an individual

in genetic algorithms) and crossover rate (pc) ≒ 0.75~0.95. PPCea can reproduce such

experiments easily. Figure 1 shows that twenty experiments of Ackley’s function from (Yao et
al., 1999) with different parameter tuning settings are defined using Grefenstette’s guideline
(Grefenstette, 1986). Also, if one does not want to reset different values for pm, pc, or any
domain-specific parameters for each experiment, formulae may be defined to adjust the values
of such parameters as seen in the italic part of Figure 1, where the if-statement within the while-
statement adjusts pm every 5 experiments. The experimental results of three reproduced
parameter tuning-based experiments are available at (Liu, 2010).

Fig. 1. Parameter tuning using PPCea

2.2 PPCea for deterministic parameter control

Fig. 2. Deterministic parameter control using PPCea

genetic
//skip initializing Round, Maxgen, Popsize, Epoch, pm, alpha, beta, gamma, length, r, g

while (r < Round) do
 init; //initialize population
 while (g < Maxgen) do
 callGA; //invoke an evolutionary process of GA
 pm := sqrt(alpha / beta) * exp((0 – gamma)*g/2) / (Popsize / length);

// the above formula is from Hessen & Manner

// pm := 1 / (2+((length-2)/Maxgen)* g)

// the above formula is from Bäck & Schütz

 g := g + Epoch // Generation stride for parameter control adaptation
 end;

r := r + 1
end;
writeresult //output the experimental results to text and Excel files

end genetic

genetic
 readfile weightF10.txt; //load coeff. of Ackley’s function from Yao et al., 1999
 Function := 10; //load Ackley’s function from Yao et al., 1999
 Round := 20; //number of experiments
 Maxgen := 1000; //maximum generation of an evolutionary process
 pm := 0.001; //set mutation rate
 pc := 0.95; //set crossover rate
 r := 0;
 while (r < Round) do
 init; //initialize population
 callGA; //invoke an evolutionary process of GA
 if ((r % 5) == 0) then
 pm := pm + 0.001 //change pm every 5 experiments
 fi;

r := r + 1
end;
writeresult //output the experimental results to text and Excel files

end genetic

www.intechopen.com

 Evolutionary Algorithms

180

An important advantage of PPCea over other EA frameworks or software is its capability of
performing parameter changes on-the-fly through a programmable fashion. Deterministic
parameter control is an approach that defines how to change parameters during an
evolutionary process using formulae. Fogarty (Fogarty, 1989) proposed one of the earliest
deterministic approaches that adjusts mutation rate to a smaller value along with
generations in order to tend from exploration towards exploitation. Liu et al. has published
the experimental results of five unimodal and seven multimodal functions using Fogarty’s
mutation rate formula in (Liu et al., 2009). Figure 2 reproduces (Hesser & Männer, 1991)’s
and (Bäck & Schütz, 1996)’s mutation formulae to show that PPCea is capable of
representing more sophisticated cases.

2.3 PPCea for adaptive parameter control
Different from deterministic parameter control that does not interact with the evolutionary

process that it controls, adaptive parameter control utilizes the analysis results from the

evolutionary process and then determines which directions the evolutionary process may

move forward by changing the parameters of associated operators. PPCea has reproduced

1/5 success rule (Bäck & Schwefel, 1995) and population resizing (Smith & Smuda, 1995)

and introduced an entropy-driven approach (Liu et al., 2009) to adapt an evolutionary

process. Figure 3 shows that PROFIGA (Eiben et al., 2004) is reproduced by PPCea.

PROFIGA is a GA that utilizes population resizing to balance between exploration and
exploitation. As seen in the first if-statement in the figure, if the best fitness is improved,
then population size will be increased proportionally so that more exploration can be
promoted. Similarly, if the evolutionary process is not improved every kgen generations, the
population size will be proportionally increased using the same factor (growFactorX). The
second if-statement performs such an objective. Note that growFactorX is a negative value so
that the formula within the second resize uses subtract operator. Lastly, the last if-statement
shows that if neither the first nor the second conditions hold, the evolutionary process will
tend to exploitation by shrinking the population size.
Of course, PPCea is not almighty. For example, GAVaPS (Arabas et al., 1994) and APGA
(Bäck et al., 2000) perform population resizing based on aging concept. Such algorithms
cannot be reproduced by current PPCea due to absence of age in individuals. Yet, once age
is introduced along with associated operators, PPCea is capable of performing GAVaPS and
APGA without a doubt. Similarly, parameter-less GA (Harik & Lubo, 1999) introduces a
number of populations with different sizes to compete with each other. Because PPCea
currently does not introduce multi-populations, reproducing parameter-less GA is also
questionable. Because the design and implementation of PPCea facilitate extension and
evolution, new algorithms like GAVaPS, APGA, parameter-less GA, and other EAs may be
introduced with ease. More discussions on how to utilize such design and implementation
advantages to introduce new algorithms will be covered in Section 3.

2.4 PPCea for adaptive operator control
Adapting parameters on-the-fly is not new in EAs. What about adapting operators on-the-
fly? Adapting operators may be classified into three categories:
1. Operator adaptation is delegated to parameter control. Such an adaptation is done by

adjusting parameters associated to specific operators. For example, 1/5 success rule

utilizes mutation success rate to determine if mutation rate needs to be tuned up or

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

181

Fig. 3. PROFIGA reproduction using PPCea

down. Similarly, selection pressure assists in adjusting the performance of selection
operator in terms of fitting offspring. Usually adaptation in this category is classified as
parameter control (Eiben et al., 1999);

2. Instead of focusing on the effectiveness of a specific operator using parameter control,
an evolutionary process may switch among different operators based on certain real-
time feedbacks. For example, Ursem (Ursem, 2002) introduced Diversity-Guided
Evolutionary Algorithm (DGEA) that splits an evolutionary process into exploration
and exploitation modes based on diversity. Under exploitation mode, recombination
and selection are active. Otherwise, mutation is in charge;

3. Adaptation can be also done by switching among different variants of the same type of
operators (Herrera & Lozano, 1996). For example, switching from one-point mutation to
N-point mutation may result in more exploration during an evolutionary process, and
switching from linear selection to non-linear one may change the influence weight of
certain portion of individuals.

