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1. Introduction 

In amniotes, mesoderm and endoderm arise during gastrulation, the process that derives 
the three primary germ layers and establishes the basic body plan of the embryo. However, 
in recent years there has been a new appreciation for a very early stage of development, 
when some blastomeres are bipotential and may still contribute to either mesoderm or 
endoderm (but not ectoderm). This tissue has been termed “mesendoderm” (or sometimes 
“endomesoderm”, but we will use the more common term). Specifically, experiments in 
nematodes, sea urchins, frogs, or zebrafish showed that when certain single cells were 
marked at the mid-blastula stage, the labeled cell can contribute to both mesoderm (e.g. 
blood, heart, muscle) and endoderm (e.g. gut, liver, pancreas) derivatives. Remarkably, the 
signaling molecules and genetic programs appear to be well conserved across these species 
(reviewed in Rodaway and Patient, 2001; Wardle and Smith, 2006). Most prominently this 
involves the nodal signaling pathway (Schier, 2003) and several families of regulatory 
proteins, including those encoding T-box and GATA transcription factors (Fig. 1). Since 
zebrafish and frogs are vertebrates, it seems likely that the same developmental programs 
should function in other vertebrates, including mouse and man. 
In the mouse, the three germ layers are derived from the epiblast through gastrulation 
beginning at approximately day 6.5 of gestation. After implantation, the blastocyst, 
comprising the inner cell mass inside the trophectoderm, develops into an elongated 
structure composed of the ectoplacental cone, the extraembryonic ectoderm, the visceral 
endoderm and the epiblast. Gastrulation begins with the formation of a transient structure 
known as the primitive streak (PS) in the presumptive posterior end of the embryo through 
which uncommitted epiblast cells mobilize and egress to form the mesoderm and the 
endoderm (Tam et al., 2007). On the basis of developmental potential and gene expression 
patterns, the PS can be divided into anterior, mid and posterior regions, with mesoderm 
developing from the posterior region and the endoderm developing from the most anterior 
domain. While the close developmental association between endoderm and mesoderm 
supports the notion that mesendoderm also generates these two germ layers in mammals, 
the concept is most strongly supported by studies in the embryonic stem cell system (Tada 
et al., 2005).   
Mouse embryonic stem (ES) cells generated from the blastocyst inner cell mass can be 
maintained and expanded as a pure undifferentiated population of cells when grown on 
mouse feeder cells in media containing leukemia inhibitory factor (LIF) and serum (Evans 
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and Kaufman, 1981). More importantly, ES cells are pluripotent and can be differentiated to 
a broad spectrum of lineages in vitro, providing a putative source of replacement cells for 
regenerative therapies. The isolation of human ES cells (hES) increased the interest in the 
possibility of cell therapies using embryonic stem cells (Thomson et al., 1998). In vitro 
differentiation of ES cells is induced by removing the ES cells from the feeder layer, or by 
removing LIF from the culture medium. The cells can be differentiated in aggregates of cells 
called embryoid bodies (EBs) that are grown in suspension (Fig. 2), in monolayer on 
extracellular matrix proteins, or in layers cultured on supportive stromal cells (Murry and 
Keller, 2008). Alternatively, methods have been developed for ES cell differentiation using 
directed differentiation, involving the addition of factors or small molecules that promote 
the development, differentiation, and maturation of the ES cells toward specific lineages. 
 

 

Fig. 1. Shown is a schematized mid-blastula stage zebrafish embryo with the cellularized 
epiblast toward the animal pole at the top (blue), and the non-cellular yolk cell (yellow) 
toward the vegetal pole. Unknown signals from the yolk cell induce nodal signaling (black 
arrows) from the margin (black) to induce bipotential mesendoderm blastomeres. These will 
generate mesoderm (red) and endoderm (yellow) and associated tissues as indicated by the 
examples listed (lung, of course, by analogy for mammals) 

Directed differentiation provides great promise for generating clinically relevant cell types, 
including neurons, cardiomyocytes, hepatocytes, insulin-secreting pancreatic beta cells, etc. 
However, it is clearly not efficient to derive these specific cell types directly from ES cells. 
Rather, the best strategy is to exploit our knowledge of how the embryo normally generates 
the cell types during embryonic development, and then applying this knowledge to educate 
and transition the ES cells toward the desired fate. The fact of a mesendodermal transition 
stage presents special challenges for harvesting abundant and pure populations of specific 
progenitors or differentiated cell types from mesoderm or endoderm. During this stage, the 
same signals are essential for progenitor specification and commitment for multiple 
different cell types. In this review, we consider progress in directed differentiation for three 
mesendodermal derivatives: cardiomyocytes (from mesoderm), lung, and liver (both from 
closely related endoderm). For each tissue, we review what is known about the normal 
developmental program (signaling pathways and transcriptional regulators), and then 
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discuss progress in using mouse and human ES cells (and induced pluripotent, or iPS cells) 
to recapitulate these programs in vitro. Finally, we briefly describe the strategy we are 
taking to better understand the role of GATA factors as key components of specificity for 
derivation of mesendodermal cell types. 
 

 

Fig. 2. a) Representative colonies of pluripotent murine ES cells. b) When ES cells are 
harvested by dissociation and plated back into culture in the absence of LIF, they form 
round aggregates called embryoid bodies, as shown here. Cells commit to fates from all 
three germ layers, and differentiate in EBs with a time frame roughly equivalent to normal 
mouse development 

2. Directed differentiation of cardiac cells 

Directed differentiation of stem cells toward cardiac tissue forms the basis for a diverse field 
of research focused on cellular-based therapeutics for myocardial infarction, heart failure, 
cardiomyopathies, and congenital cardiac defects. Relatively efficient protocols are 
documented that derive cardiovascular progenitor cells (CPCs) from murine and human ES 
and iPS cells. Under the appropriate conditions, the pluripotent cells generate CPCs and 
differentiated cardiomyocytes (CMs) (Boheler et al., 2002; Irion et al., 2008; Mauritz et al., 
2008; Wei et al., 2005). Differentiation within the CPC model systems mirrors that of 
embryonic development, thus providing an accurate and accessible in vitro system that 
facilitates translational research. Major challenges remain to generate in a rationale manner 
the diversity of cardiac cells, to generate mature and functioning cardiac cells, and to 
integrate these cells in a productive manner into cardiac tissue. 

2.1 Normal cardiogenesis  

Cardiac development in mammalian embryos is defined by the expression of a set of 
conserved temporal and spatial markers. CPCs are derived from mesoderm, marked by the 
transcription factor brachyury and arising from the PS during gastrulation under the 
influence of the Wnt, BMP, and Nodal pathways (Tam and Behringer, 1997). Two waves of 
epiblast cells that are double-positive for both brachyury and fetal liver kinase-1 (Flk1) (also 
called kinase insert domain receptor, KDR) exit the PS. The first group is c-Kit positive and 
represents the hematopoietic mesoderm, and the second is the c-Kit negative cardiac 
mesoderm (Irion et al., 2008). In both hES and mES, early activation of the WNT, BMP, and 
Nodal pathways induces formation of cardiac mesoderm (Gadue et al., 2006; Laflamme et 
al., 2007; Lindsley et al., 2006). However, additional studies demonstrated that subsequent 
WNT pathway inhibition is required to specify cardiac mesoderm, likely at a time-point 
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after exit from the PS (Naito et al., 2006; Ueno et al., 2007). The CPCs within cardiac 
mesoderm are identified by their expression of Flk1/KDR and the transcription factor 
Nkx2.5 (Moretti et al., 2006; Wu et al., 2006). They proceed to the anterior region of the 
embryo and form a structure known as the cardiac crescent, which fuses to form the 
primitive heart tube. In addition to Nkx2.5, the GATA and T-box families of transcription 
factors are key regulators of cardiac development. Their precise roles are yet to be defined; 
however, the GATA4/5/6 and the TBX1-5, 18, and 20 genes are required for cardiogenesis 
in all vertebrate models (Peterkin et al., 2005; Plageman and Yutzey, 2005). Combinations of 
GATA, TBX and NKX2 genes are likely essential to specify cardiac fate from precardiac 
mesoderm. This has been demonstrated through loss-of-function experiments in both 
zebrafish (Holtzinger and Evans, 2007) and mouse (Zhao et al., 2008). Loss of single genes 
leads to morphological defects, because sister genes can functionally compensate for an 
earlier function in cell specification. Recently, it was shown that expression of Gata4, Tbx5, 
and Mef2c is sufficient to reprogram fibroblasts to a cardiac fate (Ieda et al., 2010), 
supporting key functions for these genes in cardiac cell specification. There are two 
subpopulations of CPCs within the developing heart – the first heart field, which gives rise 
to the left ventricle and atria, and the second heart field, which expresses Isl1 and Fgf10 and 
contributes to the right ventricle, outflow tract, and atria (Buckingham et al., 2005). 

2.2 Directed differentiation techniques and cardiac subtype generation 

Directed differentiation techniques based on recapitulating normal developmental 
pathways have been employed to enhance CPC generation and CM differentiation in both 
ES & iPS systems. Spontaneously beating CMs form within murine and human embryoid 
bodies in suspension cultures at a relatively low efficiency (Doetschman et al., 1985). Co-
culture of hES with END-2 cells, which is thought to provide paracrine signals specifying 
cardiac fate, results in a relatively heterogeneous population of differentiated cells 
(Mummery et al., 2003). Fetal calf serum formed the basis of cell culture and CM 
differentiation media in many early studies; however, this is wrought with the inherent 
inter-batch variability of cytokines. To avoid this potential pitfall, serum-free cultures were 
developed and enhanced with ActivinA (a Nodal pathway activator), BMP, and Wnt 
inhibitors, to preferentially form CMs in both mES and hES. This strategy has been further 
adapted to a high-density monolayer, feeder cell-free system for hES differentiation 
(Laflamme et al., 2007).  
Mouse ES cells display a temporal response to BMP, Wnt, and Activin, wherein there are 
defined time points of responsiveness and non-responsiveness to these inducing factors 
(Jackson et al., 2010). The presence of BMP and Wnt appears to be critical for CM 
specification between days 1.5 through 3 of differentiation. Nodal signaling is required from 
differentiation day 2 through 5. Thus, the addition of inducing factors can be optimized for 
CM development. Furthermore, directed differentiation would ideally permit the efficient 
production of individual subtypes of cardiac cells and their progenitors for therapeutic 
application. Nkx2.5-expressing mES-derived CMs have been shown to form ventricular, 
atrial, and pacemaker type cells (Hidaka et al., 2003). The precise details of individual 
lineage development remain to be elucidated. Lineage specification seems to occur at a 
relatively early time point, as several groups have shown differential induction consistent 
with particular CM subtypes (He et al., 2003; Kolossov et al., 2005; Mummery et al., 2003; 
Satin et al., 2004). Cell structure (as observed by electron microscopy) and gene expression 
profiles in CPC model systems progress in parallel to known developmental, 
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electrophysiological, and contractile maturation profiles, and several groups have been able 
to generate and select for subtype-specific CMs using fluorescent protein tagging 
techniques. For example, ventricular-like CMs were isolated by selection using eGFP 
expression under the control of the myosin light chain (MLC) – 2v promoter (Muller et al., 
2000). Likewise, Nkx2.5 and Isl1 positive progenitors differentiate into ventricular CMs 
(Domian et al., 2009), while connexin 40 and 45 positive pacemaker-like CMs are generated 
under the influence of endothelin (Gassanov et al., 2004).  

2.3 Comparison of model systems 

Cardiac development is highly conserved between mouse and human models. Findings in 
mES models have been generally reproducible in hES models and vice versa. Since their 
initial description in 2006, iPS cells (Takahashi and Yamanaka, 2006) appear to be a 
comparable model to ES systems for generating CMs, as shown by electrophysiological and 
CM-specific protein expression profiles (Mauritz et al., 2008). Nonetheless, there are 
differences among these in vitro model systems that represent potential confounders for 
generalizing results to in vivo systems and considering clinical applications. CMs derived 
from hES proliferate to a much higher degree than those derived from mES, suggesting that 
there are additional poorly understood growth signaling pathways involved (McDevitt et 
al., 2005; Snir et al., 2003; Xu et al., 2002). However, hES differentiate at a slower pace and 
with a lower efficiency. The miPS are similarly slow to differentiate, form smaller CMs, and 
may have a predilection for a ventricular phenotype (Kuzmenkin et al., 2009; Mauritz et al., 
2008). 

