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1. Introduction

Evolutionary algorithms are a type of general problem solvers that can be applied to many
difficult optimization problems. Because of their generality, these algorithms act similarly
like Swiss Army knife (Michalewicz & Fogel, 2004) that is a handy set of tools that can be
used to address a variety of tasks. In general, a definite task can be performed better with an
associated special tool. However, in the absence of this tool, the Swiss Army knife may be
more suitable as a substitute. For example, to cut a piece of bread the kitchen knife is more
suitable, but when traveling the Swiss Army knife is fine.
Similarly, when a problem to be solved from a domain where the problem-specific knowledge
is absent evolutionary algorithms can be successfully applied. Evolutionary algorithms are
easy to implement and often provide adequate solutions. An origin of these algorithms is
found in the Darwian principles of natural selection (Darwin, 1859). In accordance with these
principles, only the fittest individuals can survive in the struggle for existence and reproduce
their good characteristics into next generation.
As illustrated in Fig. 1, evolutionary algorithms operate with the population of solutions.
At first, the solution needs to be defined within an evolutionary algorithm. Usually, this
definition cannot be described in the original problem context directly. In contrast, the solution
is defined by data structures that describe the original problem context indirectly and thus,
determine the search space within an evolutionary search (optimization process). There exists
the analogy in the nature, where the genotype encodes the phenotype, as well. Consequently,
a genotype-phenotype mapping determines how the genotypic representation is mapped to
the phenotypic property. In other words, the phenotypic property determines the solution in
original problem context. Before an evolutionary process actually starts, the initial population
needs to be generated. The initial population is generated most often randomly. A basis of
an evolutionary algorithm represents an evolutionary search in which the selected solutions
undergo an operation of reproduction, i.e., a crossover and a mutation. As a result, new
candidate solutions (offsprings) are produced that compete, according to their fitness, with
old ones for a place in the next generation. The fitness is evaluated by an evaluation function
(also called fitness function) that defines requirements of the optimization (minimization or
maximization of the fitness function). In this study, the minimization of the fitness function
is considered. As the population evolves solutions becomes fitter and fitter. Finally, the
evolutionary search can be iterated until a solution with sufficient quality (fitness) is found
or the predefined number of generations is reached (Eiben & Smith, 2003). Note that some
steps in Fig. 1 can be omitted (e.g., mutation, survivor selection).
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Fig. 1. Scheme of Evolutionary Algorithms

An evolutionary search is categorized by two terms: exploration and exploitation. The former
term is connected with a discovering of the new solutions, while the later with a search in
the vicinity of knowing good solutions (Eiben & Smith, 2003; Liu et al., 2009). Both terms,
however, interweave each other in the evolutionary search. The evolutionary search acts
correctly when a sufficient diversity of population is present. The population diversity can
be measured differently: the number of different fitness values, the number of different
genotypes, the number of different phenotypes, entropy, etc. The higher the population
diversity, the better exploration can be expected. Losing of population diversity can lead to
the premature convergence.
Exploration and exploitation of evolutionary algorithms are controlled by the control
parameters, for instance the population size, the probability of mutation pm , the probability
of crossover pc, and the tournament size. To avoid a wrong setting of these, the control
parameters can be embedded into the genotype of individuals together with problem
variables and undergo through evolutionary operations. This idea is exploited by a
self-adaptation. The performance of a self-adaptive evolutionary algorithm depends on
the characteristics of population distribution that directs the evolutionary search towards
appropriate regions of the search space (Meyer-Nieberg & Beyer, 2007). Igel & Toussaint
(2003), however, widened the notion of self-adaptation with a generalized concept of
self-adaptation. This concept relies on the neutral theory of molecular evolution (Kimura,
1968). Regarding this theory, the most mutations on molecular level are selection neutral and
therefore, cannot have any impact on fitness of individual. Consequently, the major part of
evolutionary changes are not result of natural selection but result of random genetic drift
that acts on neutral allele. An neutral allele is one or more forms of a particular gene that
has no impact on fitness of individual (Hamilton, 2009). In contrast to natural selection,
the random genetic drift is a whole stochastic process that is caused by sampling error and
affects the frequency of mutated allele. On basis of this theory Igel and Toussaint ascertain
that the neutral genotype-phenotype mapping is not injective. That is, more genotypes
can be mapped into the same phenotype. By self-adaptation, a neutral part of genotype
(problem variables) that determines the phenotype enables discovering the search space
independent of the phenotypic variations. On the other hand, the rest part of genotype
(control parameters) determines the strategy of discovering the search space and therefore,
influences the exploration distribution.
Although evolutionary algorithms can be applied to many real-world optimization problems
their performance is still subject of the No Free Lunch (NFL) theorem (Wolpert & Macready,
1997). According to this theorem any two algorithms are equivalent, when their performance
is compared across all possible problems. Fortunately, the NFL theorem can be circumvented
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for a given problem by a hybridization that incorporates the problem specific knowledge into
evolutionary algorithms.

Fig. 2. Hybridization of Evolutionary Algorithms

In Fig. 2 some possibilities to hybridize evolutionary algorithms are illustrated. At first, the
initial population can be generated by incorporating solutions of existing algorithms or by
using heuristics, local search, etc. In addition, the local search can be applied to the population
of offsprings. Actually, the evolutionary algorithm hybridized with local search is called a
memetic algorithm as well (Moscato, 1999; Wilfried, 2010). Evolutionary operators (mutation,
crossover, parent and survivor selection) can incorporate problem-specific knowledge or
apply the operators from other algorithms. Finally, a fitness function offers the most
possibilities for a hybridization because it can be used as decoder that decodes the indirect
represented genotype into feasible solution. By this mapping, however, the problem specific
knowledge or known heuristics can be incorporated to the problem solver.
In this chapter the hybrid self-adaptive evolutionary algorithm (HSA-EA) is presented that is
hybridized with:

• construction heuristic,

• local search,

• neutral survivor selection, and

• heuristic initialization procedure.