For (1), it has been discussed in the previous subsection. This subsection first reproduces
DGEA falling into category (2) and then proposes how PPCea expresses experiments in
category (3).
DGEA introduces a new diversity metric that computes the distance of all individuals to the
average point of an N-dimensional search space. Exploration mode is identified if the
diversity metric is lower than a predefined lower bound, and exploitation mode is
recognized as the metric is higher than a predefined higher bound. Selection and crossover
are applied to explore search space while mutation is treated as exploitation operator.
Figure 4 shows the reproduction of DGEA, where dLow and dHigh are user-defined
parameters and DistanceToAvgPt is computed by PPCea. changeStrategy is a PPCea statement

genetic
// initialize all needed parameters. bestImproved and noImprovedForLong are false

init;
initBest := Best; // best fitness from initial population
nextBest := initBest;
while (g < Maxgen) do

currBest := nextBest; // best fitness from the current population
callGA; // invoke an evolutionary process

 nextBest := Best; // best fitness from the population of next generation
growFactorX := factor * (Maxgen - g)* Popsize * (nextBest - currBest) /
initBest;
if ((nextBest - currBest) > 0) then //best fitness improved

resize(Popsize * (1 + growFactorX));
bestImproved := true

fi;
 if ((nextBest - currBest) < 0) then //best fitness not improved for kgen

i := i + 1;
if (i == kgen) then

 i := 0
fi;
resize(Popsize * (1 – growFactorX)); //Popsize increase

 noImprovedForLong := true
 fi;
 if ((bestImproved != true) && (noImprovedForLong != true)) then

 resize(Popsize * (1 - 0.05))
 fi;
 g := g + Epoch;
 end
end genetic

www.intechopen.com

 Evolutionary Algorithms

182

that switches between operators. For example, within exploration mode, tournament
selection and 1-point crossover are active and mutation is halted. Conversely, mutation is
the only active operator while selection and crossover are halted by the two keywords
specified within the second changeStrategy.

Fig. 4. DGEA reproduction using PPCea

The previous example shows that PPCea can swap between different operators when

needed. Halting an operator under a specific condition is also feasible by setting

GA_HALT_SELECTION, GA_HALT_MUTATION, and GA_HALT_CROSSOVER, among

others. When PPCea interpreter identifies such keywords, the operators will not be executed

until they are reactivated by next changeStrategy statement. More details about how these are

implemented will be covered in Section 3.

As mentioned before, DGEA is within category (2). A PPCea example classified within
category (3) is introduced in Figure 5. Initially, context, a PPCea statement, defines specific
operators will be executed by the evolutionary process. Line 1 shows that linear selection, 1-
point mutation, and n-point crossover are picked to perform optimization search at the
beginning. Lines 5 to 10 shows that two operator pairs (TOURNAMENT_SELECTION,
N_PT_MUTATION) and (RANK_SELECTION, ONE_PT_MUTATION) will be swapped
every 10 generations until 95th generation. Mutation will be stopped at the last 5
generations. Because N_PT_CROSSOVER never appears in the pairs of changeStrategy, this
operator will remain active during the entire evolutionary process. How PPCea interpreter
executes such operator adaptation will be also covered in Section 3.

2.5 Summary
As can be seen in the previous examples, the programming fashion of PPCea facilitates
introducing a number of experiments with same or different settings by writing a few lines
of code. Each evolutionary process run by PPCea can also be controlled deterministically or
adaptively through parameter and/or operator adaptation. For space consideration, the
experimental results of the examples, acting as a proof of feasibility of PPCea, are available
at (Liu, 2010). Note that the previous examples also show some EAs cannot be reproduced
easily derived from lacking needed attributes, multi-populations, parameters analyzed from
an evolutionary process or operators. Section 3 attempts to address such problems from the
perspective of EA developers. Lastly, categories of adaptive representation and adaptive
fitness are also introduced in (Herrera & Lozano, 1996). They could be also potentially
addressed by PPCea. Due to time constraint, they are left as one of our future work.

genetic
// initialize all needed parameters including dLow, dHigh

init;
while (g < Maxgen) do

callGA;
if (DistanceToAvgPt < dLow) then // exploration mode
 changeStrategy(TOURNAMENT_SELECTION, GA_HALT_MUTATION,
ONE_PT_CROSSOVER)

 fi;
 if (DistanceToAvgPt > dHigh) then // exploitation mode
 changeStrategy(GA_HALT_SELECTION, ONE_PT_MUTATION, GA_HALT_CROSSOVER)
 fi;
 g := g + 1

end

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

183

Fig. 5. Operator adaptation using PPCea

3. PPCea: A Portable Pattern-driven Contrivance for EA developers

Conducting parameter control experiments is always a time consuming task due to a variety of
possible parameter combinations that may affect the convergence and optimization of an
evolution process in different magnitudes. One may concentrate on a limited set of parameters
to “de-scope” the problem (Harik & Lobo, 1999). Even so, a sufficient number of experiments
are still needed due to heuristic nature of EAs. Per Aristotle, the aforementioned problems are
essential difficulties (Brooks, 1987) inherent in EAs. Conversely, code snippets for computing
metrics and programming logics for adapting an evolution process on-the-fly based on such
metrics still scatter and tangle with other EA source code. Such inflexibility for further
extension and inevitability of faulty EA source code are accidental difficulties (Brooks, 1987)
that may be solved by the approaches hiding such difficulties.
A DSL is a modeling/programming language that shields accidental difficulties by
introducing a higher level abstraction. It has been proved that DSLs may facilitate
productivity (up to 10 times improvement), reliability, maintenability, and portability to
domain users (Mernik et al., 2005). However, DSLs that are implemented by compiler or
interpreter approaches may result in extension and evolution difficulties (Gray et al., 2008).
For example, if a new mutation operator is introduced to PPCea, not only new syntax and
semantics need to be introduced, but exsiting source code may be also affected due to
inappropriate modularization in many compiler/interpreter-based DSLs including PPCea.
Moreover, as mentioned in (Harik & Lobo, 1999), Holland would have never thought of a
plentiful number of parameters are presented – Parameters are good for assisting in getting
insight of an evolution process or helping control the process. Yet, EA computation may
become overwhelmly slow resulted from parameter explosion. In summary, an objective of
this section is to remedy the obstacles dervied from the introduction, extension, or evolution
of parameters and operators in PPCea.

3.1 Design of PPCea
In order to design and implement PPCea in a manageable and systematic way, DSL patterns
(Mernik et al., 2005) and design patterns (Gamma et al., 1995) are followed. Table 1
summarizes the DSL patterns that PPCea applies.

1 context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER);
2 init;
3 while (g <= Maxgen) do //assume t = 1 initially and Maxgen = 100
4 callGA;
5 if ((g % 10) == 0) then
6 changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION)
 //swap to tournament selection every 10 generations starting at g = 10
7 fi;
8 if ((g % 20) == 0) then
9 changeStrategy(RANK_SELECTION, ONE_PT_MUTATION)
 //swap to rank selection every 10 generations starting at g = 20
10 fi;
11 if (g > 95) then
12 changeStrategy(GA_HALT_MUTATION)
 //swap to temporarily stop mutation between generations 95 and 100
13 fi;
14 g = g + 1
15 end;

www.intechopen.com

 Evolutionary Algorithms

184

Workflow Pattern Description

Decision Task automation
System front-end

When and why to have PPCea

Analysis FODA (Kang et al.,
1990)

Find the common and variable features of EAs

Design Denotational
Semantics
Design Patterns
(Gamma et al., 1995)

Formally define syntax and semantics of PPCea
PPCea applies composite, visitor, strategy,
decorator and singleton patterns to address
introduction, extension, and evolution problems.