2.4 Clinical applications 

ES cell-based therapeutics for cardiac pathology rely on the ability to develop non-
immunogenic, non-neoplastic, functioning CMs or CM progenitors with high fidelity and 
high efficiency that can be localized to a specific target region. The mES and hES cell derived 
CMs form stable myocardial grafts in a variety of immuno-compromised animal hosts (Dai 
et al., 2007; Kehat et al., 2004; Klug et al., 1996; Laflamme et al., 2005) Moreover, hES derived 
CMs have been shown to restore function in cardiac damaged models. They improve 
contractility for the infarcted murine heart and provide pacing activity in pig hearts that 
have undergone atrioventricular node ablation (Cai et al., 2007a; Kehat et al., 2004). 
Regardless of their direct therapeutic potential, both hES and hiPS already have great value 
as in vitro models for pharmaceutical testing, providing a method of noninvasive assessment 
of potential cardiotoxicity and arrhythmogenicity (Vidarsson et al., 2010).  

3. Directed differentiation of hepatocytes  

The liver is the largest internal organ with a mass that accounts for 2% to 5% of body weight. 
The liver is also the main detoxifying organ of the body and performs numerous essential 
metabolic, exocrine and endocrine functions. Metabolic functions include synthesis, storage, 
metabolism and redistribution of nutrients, carbohydrates, fats and vitamins and secretion 
of plasma proteins including albumin, clotting factors, and apolipoproteins. Endocrine 
functions include the secretion of insulin-like growth factors, angiotensinogen, and 
thrombopoietin. Exocrine secretion is mainly in the form of bile. In humans, the liver is 
composed of two lobes each subdivided into lobules, the basic architectural unit of the liver. 
Lobules are roughly hexagonal or pentagonal cylinders about 2mm high and 1mm in 
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diameter formed by single cell sheets of hepatocytes lined by sinusoidal capillaries that 
radiate toward a small branch of the hepatic vein that extends to the center of each lobule 
(Si-Tayeb et al., 2010a). At the periphery of each lobule, the interlobular bile ducts, the portal 
vein, and the hepatic artery run in parallel, forming the portal triad. The basal surface of 
hepatocytes absorbs metabolites and toxins from blood flowing from the portal vein and the 
hepatic artery through the sinusoidal capillaries, while bile is secreted from the apical 
surface of adjoining hepatocytes into the bile canaliculi, and then flows through the 
interlobular bile ducts to the extrahepatic bile ducts and into the gall bladder.  
The primary functional cell types of the liver are the hepatocytes and the cholangiocytes 
(biliary epithelial cells). Hepatocytes are polarized epithelial cells that account for near 80% 
of the liver volume (Blouin et al., 1977), and carry out most of the liver functions. 
Cholangiocytes account for almost 3% of the liver cell population and line the bile ducts 
contributing to bile transportation. Other liver cell types include endothelial cells from the 
sinusoids and other liver vasculature, Pit cells (liver natural killer cells), Kupffer cells 
(resident liver macrophages), and stellate cells.  

3.1 Embryonic endoderm development 

Hepatocytes and cholangiocytes are derived from the embryonic definitive endoderm (DE), 
while the remaining liver cell types are derived from mesoderm. In vertebrates, the different 
populations of the PS are dependent on different levels of Nodal signaling, with the anterior 
region that contains the DE requiring a higher and more sustained period of Nodal 
signaling for its specification (Lowe et al., 2001). A conserved network of transcription 
factors acting downstream of Nodal signaling drives DE specification. With variations in 
some species, this network includes FoxA2, Gata4 and Gata6, the T-box protein 
Eomesodermin (Eomes), Mix-like proteins, and Sox17. FoxA2, a member of the Forkhead 
family of transcription factors, is essential for endoderm differentiation. FoxA2 null embryos 
can form hindgut but not foregut or midgut endoderm (Dufort et al., 1998), and conditional 
inactivation has shown that this factor is required for the development of various 
endoderm-derived organs (Gao et al., 2008; Lee et al., 2005; Wan et al., 2004). Gata4, Gata5 
and Gata6 are involved in the specification and differentiation of the endoderm throughout 
evolution (Woodland and Zorn, 2008). In zebrafish and Xenopus, GATA factors are 
involved in endoderm patterning downstream of nodal, while in mouse Gata4 and Gata6 
have an additional role regulating extraembryonic endoderm development (Zorn and Wells, 
2009). However, a triple knockout mouse of all three GATA genes in epiblast-derived tissues 
has not been reported, leaving open the possibility that these genes are redundantly 
required for early endoderm development. There is precedence, since they are functionally 
redundant in a similar way at later stages (Holtzinger and Evans, 2007; Zhao et al., 2008). 
Eomes is also required for proper endoderm formation in the mouse (Arnold et al., 2008), 
whereas mouse Mixl1 is essential for definitive endoderm possibly through the control of 
mesendoderm development (Hart et al., 2002). Sox17 is also a key gene in mouse endoderm 
development that appears to be essential only for posterior endoderm. In the knockout 
mutant, anterior endoderm is generated, but posterior and lateral endoderm from midgut 
and hindgut are reduced and fail to expand (Kanai-Azuma et al., 2002). 
Initial endoderm patterning is coincident with the formation of DE during gastrulation. The 
cells emerging earlier from the PS will form the foregut and those emerging later will give 
rise to the embryonic midgut and hindgut during morphogenesis. Morphogenetic 
movements of the primitive gut begin when the sheet of epithelial DE surrounding the 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

277 

ventral side of the mouse embryo folds over to form two gut pockets (Lewis and Tam, 2006). 
Anterior axial and lateral endoderm folds ventrally to form the foregut pocket, whose 
opening moves posterior as the foregut develops, while the hindgut pocket opening moves 
anterior. Concurrently, the lateral endoderm folds ventrally to meet with the anterior and 
posterior folds at the yolk stalk, completing the formation of the gut tube (Zorn and Wells, 
2009). Thus, morphogenetic movements during gut tube formation allow the convergence of 
the lateral and medial endoderm progenitors from three spatially separated embryonic 
domains. The primitive gut tube is patterned along the anterior-posterior axis in a manner 
that presages the subsequent budding of gut-derived organs along the dorsal and ventral 
aspect of the foregut (Fig. 3). In addition, morphogenesis results in the close apposition of 
the foregut progenitors with liver potential and mesoderm from the lateral plate. This 
relationship is essential for liver specification by inductive signals from this nearby 
mesoderm. 
 

 

Fig. 3. Schematic illustrating the positional relationship for the various organ domains that 
emerge by budding from the foregut of the endoderm-derived gut tube at E 9.5 of mouse 
development 

3.2. Liver development 
Interaction between foregut endoderm and adjacent mesoderm appears to control two 
different steps at the onset of liver organogenesis. Initially, signals from the mesoderm 
regulate regional identity of the endoderm and establish foregut progenitors that are 
competent to develop into liver (Zorn and Wells, 2009). Genetic and chromatin occupancy 
studies indicate that FoxA2 and Gata4 factors either mark or help maintain the competence 
of the endoderm to activate liver genes such as albumin in response to inductive signals 
(Zaret et al., 2008). Competent cells then respond to several extracellular signals including 
members of the FGF and BMP families that induce specification to a hepatic fate. FGFs 
secreted by the cardiogenic mesoderm specifically induce mitogen-activated protein kinase 
(MAPK) signaling, but not phosphatidylinositol 3-kinase (PI3K) signaling during hepatic 
gene induction (Calmont et al., 2006). The role of FGF at the onset of liver development is 
evolutionarily conserved, as FGF also shows hepatogenic properties in frogs and fish. FGF 
signaling is not sufficient at this stage and BMP signaling from the septum transversum 
mesenchyme is also required for hepatic induction. BMP signaling may be mediated at least 
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in part by maintaining the expression of Gata4 that is essential for expression of albumin 
and other hepatic genes (Rossi et al., 2001). WNT signaling has also been implicated during 
hepatic induction but its role is complex and may not be evolutionarily conserved (Si-Tayeb 
et al., 2010a).  
 

 

Fig. 4. The schematic illustrates the transition stages that occur in ES cell-based hepatic 
differentiation cultures (top) relative to normal mouse development (bottom). Also shown 
are key signaling factors that have been found to strongly promote the transition in vitro 
(blue), based on the known developmental pathways that are required in vivo. This strategy 
therefore demonstrates an effective directed differentiation protocol [as developed by 
Gouon-Evans, et al. (2006)] 

Inductive signals from the cardiac mesoderm and septum transversum mesenchyme 
regulate the expression of a network of transcription factors, including Hex, Hnf1B, FoxA1, 
FoxA2 and Gata4, that is critical for the onset of hepatogenesis. At this stage the endoderm 
in the ventral floor of the foregut becomes thicker and expands to form an outgrowing bud 
of polarized proliferating cells that is separated from the surrounding mesenchyme by a 
basement membrane (Lemaigre, 2009). When the hepatic endoderm is specified and the liver 
bud begins to grow, the cells are referred to as hepatoblasts (Fig. 4). Soon after the liver bud 
is apparent, the basement membrane is lost and cells delaminate from the foregut and 
migrate as cords of hepatoblasts into the septum transversum mesenchyme. This process 
requires the transcription factor Prox1 (Sosa-Pineda et al., 2000). Generation of the liver bud 
is also accompanied by development of the hepatic vasculature. Interactions with 
endothelial cells derived from mesoderm are crucial for this budding phase (Matsumoto et 
al., 2001). Further proliferation enlarges the liver bud. FGF and BMP are also required at this 
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stage, together with HGF. Genetic studies have revealed that mutations suppressing 
proliferation and promoting apoptosis result in liver hypoplasia. Signal transduction 
molecules that are needed for continued fetal liver growth and to prevent apoptosis include 
members of the anti-apoptotic NFkB complex, integrins and the SAPK/JNK, Ras/Raf-1 and 
WNT/beta-catenin pathways (Tanimizu and Miyajima, 2007). Transcription factors 
expressed in the septum transversum mesenchyme (Hlx, N-myc and Jumonji) and 
hepatoblasts (Foxm1b and Xbp1) are also necessary for growth and proliferation of 
hepatoblasts at this stage. 
Although hepatoblasts already express some genes specific for fully differentiated 
hepatocytes such as serum albumin, hepatoblasts will give rise to both definitive 
hepatocytes and cholangiocytes. Differentiation toward cholangiocytes is promoted by 
Notch and antagonized by HGF, that instead promotes hepatocyte differentiation (Lemaigre 
and Zaret, 2004). The role of Notch signaling in cholangiocyte development is conserved in 
fish and in humans. Alagille syndrome, characterized by reduction in intrahepatic bile 
ducts, is caused by mutations in the Notch ligand Jagged 1 (Li et al., 1997; Oda et al., 1997). 
In addition, TGF-beta and WNT signaling promotes cholangiocyte development. In 
response to these and other unknown mesenchymal signals, the expression of cholangiocyte 
transcription factors OC1, OC2, and HNF1b is increased, while expression levels of the pro-
hepatic factors Hnf4a, Tbx3 and C/EBPa are down-regulated. Continued Notch, EGF and 
HGF signaling is essential for ductal plate remodeling. During mid-gestation, the 
hematopoietic cells in the liver secrete the cytokine oncostatin M, which in combination with 
glucocorticoid hormones, HGF and WNT promotes hepatocyte maturation. These factors act 
in part by regulating liver enriched transcription factors such as C/EBPa, Hnf1a, FoxA 
factors and Hnf4a (Zorn and Wells, 2009). The polarization of the hepatic epithelium allows 
the liver to develop its final architecture. After the hepatic epithelium polarizes, canaliculi 
are created and the basal layer becomes juxtaposed to the fenestrated endothelium that lines 
the sinusoids. 