This algorithm acts as meta-heuristic, where the down-level evolutionary algorithm is used
as generator of new solutions, while for the upper-level construction of the solutions a
traditional heuristic is applied. This construction heuristic represents the hybridization of
evaluation function. Each generated solution is improved by the local search heuristics. This
evolutionary algorithm supports an existence of neutral solutions, i.e., solutions with equal
values of a fitness function but different genotype representation. Such solutions can be
arisen often in matured generations of evolutionary process and are subject of neutral survivor
selection. This selection operator models oneself upon a neutral theory of molecular evolution
(Kimura, 1968) and tries to direct the evolutionary search to new, undiscovered regions of
search space. In fact, the neutral survivor selection represents hybridization of evolutionary
operators, in this case, the survivor selection operator. The hybrid self-adaptive evolutionary
algorithm can be used especially for solving of the hardest combinatorial optimization
problems (Fister et al., 2010).

5Hybridization of Evolutionary Algorithms
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The chapter is further organized as follows. In the Sect. 2 the self-adaptation in evolutionary
algorithms is discussed. There, the connection between neutrality and self-adaptation is
explained. Sect. 3 describes hybridization elements of the self-adaptive evolutionary
algorithm. Sect. 4 introduces the implementations of hybrid self-adaptive evolutionary
algorithm for graph 3-coloring in details. Performances of this algorithm are substantiated
with extensive collection of results. The chapter is concluded with summarization of the
performed work and announcement of the possibilities for the further work.

2. The self-adaptive evolutionary algorithms

Optimization is a dynamical process, therefore, the values of parameters that are set at
initialization become worse during the run. The necessity to adapt control parameters during
the runs of evolutionary algorithms born an idea of self-adaptation (Holland, 1992), where
some control parameters are embedded into genotype. This genotype undergoes effects of
variation operators. Mostly, with the notion of self-adaptation Evolutionary Strategies (Beyer,
1998; Rechenberg, 1973; Schwefel, 1977) are connected that are used for solving continuous
optimization problems. Typically, the problem variables in Evolutionary Strategies are
represented as real-coded vector y = (y1, . . . , yn) that are embedded into genotype together
with control parameters (mostly mutation parameters). These parameters determine mutation
strengths σ that must be greater than zero. Usually, the mutation strengths are assigned to
each problem variable. In that case, the uncorrelated mutation with n step sizes is obtained
(Eiben & Smith, 2003). Here, the candidate solution is represented as (y1, . . . , yn, σ1, . . . , σn).
The mutation is now specified as follows:

σ
′
i = σi · exp(τ

′ · N(0, 1) + τ · Ni(0, 1)), (1)

y
′
i = yi + σ

′
i · Ni(0, 1), (2)

where τ
′

∝ 1/
√

2 · n and τ ∝ 1/
√

2 · √n denote the learning rates. To keep the mutation
strengths σi greater than zero, the following rule is used

σi < ε0 ⇒ σi = ε0. (3)

Frequently, a crossover operator is used in the self-adaptive Evolutionary Strategies. This
operator from two parents forms one offsprings. Typically, a discrete and arithmetic crossover
is used. The former, from among the values of two parents xi and yi that are located on i-th
position, selects the value of offspring zi randomly. The later calculates the value of offspring
zi from the values of two parents xi and yi that are located on i-th position according to the
following equation:

zi = α · xi + (1 − α) · yi, (4)

where parameter α captures the values from interval α ∈ [0 . . . 1]. In the case of α = 1/2, the
uniform arithmetic crossover is obtained.
The potential benefits of neutrality was subject of many researches in the biological science
(Conrad, 1990; Hynen, 1996; Kimura, 1968). At the same time, the growing interest for the
usage of this knowledge in evolutionary computation was raised (Barnett, 1998; Ebner et al.,
2001). Toussaint & Igel (2002) dealt with the non-injectivity of genotype-phenotype mapping
that is the main characteristic of this mapping. That is, more genotypes can be mapped to the
same phenotype. Igel & Toussaint (2003) pointed out that in the absence of an external control
and with a constant genotype-phenotype mapping only neutral genetic variations can allow
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an adaptation of exploration distribution without changing the phenotypes in the population.
However, the neutral genetic variations act on the genotype of parent but does not influence
on the phenotype of offspring.
As a result, control parameters in evolutionary strategies represent a search strategy. The
change of this strategy enables a discovery of new regions of the search space. The genotype,
therefore, does not include only the information addressing its phenotype but the information
about further discovering of the search space as well. In summary, the neutrality is not
necessary redundant but it is prerequisite for self-adaptation. This concept is called the
general concept of self-adaptation as well (Meyer-Nieberg & Beyer, 2007).

3. How to hybridize the self-adaptive evolutionary algorithms

Evolutionary algorithms are a generic tool that can be used for solving many hard
optimization problems. However, the solving of that problems showed that evolutionary
algorithms are too problem-independent. Therefore, there are hybridized with several
techniques and heuristics that are capable to incorporate problem-specific knowledge. Grosan
& Abraham (2007) identified mostly used hybrid architectures today as follows:

• hybridization between two evolutionary algorithms (Grefenstette, 1986),

• neural network assisted evolutionary algorithm (Wang, 2005),

• fuzzy logic assisted evolutionary algorithm (Herrera & Lozano, 1996; Lee & Takagi, 1993),

• particle swarm optimization assisted evolutionary algorithm (Eberhart & Kennedy, 1995;
Kennedy & Eberhart, 1995),

• ant colony optimization assisted evolutionary algorithm (Fleurent & Ferland, 1994; Tseng
& Liang, 2005),

• bacterial foraging optimization assisted evolutionary algorithm (Kim & Cho, 2005;
Neppalli & Chen, 1996),

• hybridization between an evolutionary algorithm and other heuristics, like local search
(Moscato, 1999), tabu search (Galinier & Hao, 1999), simulated annealing (Ganesh &
Punniyamoorthy, 2004), hill climbing (Koza et al., 2003), dynamic programming (Doerr
et al., 2009), etc.

In general, successfully implementation of evolutionary algorithms for solving a given
problem depends on incorporated problem-specific knowledge. As already mentioned before,
all elements of evolutionary algorithms can be hybridized. Mostly, a hybridization addresses
the following elements of evolutionary algorithms (Michalewicz, 1992):

• initial population,

• genotype-phenotype mapping,

• evaluation function, and

• variation and selection operators.

First, problem-specific knowledge incorporated into heuristic procedures can be used
for creating an initial population. Second, genotype-phenotype mapping is used by
evolutionary algorithms, where the solutions are represented in an indirect way. In that
cases, a constructing algorithm that maps the genotype representation into a corresponding
phenotypic solution needs to be applied. This constructor can incorporate various heuristic or
other problem-specific knowledge. Third, to improve the current solutions by an evaluation
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Algorithm 1 The construction heuristic. I: task, S: solution.