Implementati
on

Interpreter Introduce PPCea interpreter to conduct EA
experiments

Table 1. The DSL patterns applied in PPCea

Decision patterns specify when and why a new DSL is essential. In order to provide an

adaptable mechanism to solve such parameter control/setting problems, task automation

and system front-end decision patterns are chosen. Task automation decision pattern hides

the implementation details of EAs. Without browsing and understanding lengthy source

code encapsulated in EAs, users omit the complex implementation but concentrate on the

parameters and operators that lead to the optimization and/or convergence of EAs.

Secondly, PPCea follows system front-end decision pattern that primarily handles

configurations. Time-consuming and error-prone overhead can be reduced or avoided. As

for analysis, PPCea utilizes Feature-Oriented Domain Analysis (Kang et al., 1990) to perform

formal domain analysis so that common and variable features of EAs can be systematically

identified. With such, PPCea can be formally defined using denotational semantics (Aho et

al., 2007) and designed using design patterns (Gamma et al., 1995). Lastly, interpreter

pattern is utilized to implement PPCea. An overview of PPCea interpreter is shown in

Figure 6.

The interpreter is constructed with the assists of JFlex (Klein, 2010) and Construction of

Useful Parsers (CUP) (Hudson, 2010). JFlex is a fast scanner generator for Java whose

purpose is to generate a lexer that performs tokenization process for PPCea programs. CUP

is a parser generator that introduces a bottom-up parser that performs syntax analysis. Such

a parser may be integrated with user-defined semantics written in Java, accompanying with

options to introduce syntax trees and symbol tables. The linguistic elements include

commonly-seen constructs such as if-else, loop, and assignment statements as well as

expressions and operators to perform necessary parameter adjustments. Additionally,

domain-specific elements to describe an EA are presented: init statement initializes a

population, callGA statement performs a GA, callES statement performs an ES, resize

statement allows population resizing, changeStrategy statement offers the potentials to

switch between different operators on-the-fly, context statement determines the operators

that constitutes an EA, and require statement determines which domain-specific parameters

to be computed. Such parameters are either the results from an evolutionary process that

can be also acted as metrics or feedbacks to assist parameter control. There are also

miscellaneous statements for various purposes (e.g., IOStatement). Interested readers may

find more information on the PPCea web page (Liu, 2010). All the above linguistic elements

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

185

Fig. 6. An overview of PPCea interpreter (* means ongoing/future tasks)

are represented as Java classes embedded with associated semantics. The interpreter

currently accepts parameter tuning, deterministic, and adaptive PPCea programs as inputs,

as seen at the top of the figure. The outputs, at the bottom of the figure generated by the

interpreter, comprise best, average, worst fitness, standard deviation and Euclidean distance

(i.e., diversity), entropy (Liu et al., 2009), and the success rates of crossover and mutation,

among others. More domain-specific constructs and parameters can be introduced,

extended and evolved following the design patterns introduced in the subsequent

subsections.

3.2 Evolutionary Algorithm and operator introductions
Since Evolutionary Algorithms (EAs) were coined, there have been a variety of algorithms,

operators, and parameters proposed in order to apply to a various number of applications

and experiments as well as further improve optimal results and/or convergence rate of such

algorithms. For example, different from the general sketches of GAs in (Michalewicz, 1996),

Bi-population GA (Tsutsui et al., 1997), aGA (Ghosh et al., 1996), and PROFIGA (Eiben et al.,

2004), among others are variations that respectively introduces new algorithmic strategies

(e.g., splitting populations into exploration and exploitation modes), new attributes (e.g.,

ages for individuals) or new operators (population resizing) to facilitate optimization

and/or convergence. Additionally, DGEA, Evolution Strategies using Cauchy Distribution

(Yao et al., 1999), Particle Swamp Optimization (Kennedy and Eberhart, 2001), and

Differential Evolution (Storn & Price, 1997), to name a few, are also categorized in EAs that

solve optimization problems from other perspectives. In addition to algorithm

www.intechopen.com

 Evolutionary Algorithms

186

introductions, many variations of existing operators and domain-specific parameters are

also introduced (e.g., tournament selection, linear selection, uniform crossover, intermediate

crossover, diversity-to-average measure (Ursem, 2002), and cluster entropy (Liu et al.,

2009)). PPCea has anticipated such extension and evolution potentials and hence adopted

design patterns so that future changes can be addressed with ease.

3.2.1 Evolutionary Algorithm and operator introductions using composite pattern
Because PPCea is developed by following the interpreter/compiler pattern (Mernik et al.,
2005), inevitably, the syntactical representation of a PPCea program is expressed as a syntax
tree structure (Aho et al., 2007). However, a commonly-seen implementation issue existing
in such a tree structure is to deal with the composite-atomic hierarchies (i.e., whole-part
hierarchies). For example, PPCea comprises if-else and loop statements that may embrace
zero or more composite and/or atomic statements as child nodes (e.g., a nested if-else
statement); and conversely, assignment and domain-specific statements are atomic ones that
cannot hold any statement nested within their bodies. Because composite statements are
derived from recursive productions defined in PPCea grammar (see appendix), they do not
posses concrete semantics as other statements do. To reduce implementation complexity, a
synergistic objective needs to be fulfilled: How to uniformly treat composite and atomic
language constructs in the tree structure (i.e., hide the differences), while distinctions
between these two types of language constructs can still be easily made if necessary (i.e.,
behave as atomic and composite ones as supposed).
A primary objective of composite pattern (Gamma et al., 1995) is to represent whole-part
hierarchies and achieve the synergistic objective mentioned above. Figure 7 shows the
implementation of composite pattern applied to PPCea interpreter, where IStmt is an
abstract class that defines the interface and common behavior of both atomic (i.e., Stmt) and
composite (i.e., Series) statements. The advantages of composite pattern mainly lie in the
introduction of IStmt and the composition between Series and zero to more IStmt objects,
which will be later identified as Series or Stmt concrete objects using polymorphism.

Fig. 7. Composite pattern applied to PPCea intepreter

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

187

Composite pattern also follows open-close principle (Meyer, 2000). Such a principle

advocates “open for extension and close for modification”: New statements can be added

through inheritance; and modification on interface is closed and modification on

implementation is isolated to associated methods only. For example, if one requests to

introduce callPSO statement for Particle Swamp Optimization (Kennedy & Eberhart, 2001)

in PPCea, three steps will be needed at the lexical, syntactical and semantic levels: (1)

callPSO needs to be introduced as a token in PPCea.jlex (as seen in Figure 6); (2) A terminal

that represents callPSO statement and the associated syntax are requested in PPCea.cup (can

be found in Figure 6 too); and (3) Introduce a CallPSOStmt class inherited from CallEAStmt.