 

3.3 Hepatocyte differentiation from embryonic stem cells 

The first report of spontaneous differentiation of ES cells into endodermal cells showed 
expression in EBs of alpha-fetoprotein (Afp), transthyretin and albumin after more than 8–
10 days in culture (Abe et al., 1996). After this, reports of spontaneous differentiation were 
mainly focused on confirming that these markers were expressed by hepatocyte-like cells 
derived from definitive endoderm and not by cells in yolk sack-like structures derived from 
visceral endoderm that is also found in EBs (Kumashiro et al., 2005). There is a substantial 
overlap in markers and regulatory pathways controlling both primitive and definitive 
endoderm. In addition to identification and analysis of liver-specific markers, these studies 
characterized hepatocyte-like cells using electron microscopy, and by functional assays such 
as indocyanine green uptake, urea synthesis, and Periodic acid-Schiff staining for glycogen.  
Because of the poorly defined nature of serum, variability between lots, and the low 
efficiency of protocols containing only serum, subsequent studies aimed to mimic the in vivo 
hepatic differentiation process using combinations of various factors and culture conditions. 
Hamazaki et al. (2001) presented the first report using growth factors, aFGF and HGF, in 
addition to serum, to direct the differentiation of embryonic stem cells toward a hepatic fate. 
Subsequently, other combinations of serum, growth factors and adherent matrices have 
been tested with varying success (Heo et al., 2006; Hu et al., 2004; Imamura et al., 2004; 
Kania et al., 2004; Shirahashi et al., 2004; Teratani et al., 2005). In general, all these protocols 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

280 

direct growth of EBs in serum for several days before plating on an adherent matrix, usually 
collagen since this protein is found in the connective tissue of the septum transversum that 
harbors and promotes hepatoblast proliferation. Most protocols include FGF to mimic the 
secretion of this factor by the cardiac mesoderm, HGF to support mid-stage hepatogenesis, 
oncostatin M that is produced by hematopoietic stem cells in the embryo liver and induces 
maturation of fetal hepatocytes, and dexamethasone, which is a synthetic glucocorticoid 
hormone that induces enzymes involved in gluconeogenesis. A matrix of gelatin and HGF, 
insulin, transferrin and selenious acid have also been used. In addition to these growth 
factors and supplements, other protocols add a co-culture step with mesodermal derived 
cells, nonparenchymal hepatic cells or adult hepatocytes (Cho et al., 2008; Ishii et al., 2005; 
Shiraki et al., 2008; Soto-Gutierrez et al., 2006a).  
The creation of reporter ES cells to identify and monitor early developmental stages allowed 
the reduction or elimination of serum and the implementation of more efficient protocols in 
serum-free fully defined media. To monitor DE development, genes expressed in the 
anterior primitive streak during embryo gastrulation, i.e., Brachyury, Goosecoid, FoxA2 and 
Sox17, were targeted with reporter molecules. Using these cells it was found that ActivinA, 
a TGF-beta family member that signals through the same receptor as nodal, efficiently 
induces DE progenitors in vitro (Kubo et al., 2004). These reporter cells also allowed the 
discovery of the surface receptors Cxcr4, c-Kit, E-cadherin and PDGFRa as useful markers to 
enrich DE progenitors differentiated from ES cells that have not been genetically modified. 
By translating findings from embryo development to ES cell culture (Fig. 4), FGF and BMP4 
were shown to efficiently induce hepatic fate in the ActivinA-induced endoderm (Gouon-
Evans et al., 2006). VEGF was also used during the specification period because the 
endothelial lineage promotes liver bud growth during embryo development. The 
hepatoblasts obtained were later expanded and matured in hepatic plating media containing 
EGF, bFGF, HGF, TGFa, VEGF and dexamethasone. Reporter cells have also been created to 
monitor and enrich differentiated hepatocyte-like cells (see below). 
Efficient hepatic differentiation protocols have also been reported for human embryonic 
stem (hES) cells. Early reports showed that after EB formation hES cells also differentiate 
spontaneously into derivatives of the three germ layers, among them endodermal cells and 
hepatocyte-like cells expressing Afp and albumin (Itskovitz-Eldor et al., 2000; Lavon et al., 
2004). An early study that aimed to direct hepatocyte differentiation from hES cells used 
sodium butyrate as the inducing agent (Rambhatla et al., 2003). Around 15% of the 
differentiated cells presented morphological features similar to that of primary hepatocytes 
and expressed albumin, a-1-antitrypsin, cytokeratin 8 and 18, accumulated glycogen and 
had inducible cytochrome P450 activity. Subsequently, differentiation toward hepatic-like 
cells was pursued using a variety of protocols that involve the use of growth factors, EB 
formation, co-culturing with hepatic and non-hepatic cell types, culture in collagen scaffold 
3D culture systems, genetic manipulation, and epigenetic modifications (Agarwal et al., 
2008; Baharvand et al., 2006; Basma et al., 2009; Cai et al., 2007b; Shirahashi et al., 2004; 
Touboul et al., 2010). Growth factors and other supplements included different 
combinations of aFGF, bFGF, EGF, HGF, WNT, all-trans-retinoic acid, oncostatin M, 
dexamethasone, insulin, transferrin and selenium. Protocols including ActivinA and using 
monolayer growth instead of EB formation have increased the yield of hES cell-derived 
definitive endoderm (D'Amour et al., 2005). These protocols have led to higher efficiency in 
the production of cells displaying hepatic functions including ureagenesis, glycogen storage, 
albumin, fibrinogen and fibronectin secretion, and CYP activity. Recently, a protocol that 
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initially enriched definitive endoderm precursors to more than 85% purity generated a 
population with 90% of cells expressing albumin after hepatocyte differentiation (Duan et 
al., 2010). Importantly, this population appeared to have complete metabolic function and 
had the capacity to metabolize drugs at levels that were comparable to primary hepatocytes. 
Ethical and safety debates about the use of embryonic stem cells for research and therapy 
have stimulated the search of alternative approaches to generate pluripotent stem cells. 
Thus, hES cells may soon be outpaced by iPS cells, generated from postnatal cells by viral-
mediated transfer of reprogramming genes (Yamanaka and Blau, 2010). Human iPS cells 
also open the possibility of creating customized pluripotent stem cell lines which may not 
only be critical in cell therapy but also in assessing human drug toxicity. More recently iPS 
cells have been used successfully to model inherited metabolic disorders of the liver (Rashid 
et al., 2010). Hepatocyte-like cells have been generated from human-iPS cells, including cells 
obtained by reprogramming of human primary hepatocytes (Liu et al., 2010; Si-Tayeb et al., 
2010b; Song et al., 2009; Sullivan et al., 2010; Touboul et al., 2010). Most of these protocols 
used fully defined culture conditions with growth factors and cytokines that recapitulate 
essential stages of liver development. In fact, in some cases iPS cells were able to generate 
hepatocytes more robustly than hES cells, suggesting efficacy of these protocols with 
pluripotent stem cells of diverse origins (Sullivan et al., 2010). Importantly, iPS cells derived 
from human foreskin fibroblasts were efficiently induced to form hepatocyte-like cells in 
culture that were able to integrate into the hepatic parenchyma in vivo (Si-Tayeb et al., 
2010b). 

3.4 Clinical applications and challenges for treating liver disease 

Due to the critical roles of the liver in many metabolic processes, liver disease leads to high 
rates of morbidity and mortality. Liver disease is the fourth leading cause of death among 
middle-aged adults in the United States. Treatment for patients with acute hepatic failure or 
end-stage liver disease relies on liver transplantation with approximately 6,000 liver 
transplant operations performed in the United States every year. The strong regenerative 
capacity of the liver makes it possible for a healthy donor to provide a portion of liver for 
transplantation, although scarcity of organ donors limits the efficacy. Therefore, 
transplantation of hepatocytes is an option to replace whole liver transplantation. 
Unfortunately, the source of hepatocytes is also limited and cell therapy using hepatocytes 
or hepatocyte-like cells differentiated from embryonic stem cells or the recently developed 
iPS cells, is therefore an attractive alternative. While the use of hepatocyte-like cells from ES 
or iPS cells in the clinic may be a long-term goal, their utility in the short term resides in the 
assessment of drug toxicity and safety during drug development. Due to the central role 
that the liver plays in drug metabolism, the measurement of liver toxicity in cell-based 
models is a critical step in studying the safety of new compounds (Gomez-Lechon et al., 
2010).  
All available in vitro differentiation protocols using ES or iPS cells result in a heterogeneous 
cell population that includes not only cells with the desired phenotype but also cells with 
undesired phenotypes, including potentially undifferentiated stem cells. Therefore, ES cell-
derived hepatocyte-like cells need to be selected from contaminating undifferentiated and 
possible tumor forming cells. To this end, selection based on fluorescence-activated cell 
sorting (FACS) of cells expressing enhanced green fluorescent protein (eGFP) under control 
of the Afp or albumin promoters has been used (Drobinskaya et al., 2008; Heo et al., 2006; 
Ishii et al., 2007; Soto-Gutierrez et al., 2006b; Teratani et al., 2005; Yin et al., 2002). In some of 
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these studies, hepatocyte-like cells were purified using albumin promoter–based cell sorting 
and transplanted into mouse models for liver injury, or implanted subcutaneously as a 
bioartificial liver (BAL) device, into mice subjected to 90% hepatectomy, reversing liver 
failure to variable degrees.  Other approaches include the generation of a transgenic ES cell 
line that expresses a fusion of the hygromycin resistance gene and eGFP under the control of 
an Afp promoter, or ES cells with bicistronic expression of the eGFP and the puromycin 
resistance, also under the control of an Afp promoter. Antibiotic selection resulted in an 
enriched population of cells with hepatoblast and more mature hepatocyte phenotypes that 
were used in cell replacement experiments. In human cells, reporter genes expressed under 
the control of the albumin or Afp genes have been used to improve differentiation protocols 
and to purify differentiated populations for determining global transcriptional profiles 
(Chiao et al., 2008; Lavon et al., 2004). Differentiated human hepatocyte-like cells have also 
been enriched by transduction with a lentivirus vector containing the eGFP gene driven by 
the alpha-1-antitrypsin promoter (Duan et al., 2007).  
ES cell-derived hepatocyte-like cells have been tested by transplantation in mouse models of 
liver disease or damage. Initially, in vivo engraftment and proliferation after transplantation 
was inefficient and teratoma formation accompanied engraftment. However, recent reports 
show improved results (Gouon-Evans et al., 2006; Heo et al., 2006; Ishii et al., 2007). After 
transplantation, hepatocyte-like cells not only engrafted and proliferated but they also 
participated significantly in liver repair and survival. The transplanted cells also showed 
differentiation into mature hepatocytes and were responsive to normal growth regulation, 
and proliferated at the same rate as the host hepatocytes after additional growth stimulus 
from recurrent liver injury. Although in one of these studies teratomas appeared after sixty 
days (Ishii et al., 2007), no teratomas were observed in the other study for up to 82 days after 
transplantation (Heo et al., 2006). Recently promising results have been obtained using 
hepatocyte-like cells in BAL devices to remove toxins from the blood and supply 
physiologically active molecules important for recovery of hepatic function. In these 
instances, embryonic derived hepatocytes implanted subcutaneously as a BAL reversed 
liver failure in mice subjected to 90% hepatectomy (Soto-Gutierrez et al., 2006a) or were able 
to improve survival in rats with liver failure induced by galactosamine (Cho et al., 2008). 
The use of BAL devices decreases the risk of teratoma formation. Human hepatocyte-like 
cells obtained by different protocols have also been transplanted in mouse models. The 
transplanted cells survive, engraft, and present some functional characteristics of 
hepatocytes including secretion of liver specific proteins; teratoma formation was reported 
in some cases. Clearly, novel approaches will need to be developed for the selection of pure 
hepatic cell populations from in vitro culture systems (for example without using transgenic 
reporter genes) before transplant protocols will be feasible. 

4. Directed differentiation of lung epithelium  

The lung develops from DE that is closely related to the liver primordium. Again, this raises 
a special challenge for directed differentiation, since all of the protocols needed for 
generating lung progenitors will also generate prehepatic cells. Biasing the protocol too 
much away from liver may promote the generation of more anterior DE-derived tissue, such 
as thyroid. A recommended strategy is to use our knowledge of normal mesendoderm 
development to promote DE, and then, while providing lung-dependent signals, inhibit the 
progression of non-lung DE-derived progenitors. The normal developmental programs that 
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derive anterior DE were discussed above in relation to liver. These are equally relevant to 
lung, but will not be reiterated in this section. 

4.1 Phases of lung development 

The lung is a respiratory organ with the principal function of transporting oxygen from the 
atmosphere to blood cells, and to release carbon dioxide from the blood into the 
atmosphere. Mammals have two lungs with great cellular diversity, with multiple resident 
epithelial and mesenchymal cell lineages. The lung is a complex system of branched 
epithelial tubules (airways), which connect to a network of gas exchanging units called 
alveoli. Pulmonary alveoli are spherical outcroppings that consist of an epithelial layer and 
extracellular matrix surrounded by capillaries (Ten Have-Opbroek, 1991). The respiratory 
epithelium in the mammalian lung is composed of a variety of cell types with distinct 
morphologic and biochemical characteristics. Epithelial cell lineages are arranged in a 
distinct proximo-distal spatial pattern in the airways. The proximal conducting airways are 
lined with a ciliated pseudostratified epithelium, but in the distal region they are replaced 
by a very thin squamous epithelial cell lining and simple cuboidal epithelial cells known as 
type I and type II airway epithelial cells, respectively (Breeze and Wheeldon, 1977). Type I 
squamous alveolar cells are responsible for gas exchange in the alveoli and cover a majority 
(>95%) of the alveolar surface area (Williams, 2003). Type II alveolar cells produce 
pulmonary surfactant proteins (SP) A, B, C and D, a complex mixture of phospholipids and 
proteins that is critical for reducing surface tension at the air-liquid interface of the distal 
lung, to prevent alveolar collapse upon expiration (Fehrenbach, 2001). Non-ciliated Clara 
cells are present in the small airways and trachea. Clara cells are secretory and the source of 
Clara cell secretory protein (CCSP) (Bishop and Polak, 2006). Clara cells and type I alveolar 
cells are unable to replicate and are susceptible to toxic insults. In the event of damage, type 
II cells can proliferate and/or differentiate into type I cells to compensate for the loss (Evans 
et al., 1975). 
The development and differentiation of lung epithelial cells is accomplished through the 
proper coordination of various transcription factors including Forkhead box A1 (FoxA1), 
FoxA2, Foxj1, homeodomain Nkx2.1 (Ttf1), homeodomain box (Hox) A5, the zinc finger Gli 
transcription factors, basic helix loop helix (bHLH) factors, and GATA transcription factors 
(Cardoso and Lu, 2006; Costa et al., 2001; Warburton et al., 2000). Also essential are various 
autocrine and paracrine signaling events, initiated by several families of secreted factors 
including FGF and TGF-beta family members, for both lung development and morphogenesis. 
Lung development in the mouse and human (Fig. 5) can be divided into five overlapping 
stages (Cardoso and Lu, 2006; Costa et al., 2001; Warburton et al., 2000). 
i. Embryonic phase - Following gastrulation, definitive endoderm undergoes complex 

morphogenetic changes that ultimately leads to the formation of the primitive gut tube 

as described above. The most anterior part of the primitive gut tube is the foregut, while 

the midgut and hindgut are located at progressively more posterior regions. The 

respiratory system arises from the ventral foregut endoderm. The process initiates with 

the establishment of respiratory cell fate in the ventral foregut. The foregut endoderm 

differentiates into various epithelial cell types, which line the inner surface of the 

developing lung and trachea. This is followed by the development of a tree-like system 

of epithelial tubules and vascular structures (Metzger et al., 2008) that ultimately gives 

rise to the mature airways and alveoli. 
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ii. Pseudoglandular stage - This stage is characterized by formation of the bronchial and 
respiratory bronchiole tree, lined with undifferentiated epithelial cells juxtaposed to the 
splanchnic mesoderm. By day 12 of mouse lung development branching of the 
bronchial buds gives rise to the left lung lobes and the four lobes of the right lung.  