1: while NOT f inal_solution(y ∈ S) do
2: add_element_to_solution_heuristicaly(yi ∈ I, S);
3: end while

function, local search heuristics can be used. Finally, problem-specific knowledge can be
exploited by heuristic variation and selection operators.
The mentioned hybridizations can be used to hybridize the self-adaptive evolutionary
algorithms as well. In the rest of chapter, we propose three kinds of hybridizations that was
employed to the proposed hybrid self-adaptive evolutionary algorithms:

• the construction heuristics that can be used by the genotype-phenotype mapping,

• the local search heuristics that can be used by the evaluation function, and

• the neutral survivor selection that incorporates the problem-specific knowledge.

Because the initialization of initial population is problem dependent we omit it from our
discussion.

3.1 The construction heuristics

Usually, evolutionary algorithms are used for problem solving, where a lot of experience and
knowledge is accumulated in various heuristic algorithms. Typically, these algorithms work
well on limited number of problems (Hoos & Stützle, 2005). On the other hand, evolutionary
algorithms are a general method suitable to solve very different kinds of problems. In general,
these algorithms are less efficient than heuristics specialized to solve the given problem. If
we want to combine a benefit of both kind of algorithms then the evolutionary algorithm
can be used for discovering new solutions that the heuristic exploits for building of new,
probably better solutions. Construction heuristics build the solution of optimization problem
incrementally, i.e., elements are added to a solution step by step (Algorithm 1).

3.2 The local search

A local search belongs to a class of improvement heuristics (Aarts & Lenstra, 1997). In our
case, main characteristic of these is that the current solution is taken and improved as long as
improvements are perceived.
The local search is an iterative process of discovering points in the vicinity of current solution.
If a better solution is found the current solution is replaced by it. A neighborhood of the
current solution y is defined as a set of solutions that can be reached using an unary operator
N : S → 2S (Hoos & Stützle, 2005). In fact, each neighbor y′ in neighborhood N can be
reached from current solution y in k strokes. Therefore, this neighborhood is called k − opt
neighborhood of current solution y as well. For example, let the binary represented solution
y and 1-opt operator on it are given. In that case, each of neighbors N (y) can be reached
changing exactly one bit. The neighborhood of this operator is defined as

N1-opt(y) = {y′ ∈ S|dH(y, y′) = 1}, (5)

where dH denotes a Hamming distance of two binary vectors as follows

dH(y, y′) =
n

∑
i=1

(yi ⊕ y′i), (6)

8 Evolutionary Algorithms

www.intechopen.com



Algorithm 2 The local search. I: task, S: solution.

1: generate_initial_solution(y ∈ S);
2: repeat
3: f ind_next_neighbor(y′ ∈ N (y));
4: if ( f (y′) < f (y)) then
5: y = y′;
6: end if
7: until set_o f _neighbor_empty;

where operator ⊕ means exclusive or operation. Essentially, the Hamming distance in
Equation 6 is calculated by counting the number of different bits between vectors y and y′.
The 1-opt operator defines the set of feasible 1-opt strokes while the number of feasible 1-opt
strokes determines the size of neighborhood.
As illustrated by Algorithm 2, the local search can be described as follows (Michalewicz &
Fogel, 2004):

• The initial solution is generated that becomes the current solution (procedure
generate_initial_solution).

• The current solution is transformed with k − opt strokes and the given solution y′ is
evaluated (procedure f ind_next_neighbor).

• If the new solution y′ is better than the current y the current solution is replaced. On the
other hand, the current solution is kept.

• Lines 2 to 7 are repeated until the set of neighbors is not empty (procedure
set_o f _neighbor_empty).

In summary, the k − opt operator represents a basic element of the local search from
which depends how exhaustive the neighborhood will be discovered. Therefore, the
problem-specific knowledge needs to be incorporated by building of the efficient operator.

3.3 The neutral survivor selection

A genotype diversity is one of main prerequisites for the efficient self-adaptation. The smaller
genotypic diversity causes that the population is crowded in the search space. As a result,
the search space is exploited. On the other hand, the larger genotypic diversity causes that
the population is more distributed within the search space and therefore, the search space is
explored (Bäck, 1996). Explicitly, the genotype diversity of population is maintained with
a proposed neutral survivor selection that is inspired by the neutral theory of molecular
evolution (Kimura, 1968), where the neutral mutation determines to the individual three
possible destinies, as follows:

• the fittest individual can survive in the struggle for existence,

• the less fitter individual is eliminated by the natural selection,

• individual with the same fitness undergo an operation of genetic drift, where its survivor
is dependent on a chance.

Each candidate solution represents a point in the search space. If the fitness value is assigned
to each feasible solution then these form a fitness landscape that consists of peeks, valleys
and plateaus (Wright, 1932). In fact, the peaks in the fitness landscape represents points
with higher fitness, the valleys points with the lower fitness while plateaus denotes regions,

9Hybridization of Evolutionary Algorithms

www.intechopen.com



where the solutions are neutral (Stadler, 1995). The concept of the fitness landscape plays
an important role in evolutionary computation as well. Moreover, with its help behavior
of evolutionary algorithms by solving the optimization problem can be understood. If on the
search space we look from a standpoint of fitness landscape then the heuristical algorithm tries
to navigate through this landscape with aim to discover the highest peeks in the landscape
(Merz & Freisleben, 1999).
However, to determine how distant one solution is from the other, some measure is needed.
Which measure to use depends on a given problem. In the case of genetic algorithms, where
we deal with the binary solutions, the Hamming distance (Equation 6) can be used. When
the solutions are represented as real-coded vectors an Euclidian distance is more appropriate.
The Euclidian distance between two vectors x and y is expressed as follows:

dE(x, y) =

√

1

n
·

n

∑
i=1

(xi − yi)2, (7)

and measures the root of quadrat differences between elements of vectors x and y. The main
characteristics of fitness landscapes that have a great impact on the evolutionary search are
the following (Merz & Freisleben, 1999):

• the fitness differences between neighboring points in the fitness landscape: to determine
a ruggedness of the landscape, i.e., more rugged as the landscape, more difficultly the
optimal solution can be found;

• the number of peaks (local optima) in the landscape: the higher the number of peaks, the
more difficulty the evolutionary algorithms can direct the search to the optimal solution;

• how the local optima are distributed in the search space: to determine the distribution of
the peeks in the fitness landscape;

• how the topology of the basins of attraction influences on the exit from the local optima: to
determine how difficult the evolutionary search that gets stuck into local optima can find
the exit from it and continue with the discovering of the search space;

• existence of the neutral networks: the solutions with the equal value of fitness represent a
plateaus in the fitness landscape.