Such a class defines the semantics/algorithms of Particle Swamp Optimization. A new

operator that does not relate to any specific algorithm may be also introduced in the same

manner. With such, introducing new algorithms or operators will not interfere with the

remaining parts of PPCea. Extension and evolution of evolutionary algorithms and

operators will be introduced next. Introducing evolutionary operators and parameters

comprises the same steps as mentioned. For example, because ResizeStmt and

ChangeStrategyStmt are two operators that can be applied to various EAs, they are not

encapsulated into specific EA statements. For EA-specific operators, from the

implementation’s perspective, they can be introduced as standalone statements like resize

and changeStrategy or they can be encapsulated as methods in associated EA statement

classes. For the sake of better design to satisfy high cohesion and responsibility driven

concepts (Schach, 2010), such operators are encapsulated into EA associated statements.

3.3 Evolutionary Algorithm and operator extensions/evolutions using visitor pattern
Although composite pattern achieves the synergistic objective that allows uniformed

treatments and making distinctions on atomic and composite statements when needed,

extending or evolving methods encapsulated in EA statements is difficult. (Ironically, they

are resulted from following good design principles as mentioned in the previous section).

For example, semanticWithConguration in CallEAStmt is derived from IStmt that defines the

semantics of a statement by executing a set of evolutionary operators (e.g., mutation,

crossover, and selection). If a new operator, e.g., elite or n-point mutation, is introduced in

CallEAStmt and invoked by semanticWithConguration, all CallEAStmt’s subclasses will be

affected and recompilation is requested. Additionally, any evolution change to the existing

algorithms and operators may be scattered around the entire class, which could be error-

prone and resulted in regression faults. Because visitor pattern (Gamma et al., 1995) has

succeeded in solving such tree-related problems with composite pattern (e.g., Wu et al.,

2005), PPCea adopts visitor pattern so that the aforementioned extension and evolution

problem can be solved.

As shown in Figure 8, PPCea introduces a super class, called StmtVisitor, which comprises

two subclasses: EAStmtVisitor and GenericStmtVisitor, where the former one is to define the

semantics of EA-specific operators and the latter one is to define the semantics of generic or

non-EA-specific operators. For EA-specific operators, three important evolutionary

operators (selection, crossover, and mutation) and two utility operators (eval and getStat) are

introduced as EAStmtVisitor’s subclasses, where eval is to compute the fitness value of each

individual and getStat is to compute the statistical data of an EA that are shown at the

bottom of Figure 6. For generic operators, population initialization (init), population resizing

www.intechopen.com

 Evolutionary Algorithms

188

(resize), strategy changing (changeStrategy) for adapting different evolutionary operators on-

the-fly, are introduced. Note that Context class introduced in Figure 8 is initialized by

ContextStmt in Figure 7 that will store the current statement (or EA operator) that PPCea

interpreter is executing and the resultant population. The usage of this class will be

explained in more details in the next subsection.

Fig. 8. Visitor pattern applied to PPCea

Readers who are not familiar with design patterns may find it difficult to see how composite

and visitor patterns work together to tackle introduction, extension, and evolution problems

by decoupling the syntax tree structure and operators within each statement, while at the

same time allow the semantics of each statement as well as the entire program to be

functioned correctly. To explain such correlation, the first step is to understand how CUP

works with associated semantics written in Java classes. Because CUP is a compiler

generator that generates a bottom-up parser, when each non-terminal is traversed, the

corresponding Java class is instantiated. All the necessary classes (statements, expressions,

and operators as seen in Figure 6) that define associated semantics will be available after the

root of the parse tree is traversed. Then the root node will trigger semantics of each line of

program to be interpreted and executed. When a statement, called init, is reached, the

semanticWithConfiguration method within such a class will invoke a private method, called

accept with an object of InitVisitor class passed in (see Figure 7). Within the accept method,

visitInitStmt method of InitVisitor class will perform node/statement identification, called

double dispatch (Gamma et al., 1995). If the current statement to be executed is init,

visitInitStmt will execute the semantics of population initialization accordingly. Similarly, if

callGA (or callES) is executed, objects of EvalVisitor, SelectionVisitor, MutationVisitor,

CrossoverVisitor, and GetStatVisitor will be passed as parameters of accept method. The

semantics defined in each visitor subclass will be executed after callGA statement is

identified by double dispatch.

Important advantages that visitor pattern is capable of attacking extension and evolution

problem can be expressed as the following three examples:

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

189

1. If a new EA-related operator is requested (e.g., clone or repair), we do not introduce an
operator in CallEAStmt, CallGAStmt or CallESStmt, which will result in recompilation of
almost the entire composite class hierarchy of Figure 7, as mentioned in the previous
subsection. Instead, a subclass of EAStmtVisitor that defines the semantics of the newly
introduced operator can be extended/introduced without affecting the remaining part
of PPCea. There is no need to revise any part of JFlex and CUP files of PPCea either;

2. If a new generic operator is needed (e.g., randomize that introduces new random

individuals into current population), a subclass that defines such an operator can be

inherited from GenericStmtVisitor without editing other parts. If the new operator is also

requested to be added to PPCea grammar, there is a need to introduce an associated

token, syntax, and a subclass of Stmt respectively at the lexical, syntactical and semantic

levels. Note, however, such extensions will still not interfere other parts of the existing

code; and

3. If an existing EA-specific or generic operator is requested to be changed (i.e., evolution),
the focus will be only on the specific subclass. Other parts will not be emphasized so the
opportunities of regression faults will be minimized.

Although utilizing composite and visitor patterns to solve tree structure problems is not

new, our implementation slightly varies the traditional solution and results in an additional

advantage that can be observed in Figure 8: Even though introducing an EA at the statement

level (e.g., callGA) may give readers impression that it is inflexible to control lower level

evolutionary operators. Instead, it is a wrong impression! The visitor pattern utilized in

PPCea is a variant – it is implemented along with strategy pattern (Gamma et al., 1995),

where different evolutionary operators can be controlled through changeStrategy at the

granularity of operator rather than algorithm. Such implementation avoids possible

frequent recompilation while allowing ease of extension and evolution. Namely, only when

a new EA, for example, callPSO, is introduced, existing subclasses of EAStmtVisitor need to

add and compile a new operator, called visitCallPSO. More discussions will be covered in

Section 3.5.