iii. Canalicular stage – During this stage there is extensive branching of the distal 
epithelium and mesenchyme resulting in formation of terminal sacs lined with 
epithelial cells integrating with the mesoderm-derived vasculature. 

iv. Saccular stage - There is a coordinated increase in terminal sac formation and 
vasculogenesis in conjugation with the differentiation of alveolar epithelial type I and 
type II cells.  

v. Alveolar stage – Finally, postnatal lung development features maturation of the 
terminal respiratory sacs into alveolar ducts and sacs. 

 

 

Fig. 5. Shown are the developmental stages of lung morphogenesis for mammals. The 
schematic primarily depicts airway morphogenesis 

4.2 Establishment of endodermal cell fate 

As alluded to above, as gastrulation proceeds, the DE cells migrate anteriorly, displacing the 
extraembryonic visceral endoderm (Lawson and Pedersen, 1987) and this tissue 
subsequently begins to fold at the anterior and posterior ends, forming the anterior and 
caudal intestinal portals (Tam et al., 2007). In mouse, by embryonic day 9.5 budding of 
various domains of endodermally derived organ from the distinct sections of the gut tube 
begins, and progressively these domains obtain their specific architecture and eventually 
start differentiating into corresponding organs. The foregut gives rise to lung, thyroid, 
thymus, esophagus, trachea, stomach, liver and pancreas. Midgut forms the small intestine, 
and hindgut gives rise to large intestine. Initially, the generation of pre-lung tissue is 
generally under the control of the same programs responsible for pre-hepatic tissue (see 
Figs. 3 and 4). 

4.3 Establishment of lung epithelial cell fate 

Primordial lung bud development originates at E9.5 from the anterior foregut endoderm. As 
compared to liver and pancreas, the molecular mechanisms responsible for primary lung 
bud induction are less clear. Precisely when cells fated to lung epithelium originate in the 
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foregut endoderm is not well defined. Respiratory progenitors are first identified by in situ 
hybridization as a group of Thyroid transcription factor 1 (Titf1, also known as Nkx2.1)-
expressing endodermal cells in the prospective lung/tracheal region of the foregut, at E9 
(Minoo et al., 1999). Titf1 expression has been reported in respiratory progenitors of the 
foregut endoderm even before the lung or tracheal primordium can be identified (Serls et 
al., 2005). However Titf1 is not a specific marker for lung, as endoderm-derived thyroid 
progenitors also express Titf1 (Lazzaro et al., 1991).  The surfactant protein C (SPC) gene is 
the most specific marker of lung epithelial cells lineage, but its expression is consistently 
detected only by E10-10.5, after the primary buds form (Wert et al., 1993). FGFs secreted by 
the cardiac mesoderm influence cell fate decision in the adjacent ventral foregut endoderm 
in a concentration-dependent manner. Explant cultures of 2-5 somite stage ventral foregut in 
the presence of high concentrations of FGF2 result in lung lineage specification marked by 
the expression of Titf1 and Sptfc, whereas a low concentration of FGF2 results in expression 
of liver markers. The high concentration of FGF2 appears to be instructive for lung 
specification since dorsal midgut endoderm, which ordinarily does not give rise to lung, 
also responds to FGF2 induction by expression of Titf1.  

4.4 Formation of primary lung bud formation 

Once respiratory fate is established in the foregut endoderm, the initial pool of lung 
progenitors expand giving rise to the primary lung bud. In mammals, signaling by Fgf10 
from the surrounding mesoderm and the expression of its receptor FGfr2b on the subset of 
Titf1-expressing endodermal cells is crucial for lung bud formation. Deletion of either Fgf10 
or Fgfr2b results in lung agenesis and multiple abnormalities (Min et al., 1998; Sekine et al., 
1999).  It has been reported that expression of Fgf10 and formation of lung bud is controlled 
by retinoic acid signaling (Desai et al., 2006). Disruption of retinoic acid signaling in the 
foregut affects lung most dramatically resulting is several lung abnormalities including lung 
agenesis (Mollard et al., 2000). Retinoic acid seems to act as a major regulatory signal 
integrating the WNT and TGF-beta pathways in the control of Fgf10 induction (Chen et al., 
2010). 

4.5 Mesenchymal-epithelial interaction 

Once the primary lung buds have formed, they extend into the surrounding mesenchyme 

and begin the process of branching morphogenesis. Branching morphogenesis requires 

specific interactions between the endodermal epithelium and its mesenchyme (Shannon and 

Hyatt, 2004). In chick it has been shown that if the lung mesenchyme is removed from the 

lung rudiments prior to branching, all development is blocked, but if mesenchyme is 

removed after primary and secondary branching, the subsequent branching morphogenesis 

is normal. With the optimization of culture techniques, this phenomenon was shown to hold 

true in mammals as well. Non-lung mesenchyme is capable of inducing formation of lung 

bud in the gut tube, but this bud does not branch further, again indicating the requirement 

of lung mesenchyme in branching morphogenesis. Lung mesenchyme is capable of inducing 

branching morphogenesis in non-lung epithelium such as tracheal epithelium (Wessells, 

1970). Since tracheal epithelial cells, just like lung epithelial cells, arise from endoderm, the 

ability of lung mesenchyme to reprogram tracheal cells may not be surprising. However, 

lung mesenchyme is also able to induce lung-like patterning in ureteric bud (Lin et al., 2001) 

and salivary gland (Lawson, 1974).  
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4.6 Growth factors that regulate lung development 

Fibroblast growth factors (FGFs). Although FGF1, FGF2, FGF7, FGF9, FGF10 and FGF18 are 

all expressed in the developing lung, only FGF10 is essential for lung development. FGF10 is 

expressed in the mesenchymal cells surrounding distal lung epithelial cells (Bellusci et al., 

1997) and its receptor FGFR2IIIb is found throughout the embryonic lung epithelium (Orr-

Urtreger et al., 1993). Because FGF10 is produced by the lung mesenchyme and its receptor 

is on epithelial cells, it is considered a key mediator of the epithelial mesenchymal 

interaction. FGF10 null mice have no lung development below the trachea (Sekine et al., 

1999). In vitro, FGF10 causes budding of embryonic lung epithelium in mesenchyme- free 

cultures, but the ability of FGF10 to sustain expression of SPC was not determined (Bellusci 

et al., 1997). A high concentration of FGF10 in mesenchymal-free culture conditions caused 

budding in tracheal epithelium, but again in this study expression of lung specific markers 

was not studied (Ohtsuka et al., 2001). Rat tracheal epithelium was shown to express lung 

specific markers (SPC) in the presence of FGF10 and in the absence of lung mesenchyme 

(Shannon et al., 1999). Other than FGF10, two other members of the FGF family have been 

shown to influence lung development: FGF9 (Colvin et al., 2001) and FGF7 (Simonet et al., 

1995).  

Bone morphogenic protein (BMP) 4. In early mouse development, BMP4 is expressed in the 

splanchnic mesenchyme surrounding the gut tube where the future lung buds will form 

(Weaver et al., 1999). After lung buds have formed, BMP4 continues to be expressed in the 

more proximal mesenchyme and also in the epithelium of the distal tips. Over-expression of 

BMP4 in the distal lung epithelium results in lung hypoplasia with a decrease in the number 

of SPC-positive cells (Bellusci et al., 1996). Inhibiting BMP4 either by driving noggin 

expression under the control of the SPC promoter, or by expression of a dominant negative 

form of the BMP receptor, also resulted in a decrease in the number of SPC positive cells, 

but with an expansion of epithelial cells expressing proximal markers CC10 and Foxj1 

(Weaver et al., 1999). Addition of exogenous BMP4 on either lung (Weaver et al., 2000) or 

tracheal (Hyatt et al., 2002) epithelium in mesenchyme-free cultures inhibited proliferation. 

These data suggest that BMP4 is a signal that derives from both epithelial and mesenchymal 

tissue compartments.  

Epidermal growth factor (EGF). EGF receptor (EGFR) signaling has been shown to 

stimulate murine embryonic branching morphogenesis, epithelial and mesenchymal cell 

proliferation, and Nkx2.1 and SPC expression (Schuger et al., 1996; Warburton et al., 1993). 

Similarly, inhibition of EGFR signaling results in decreased branching morphogenesis in 

culture and a neonatal pulmonary lethal phenotype in the null mutant, associated with 

decreased branching morphogenesis, and decreased Nkx2.1 and SPC expression levels 

(Miettinen et al., 1997). 

Hepatocyte growth factor (HGF). HGF is expressed in primitive lung mesenchyme, while 

its receptor, the c-met tyrosine kinase, is expressed in primitive lung epithelium, suggesting 

the possibility of inductive mesenchymal-epithelial interactions (Sonnenberg et al., 1993).  

Platelet derived growth factor (PDGF). PDGF peptides are dimeric ligands formed from 

two peptide chains, A and B. PDGF-AA and PDGF–BB, and the receptor PDGFR, are 

expressed in embryonic mouse lung. Abrogation of PDGF-A decreases the size of early 

embryonic mouse lungs in culture, as well as affecting early branch point formation (Souza 

et al., 1995). On the other hand, abrogation of PDGF-B reduces the size of the epithelial 

component of early embryonic mouse lung explants, but does not affect branching. 
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4.7 Key transcription factors in lung development 

Thyroid transcription factor 1 (Ttf1/ Nkx2.1). Ttf1 is a homeodomain protein (also known 

as thyroid transcription factor-1 (Ttf-1). Although Ttf1 is the earliest known marker for the 

respiratory system, Ttf1-null mutant mice do have lungs. However, these lungs are highly 

abnormal, consisting of two main bronchi. In these mice epithelial cells fail to express any of 

the surfactant proteins or Clara cell CC-10 protein (Minoo et al., 1999), although proximal 

differentiation is normal. Lack of Ttf1 also affects branching morphogenesis for unknown 

reasons. Studies have suggested that Ttf1 is essential for the differentiation of distal lung 

epithelial cells and is required for the expression of several lung markers such as SPC (Kelly 

et al., 1996). Ttf1 consensus recognition sites are found in the 5’ promoters of several 

important peripheral lung genes including SPA, B, C, D, CC-10 and Ttf1 itself. It has been 

demonstrated that Ttf1 promoter activity is stimulated by HNF-3β (Ikeda et al., 1996) and 

GATA6 (Shaw-White et al., 1999). 

Gata6. Unlike in liver, Gata6 is the only GATA factor expressed in the developing lung and 

this is restricted to distal lung epithelium. Gata6 expression is observed as early as E10.5 

(Morrisey et al., 1996). Binding sites for Gata6 are present in several lung-specific promoters 

including those for the SPA, C and Ttf1 genes. Gata6 is able to trans-activate these 

promoters in non-lung cells, suggesting a role in the transcriptional regulation of these genes 

(Bruno et al., 2000; Shaw-White et al., 1999). The key role for Gata6 in the development of lung 

epithelial cells became clear when Gata6-/- cells were shown to be unable to contribute to the 

airway epithelium of Gata6-/-/C57BL6 chimeric mice (Morrisey et al., 1998). The lungs of these 

chimeric mice showed defects in lung morphogenesis and down-regulation of lung-specific 

genes including SPC. The role of Gata6 in distal lung epithelium was studied by expressing a 

Gata6-Engrailed dominant-negative fusion protein exclusively in distal lung epithelium (Yang 

et al., 2002). In these mice, airway epithelial cell differentiation was defective, as type I cells 

were completely absent, while certain aspects of type II cells were also affected. Proximal 

airway development was also disrupted as shown by decreased levels of CC-10 expression. 