When the stochastic fitness function is used for evaluation of individuals the fitness landscape
is changed over time. In this way, the dynamic landscape is obtained, where the concept
of fitness landscape can be applied, first of all, to analyze the neutral networks that arise,
typically, in the matured generations. To determine, how the solutions are dissipated over the
search space some reference point is needed. For this reason, the current best solution y∗ in
the population is used. This is added to the population of µ solutions.
An operation of the neutral survivor selection is divided into two phases. In the first phase,
the evolutionary algorithm from the population of λ offsprings finds a set of neutral solutions
NS = {y1, . . . , yk} that represents the best solutions in the population of offsprings. If the
neutral solutions are better than or equal to the reference, i.e. f (yi) ≤ f (y∗) for i = 1, . . . , k,
then reference solution y∗ is replaced with the neutral solution yi ∈ NS that is the most
faraway from reference solution according to the Equation 7. Thereby, it is expected that
the evolutionary search is directed to the new, undiscovered region of the search space. In the
second phase, the updated reference solution y∗ is used to determine the next population of
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survivors. Therefore, all offsprings are ordered with regard to the ordering relation ≺ (read:
is better than) as follows:

f (y1) ≺ . . . ≺ f (yi) ≺ f (yi+1) ≺ . . . ≺ f (yλ), (8)

where the ordering relation ≺ is defined as

f (yi) ≺ f (yi+1) ⇒
{

f (yi) < f (yi+1),
f (yi) = f (yi+1) ∧ (d(yi, y∗) > d(yi+1, y∗)). (9)

Finally, for the next generation the evolutionary algorithm selects the best µ offsprings
according to the Equation 8. These individuals capture the random positions in the next
generation. Likewise the neutral theory of molecular evolution, the neutral survivor selection
offers to the offsprings three possible outcomes, as follows. The best offsprings survive.
Additionally, the offspring from the set of neutral solutions that is far away of reference
solution can become the new reference solution. The less fitter offsprings are usually
eliminated from the population. All other solutions, that can be neutral as well, can survive if
they are ordered on the first µ positions regarding to Equation 8.

4. The hybrid self-adaptive evolutionary algorithms in practice

In this section an implementation of the hybrid self-adaptive evolutionary algorithms
(HSA-EA) for solving combinatorial optimization problems is represented. The
implementation of this algorithm in practice consists of the following phases:

• finding the best heuristic that solves the problem on a traditional way and adapting it to
use by the self-adaptive evolutionary algorithm,

• defining the other elements of the self-adaptive evolutionary algorithm,

• defining the suitable local search heuristics, and

• including the neutral survivor selection.

The main idea behind use of the construction heuristics in the HSA-EA is to exploit the
knowledge accumulated in existing heuristics. Moreover, this knowledge is embedded
into the evolutionary algorithm that is capable to discover the new solutions. To work
simultaneously both algorithms need to operate with the same representation of solutions.
If this is not a case a decoder can be used. The solutions are encoded by the evolutionary
algorithm as the real-coded vectors and decoded before the construction of solutions. The
whole task is performed in genotype-phenotype mapping that is illustrated in Fig. 3.
The genotype-phenotype mapping consists of two phases as follows:

• decoding,

• constructing.

Evolutionary algorithms operate in genotypic search space, where each genotype consists of
real-coded problem variables and control parameters. For encoded solution only the problem
variables are taken. This solution is further decoded by decoder into a decoded solution
that is appropriate for handling of a construction heuristic. Finally, the construction heuristic
constructs the solution within the original problem context, i.e., problem solution space. This
solution is evaluated by the suitable evaluation function.
The other elements of self-adaptive evolutionary algorithm consists of:
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Fig. 3. The genotype-phenotype mapping by hybrid self-adaptive evolutionary algorithm

Algorithm 3 Hybrid Self-Adaptive Evolutionary Algorithm.

1: t = 0;
2: Q(0) = initialization_procedure();

3: P(0) = evaluate_and_improve(Q(0));
4: while not termination_condition do
5: P′ = select_parent(P(t));
6: P′′ = mutate_and_crossover(P′);
7: P′′′ = evaluate_and_improve(P′′);
8: P(t+1) = select_survivor(P′′′);
9: t = t + 1;

10: end while

• evaluation function,

• population model,

• parent selection mechanism,

• variation operators (mutation and crossover), and

• initialization procedure and termination condition.

The evaluation function depends on a given problem. The self-adaptive evolutionary
algorithm uses the population model (µ, λ), where the λ offsprings is generated from the
µ parents. However, the parents that are selected with tournament selection (Eiben & Smith,
2003) are replaced by the µ the best offsprings according to the appropriate population model.
The ratio λ/µ ≈ 7 is used for the efficient self-adaptation (Eiben & Smith, 2003). Typically,
the normal uncorrelated mutation with n step sizes, discrete and arithmetic crossover are
used by the HSA-EA. Normally, the probabilities of mutation and crossover are set according
to the given problem. Selection of the suitable local search heuristics that improve the
current solution is a crucial for the performance of the HSA-EA. On the other hand, the
implementation of neutral survivor selection is straightforward. Finally, the scheme of the
HSA-EA is represented in the Algorithm 3.
In the rest of the chapter we present the implementation of the HSA-EA for the graph
3-coloring. This algorithm is hybridized with the DSatur (Brelaz, 1979) construction heuristic
that is well-known traditional heuristic for the graph 3-coloring.
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4.1 Graph 3-coloring