3.4 Strategic operator adaptation
Section 2.4 introduced three categories of operator adaptation: (1) Adaptation delegated to

parameters (i.e., parameter control); (2) Adaptation among different types of operators; and

(3) Adaptation among same types of operators. Strategy pattern (Gamma et al., 1995) is

applied and integrated with visitor pattern to realize categories (2) and (3).

A primary objective of strategy pattern is to introduce a set of functionalities that can be

interchanged upon request. Different kinds of evolutionary operators for GAs and ESs are

introduced as subclasses of Strategy class in Figures 9 and 10, respectively. For example,

we have implemented linear, non-linear, ranking, tournament and roulette wheel selections

as subclasses of GASelectionStrategy. Similarly, the implementation of one-point

and n-point mutation/crossover is defined in the associated subclasses of

GAMutationStrategy/GACrossoverStrategy. If there is more than one way to initialize

population, subclasses that specify such differences can be inherited from GAInitStrategy.

Extension and evolution to different algorithms of an operator can be also easily done by
introducing subclasses. For example, fitness proportional selection may be introduced as a
subclass of GASelectionStrategy without interfering the remaining parts of the source code;

www.intechopen.com

 Evolutionary Algorithms

190

and revising existing strategies will be isolated in their own classes – Again, this design
follows open-close principle.
Figure 5 in Section 2.4 has presented how to adapt operators using PPCea. The dynamics of
such code snippet with respect to strategy pattern is summarized as follows. Figure 10 is a
simplified version of Figure 5 for ease of reading. Line 1 sets the default operators for
selection, mutation, and crossover into context. A Context object will be instantiated with the
Strategy objects of linear selection, 1-point mutation and n-point crossover as parameters.

Fig. 9. Strategy pattern applied to GAs in PPCea

Fig. 10. Strategy pattern applied to ESs in PPCea

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

191

Line 2 initializes a population for the GA. Then callGA performs the GA using such strategies.
Namely, CallGA statement in Figure 7 will invoke its semanticWithConfiguration method that
accepts objects of SelectionVisitor, MutationVisitor, CrossoverVisitor, EvalVisitor, and
GetStatVisitor shown in Figure 8. Each visitor object accesses the Context object and executes
the associated Strategy object within visitCallGAStmt method. For example, the object of
SelectionVisitor by default will execute an object of LinearSelection set in Line 1 of Figure 11.
Between two if-statements, by using changeStrategy selection operator switches between
tournament and rank selections every 10 generations. Additionally, mutation also switches
between 1-point and n-point mutations every 10 generations. Crossover, on the other hand,
will remain during the entire evolutionary process. Such behaviour is performed based on the
following steps: (1) ChangeStrategy statement accepts an object of ChangeStrategyVisitor, which
allows new Strategy objects (e.g., rank selection and n-point mutation at generation 10) to
interchange with the existing Strategy object (e.g., linear selection and 1-point mutation). After
exchange, Context object will execute new strategies. Note that, to avoid class explosion,
Singleton pattern (Gamma et al., 1995) is applied to force each operator only has one associated
object instantiated all the time. So that when the strategy pairs (tournament selection and n-
point mutation) and (rank selection and 1-point mutation) are swapped every 10 generations,
there is no new object instantiated, but the existing ones are reused. Halting an operator
temporarily is also a feasible solution by replacing the current Strategy object to HaltSelection,
HaltMutation, or HaltCrossover, which simply choose not to execute the current strategies. With
such, EAs categorized as uni-process approaches in (Liu et al., 2009) can be reproduced using
PPCea (e.g., DGEA in Figure 4).

Fig. 11. A simplified version of Figure 5.

3.5 Parameter extension and evolution
Domain-specific parameters are those predefined in a DSL grammar and may facilitate

productivity and other advantages of DSLs mentioned before. In PPCea, domain-specific

parameters, shown in Table 2, can be categorized in two groups: (1) Parameters that are

used for controlling an evolutionary process; and (2) Parameters that are computed at the

end of each generation and may be treated as feedback to adjust an evolutionary process.

As seen in Table 2, parameters in group (1) are quite diverse. Some may be accessed across

the entire project (e.g., Popsize, Maxgen, and Epoch) and others may be used by specific

operators (e.g., Alpha, Beta, Miu, and Lamda). From the perspective of compiler/interpreter

implementation, this kind of parameters usually already has identities stored in a symbol

table (i.e., predefined). When such parameters are initialized by assignment statement, their

values are stored in the symbol table accordingly. Whenever and wherever needed, the

1 context(LINEAR_SELECTION, ONE_PT_MUTATION, N_PT_CROSSOVER);
 //... skip some code
2 callGA;
3 if ((t % 10) == 0) then
4 changeStrategy(TOURNAMENT_SELECTION, N_PT_MUTATION) then
5 fi;
6 if ((t % 20) == 0) then
7 changeStrategy(RANK_SELECTION, ONE_PT_MUTATION) then
8 fi;
 //...skip some code

www.intechopen.com

 Evolutionary Algorithms

192

values can be accessed through the symbol table. Extension of parameters falling in group

(1) usually means introducing new domain-specific notations at the lexical, syntactical and

semantic levels, which therefore has the same way of implementing domain-specific

statements. Conversely, evolution for such a kind of parameters is usually renaming and

Group Parameter Name Description

Function Fitness function to be evaluated (Obtained from (Yao et al.,

1999))

Popsize Number of individuals of a population

Maxgen Maximum number of generation for an evolutionary process

Epoch Generation stride for parameter control adaptation

pm Mutation rate

pc Crossover rate

psr Stochastic ranking rate

Alpha Selection pressure (Ǐ) for linear/nonlinear selection

Beta Selection pressure (ǐ) for linear/nonlinear selection

Miu Selection parameter (ǚ) for ESs

Lambda Selection parameter (Ǚ) for ESs

TourQ Selection parameter for tournament selection

(1)

KMeans Number of centroids for clustering entropy

Best Best fitness value of all individuals

Average Average fitness value of all individuals

Worst Worst fitness value of all individuals

RatioM Success mutation rate

RatioC Success crossover rate

Stdv Standard deviation of all individuals

Euclidean Euclidean distance of all individuals

LinearEntropy Linear Entropy (Liu et al., 2009)

RoscaEntropy Rosca Entropy (Liu et al., 2009)

GaussianEntropy Gaussian Entropy (Liu et al., 2009)

FitProEntropy Fitness Proportional Entropy (Liu et al., 2009)

(2)

ClusterEntropy Clustering Entropy (Liu et al., 2009)

Table 2. Current domain-specific parameters introduced in PPCea

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

193

changing valid scope based on our experience. Hence, refactoring (Fowler, 1999) may be

applied to the lexical, syntactical and semantic levels to tackle evolution. Parameters in

group (2) are computational results analyzed from population either after every (several)

generation(s) or at the end of an entire evolutionary process. However, not all of such

parameters are needed all the time. For example, for parameter tuning approaches, readers

may be interested in fitness-related parameters only. Similarly, for non-entropy-driven

approaches, one may avoid the computation of the five entropies shown in Table 2 and

hence improve the performance. To achieve such a “pay-as-you-go” objective, decorator

pattern is applied. As seen in Figure 12, Parameter class is introduced as a super class that

applies singleton pattern to avoid more than one instance instantiated during an

evolutionary process. Decoratee class is a “decoratee” super class, which means that all the

objects of the subclasses inherited from Decoratee are mandatory to be provided by PPCea

interpreter. Conversely, DecoratorParameter represents a super class whose subclass objects

can be optionally computed upon requests.