Lineage tracing of knockout Gata6-/- cells showed that the gene is not required for 

specification of endoderm, but that it is essential intrinsic to the endoderm for branching 

morphogenesis and differentiation of epithelium (Keijzer et al., 2001). 

Forkhead homologue hepatocyte nuclear family (HNF) proteins. Hnf-3α and Hnf3β are 

known to have role in regulating transcription of Surfactant protein (SP) and Clara cell 

secretory protein (CCSP) (Bohinski et al., 1994; Clevidence et al., 1994).  The Hnf3β null 

mutation results in an early embryonic lethal phenotype with complete failure of the 

primitive foregut to close into a tube (Ang and Rossant, 1994). During lung development 

HNF3β protein is expressed at higher levels in epithelial cells lining the proximal airways 

and at lower levels in the distal type II epithelium (Zhou et al., 1996). Consensus HNF 

binding sites are found in the 5’ promoter regions of several lung specific genes including 

SPA, B, C, D, and CC-10 in close proximity to Nkx2.1 sites, and it has been reported that 

HNF-3 activates transcription of Nkx2.1 in respiratory epithelial cells (Ikeda et al., 1996). 

Gli transcription factors. Targeted disruption of the Gli2 gene results in diminished lung 
proliferation and branching. Gli2-/- mice have hypoplastic trachea (Mo et al., 1997). A more 
severe lung defect is observed with the Gli gene deficiency analyzed in a Gli3 heterozygous 
background. Gli2-/-, Gli3+/- embryonic mouse lungs are more hypoplastic, and the right and 
left lobes fail to separate (Motoyama et al., 1998). These mice resemble the phenotype 
observed with Ttf1-/- mice. The most severe phenotype was observed in Gli2-/-, Gli3-/- mice, 
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which display a complete absence of lung, trachea, and esophagus and smaller stomach, 
liver and pancreas. 

4.8 Differentiation of ES cells into lung epithelial cells 

Compared to the other derivatives we have discussed, relatively few protocols have been 

reported that promote the differentiation of ES cells into lung epithelial cells, and even with 

these, the generation of lung epithelial cells is quite inefficient. To date there are no 

published protocols capable of generating a homogenous population of functional lung 

epithelial cells. An early report showed that SPC-positive lung epithelial cells could be 

derived from mouse ES cells (Ali et al., 2002) by culturing ES cells in a commercially 

available small airway growth media (SAGM) that supports the growth of lung epithelial 

cells in vitro. However, the ES cells were not responsive to the growth media until they had 

achieved a relatively advanced state of differentiation, suggesting that the system selected 

out spontaneously differentiated type II alveolar epithelial cells, rather than actively 

promoting their differentiation. 

Studies from Rippon et al. (2006) further optimized the derivation of distal lung epithelial 

progenitors from murine embryonic stem cells using a novel three-step protocol. In this 

strategy, definitive endoderm was induced using a high concentration of ActivinA, followed 

by culturing the floating embryoid bodies in knockout serum replacement (KOSR) media for 

10 days. Subsequently, EBs were attached to gelatinized plates and cultured in the presence 

of KOSR for an additional 10 days. KOSR was replaced with SAGM and cultured for 14 

more days. However, the lung epithelial cells derived by this method had a gene expression 

profile resembling that of the lung committed precursor (SPC+Ttf1+) found in foregut 

endoderm, rather than mature alveolar epithelium. While trying to optimize serum free 

conditions for lung epithelial cell differentiation, Winkler et al. (2008) observed in the 

presence of serum relatively high expression levels of surfactant proteins A, B, C and D, 

CCSP and aquaporin 5, suggesting that epithelial cells expressing the markers for mature 

type II alveolar epithelium cells could be generated in serum-containing conditions. 

Surprisingly, a late treatment with ActivinA following serum activation resulted in 

significantly higher expression levels of SPC compared to an early induction with ActivinA. 

Subsequently, other strategies have been used to promote the formation of pulmonary 
epithelium from ES cells. Co-culture of murine EBs with mesenchyme dissected from the 
distal tips of mid-gestation murine fetal lungs directed the differentiation of epithelial cells 
expressing Ttf1 and SPC (Van Vranken et al., 2005). It has also been reported that mouse ES 
cells can differentiate into type II alveolar epithelial cells when cultured with extracts from 
murine pneumocytes (Qin et al., 2005). The idea of transitioning lung epithelia through 
known normal developmental stages, which has been very successful for hepatocytes, may 
also be applied to lung. For example, initial generation of anterior endoderm using 
ActivinA, coupled with Wnt3a to suppress primitive endoderm, was successful using a 
subsequent step of FGF2 induction, to generate SPC-positive cells characteristic of type II 
alveolar epithelium (Roszell et al., 2009). For the generation of human lung epithelial cells 
from human ES cells there is to date only a single published protocol (Samadikuchaksaraei 
et al., 2006). In this case the investigators used commercially available SAGM to support the 
differentiation. When differentiation of hES was performed in the presence of SAGM, there 
was up-regulation of SPC levels. Clearly, much progress has been made in understanding 
the directive differentiation of endoderm derived organs like liver and pancreas, while the 
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generation of effective protocols for the differentiation of ES cells into lung epithelial cells is 
still at an early stage, and represents an area of great opportunity. Considerable information 
is now available concerning the normal programs that regulate lung epithelial development 
and morphogenesis, and this should continue to be exploited in the near future for 
additional progress. 

5. A strategy to dissect the function of GATA factors for specificity of 
mesendodermal derivatives 

In our own laboratory we are studying organ development and regeneration, and have 

focused considerable attention toward the role of GATA transcription factors, using 

zebrafish embryo (Heicklen-Klein et al., 2005) and murine ES cell (Evans, 2008) experimental 

models. It is particularly intriguing that GATA factors seem to play key roles throughout the 

various stages of organ development. For example, members of the Gata4/5/6 subfamily 

may be involved in mesendoderm development (our unpublished results), but also have 

requirements for subsequent developmental transitions related to both mesoderm and 

endoderm. This includes, for example, cardiomyocyte specification from precardiac 

mesoderm (Holtzinger and Evans, 2007), heart tube looping and gut-derived organ budding 

(Holtzinger and Evans, 2005), and myocardial regeneration in adult zebrafish (Kikuchi et al., 

2010). Understanding specificity of function is complicated since the genes are sometimes 

(but not always) functionally redundant, and they may function cell autonomous, or non-

cell-autonomous through activation of secreted signaling factors. 

One strategy we are taking is to develop conditional expression systems for specific GATA 

factors in the context of ES cell directed differentiation protocols, to determine the temporal 

effect and the ability for the genes to promote specific developmental transition stages. For 

this purpose we have been using a conditional system established by Kyba, Daley and 

colleagues (Ting et al., 2005), in which the gene encoding the reverse tetracycline 

transactivator protein is pre-targeted in the Ainv ES cell line to the constitutive Rosa26 

locus, and a tet-operator sequence is pre-targeted just upstream of a loxP site (Fig. 6). This 

allows the insertion, by homologous recombination, of the coding sequences for any gene, 

which can then be activated conditionally by the addition of the tetracycline analogue 

doxycycline into the culture media.  

This system provides significant advantages for studying genes like GATA factors that 

function at multiple stages of embryonic development. For example, forced expression of 

Gata4 in ES cells efficiently directs the development of primitive endoderm. This is useful 

for studying primitive endoderm, but abrogates the ability to test functions for subsequent 

stages, such as cardiomyocyte specification. Using this system we could show that 

expression of Gata4 during EB development is sufficient to generate DE (although primitive 

endoderm also forms) and that either type of endoderm is capable of inducing, by a non-

cell-autonomous mechanism, the generation of cardiomyocyte progenitors (Holtzinger et al., 

2010). Using conditional expression of different GATA factors in this system, we are 

currently testing their ability to influence mesendoderm development, mesoderm and 

endoderm patterning, the specification of different anterior DE derivatives including liver 

and lung, and the maturation of differentiated cell types. A major advantage of the strategy 

is that the induction is reversible, simply by washing doxycycline out of the media. This 

turns out to be important, since the transcription factor may have both positive and negative 
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influences, depending on the time it is expressed (Zafonte et al., 2007). Finally, we have also 

adapted the system for loss-of-function, by conditional expression of gene-specific shRNAs.  

 

 

Fig. 6. In the Ainv ES cell line, the reverse tet-transactivator protein (rtTa, yellow balls) is 
expressed from the Rosa26 locus, and a loxP site (blue-triangle) is located downstream of a 
tet operator site. We used Cre-mediated recombination to target each flag-tagged Gata4/5/6 
cDNA and IRES:GFP cassette into the loxP site, placing e.g. Gata4 (and GFP) under 
conditional (and reversible) control 

6. Conclusion 

Recent studies, particularly in zebrafish and frogs, revealed an ancient bipotential germ 

layer called mesendoderm, regulated by pathways conserved all the way to nematodes. It 

seems clear that this developmental stage is conserved also in mammals, providing both 

opportunities and challenges for directing the generation of defined cell types from ES cell 

cultures. A very successful strategy has been to define the normal developmental pathways 

that direct progenitors to mesodermal or endodermal fates, and then to recapitulate these 

pathways in the context of the ES cell in vitro system. A major challenge is that the same 

pathways regulate many diverse programs. However, this challenge can be overcome using 

conditional strategies (transgenic, or ultimately with small molecules) to fine-tune the 

timing and dose of the induction for optimization of each desired transitional stage 

(specification, commitment, proliferation, differentiation, etc.). Perhaps the major challenge 

moving forward will be to optimize and scale the generation of functional mature cell types, 

so that these can be applied successfully for therapeutic purposes in regenerative medicine 

protocols. 

7. References  

Abe, K., Niwa, H., Iwase, K., Takiguchi, M., Mori, M., Abe, S.I., and Yamamura, K.I. (1996). 

Endoderm-specific gene expression in embryonic stem cells differentiated to 

embryoid bodies. Exp Cell Res 229, 27-34. 

Agarwal, S., Holton, K.L., and Lanza, R. (2008). Efficient differentiation of functional 

hepatocytes from human embryonic stem cells. Stem Cells 26, 1117-1127. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

291 

Ali, N.N., Edgar, A.J., Samadikuchaksaraei, A., Timson, C.M., Romanska, H.M., Polak, J.M., 

and Bishop, A.E. (2002). Derivation of type II alveolar epithelial cells from murine 

embryonic stem cells. Tissue Eng 8, 541-550. 

Ang, S.L., and Rossant, J. (1994). HNF-3 beta is essential for node and notochord formation 

in mouse development. Cell 78, 561-574. 

Arnold, S.J., Hofmann, U.K., Bikoff, E.K., and Robertson, E.J. (2008). Pivotal roles for 

eomesodermin during axis formation, epithelium-to-mesenchyme transition and 

endoderm specification in the mouse. Development 135, 501-511. 

Baharvand, H., Hashemi, S.M., Kazemi Ashtiani, S., and Farrokhi, A. (2006). Differentiation 

of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in 

vitro. Int J Dev Biol 50, 645-652. 

Basma, H., Soto-Gutierrez, A., Yannam, G.R., Liu, L., Ito, R., Yamamoto, T., Ellis, E., Carson, 

S.D., Sato, S., Chen, Y., et al. (2009). Differentiation and transplantation of human 

embryonic stem cell-derived hepatocytes. Gastroenterology 136, 990-999. 

Bellusci, S., Grindley, J., Emoto, H., Itoh, N., and Hogan, B.L. (1997). Fibroblast growth factor 

10 (FGF10) and branching morphogenesis in the embryonic mouse lung. 

Development 124, 4867-4878. 

Bellusci, S., Henderson, R., Winnier, G., Oikawa, T., and Hogan, B.L. (1996). Evidence from 

normal expression and targeted misexpression that bone morphogenetic protein 

(Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122, 

1693-1702. 

Bishop, A.E., and Polak, J.M. (2006). Pulmonary epithelium. Methods Enzymol 418, 333-349. 

Blouin, A., Bolender, R.P., and Weibel, E.R. (1977). Distribution of organelles and 

membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. 

A stereological study. J Cell Biol 72, 441-455. 

Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., and Wobus, A.M. (2002). 

Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 

91, 189-201. 

Bohinski, R.J., Di Lauro, R., and Whitsett, J.A. (1994). The lung-specific surfactant protein B 

gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear 

factor 3, indicating common factors for organ-specific gene expression along the 

foregut axis. Mol Cell Biol 14, 5671-5681. 

Breeze, R.G., and Wheeldon, E.B. (1977). The cells of the pulmonary airways. Am Rev Respir 

Dis 116, 705-777. 