Graph 3-coloring can be informally defined as follows. Let assume, an undirected graph G =
(V, E) is given, where V denotes a finite set of vertices and E a finite set of unordered pairs of
vertices named edges (Murty & Bondy, 2008). The vertices of graph G have to be colored with
three colors such that no one of vertices connected with an edge is not colored with the same
color.
Graph 3-coloring can be formalized as constraint satisfaction problem (CSP) that is denoted
as a pair 〈S, φ〉, where S denotes a free search space and φ a Boolean function on S. The
free search space denotes the domain of candidate solutions x ∈ S and does not contain any
constraints, i.e., each candidate solution is feasible. The function φ divides the search space S
into feasible and unfeasible regions. The solution of constraint satisfaction problem is found
when all constraints are satisfied, i.e., when φ(x) = true.
However, for the 3-coloring of graph G = (V, E) the free search space S consists of all
permutations of vertices vi ∈ V for i = 1 . . . n. On the other hand, the function φ (also
feasibility condition) is composed of constraints on vertices. That is, for each vertex vi ∈ V
the corresponding constraint Cvi is defined as the set of constraints involving vertex vi, i.e.,
edges (vi, vj) ∈ E for j = 1 . . . m connecting to vertex vi. The feasibility condition is expressed
as conjunction of all constraints φ(x) = ∧vi∈VCvi(x).
Direct constraint handling in evolutionary algorithms is not straightforward. To overcome this
problem, the constraint satisfaction problems are, typically, transformed into unconstrained
(also free optimization problem) by the sense of a penalty function. The more the infeasible
solution is far away from feasible region, the higher is the penalty. Moreover, this penalty
function can act as an evaluation function by the evolutionary algorithm. For graph 3-coloring
it can be expressed as

f (x) =
n

∑
i=0

ψ(x, Cvi), (10)

where the function ψ(x, Cvi) is defined as

ψ(x, Cvi) =

{

1 if x violates at least one cj ∈ Cvi ,

0 otherwise.
(11)

Note that all constraints in solution x ∈ S are satisfied, i.e., φ(x) = true if and only if f (x) = 0.
In this way, the Equation 10 represents the feasibility condition and can be used to estimate the
quality of solution x ∈ S in the permutation search space. The permutation x determines the
order in which the vertices need to be colored. The size of the search space is huge, i.e., n!. As
can be seen from Equation 10, the evaluation function depends on the number of constraint
violations, i.e., the number of uncolored vertices. This fact causes that more solutions can have
the same value of the evaluation function. Consequently, the large neutral networks can arise
(Stadler, 1995). However, the neutral solutions are avoided if the slightly modified evaluation
function is applied, as follows:

f (x) =
n

∑
i=0

wi × ψ(x, Cvi), wi �= 0, (12)

where wi represents the weight. Higher than the value of weights harder the appropriate
vertex is to color.
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4.1.1 The hybrid self-adaptive evolutionary algorithm for graph 3-coloring

The hybrid self-adaptive evolutionary algorithm is hybridized with the DSatur (Brelaz, 1979)
construction heuristic and the local search heuristics. In addition, the problem specific
knowledge is incorporated by the initialization procedure and the neutral survivor selection.
In this section we concentrate, especially, on a description of those elements in evolutionary
algorithm that incorporate the problem specific knowledge. That are:

• the initialization procedure,

• the genotype-phenotype mapping,

• local search heuristics and

• the neutral survivor selection.

The other elements of this evolutionary algorithm, as well as neutral survivor selection, are
common and therefore, discussed earlier in the chapter.

The Initialization Procedure
Initially, original DSatur algorithm orders the vertices vi ∈ V for i = 1 . . . n of a given graph
G descendingly according to the vertex degrees denoted by dG(vi) that counts the number of
edges that are incident with the vertex vi (Murty & Bondy, 2008). To simulate behavior of the
original DSatur algorithm (Brelaz, 1979), the first solution in the population is initialized as
follows:

y
(0)
i =

dG(vi)

maxi=1...ndG(vi)
, for i = 1 . . . n. (13)

Because the genotype representation is mapped into a permutation of weights by decoder the
same ordering as by original DSatur is obtained, where the solution can be found in the first
step. However, the other µ − 1 solutions in the population are initialized randomly.

The Genotype-phenotype mapping
As illustrated in Fig. 3, the solution is represented in genotype search space as tuple
〈y1, . . . , yn, σ1, . . . , σn〉, where problem variables yi for i = 1 . . . n denote how hard the given
vertex is to color and control parameters σi for i = 1 . . . n mutation steps of uncorrelated
mutation. A decoder decodes the problem variables into permutation of vertices and
corresponding weights. However, all feasible permutation of vertices form the permutation
search space. The solution in this search space is represented as tuple 〈v1, . . . , vn, w1, . . . , wn〉,
where variables vi for i = 1 . . . n denote the permutation of vertices and variables wi

corresponding weights. The vertices are ordered into permutation so that vertex vi is
predecessor of vertex vi+1 if and only if wi ≥ wi+1. Values of weights wi are obtained by
assigning the corresponding values of problem variables, i.e. wi = yi for i = 1 . . . n. Finally,
DSatur construction heuristic maps the permutation of vertices and corresponding weights
into phenotypic solution space that consists of all possible 3-colorings ci. Note that the size
of this space is 3n. DSatur construction heuristic acts like original DSatur algorithm (Brelaz,
1979), i.e. it takes the permutation of vertices and color these as follows:

• the heuristic selects a vertex with the highest saturation, and colors it with the lowest of
the three colors;

• in the case of a tie, the heuristic selects a vertex with the maximal weight;

• in the case of a tie, the heuristic selects a vertex randomly.
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Algorithm 4 Evaluate and improve. y: solution.

1: est = evaluate(y);
2: repeat
3: climbing = FALSE;
4: y′ = k_move(y);
5: ls_est = evaluate(y′);
6: if ls_est < est then
7: y = y′;
8: est = ls_est;
9: climbing = TRUE;

10: end if
11: until climbing = TRUE

The main difference between this heuristic and the original DSatur algorithm is in the second
step where the heuristic selects the vertices according to the weights instead of degrees.

Local Search Heuristics
The current solution is improved by a sense of local search heuristics. At each evaluation
of solution the best neighbor is obtained by acting of the following original local search
heuristics:

• inverse,

• ordering by saturation,

• ordering by weights, and

• swap.

The evaluation of solution is presented in Algorithm 4 from which it can be seen that the
local search procedure (k_move(y)) is iterated until improvements are perceived. However,
this procedure implements all four mentioned local search heuristics. The best neighbor is
generated from the current solution by local search heuristics with k-exchanging of vertices.
In the case, the best neighbor is better than the current solution the later is replaced by the
former.
In the rest of the subsection, an operation of the local search heuristics is illustrated in Fig. 4-7
by samples, where a graph with nine vertices is presented. The graph is composed of a
permutation of vertices v, corresponding coloring c, weights w and saturation degrees d.