The dynamics of how “pay-as-you-go” is achieved may be further observed by the code

snippet shown in Figure 13: visitCallGAStmt is a method defined within GetStatVisitor class,

accepted by CallGAStmt as described before, whose purpose is to analyze statistical results

of a population. Lines 3 to 5 specify the mandatory domain-specific parameters to be

computed. From lines 6 to 20, users may determine if any object of Decorator requires

computation or not either directly defined in PPCea code (e.g., require(LINEAR_ENTROPY,

FITPRO_ENTROPY, ROSCA_ENTROPY);) or through the graphical user interface we developed

for PPCea interpreter. For example, if linear, fitness proportional and Rosca entropies are

Fig. 12. Decorator pattern applied to PPCea.

www.intechopen.com

 Evolutionary Algorithms

194

selected by users (as seen above), when line 21 of Figure 13 is invoked, the calculate methods
in Best, Worst, Average, LinearEntropy, FitProEntropy, and RoscaEntropy will be executed in a
cascading and sequential order (see the notes in Figure 12).
How does decorator pattern address the extension and evolution problems of parameters in
group (2)? For extension, if a new parameter is mandatory, a subclass should be inherited
from Decoratee class. Conversely, if users are in charge of the computation necessities of
newly introduced parameters, subclasses of Decorator will be introduced. The computational
algorithms of the new parameters will be defined in their own calculate methods, along with
an invocation to its super class’ calculate method. One drawback of applying Decorator
pattern is that when extension (i.e., introducing a new domain-specific parameter of group
(2)) occurs, inevitably Figure 13 needs to be revised to incorporate such a change. It is
because the purpose of the if-statements is to retrieve the answer of optional parameters that
users determine to include. As for evolution, if any computational algorithm of a parameter
changes, it is isolated in the associated calculate method.

Fig. 13. Decorator pattern applied to PPCea.

3.6 Software metrics
Software metrics (Lincke et al., 2008) are measures that assist in providing comprehensibility
of software being assessed. Therefore, the quality of the software can be observed through
such metrics. PPCea utilizes Eclipse Metrics plug-in (Sauer, 2010) to compare the current
version implemented with DSL and design patterns and the original version introduced in
(Liu et al., 2004), shown in Figure 14.
As seen in the figure, PPCea using patterns has much higher design and implementation
quality in terms of Method lines of code, McCabe cyclomatic complexity (suggested
maximum value: 10), and weighted methods per class. All other metrics listed in Figure 14
surpass the suggested maximum values. Namely, the design and implementation of PPCea
with patterns is in good quality and refactoring may not be necessary.

1 Individual[] visitCallGAStmt(CallGAStmt gaStmt){
2 /* skip the code of retrieving parameters from symbol table ...*/
3 Parameter decorator = new Best(); //required parameter
4 decorator = new Worst(decorator); //required parameter
5 decorator = new Average (decorator); //required parameter
6 if (Linear_Entropy == 1) {
7 decorator = new LinearEntropy(decorator); //optional parameter
8 }
9 if (Gaussian_Entropy == 1) {
10 decorator = new GaussianEntropy(decorator); //optional parameter
11 }
12 if (FitPro_Entropy == 1) {
13 decorator = new FitProEntropy(decorator); //optional parameter
14 }
15 if (Rosca_Entropy == 1) {
16 decorator = new RoscaEntropy(decorator); //optional parameter
17 }
18 if (Cluster_Entropy == 1) {
19 decorator = new ClusterEntropy(decorator); //optional parameter
20 }
21 decorator.calculate(population);
22 return population;
23 }

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

195

Fig. 14. Metrics comparison between old and new PPCea

3.7 Potentials of PPCea
The first five subsections discuss how to overcome introduction, extension and evolution

problems in four specific levels: (1) Evolutionary algorithms; (2) Evolutionary and generic

operators; (3) Functionalities (i.e., strategies) of an operator; and (3) Domain-specific

parameters. For (1), composite pattern facilitates the introduction/extension of evolutionary

algorithms by introducing EAs as domain-specific statements, subclasses inherited from

IStmt. For (2), visitor pattern promotes introduction/extension of evolutionary and generic

operators by introducing subclasses of StmtVisitor. If evolutionary algorithms or its

operators evolve, the changes will be isolated in the subclasses of StmtVisitor (or associated

strategies), because such subclasses define the semantics of PPCea statements. Additionally,

the decision of not introducing EA-specific operators at the PPCea statement level reduces

the possibility of frequent changes/recompilation of the StmtVisitor and its subclasses. For

(3), strategy pattern assists introduction/extension of different algorithmic strategies of an

operator by introducing subclasses of Strategy. Evolution of such strategies is also isolated in

associated classes. Also, PPCea is capable of adapting with operators on-the-fly under the

support of strategy pattern. Lastly, decorator pattern addresses the problem of

introduction/extension and evolution of domain-specific parameters by introducing

subclasses of Decorator and Decoratee. Users are also allowed to determine which parameters

to be analyzed so that unnecessary computation cost can be reduced.

To illustrate how a new EA can be introduced or an existing EA can be reproduced, let us

use GAVaPS as an example. The algorithm of GAVaPS is as follows.

www.intechopen.com

 Evolutionary Algorithms

196

Fig. 15. The GAVaPS algorithm from (Arabas et al., 1994)

Based on (Arabas et al., 1994), recombine in Figure 15 performs normal mutation and

crossover and then selection chooses offspring from all individuals with equal opportunity.

As for remove, it will kill all individuals older than a predefined lifetime threshold. The

population will be then resized based on the formula defined in the paper. To realize

GAVaPS using PPCea, age attribute needs to be introduced in Individual class. Also, lifetime

parameter may be introduced as a parameter in group (1). With such, users can adjust the

value of lifetime by PPCea code. Then GAVaPSSelection, inherited from GASelectionStrategy in

Figure 9, implements selection mechanism with equal opportunity and increments age if

needed. Because there is more than one resize algorithm, a ResizeStrategy subclass may be

inherited from Strategy. Then ResizeByAge may be introduced as a subclass of ResizeStrategy

that kills all overage individuals and randomly introduces the number of new individuals

using the formula if needed. Figure 16 is a pseudo PPCea code to simulate Figure 15 under

the assumption all necessary subclasses are introduced in PPCea. Another possible

implementation option is to introduce an entire new PPCea statement, called callGAVaPS.