Bruno, M.D., Korfhagen, T.R., Liu, C., Morrisey, E.E., and Whitsett, J.A. (2000). GATA-6 

activates transcription of surfactant protein A. J Biol Chem 275, 1043-1049. 

Buckingham, M., Meilhac, S., and Zaffran, S. (2005). Building the mammalian heart from 

two sources of myocardial cells. Nat Rev Genet 6, 826-835. 

Cai, J., Yi, F.F., Yang, X.C., Lin, G.S., Jiang, H., Wang, T., and Xia, Z. (2007a). Transplantation 

of embryonic stem cell-derived cardiomyocytes improves cardiac function in 

infarcted rat hearts. Cytotherapy 9, 283-291. 

Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., Meng, S., Chen, Y., Zhou, R., Song, X., et al. 

(2007b). Directed differentiation of human embryonic stem cells into functional 

hepatic cells. Hepatology 45, 1229-1239. 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

292 

Calmont, A., Wandzioch, E., Tremblay, K.D., Minowada, G., Kaestner, K.H., Martin, G.R., 

and Zaret, K.S. (2006). An FGF response pathway that mediates hepatic gene 

induction in embryonic endoderm cells. Dev Cell 11, 339-348. 

Cardoso, W.V., and Lu, J. (2006). Regulation of early lung morphogenesis: questions, facts 

and controversies. Development 133, 1611-1624. 

Chen, F., Cao, Y., Qian, J., Shao, F., Niederreither, K., and Cardoso, W.V. (2010). A retinoic 

acid-dependent network in the foregut controls formation of the mouse lung 

primordium. J Clin Invest 120, 2040-2048. 

Chiao, E., Elazar, M., Xing, Y., Xiong, A., Kmet, M., Millan, M.T., Glenn, J.S., Wong, W.H., 

and Baker, J. (2008). Isolation and transcriptional profiling of purified hepatic cells 

derived from human embryonic stem cells. Stem Cells 26, 2032-2041. 

Cho, C.H., Parashurama, N., Park, E.Y., Suganuma, K., Nahmias, Y., Park, J., Tilles, A.W., 

Berthiaume, F., and Yarmush, M.L. (2008). Homogeneous differentiation of 

hepatocyte-like cells from embryonic stem cells: applications for the treatment of 

liver failure. FASEB J 22, 898-909. 

Clevidence, D.E., Overdier, D.G., Peterson, R.S., Porcella, A., Ye, H., Paulson, K.E., and 

Costa, R.H. (1994). Members of the HNF-3/forkhead family of transcription factors 

exhibit distinct cellular expression patterns in lung and regulate the surfactant 

protein B promoter. Dev Biol 166, 195-209. 

Colvin, J.S., White, A.C., Pratt, S.J., and Ornitz, D.M. (2001). Lung hypoplasia and neonatal 

death in Fgf9-null mice identify this gene as an essential regulator of lung 

mesenchyme. Development 128, 2095-2106. 

Costa, R.H., Kalinichenko, V.V., and Lim, L. (2001). Transcription factors in mouse lung 

development and function. Am J Physiol Lung Cell Mol Physiol 280, L823-838. 

D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. (2005). 

Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat 

Biotechnol 23, 1534-1541. 

Dai, W., Field, L.J., Rubart, M., Reuter, S., Hale, S.L., Zweigerdt, R., Graichen, R.E., Kay, 

G.L., Jyrala, A.J., Colman, A., et al. (2007). Survival and maturation of human 

embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol 43, 504-

516. 

Desai, T.J., Chen, F., Lu, J., Qian, J., Niederreither, K., Dolle, P., Chambon, P., and Cardoso, 

W.V. (2006). Distinct roles for retinoic acid receptors alpha and beta in early lung 

morphogenesis. Dev Biol 291, 12-24. 

Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985). The in vitro 

development of blastocyst-derived embryonic stem cell lines: formation of visceral 

yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87, 27-45. 

Domian, I.J., Chiravuri, M., van der Meer, P., Feinberg, A.W., Shi, X., Shao, Y., Wu, S.M., 

Parker, K.K., and Chien, K.R. (2009). Generation of functional ventricular heart 

muscle from mouse ventricular progenitor cells. Science 326, 426-429. 

Drobinskaya, I., Linn, T., Saric, T., Bretzel, R.G., Bohlen, H., Hescheler, J., and Kolossov, E. 

(2008). Scalable selection of hepatocyte- and hepatocyte precursor-like cells from 

culture of differentiating transgenically modified murine embryonic stem cells. 

Stem Cells 26, 2245-2256. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

293 

Duan, Y., Catana, A., Meng, Y., Yamamoto, N., He, S., Gupta, S., Gambhir, S.S., and Zern, 

M.A. (2007). Differentiation and enrichment of hepatocyte-like cells from human 

embryonic stem cells in vitro and in vivo. Stem Cells 25, 3058-3068. 

Duan, Y., Ma, X., Zou, W., Wang, C., Bahbahan, I.S., Ahuja, T.P., Tolstikov, V., and Zern, 

M.A. (2010). Differentiation and characterization of metabolically functioning 

hepatocytes from human embryonic stem cells. Stem Cells 28, 674-686. 

Dufort, D., Schwartz, L., Harpal, K., and Rossant, J. (1998). The transcription factor 

HNF3beta is required in visceral endoderm for normal primitive streak 

morphogenesis. Development 125, 3015-3025. 

Evans, M.J., Cabral, L.J., Stephens, R.J., and Freeman, G. (1975). Transformation of alveolar 

type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22, 142-150. 

Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from 

mouse embryos. Nature 292, 154-156. 

Evans, T. (2008). Embryonic Stem Cells as a Model for Cardiac Development and Disease. 

Drug Discov Today Dis Models 5, 147-155. 

Fehrenbach, H. (2001). Alveolar epithelial type II cell: defender of the alveolus revisited. 

Respir Res 2, 33-46. 

Gadue, P., Huber, T.L., Paddison, P.J., and Keller, G.M. (2006). Wnt and TGF-beta signaling 

are required for the induction of an in vitro model of primitive streak formation 

using embryonic stem cells. Proc Natl Acad Sci U S A 103, 16806-16811. 

Gao, N., LeLay, J., Vatamaniuk, M.Z., Rieck, S., Friedman, J.R., and Kaestner, K.H. (2008). 

Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas 

development. Genes Dev 22, 3435-3448. 

Gassanov, N., Er, F., Zagidullin, N., and Hoppe, U.C. (2004). Endothelin induces 

differentiation of ANP-EGFP expressing embryonic stem cells towards a 

pacemaker phenotype. FASEB J 18, 1710-1712. 

Gomez-Lechon, M.J., Tolosa, L., Castell, J.V., and Donato, M.T. (2010). Mechanism-based 

selection of compounds for the development of innovative in vitro approaches to 

hepatotoxicity studies in the LIINTOP project. Toxicol In Vitro. 

Gouon-Evans, V., Boussemart, L., Gadue, P., Nierhoff, D., Koehler, C.I., Kubo, A., Shafritz, 

D.A., and Keller, G. (2006). BMP-4 is required for hepatic specification of mouse 

embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24, 1402-1411. 

Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., and Terada, N. 

(2001). Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS 

Lett 497, 15-19. 

Hart, A.H., Hartley, L., Sourris, K., Stadler, E.S., Li, R., Stanley, E.G., Tam, P.P., Elefanty, 

A.G., and Robb, L. (2002). Mixl1 is required for axial mesendoderm morphogenesis 

and patterning in the murine embryo. Development 129, 3597-3608. 

He, J.Q., Ma, Y., Lee, Y., Thomson, J.A., and Kamp, T.J. (2003). Human embryonic stem cells 

develop into multiple types of cardiac myocytes: action potential characterization. 

Circ Res 93, 32-39. 

Heicklen-Klein, A., McReynolds, L.J., and Evans, T. (2005). Using the zebrafish model to 

study GATA transcription factors. Semin Cell Dev Biol 16, 95-106. 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

294 

Heo, J., Factor, V.M., Uren, T., Takahama, Y., Lee, J.S., Major, M., Feinstone, S.M., and 

Thorgeirsson, S.S. (2006). Hepatic precursors derived from murine embryonic stem 

cells contribute to regeneration of injured liver. Hepatology 44, 1478-1486. 

Hidaka, K., Lee, J.K., Kim, H.S., Ihm, C.H., Iio, A., Ogawa, M., Nishikawa, S., Kodama, I., 

and Morisaki, T. (2003). Chamber-specific differentiation of Nkx2.5-positive cardiac 

precursor cells from murine embryonic stem cells. FASEB J 17, 740-742. 

Holtzinger, A., and Evans, T. (2005). Gata4 regulates the formation of multiple organs. 

Development 132, 4005-4014. 

Holtzinger, A., and Evans, T. (2007). Gata5 and Gata6 are functionally redundant in 

zebrafish for specification of cardiomyocytes. Dev Biol 312, 613-622. 

Holtzinger, A., Rosenfeld, G.E., and Evans, T. (2010). Gata4 directs development of cardiac-

inducing endoderm from ES cells. Dev Biol 337, 63-73. 

Hu, A.B., Cai, J.Y., Zheng, Q.C., He, X.Q., Shan, Y., Pan, Y.L., Zeng, G.C., Hong, A., Dai, Y., 

and Li, L.S. (2004). High-ratio differentiation of embryonic stem cells into 

hepatocytes in vitro. Liver Int 24, 237-245. 

Hyatt, B.A., Shangguan, X., and Shannon, J.M. (2002). BMP4 modulates fibroblast growth 

factor-mediated induction of proximal and distal lung differentiation in mouse 

embryonic tracheal epithelium in mesenchyme-free culture. Dev Dyn 225, 153-165. 

Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and 

Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional 

cardiomyocytes by defined factors. Cell 142, 375-386. 

Ikeda, K., Shaw-White, J.R., Wert, S.E., and Whitsett, J.A. (1996). Hepatocyte nuclear factor 3 

activates transcription of thyroid transcription factor 1 in respiratory epithelial 

cells. Mol Cell Biol 16, 3626-3636. 

Imamura, T., Cui, L., Teng, R., Johkura, K., Okouchi, Y., Asanuma, K., Ogiwara, N., and 

Sasaki, K. (2004). Embryonic stem cell-derived embryoid bodies in three-

dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue 

Eng 10, 1716-1724. 

Irion, S., Nostro, M.C., Kattman, S.J., and Keller, G.M. (2008). Directed differentiation of 

pluripotent stem cells: from developmental biology to therapeutic applications. 

Cold Spring Harb Symp Quant Biol 73, 101-110. 

Ishii, T., Yasuchika, K., Fujii, H., Hoppo, T., Baba, S., Naito, M., Machimoto, T., Kamo, N., 

Suemori, H., Nakatsuji, N., et al. (2005). In vitro differentiation and maturation of 

mouse embryonic stem cells into hepatocytes. Exp Cell Res 309, 68-77. 

Ishii, T., Yasuchika, K., Machimoto, T., Kamo, N., Komori, J., Konishi, S., Suemori, H., 

Nakatsuji, N., Saito, M., Kohno, K., et al. (2007). Transplantation of embryonic stem 

cell-derived endodermal cells into mice with induced lethal liver damage. Stem 

Cells 25, 3252-3260. 

Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., 

and Benvenisty, N. (2000). Differentiation of human embryonic stem cells into 

embryoid bodies compromising the three embryonic germ layers. Mol Med 6, 88-95. 

Jackson, S.A., Schiesser, J., Stanley, E.G., and Elefanty, A.G. (2010). Differentiating 

embryonic stem cells pass through 'temporal windows' that mark responsiveness to 

exogenous and paracrine mesendoderm inducing signals. PLoS One 5, e10706. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

295 

Kanai-Azuma, M., Kanai, Y., Gad, J.M., Tajima, Y., Taya, C., Kurohmaru, M., Sanai, Y., 

Yonekawa, H., Yazaki, K., Tam, P.P., et al. (2002). Depletion of definitive gut 

endoderm in Sox17-null mutant mice. Development 129, 2367-2379. 

Kania, G., Blyszczuk, P., Jochheim, A., Ott, M., and Wobus, A.M. (2004). Generation of 

glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells. 

Biol Chem 385, 943-953. 

Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-

Eldor, J., and Gepstein, L. (2004). Electromechanical integration of cardiomyocytes 

derived from human embryonic stem cells. Nat Biotechnol 22, 1282-1289. 

Keijzer, R., van Tuyl, M., Meijers, C., Post, M., Tibboel, D., Grosveld, F., and Koutsourakis, 

M. (2001). The transcription factor GATA6 is essential for branching morphogenesis 

and epithelial cell differentiation during fetal pulmonary development. Development 

128, 503-511. 