Fig. 4. Inverse local search heuristic

The inverse local search heuristic finds all uncolored vertices in a solution and inverts their
order. As can be shown in Fig. 4, the uncolored vertices 4, 6 and 8 are shadowed. The best
neighbor is obtained by inverting of their order as is presented on right-hand side of this
figure. The number of vertex exchanged is dependent of the number of uncolored vertices
(k − opt neighborhood).
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Fig. 5. Ordering by saturation local search heuristic

The ordering by saturation local search heuristic acts as follows. The first uncolored vertex
is taken at the first. To this vertex a set of adjacent vertices are selected. Then, these vertices
are ordered descending with regard to the values of saturation degree. Finally, the adjacent
vertex with the highest value of saturation degree in the set of adjacent vertices is swapped
with the uncolored vertex. Here, the simple 1-opt neighborhood of current solution is defined
by this local search heuristic. In the example on Fig. 5 the first uncolored vertex 4 is shadowed,
while its adjacent vertices 1, 6 and 7 are hatched. However, the vertices 1 and 7 have the same
saturation degree, therefore, the vertex 7 is selected randomly. Finally, the vertices 4 in 7 are
swapped (right-hand side of Fig. 5).

Fig. 6. Ordering by weights local search heuristic

When ordering of weights, the local search heuristic takes the first uncolored vertex and
determines a set of adjacent vertices including it. This set of vertices is then ordered
descending with regard to the values of weights. This local search heuristic determines
the k − opt neighborhood of current solution, where k is dependent of a degree of the first
uncolored vertex. As illustrated by Fig. 6, the uncolored vertex 4 is shadowed, while its
adjacent vertices 1, 6 and 7 are hatched. The appropriate ordering of the selected set of vertices
is shown in the right-hand of Fig. 6 after the operation of the local search heuristic.

Fig. 7. Swap local search heuristic

The swap local search heuristic finds the first uncolored vertex and descendingly orders the
set of all predecessors in the solution according to the saturation degree. Then, the uncolored
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vertex is swapped with the vertex from the set of predecessors with the highest saturation
degree. When more vertices with the same highest saturation degree are arisen, the subset of
these vertices is determined. The vertex from this subset is then selected randomly. Therefore,
the best neighbor of the current solution is determined by an exchange of two vertices (1-opt
neighborhood). As illustrated in Fig. 7, the first uncolored vertex 4 is shadowed, while the
vertices 0 and 4 that represent the subset of vertices with the highest saturation are hatched.
In fact, the vertex 0 is selected randomly and the vertices 0 and 4 are swapped as is presented
in right-hand of Fig. 7.

4.1.2 Analysis of the hybrid self-adaptive evolutionary algorithm for graph 3-coloring

The goal of this subsection is twofold. At the first, an influence of the local search heuristics on
results of the HSA-EA is analyzed in details. Further, a comparison of the HSA-EA hybridized
with the neutral survivor selection and the HSA-EA with the deterministic selection is made.
In this context, the impact of the heuristic initialization procedure are taken into consideration
as well.
Characteristics of the HSA-EA used in experiments were as follows. The normal distributed
mutation was employed and applied with mutation probability of 1.0. The crossover was not
used. The tournament selection with size 3 selects the parents for mutation. The population
model (15, 100) was suitable for the self-adaptation because the ratio between parents and
generated offspring amounted to 100/15 ≈ 7 as recommended by Bäck (1996). As termination
condition, the maximum number of evaluations to solution was used. Fortunately, the average
number of evaluations to solution (AES) that counts the number of evaluation function calls
was employed as the performance measure of efficiency. In addition, the average number
of uncolored nodes (AUN) was employed as the performance measure of solution quality.
This measure was applied when the HSA-EA does not find the solution and counts the
number of uncolored vertices. Nevertheless, the success rate (SR) was defined as the primary
performance measure and expressed as the ratio between the runs in which the solution was
found and all performed runs.
The Culberson (2008) random graph generator was employed for generation of random
graphs that constituted the test suite. It is capable to generate the graphs of various
types, number of vertices, edge densities and seeds of random generator. In this study we
concentrated on the equi-partite type of graphs. This type of graphs is not the most difficult to
color but difficult enough for many existing algorithms (Culberson & Luo, 2006). The random
graph generator divides the vertices of graph into three color sets before generating randomly.
In sense of equi-partite random graph, these color sets are as close in size as possible.
All generated graphs consisted of n = 1, 000 vertices. An edge density is controlled by
parameter p of the random graph generator that determines probability that two vertices
vi and vj in the graph G are connected with an edge (vi, vj) (Chiarandini & Stützle, 2010).
However, if p is small the graph is not connected because the edges are sparse. When
p is increased the number of edges raised and the graph becomes interconnected. As a
result, the number of constraints that needs to be satisfied by the coloring algorithm increases
until suddenly the graph becomes uncolorable. This occurrence depends on a ratio between
the number of edges and the number of vertices. The ratio is referred to as the threshold
(Hayes, 2003). That is, in the vicinity of the threshold the vertices of the random generated
graph becomes hard to color or even the graph becomes uncolorable. Fortunately, the graph
instances with this ratio much higher that the threshold are easy to color because these graphs
are densely interconnected. Therefore, many global optima exist in the search space that can
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be discovered easy by many graph 3-coloring algorithms. Interestingly, for random generated
graphs the threshold arises near to the value 2.35 (Hayes, 2003). For example, the equi-partite
graph generated with number of vertices 1, 000 and the edge density determined by p = 0.007
consists of 2,366 edges. Because the ratio 2, 366/1, 000 = 2.37 is near to the threshold, we can
suppose that this instance of graph is hard to color. The seed s of random graph generator
determines which of the two vertices vi and vj are randomly drawn from different 3-color
sets to form an edge (vi, vj) but it does not affect the performance of the graph 3-coloring
algorithm (Eiben et al., 1998). In this study, the instances of random graphs with seed s = 5
were employed.
To capture a phenomenon of the threshold, the parameter p by generation of the equi-partite
graphs was varied from p = 0.005 to p = 0.012 in a step of 0.0005. In this way, the test suite
consisted of 15 instances of graphs, in which the hardest graph with p = 0.007 was presented
as well. In fact, the evolutionary algorithm was applied to each instance 25 times and the
average results of these runs were considered.