Nothing is really different except that callGAVaPS encapsulates all needed Visitor objects,

which invoke objects of GAVaPSSelection, OnePointMutation, OnePointCrossover, and

ResizeByAge.

Fig. 16. The pseudo PPCea code that reproduces GAVaPS

In summary, PPCea utilizes DSL patterns and five design patterns so that the

introduction/extension and evolution problems at the algorithm, operator, strategy, and

parameter levels can be respectively addressed.

begin
 t=O
 initialize P(t)
 evaluate P(t)
 while (not termination-condition) do
 begin
 t = t + l
 increase the age of each individual by 1
 recombine P(t)
 evaluate P(t)

remove from P(t) all individuals with age greater than the lifetime
 end
end

Lifetime := 5; // any individual older than 5 will be killed
context(GAVAPS_SELECTION, ONE_PT_MUTATION, ONE_PT_CROSSOVER,
RESIZE_BY_AGE);
init;
while (g < Maxgen) do
 callGA;
 Popsize := ... // ... means the formulae from Arabas et al. 94
 resize(Popsize);
 g := g + 1
end

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

197

4. Related work

Evolving Objects (Keijzer et al., 2002) is an evolutionary computation framework that

constructs an EA through component composition. Namely, each EA operator/statement is

considered as a component and users need to select which specific components (similar to

strategies) to be filled in to a specific spot of an evolutionary process. User defined

parameters can be introduced to a file, which will be interpreted by the framework. ECJ

(Luke et al., 2010) is a Java-based evolutionary computation system that requests users to

describe an EA in Java by reusing/invoking a great number of packages for different EA

operators. A set of predefined parameters with fixed identities also need to be defined in a

specific file, acting like domain-specific parameters in PPCea. ESDL (Dower & Woodward,

2010) is a DSL that introduces SQL-like syntax for users to construct EAs. Name conventions

for both EA operators and parameters need to be followed, which is same as PPCea. Because

of interoperability advantage of XML, Veenhuis et al. introduced EAML (Veenhuis et al.,

2000), a modeling language that utilizes XML to represent an EA. With such, different EA

framework/software may introduce their own evolutionary processes by interpreting

EAML files. There are also many EA framework or software that the book chapter is not able

to fully cover. We leave this part to interested readers.

5. Conclusion

Controlling parameter settings to reach optimization and/or convergence of an EA has been

a challenging topic in the evolutionary computation community. Firstly, due to meat-

heuristic and stochastic nature, there is a need to conduct a sufficient number of

experiments of an EA under different parameter settings. Additionally, many practitioners

and scholars have put forth various algorithms, operators, and parameters to improve the

optimization and/or convergence. Without automatic tools for EA users, conducting EA

experiments would become tedious and error-prone. Without capabilities to extend and

evolve automatic tools, EA developers would not be able to invent new algorithms,

operators, strategies, and parameters. PPCea offers a synergistic solution to address the

aforementioned problems from the perspectives of both users and developers. The

contributions of PPCea are three-folds: (1) PPCea is an automatic EA tool in a language

format that assists EA users to conduct experiments using three parameter setting

approaches introduced by Eiben et al.; (2) PPCea is an open-ended EA tool that allows EA

developers to introduce, extend and evolve EA constructs in algorithm, operator, strategy

and parameter levels; and (3) PPCea offers a fair platform to perform EA comparison – both

reproduced algorithms and new algorithms can be described in PPCea code and run under

PPCea interpreter.

We have identified several future directions: (1) Multi-populations and multi-objective EAs

are missing in current version. With such, more EAs can be reproduced (e.g., parameter-less

GA) and invented; (2) As can be seen in Figure 6, PPCea currently cannot handle self

adaptation algorithms. How to represent such algorithms and still offer open-end solutions

is an emerging issue to tackle; (3) With the metrics from (Črepinšek et al., in press)

introduced to PPCea, explicit balance between evolutionary and exploitation in a

programmable fashion can be foreseen; and (4) Existing algorithms, operators, and

strategies are effective in the individual granularity. Similar algorithms, operators, and

www.intechopen.com

 Evolutionary Algorithms

198

strategies working at the genotypical level may result in finer-grained experiments. With the

aforementioned issues resolved, more EA users and developers may be benefited by PPCea.

Appendix: PPCea Grammar

6. References

Aho, A., Lam, M., Sethi, R. & Ullman J. (2007). Compilers: Principles, Techniques, and Tools,

Addison Wesley.

Arabas, J., Michalewicz, Z. & Mulawka, J. (1994). GAVaPS - a Genetic Algorithm with

Varying Population Size. The 1st International Conference on Evolutionary

Computation, pp. 73-78

Bäck, T. & Schwefel, H. P. (1995). Evolution Strategies I: Variants and Their Computational

Implementation. Genetic Algorithms in Engineering and Computer Science. John

Wiley & Sons

Bäck, T. & Schütz, M. (1996). Intelligent Mutation Rate Control in Canonical Genetic

Algorithms. Foundations of Intelligent Systems, pp. 158–167.

Program -> genetic Series end genetic
Series -> Series Statement ; Statement
Statement -> if Cond then Series fi | if Cond then Series else Series fi |
 while Cond do Series end | ID := E |

 init | callGA | callES | resize(N) |
 context (Strategies) | changeStrategy(Strategies) |
 require (Parameters) |
 read Ids | write Ids |
 readfile FileName | writeresult |
 validateMsg | invalidateMsg

Condition -> (Expression RelationOp Expression)
Expression -> Expression Operator Expression | (Expression) |

 sqrt(Expression) | exp(Expression) | Number | Double | ID |
Operator -> + | - | * | / | && | ||
RelationOp -> < | > | <= | >= | != | ==
Strategies -> Strategies , Strategy
Strategy -> Selection | Mutation | Crossover
Selection -> LINEAR_SELECTION | NON_LINEAR_SELECTION |

 TOURNAMENT_SELECTION | RANK_SELECTION |
 ROULETTEWHEEL_SELECTION | GA_HALT_SELECTION |

 MIU_AND_LAMDA_SELECTION | MIU_PLUS_LAMDA_SELECTION |
 ES_HALT_SELECTION
Mutation -> ONE_PT_MUTATATION | TWO_PT_MUTATION | N_PT_MUTATION |
 GA_HALT_MUTATION | CEP_MUTATION | FEP_MUTATION |
 ES_HALT_MUTATION
Crossover -> ONE_PT_CROSSOVER | TWO_PT_CROSSOVER | N_PT_CROSSOVER |

 GA_HALT_CROSSOVER | INTERMEDIATE_CROSSOVER |
 UNIFORMCROSSOVER | ES_HALT_CROSSOVER

Parameters -> Parameters , Parameter | ε
Parameter -> RATIO_M | RATIO_C | STDV | EUCLIDEAN | LINEAR_ENTROPY |

 ROSCA_ENTROPY | GAUSSIAN_ENTROPY | FITPRO_ENTROPY |
 CLUSTER_ENTROPY

Number -> integer
Double -> double
FileName -> string

www.intechopen.com

PPCea: A Domain-Specific Language for
Programmable Parameter Control in Evolutionary Algorithms

199

Bäck, T., Eiben, A. & van der Vaart., N. A. L. (2000). An Empirical Study on GAs Without

Parameters. In Parallel Problem Solving from Nature VI, pp. 315–324.