Kelly, S.E., Bachurski, C.J., Burhans, M.S., and Glasser, S.W. (1996). Transcription of the 

lung-specific surfactant protein C gene is mediated by thyroid transcription factor 

1. J Biol Chem 271, 6881-6888. 

Kikuchi, K., Holdway, J.E., Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk, G.F., Evans, 

T., Macrae, C.A., Stainier, D.Y., and Poss, K.D. (2010). Primary contribution to 

zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464, 601-605. 

Klug, M.G., Soonpaa, M.H., Koh, G.Y., and Field, L.J. (1996). Genetically selected 

cardiomyocytes from differentiating embronic stem cells form stable intracardiac 

grafts. J Clin Invest 98, 216-224. 

Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., Manzke, O., Bloch, 

W., Bohlen, H., Hescheler, J., et al. (2005). Identification and characterization of 

embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J 19, 

577-579. 

Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H.J., 

and Keller, G. (2004). Development of definitive endoderm from embryonic stem 

cells in culture. Development 131, 1651-1662. 

Kumashiro, Y., Asahina, K., Ozeki, R., Shimizu-Saito, K., Tanaka, Y., Kida, Y., Inoue, K., 

Kaneko, M., Sato, T., Teramoto, K., et al. (2005). Enrichment of hepatocytes 

differentiated from mouse embryonic stem cells as a transplantable source. 

Transplantation 79, 550-557. 

Kuzmenkin, A., Liang, H., Xu, G., Pfannkuche, K., Eichhorn, H., Fatima, A., Luo, H., Saric, 

T., Wernig, M., Jaenisch, R., et al. (2009). Functional characterization of 

cardiomyocytes derived from murine induced pluripotent stem cells in vitro. 

FASEB J 23, 4168-4180. 

Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., 

Reinecke, H., Xu, C., Hassanipour, M., Police, S., et al. (2007). Cardiomyocytes 

derived from human embryonic stem cells in pro-survival factors enhance function 

of infarcted rat hearts. Nat Biotechnol 25, 1015-1024. 

Laflamme, M.A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V., and 

Murry, C.E. (2005). Formation of human myocardium in the rat heart from human 

embryonic stem cells. Am J Pathol 167, 663-671. 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

296 

Lavon, N., Yanuka, O., and Benvenisty, N. (2004). Differentiation and isolation of hepatic-

like cells from human embryonic stem cells. Differentiation 72, 230-238. 

Lawson, K.A. (1974). Mesenchyme specificity in rodent salivary gland development: the 

response of salivary epithelium to lung mesenchyme in vitro. J Embryol Exp Morphol 

32, 469-493. 

Lawson, K.A., and Pedersen, R.A. (1987). Cell fate, morphogenetic movement and 

population kinetics of embryonic endoderm at the time of germ layer formation in 

the mouse. Development 101, 627-652. 

Lazzaro, D., Price, M., de Felice, M., and Di Lauro, R. (1991). The transcription factor TTF-1 

is expressed at the onset of thyroid and lung morphogenesis and in restricted 

regions of the foetal brain. Development 113, 1093-1104. 

Lee, C.S., Friedman, J.R., Fulmer, J.T., and Kaestner, K.H. (2005). The initiation of liver 

development is dependent on Foxa transcription factors. Nature 435, 944-947. 

Lemaigre, F., and Zaret, K.S. (2004). Liver development update: new embryo models, cell 

lineage control, and morphogenesis. Curr Opin Genet Dev 14, 582-590. 

Lemaigre, F.P. (2009). Mechanisms of liver development: concepts for understanding liver 

disorders and design of novel therapies. Gastroenterology 137, 62-79. 

Lewis, S.L., and Tam, P.P. (2006). Definitive endoderm of the mouse embryo: formation, cell 

fates, and morphogenetic function. Dev Dyn 235, 2315-2329. 

Li, L., Krantz, I.D., Deng, Y., Genin, A., Banta, A.B., Collins, C.C., Qi, M., Trask, B.J., Kuo, 

W.L., Cochran, J., et al. (1997). Alagille syndrome is caused by mutations in human 

Jagged1, which encodes a ligand for Notch1. Nat Genet 16, 243-251. 

Lin, Y., Zhang, S., Rehn, M., Itaranta, P., Tuukkanen, J., Heljasvaara, R., Peltoketo, H., 

Pihlajaniemi, T., and Vainio, S. (2001). Induced repatterning of type XVIII collagen 

expression in ureter bud from kidney to lung type: association with sonic hedgehog 

and ectopic surfactant protein C. Development 128, 1573-1585. 

Lindsley, R.C., Gill, J.G., Kyba, M., Murphy, T.L., and Murphy, K.M. (2006). Canonical Wnt 

signaling is required for development of embryonic stem cell-derived mesoderm. 

Development 133, 3787-3796. 

Liu, H., Ye, Z., Kim, Y., Sharkis, S., and Jang, Y.Y. (2010). Generation of endoderm-derived 

human induced pluripotent stem cells from primary hepatocytes. Hepatology 51, 

1810-1819. 

Lowe, L.A., Yamada, S., and Kuehn, M.R. (2001). Genetic dissection of nodal function in 

patterning the mouse embryo. Development 128, 1831-1843. 

Matsumoto, K., Yoshitomi, H., Rossant, J., and Zaret, K.S. (2001). Liver organogenesis 

promoted by endothelial cells prior to vascular function. Science 294, 559-563. 

Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L.S., Nguemo, F., 

Menke, S., Haustein, M., Hescheler, J., et al. (2008). Generation of functional murine 

cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507-517. 

McDevitt, T.C., Laflamme, M.A., and Murry, C.E. (2005). Proliferation of cardiomyocytes 

derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt 

signaling pathway. J Mol Cell Cardiol 39, 865-873. 

Metzger, R.J., Klein, O.D., Martin, G.R., and Krasnow, M.A. (2008). The branching 

programme of mouse lung development. Nature 453, 745-750. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

297 

Miettinen, P.J., Warburton, D., Bu, D., Zhao, J.S., Berger, J.E., Minoo, P., Koivisto, T., Allen, 

L., Dobbs, L., Werb, Z., et al. (1997). Impaired lung branching morphogenesis in the 

absence of functional EGF receptor. Dev Biol 186, 224-236. 

Min, H., Danilenko, D.M., Scully, S.A., Bolon, B., Ring, B.D., Tarpley, J.E., DeRose, M., and 

Simonet, W.S. (1998). Fgf-10 is required for both limb and lung development and 

exhibits striking functional similarity to Drosophila branchless. Genes Dev 12, 3156-

3161. 

Minoo, P., Su, G., Drum, H., Bringas, P., and Kimura, S. (1999). Defects in tracheoesophageal 

and lung morphogenesis in Nkx2.1(-/-) mouse embryos. Dev Biol 209, 60-71. 

Mo, R., Freer, A.M., Zinyk, D.L., Crackower, M.A., Michaud, J., Heng, H.H., Chik, K.W., Shi, 

X.M., Tsui, L.C., Cheng, S.H., et al. (1997). Specific and redundant functions of Gli2 

and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 

113-123. 

Mollard, R., Ghyselinck, N.B., Wendling, O., Chambon, P., and Mark, M. (2000). Stage-

dependent responses of the developing lung to retinoic acid signaling. Int J Dev Biol 

44, 457-462. 

Moretti, A., Caron, L., Nakano, A., Lam, J.T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., 

Sasaki, M., Martin-Puig, S., et al. (2006). Multipotent embryonic isl1+ progenitor 

cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 

1151-1165. 

Morrisey, E.E., Ip, H.S., Lu, M.M., and Parmacek, M.S. (1996). GATA-6: a zinc finger 

transcription factor that is expressed in multiple cell lineages derived from lateral 

mesoderm. Dev Biol 177, 309-322. 

Morrisey, E.E., Tang, Z., Sigrist, K., Lu, M.M., Jiang, F., Ip, H.S., and Parmacek, M.S. (1998). 

GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in 

the mouse embryo. Genes Dev 12, 3579-3590. 

Motoyama, J., Liu, J., Mo, R., Ding, Q., Post, M., and Hui, C.C. (1998). Essential function of 

Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20, 54-57. 

Muller, M., Fleischmann, B.K., Selbert, S., Ji, G.J., Endl, E., Middeler, G., Muller, O.J., 

Schlenke, P., Frese, S., Wobus, A.M., et al. (2000). Selection of ventricular-like 

cardiomyocytes from ES cells in vitro. FASEB J 14, 2540-2548. 

Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., 

Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., et al. 

(2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of 

coculture with visceral endoderm-like cells. Circulation 107, 2733-2740. 

Murry, C.E., and Keller, G. (2008). Differentiation of embryonic stem cells to clinically 

relevant populations: lessons from embryonic development. Cell 132, 661-680. 

Naito, A.T., Shiojima, I., Akazawa, H., Hidaka, K., Morisaki, T., Kikuchi, A., and Komuro, I. 

(2006). Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling 

in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci U S A 103, 19812-19817. 

Oda, T., Elkahloun, A.G., Pike, B.L., Okajima, K., Krantz, I.D., Genin, A., Piccoli, D.A., 

Meltzer, P.S., Spinner, N.B., Collins, F.S., et al. (1997). Mutations in the human 

Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16, 235-242. 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

298 

Ohtsuka, N., Urase, K., Momoi, T., and Nogawa, H. (2001). Induction of bud formation of 

embryonic mouse tracheal epithelium by fibroblast growth factor plus transferrin 

in mesenchyme-free culture. Dev Dyn 222, 263-272. 

Orr-Urtreger, A., Bedford, M.T., Burakova, T., Arman, E., Zimmer, Y., Yayon, A., Givol, D., 

and Lonai, P. (1993). Developmental localization of the splicing alternatives of 

fibroblast growth factor receptor-2 (FGFR2). Dev Biol 158, 475-486. 

Peterkin, T., Gibson, A., Loose, M., and Patient, R. (2005). The roles of GATA-4, -5 and -6 in 

vertebrate heart development. Semin Cell Dev Biol 16, 83-94. 

Plageman, T.F., Jr., and Yutzey, K.E. (2005). T-box genes and heart development: putting the 

"T" in heart. Dev Dyn 232, 11-20. 

Qin, M., Tai, G., Collas, P., Polak, J.M., and Bishop, A.E. (2005). Cell extract-derived 

differentiation of embryonic stem cells. Stem Cells 23, 712-718. 

Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y., and Carpenter, M.K. (2003). Generation of 

hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12, 1-11. 

Rashid, S.T., Corbineau, S., Hannan, N., Marciniak, S.J., Miranda, E., Alexander, G., Huang-

Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., et al. (2010). Modeling 

inherited metabolic disorders of the liver using human induced pluripotent stem 

cells. J Clin Invest 120, 3127-3136. 

Rippon, H.J., Polak, J.M., Qin, M., and Bishop, A.E. (2006). Derivation of distal lung 

epithelial progenitors from murine embryonic stem cells using a novel three-step 

differentiation protocol. Stem Cells 24, 1389-1398. 

Rodaway, A., and Patient, R. (2001). Mesendoderm. an ancient germ layer? Cell 105, 169-172. 

Rossi, J.M., Dunn, N.R., Hogan, B.L., and Zaret, K.S. (2001). Distinct mesodermal signals, 

including BMPs from the septum transversum mesenchyme, are required in 

combination for hepatogenesis from the endoderm. Genes Dev 15, 1998-2009. 

Roszell, B., Mondrinos, M.J., Seaton, A., Simons, D.M., Koutzaki, S.H., Fong, G.H., Lelkes, 

P.I., and Finck, C.M. (2009). Efficient derivation of alveolar type II cells from 

embryonic stem cells for in vivo application. Tissue Eng Part A 15, 3351-3365. 

Samadikuchaksaraei, A., Cohen, S., Isaac, K., Rippon, H.J., Polak, J.M., Bielby, R.C., and 

Bishop, A.E. (2006). Derivation of distal airway epithelium from human embryonic 

stem cells. Tissue Eng 12, 867-875. 

Satin, J., Kehat, I., Caspi, O., Huber, I., Arbel, G., Itzhaki, I., Magyar, J., Schroder, E.A., 

Perlman, I., and Gepstein, L. (2004). Mechanism of spontaneous excitability in 

human embryonic stem cell derived cardiomyocytes. J Physiol 559, 479-496. 

Schier, A.F. (2003). Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19, 

589-621. 

Schuger, L., Skubitz, A.P., Gilbride, K., Mandel, R., and He, L. (1996). Laminin and heparan 

sulfate proteoglycan mediate epithelial cell polarization in organotypic cultures of 

embryonic lung cells: evidence implicating involvement of the inner globular 

region of laminin beta 1 chain and the heparan sulfate groups of heparan sulfate 

proteoglycan. Dev Biol 179, 264-273. 

Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., Yagishita, N., 

Matsui, D., Koga, Y., Itoh, N., et al. (1999). Fgf10 is essential for limb and lung 

formation. Nat Genet 21, 138-141. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

299 

Serls, A.E., Doherty, S., Parvatiyar, P., Wells, J.M., and Deutsch, G.H. (2005). Different 

thresholds of fibroblast growth factors pattern the ventral foregut into liver and 

lung. Development 132, 35-47. 