The impact of the local search heuristics
In this experiments, the impact of four implemented local search heuristics on results of the
HSA-EA was taken into consideration. Results of the experiments are illustrated in the Fig. 8
that is divided into six graphs and arranged according to the particular measures SR, AES
and AUN. The graphs on the left side of the figure, i.e. 8.a, 8.c and 8.e, represent a behavior of
the HSA-EA hybridized with four different local search heuristics. This kind of the HSA-EA
is referred to as original HSA-EA in the rest of chapter.
A seen by the Fig. 8.a, no one of the HSA-EA versions was succeed to solve the hardest
instance of graph with p = 0.007. The best results in the vicinity of the threshold is observed
by the HSA-EA hybridizing with the ordering by saturation local search heuristic (SR = 0.36
by p = 0.0075). The overall best performance is shown by the HSA-EA using the swap local
search heuristic. Although the results of this algorithm is not the best by instances the nearest
to the threshold (SR = 0.2 by p = 0.0075), this local search heuristic outperforms the other by
solving the remaining instances in the collection.
In average, results according to the AES (Fig. 8.c) show that the HSA-EA hybridized with
the swap local search heuristic finds the solutions with the smallest number of the fitness
evaluations. However, troubles are arisen in the vicinity of the threshold, where the HSA-EA
with other local search heuristics are faced with the difficulties as well. Moreover, at the
threshold the HSA-EA hybridizing with all the used local search heuristics reaches the limit
of 300,000 allowed function evaluations.
The HSA-EA hybridizing with the ordering by saturation local search heuristic demonstrates
the worst results according to the AUN, as presented in the Fig. 8.e. The graph instance by
p = 0.0095 was exposed as the most critical by this algorithm (AUN = 50) although this is
not the closest to the threshold. In average, when the HSA-EA was hybridized with the other
local search heuristics than the ordering by saturation, all instances in the collection were
solved with less than 20 uncolored vertices.
In the right side of the Fig. 8, results of different versions of the HSA-EA are collected. The
first version that is designated as None operates with the same parameters as the original
HSA-EA but without the local search heuristics. The label LS in this figure indicates the
original version of the HSA-EA. Finally, the label Init denotes the original version of the
HSA-EA with the exception of initialization procedure. While all considered versions of the
HSA-EA uses the heuristic initialization procedure this version of the algorithm employs the
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Fig. 8. Influence of local search heuristics on results of HSA-EA solving equi-partite graphs
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pure random initialization. Note, in the figure, results for this version of the HSA-EA were
obtained after 25 runs, while for the versions of the HSA-EA with the local search heuristics
the average results were obtained after performing of all four local search heuristics, i.e. after
100 runs.
In Fig. 8.b results of different versions of the HSA-EA according to the SR are presented. The
best results by the instances the nearest to the threshold (p ∈ [0.0075 . . . 0.008]) are observed
by the original HSA-EA. Conversely, the HSA-EA with the random initialization procedure
(Init) gained the worst results by the instances the nearest to the threshold, while these were
better while the edge density was raised regarding the original HSA-EA. The turning point
represents the instance of graph with p = 0.008. After this point is reached the best results
were overtaken by the HSA-EA with the random initialization procedure (Init).
In contrary, the best results by the instances the nearest to the threshold according to the
AES was observed by the HSA-EA without local search heuristics (None). Here, the turning
point regarding the performance of the HSA-EA (p = 0.008) was observed as well. After this
point results of the HSA-EA without local search heuristics becomes worse. Conversely, the
HSA-EA with random initialization procedure that was the worst by the instances before the
turning point becomes the best after this.
As illustrated by Fig. 8.f, all versions of the HSA-EA leaved in average less than 30 uncolored
vertices by the 3-coloring. The bad result by the original HSA-EA coloring the graph with
p = 0.0095 was caused because of the ordering by saturation local search heuristic that got
stuck in the local optima. Nevertheless, note that most important measure is SR.

The impact of the neutral survivor selection
In this experiments the impact of the neutral survivor selection on results of the HSA-EA was
analyzed. In this context, the HSA-EA with deterministic survivor selection was developed
with the following characteristic:

• The Equation 12 that prevents the generation of neutral solutions was used instead of the
Equation 10.

• The deterministic survivor selection was employed instead of the neutral survivor
solution. This selection orders the solutions according to the increasing values of the fitness
function. In the next generation the first µ solutions is selected to survive.

Before starting with the analysis, we need to prove the existence of neutral solution and to
establish they characteristics. Therefore, a typical run of the HSA-EA with neutral survivor
selection is compared with the typical run of the HSA-EA with the deterministic survivor
selection. As example, the 3-coloring of the equi-partite graph with p = 0.010 was taken into
consideration. This graph is easy to solve by both versions of the HSA-EA. Characteristics of
the HSA-EA by solving it are presented in Fig. 9.
In the Fig. 9.a the best and the average number of uncolored nodes that were achieved by the
HSA-EA with neutral and the HSA-EA with deterministic survivor selection are presented.
The figure shows that the HSA-EA with the neutral survivor selection converge to the optimal
solution very fast. To improve the number of uncolored nodes from 140 to 10 only 10,000
solutions to evaluation were needed. After that, the improvement stagnates (slow progress
is detected only) until the optimal solution is found. The closer look at the average number
of uncolored nodes indicates that this value changed over every generation. Typically, the
average fitness value is increased when the new best solution is found because the other
solutions in the population try to adapt itself to the best solution. This self-adaptation consists
of adjusting the step sizes that from larger starting values becomes smaller and smaller over
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Fig. 9. Characteristics of the HSA-EA runs on equi-partite graph with p = 0.010