Brooks, F. P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering. IEEE

Computer, 20(4):10–19.

Črepinšek, M., Mernik, M. & Liu, S.-H. (In Press). Analysis of Exploration and Exploitation

in Evolutionary Algorithms by Ancestry Trees. International Journal of Innovative

Computing and Applications.

Dower, S. & Woodward, C. (2010). Evolutionary System Definition Language. Swinburne

University of Technology, Tech. Rep. TR/CIS/2010/1

Eiben, A. E., Hinterding, R. & Michalewicz, Z. (1999). Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 3(2): 124-141.

Eiben, A. E., Marchiori, E. &Valkó, V. A. (2004). Evolutionary Algorithms with On-the-Fly

Population Size Adjustment. Parallel Problem Solving from Nature, pp. 41-50.

Fogarty, T. C. (1989). Varying the Probability of Mutation in the Genetic Algorithm. The 3rd

International. Conference on Genetic Algorithms, pp. 104-109

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design Patterns, Addison-Wesley

Ghosh, A., Tsutsui, S. & Tanaka, H. (1996). Individual Aging in Genetic Algorithms.

Australian New Zealand Conference on Intelligent Information Systems, pp. 276–279

Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M. & Tolvanen, J.-P. (2008). DSLs: the

Good, the Bad, and the Ugly. The 23rd ACM Conference on Object-Oriented

Programming Systems Languages and Applications, pp. 791-794

Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE

Transaction on Systems, Man & Cybernetics, SMC-16(1): 122-128

Harik, G. & Lobo, F. (1999). A Parameter-less Genetic Algorithm. Technical Report IlliGAL

9900, University of Illinois at Urban-Champaign

Hesser, J. & Männer, R. (1991). Toward an Optimal Mutation Probability for Genetic

Algorithms. 1st Conference of Parallel Problem Solving from Nature, pp. 23–32.

Herrera, F. & Lozano, M. (1996). Adaptation of Genetic Algorithm Parameters Based on

Fuzzy Logic Controllers. Genetic Algorithms and Soft Computing, pp. 95-125

Hudson, S. E. (2010). CUP LALR Parser Generator for Java.

http://www2.cs.tum.edu/projects/cup/

Kang, K., Cohen, S., Hess, J., Novak, W. & Peterson., S. (1990). Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software

Engineering Institute, Carnegie Mellon University

Keijzer, M., Merelo, J. J., Romero, G. & Schoenauer, M. (2002). Evolving Objects: A General

Purpose Evolutionary Computation Library. Artificial Evolution, 2310: 829-888.

Kennedy, J. & Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann

Klein, G. (2010). JFlex User’s Manual. http://jflex.de/manual.html

Lincke, R., Lundberg, J. & Löwe, W. (2008). Comparing Software Metrics Tools. International

Symposium on Software Testing and Analysis, pp. 131-142.

Liu, S.-H. (2010). PPCea Web Page.

 http://www.zimmer.csufresno.edu/~shliu/research/PPCea.html

www.intechopen.com

 Evolutionary Algorithms

200

Liu, S.-H., Mernik, M. & Bryant, B. R. (2004). Parameter Control in Evolutionary Algorithms

by Domain-Specific Scripting Language PPCea. The 1st International Conference on

Bioinspired Optimization Methods and their Applications, pp. 41-50.

Liu, S.-H., Mernik, M. & Bryant, B. R. (2009). To Explore or to Exploit: An Entropy-Driven

Approach for Evolutionary Algorithms. International Journal of Knowledge-based and

Intelligent Engineering Systems 13(3-4): 185-206.

Luke., S. et al. (2010). ECJ: A Java-based Evolutionary Computation Research System.

http://cs.gmu.edu/~eclab/projects/ecj/

Meyer, B. (2000). Object-Oriented Software Construction. Prentice Hall.

Michalewicz, Z. (1996). Genetic Algorithm + Data Structures = Evolution Programs.

Springer

Mernik, M., Heering, J. & Sloane, A. (2005). When and How to Develop Domain-Specific

Languages, ACM Computing Surveys, 37(4): 316-344.

Sauer, F. (2010). Eclipse Metrics plug-in. http://sourceforge.net/projects/metrics/

Schach, S. (2010). Object-Oriented and Classical Software Engineering, McGraw Hill.

Smith, R. & Smuda, E. (1995). Adaptively Resizing Populations: An Algorithm, Analysis,

and First Results. Complex Systems, 1(9): 47-72.

Storn, R. & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization, 11:

341–359.

Tsutsui, S., Ghosh, A., Corne, D. & Fujimoto, Y. (1997). A Real Coded Genetic Algorithm

with an Explorer and an Exploiter Populations. The 7th International Conference on

Genetic Algorithms, pp. 238–245.

Ursem, R. (2002). Diversity-Guided Evolutionary Algorithms. Parallel Problem Solving from

Nature VII, LNCS 2439: pp. 462-471

Veenhuis, C., Franke, K. & Köppen, M. (2000). A Semantic Model for Evolutionary

Computation. 6th International Conference on Soft Computing.

Wu, X., Bryant, B. R., Gray, J. & Mernik, M. (2010). Component-Based LR Parsing. Computer

Languages, Systems, and Structures, 36(1): 16-33.

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary Programming Made Faster. IEEE Transactions

on Evolutionary Computation, 3(2): 82-102.

www.intechopen.com

Evolutionary Algorithms

Edited by Prof. Eisuke Kita

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,

operations research, and social science, such as include scheduling, genetics, material selection, structural

design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been

used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shih-Hsi Liu, Marjan Mernik, Mohammed Zubair, Matej Črepins ̌ek and Barrett R. Bryant (2011). PPCea: A

Domain-Specific Language for Programmable Parameter Control in Evolutionary Algorithms, Evolutionary

Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8, InTech, Available from:

http://www.intechopen.com/books/evolutionary-algorithms/ppcea-a-domain-specific-language-for-

programmable-parameter-control-in-evolutionary-algorithms

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