Shannon, J.M., Gebb, S.A., and Nielsen, L.D. (1999). Induction of alveolar type II cell 

differentiation in embryonic tracheal epithelium in mesenchyme-free culture. 

Development 126, 1675-1688. 

Shannon, J.M., and Hyatt, B.A. (2004). Epithelial-mesenchymal interactions in the 

developing lung. Annu Rev Physiol 66, 625-645. 

Shaw-White, J.R., Bruno, M.D., and Whitsett, J.A. (1999). GATA-6 activates transcription of 

thyroid transcription factor-1. J Biol Chem 274, 2658-2664. 

Shirahashi, H., Wu, J., Yamamoto, N., Catana, A., Wege, H., Wager, B., Okita, K., and Zern, 

M.A. (2004). Differentiation of human and mouse embryonic stem cells along a 

hepatocyte lineage. Cell Transplant 13, 197-211. 

Shiraki, N., Umeda, K., Sakashita, N., Takeya, M., Kume, K., and Kume, S. (2008). 

Differentiation of mouse and human embryonic stem cells into hepatic lineages. 

Genes Cells 13, 731-746. 

Si-Tayeb, K., Lemaigre, F.P., and Duncan, S.A. (2010a). Organogenesis and development of 

the liver. Dev Cell 18, 175-189. 

Si-Tayeb, K., Noto, F.K., Nagaoka, M., Li, J., Battle, M.A., Duris, C., North, P.E., Dalton, S., 

and Duncan, S.A. (2010b). Highly efficient generation of human hepatocyte-like 

cells from induced pluripotent stem cells. Hepatology 51, 297-305. 

Simonet, W.S., DeRose, M.L., Bucay, N., Nguyen, H.Q., Wert, S.E., Zhou, L., Ulich, T.R., 

Thomason, A., Danilenko, D.M., and Whitsett, J.A. (1995). Pulmonary malformation 

in transgenic mice expressing human keratinocyte growth factor in the lung. Proc 

Natl Acad Sci U S A 92, 12461-12465. 

Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. 

(2003). Assessment of the ultrastructural and proliferative properties of human 

embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285, 

H2355-2363. 

Song, Z., Cai, J., Liu, Y., Zhao, D., Yong, J., Duo, S., Song, X., Guo, Y., Zhao, Y., Qin, H., et al. 

(2009). Efficient generation of hepatocyte-like cells from human induced 

pluripotent stem cells. Cell Res 19, 1233-1242. 

Sonnenberg, E., Meyer, D., Weidner, K.M., and Birchmeier, C. (1993). Scatter 

factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can 

mediate a signal exchange between mesenchyme and epithelia during mouse 

development. J Cell Biol 123, 223-235. 

Sosa-Pineda, B., Wigle, J.T., and Oliver, G. (2000). Hepatocyte migration during liver 

development requires Prox1. Nat Genet 25, 254-255. 

Soto-Gutierrez, A., Kobayashi, N., Rivas-Carrillo, J.D., Navarro-Alvarez, N., Zhao, D., 

Okitsu, T., Noguchi, H., Basma, H., Tabata, Y., Chen, Y., et al. (2006a). Reversal of 

mouse hepatic failure using an implanted liver-assist device containing ES cell-

derived hepatocytes. Nat Biotechnol 24, 1412-1419. 

Soto-Gutierrez, A., Navarro-Alvarez, N., Rivas-Carrillo, J.D., Chen, Y., Yamatsuji, T., 

Tanaka, N., and Kobayashi, N. (2006b). Differentiation of human embryonic stem 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

300 

cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated 

nonwoven polytetrafluoroethylene fabric. Cell Transplant 15, 335-341. 

Souza, P., Kuliszewski, M., Wang, J., Tseu, I., Tanswell, A.K., and Post, M. (1995). PDGF-AA 

and its receptor influence early lung branching via an epithelial-mesenchymal 

interaction. Development 121, 2559-2567. 

Sullivan, G.J., Hay, D.C., Park, I.H., Fletcher, J., Hannoun, Z., Payne, C.M., Dalgetty, D., Black, 

J.R., Ross, J.A., Samuel, K., et al. (2010). Generation of functional human hepatic 

endoderm from human induced pluripotent stem cells. Hepatology 51, 329-335. 

Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., Kinoshita, M., Nakao, K., and 

Chiba, T. (2005). Characterization of mesendoderm: a diverging point of the 

definitive endoderm and mesoderm in embryonic stem cell differentiation culture. 

Development 132, 4363-4374. 

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse 

embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. 

Tam, P.P., and Behringer, R.R. (1997). Mouse gastrulation: the formation of a mammalian 

body plan. Mech Dev 68, 3-25. 

Tam, P.P., Khoo, P.L., Lewis, S.L., Bildsoe, H., Wong, N., Tsang, T.E., Gad, J.M., and Robb, L. 

(2007). Sequential allocation and global pattern of movement of the definitive 

endoderm in the mouse embryo during gastrulation. Development 134, 251-260. 

Tanimizu, N., and Miyajima, A. (2007). Molecular mechanism of liver development and 

regeneration. Int Rev Cytol 259, 1-48. 

Ten Have-Opbroek, A.A. (1991). Lung development in the mouse embryo. Exp Lung Res 17, 

111-130. 

Teratani, T., Yamamoto, H., Aoyagi, K., Sasaki, H., Asari, A., Quinn, G., Terada, M., and 

Ochiya, T. (2005). Direct hepatic fate specification from mouse embryonic stem 

cells. Hepatology 41, 836-846. 

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., 

and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. 

Science 282, 1145-1147. 

Ting, D.T., Kyba, M., and Daley, G.Q. (2005). Inducible transgene expression in mouse stem 

cells. Methods Mol Med 105, 23-46. 

Touboul, T., Hannan, N.R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., 

Mainot, S., Strick-Marchand, H., Pedersen, R., Di Santo, J., et al. (2010). Generation 

of functional hepatocytes from human embryonic stem cells under chemically 

defined conditions that recapitulate liver development. Hepatology 51, 1754-1765. 

Ueno, S., Weidinger, G., Osugi, T., Kohn, A.D., Golob, J.L., Pabon, L., Reinecke, H., Moon, 

R.T., and Murry, C.E. (2007). Biphasic role for Wnt/beta-catenin signaling in 

cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci U S A 

104, 9685-9690. 

Van Vranken, B.E., Romanska, H.M., Polak, J.M., Rippon, H.J., Shannon, J.M., and Bishop, 

A.E. (2005). Coculture of embryonic stem cells with pulmonary mesenchyme: a 

microenvironment that promotes differentiation of pulmonary epithelium. Tissue 

Eng 11, 1177-1187. 

www.intechopen.com



Directed Differentiation of Mesendoderm Derivatives from Embryonic Stem Cells 

 

301 

Vidarsson, H., Hyllner, J., and Sartipy, P. (2010). Differentiation of human embryonic stem 

cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev 6, 108-

120. 

Wan, H., Xu, Y., Ikegami, M., Stahlman, M.T., Kaestner, K.H., Ang, S.L., and Whitsett, J.A. 

(2004). Foxa2 is required for transition to air breathing at birth. Proc Natl Acad Sci U 

S A 101, 14449-14454. 

Warburton, D., Lee, M., Berberich, M.A., and Bernfield, M. (1993). Molecular embryology 

and the study of lung development. Am J Respir Cell Mol Biol 9, 5-9. 

Warburton, D., Schwarz, M., Tefft, D., Flores-Delgado, G., Anderson, K.D., and Cardoso, 

W.V. (2000). The molecular basis of lung morphogenesis. Mech Dev 92, 55-81. 

Wardle, F.C., and Smith, J.C. (2006). Transcriptional regulation of mesendoderm formation 

in Xenopus. Semin Cell Dev Biol 17, 99-109. 

Weaver, M., Dunn, N.R., and Hogan, B.L. (2000). Bmp4 and Fgf10 play opposing roles 

during lung bud morphogenesis. Development 127, 2695-2704. 

Weaver, M., Yingling, J.M., Dunn, N.R., Bellusci, S., and Hogan, B.L. (1999). Bmp signaling 

regulates proximal-distal differentiation of endoderm in mouse lung development. 

Development 126, 4005-4015. 

Wei, H., Juhasz, O., Li, J., Tarasova, Y.S., and Boheler, K.R. (2005). Embryonic stem cells and 

cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9, 

804-817. 

Wert, S.E., Glasser, S.W., Korfhagen, T.R., and Whitsett, J.A. (1993). Transcriptional elements 

from the human SP-C gene direct expression in the primordial respiratory 

epithelium of transgenic mice. Dev Biol 156, 426-443. 

Wessells, N.K. (1970). Mammalian lung development: interactions in formation and 

morphogenesis of tracheal buds. J Exp Zool 175, 455-466. 

Williams, M.C. (2003). Alveolar type I cells: molecular phenotype and development. Annu 

Rev Physiol 65, 669-695. 

Winkler, M.E., Mauritz, C., Groos, S., Kispert, A., Menke, S., Hoffmann, A., Gruh, I., 

Schwanke, K., Haverich, A., and Martin, U. (2008). Serum-free differentiation of 

murine embryonic stem cells into alveolar type II epithelial cells. Cloning Stem Cells 

10, 49-64. 

Woodland, H.R., and Zorn, A.M. (2008). The core endodermal gene network of vertebrates: 

combining developmental precision with evolutionary flexibility. Bioessays 30, 757-

765. 

Wu, S.M., Fujiwara, Y., Cibulsky, S.M., Clapham, D.E., Lien, C.L., Schultheiss, T.M., and 

Orkin, S.H. (2006). Developmental origin of a bipotential myocardial and smooth 

muscle cell precursor in the mammalian heart. Cell 127, 1137-1150. 

Xu, C., Police, S., Rao, N., and Carpenter, M.K. (2002). Characterization and enrichment of 

cardiomyocytes derived from human embryonic stem cells. Circ Res 91, 501-508. 

Yamanaka, S., and Blau, H.M. (2010). Nuclear reprogramming to a pluripotent state by three 

approaches. Nature 465, 704-712. 

Yang, H., Lu, M.M., Zhang, L., Whitsett, J.A., and Morrisey, E.E. (2002). GATA6 regulates 

differentiation of distal lung epithelium. Development 129, 2233-2246. 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

302 

Yin, Y., Lim, Y.K., Salto-Tellez, M., Ng, S.C., Lin, C.S., and Lim, S.K. (2002). AFP(+), ESC-

derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells 20, 338-346. 

Zafonte, B.T., Liu, S., Lynch-Kattman, M., Torregroza, I., Benvenuto, L., Kennedy, M., Keller, 

G., and Evans, T. (2007). Smad1 expands the hemangioblast population within a 

limited developmental window. Blood 109, 516-523. 

Zaret, K.S., Watts, J., Xu, J., Wandzioch, E., Smale, S.T., and Sekiya, T. (2008). Pioneer factors, 

genetic competence, and inductive signaling: programming liver and pancreas 

progenitors from the endoderm. Cold Spring Harb Symp Quant Biol 73, 119-126. 

Zhao, R., Watt, A.J., Battle, M.A., Li, J., Bondow, B.J., and Duncan, S.A. (2008). Loss of both 

GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia 

in mice. Dev Biol 317, 614-619. 

Zhou, L., Lim, L., Costa, R.H., and Whitsett, J.A. (1996). Thyroid transcription factor-1, 

hepatocyte nuclear factor-3beta, surfactant protein B, C, and Clara cell secretory 

protein in developing mouse lung. J Histochem Cytochem 44, 1183-1193. 

Zorn, A.M., and Wells, J.M. (2009). Vertebrate endoderm development and organ formation. 

Annu Rev Cell Dev Biol 25, 221-251. 

www.intechopen.com



Embryonic Stem Cells: The Hormonal Regulation of Pluripotency

and Embryogenesis

Edited by Prof. Craig Atwood

ISBN 978-953-307-196-1

Hard cover, 672 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Pluripotency is a prerequisite for the subsequent coordinated differentiation of embryonic stem cells into all

tissues of the body. This book describes recent advances in our understanding of pluripotency and the

hormonal regulation of embryonic stem cell differentiation into tissue types derived from the ectoderm,

mesoderm and endoderm.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Miriam Gordillo, Ritu Kumar, Harma K. Turbendian and Todd Evans (2011). Directed Differentiation of

Mesendoderm Derivatives from Embryonic Stem Cells, Embryonic Stem Cells: The Hormonal Regulation of

Pluripotency and Embryogenesis, Prof. Craig Atwood (Ed.), ISBN: 978-953-307-196-1, InTech, Available from:

http://www.intechopen.com/books/embryonic-stem-cells-the-hormonal-regulation-of-pluripotency-and-

embryogenesis/directed-differentiation-of-mesendoderm-derivatives-from-embryonic-stem-cells



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