the generations until the new best solution is found. The exploring of the search space is
occurred by this adjusting of the step sizes. Conversely, the average fitness values are changed
by the HSA-EA in the situations where the best values are not found as well. The reason for
that behavior is the stochastic evaluation function that can evaluate the same permutation of
vertices always differently.
More interestingly, the neutral solution occurs when the average fitness values comes near
to the best (Fig. 9.b). As illustrated by this figure, the most neutral solutions arise in the later
generations when the population becomes matured. In example from Fig. 9.b, the most neutral
solutions occurred after 20,000 and 30,000 evaluations of fitness function, where almost 30%
of neutral solution occupied the current population.
In contrary, the HSA-EA with deterministic survivor selection starts with the lower number
of uncolored vertices (Fig. 9.c) than the HSA-EA with neutral selection. However, the
convergence of this algorithm is slower than by its counterpart with the neutral selection.
A closer look at the average fitness value uncovers that the average fitness value never come
close to the best fitness value. A falling and the rising of the average fitness values are caused
by the stochastic evaluation function.
In the Fig. 9.d a diversity of population as produced by the HSA-EA with different survivor
selections is presented. The diversity of population is calculated as a standard deviation of the
vector consisting of the mean weight values in the population. Both HSA-EA from this figure
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lose diversity of the initial population (close to value 8.0) very fast. The diversity falls under
the value 1.0. Over the generations this diversity is raised until it becomes stable around the
value 1.0. Here, the notable differences between curves of both HSA-EA are not observed.
To determine what impact the neutral survivor selection has on results of the HSA-EA, a
comparison between results of the HSA-EA with neutral survivor selection (Neutral) and the
HSA-EA with deterministic survivor selection (Deter) was done. However, both versions
of the HSA-EA run without local search heuristics. Results of these are represented in the
Fig. 10. As reference point, the results of the original HSA-EA hybridized with the swap local
search heuristic (Re f ) that obtains the overall best results are added to the figure. The figure
is divided in two graphs where the first graph (Fig. 10.a) presents results of the HSA-EA with
heuristic initialization procedure and the second graph (Fig. 10.b) results of the HSA-EA with
random initialization procedure according to the SR.
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Fig. 10. Comparison of the HSA-EA with different survivor selections according to the SR

As shown by the Fig. 10.a the HSA-EA with neutral survivor selection (Neutral) exposes
better results by the instances near to the threshold (p ∈ [0.0075 . . . 0.008]) while the HSA-EA
with deterministic survivor selection (Deter) was slightly better by the instance of graph with
p = 0.0085. Interestingly, while the curve of the former regularly increases the curve of the
later is sawing because it raises and falls from the instance to the instance. In contrary, from
the Fig. 10.b it can be seen that the HSA-EA with neutral survivor selection outperforms its
counterpart with deterministic survivor selection by all instances of random graphs if the
random initialization procedure is applied.
In summary, the original HSA-EA with swap local search heuristic used as reference
outperforms all observed versions of the HSA-EA.

4.1.3 Summary

In this subsection the characteristics of the HSA-EA were studied on the collection of
equi-partite graphs, where we focused on the behavior of the algorithm in the vicinity of the
threshold. Therefore, an impact of the hybridizing elements, like the initialization procedure,
the local search heuristics, and neutral survivor selection, on results of the HSA-EA are
compared. The results of these comparisons in vicinity of the threshold (p ∈ [0.0065 . . . 0.010])
are presented in Table 1, where these are arranged according to the applied selection (column
Sel.), the local search heuristics (column LS) and initialization procedure (column Init).
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In column SR average results of the corresponding version of the HSA-EA are presented.
Additionally, the column SRavg1 denotes the averages of the HSA-EA using both kind of
initialization procedure. Finally, the column SRavg2 represents the average results according
to SR that are dependent on the different kind of survivor selection only.

Sel. LS Init SR SRavg1 SRavg2

Neut.
No

Rand1 0.52
0.56

0.62
Heur1 0.61

Yes
Rand2 0.66

0.66
Heur2 0.67

Det.
No

Rand3 0.46
0.53

0.57
Heur3 0.61

Yes
Rand4 0.60

0.60
Heur4 0.61

Table 1. Average results of various versions of the HSA-EA according to the SR

As shown by the table 1, results of the HSA-EA with deterministic survivor selection without
local search heuristics and without random initialization procedure (SR = 0.46, denoted as
Rand3) were worse than results or its counterpart with neutral survivor selection (SR = 0.52,
denoted as Rand1) in average for more than 10.0%. Moreover, the local search heuristics
improved results of the HSA-EA with neutral survivor selection and random initialization
procedure from SR = 0.52 (denoted as Rand1) to SR = 0.66 (denoted as Rand2) that amounts
to almost 10.0%. Finally, the heuristic initialization improved results of the HSA-EA with
neutral selection and with local search heuristics from SR = 0.66 (denoted as Rand2) to
SR = 0.67 (denoted as Heur2), i.e. for 1.5%. Note that the SR = 0.67 represents the best
result that was found during the experimentation.
In summary, the construction heuristics has the most impact on results of the HSA-EA. That
is, the basis of the graph 3-coloring represents the self-adaptive evolutionary algorithm with
corresponding construction heuristic. However, to improve results of this base algorithm
additional hybrid elements were developed. As evident, the local search heuristics improves
the base algorithm for 10.0%, the neutral survivor selection for another 10.0% and finally the
heuristic initialization procedure additionally 1.5%.

5. Conclusion

Evolutionary algorithms are a good general problem solver but suffer from a lack of domain
specific knowledge. However, the problem specific knowledge can be added to evolutionary
algorithms by hybridizing different parts of evolutionary algorithms. In this chapter, the
hybridization of search and selection operators are discussed. The existing heuristic function
that constructs the solution of the problem in a traditional way can be used and embedded
into the evolutionary algorithm that serves as a generator of new solutions. Moreover, the
generation of new solutions can be improved by local search heuristics, which are problem
specific. To hybridized selection operator a new neutral selection operator has been developed
that is capable to deal with neutral solutions, i.e., solutions that have the different genotype
but expose the equal values of objective function. The aim of this operator is to directs
the evolutionary search into new undiscovered regions of the search space, while on the
other hand exploits problem specific knowledge. To avoid wrong setting of parameters that
control the behavior of the evolutionary algorithm, the self-adaptation is used as well. Such
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hybrid self-adaptive evolutionary algorithms have been applied to the the graph 3-coloring
that is well-known NP-complete problem. This algorithm was applied to the collection of
random graphs, where the phenomenon of a threshold was captured. A threshold determines
the instanced of random generated graphs that are hard to color. Extensive experiments
shown that this hybridization greatly improves the results of the evolutionary algorithms.
Furthermore, the impact of the particular hybridization is analyzed in details as well.
In continuation of work the graph k-coloring will be investigated. On the other hand, the
neutral selection operator needs to be improved with tabu search that will prevent that the
reference solution will be selected repeatedly.
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