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1. Introduction 

The recent development of techniques to culture human embryonic stem cells (hESC) has 
allowed the study of reproductive (pregnancy) hormones involved in the growth and 
development of the early embryo.  Until the advent of hESC culture techniques, no model 
system existed that could readily assess the requirement for pregnancy hormones in the 
growth and development of the human embryo.  Hormonal manipulation of developing 
embryoes in utero was technically cumbersome and complicated by competing in vivo 
maternal hormonal signals.  This chapter describes recent experimental studies, utilizing 
hESC, aimed at identifying physiologically relevant signals that promote cell division, 
differentiation and apoptosis during early embryogenesis and summarizes our current 
knowledge of how reproductive hormones direct growth and development during 
embryogenesis.  It also describes the potential for using hESC, embryoid bodies (EBs) and 
neuroectodermal rosettes to gain insights into how reproductive endocrine dyscrasia 
associated with menopause/andropause drives aberrant cell cycle signalling mechanisms 
leading to age-related diseases including neurodegeneration and associated cognitive 
decline.   

2. Human embryogenesis 

2.1 Hormonal regulation of pregnancy 

Embryogenesis is a complex coordinated series of molecular and cellular changes that takes 
place within a well-defined internal environment. Human embryogenesis is orchestrated by 
a complex array of endocrine signals that commences with conception, is followed by the 
growth and development of the zygote into a blastocyst, its implantation into the 
endometrium, and the subsequent growth and development of the blastocyst into the 
neonate.  Following conception, the developing embryo (zygote/morula/blastocyst) has 7-
14 days in which to produce sufficient human chorionic gonadotropin (hCG), and 
subsequently progesterone (P4; from both embryonic and corpus luteal sources), to allow 
implantation and halt degradation and discharging of the endometrium (menstruation) 
(Gupta, et al. 2007).  The upregulation of hCG and P4 not only allows for the maintenance of 
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the endometrium, blastocyst attachment and synctiotrophoblast proliferation into the 
endometrium (Larson et al. 2003; Licht et al. 2001; Pepe and Albrecht 1995), but also 
prevents ovulation and prepares the immune, metabolic and psychological systems of the 
mother for pregnancy.   
P4 production is an absolute requirement for the maintenance of pregnancy (Larson et al. 

2003). Indeed, administration of RU-486 (mifepristone), an anti-P4 and anti-

glucocorticosteroid agent to humans is used for the medical termination of pregnancies of 

up to 49 days gestation (up to 63 days gestation in Britain and Sweden), and in combination 

with prostaglandin E1, for termination of pregnancies between 13 and 24 weeks gestation 

(Fiala and Gemzel-Danielsson 2006).  Inhibition of P4 signaling using RU-486, a P4 receptor 

(PR) competitive antagonist, results in endometrial decidual degeneration, trophoblast 

detachment and decreased syncytiotrophoblast production of hCG which in turn decreases 

P4 production by the corpus luteum.  In addition, RU-486 induces cervical softening and 

dilatation, release of endogenous prostaglandins and an increase in the sensitivity of the 

myometrium to the contractile effects of prostaglandins leading to the expulsion of the 

embryo/fetus (Gemzell-Danielsson et al. 2006). 

Despite our understanding of the endocrinology of pregnancy, the lack of an appropriate 

model system limited experimentally our ability to answer fundamental questions such as 

what endocrine/paracrine/juxtacrine/autocrine factors 1) regulate embryonic cell division, 

2) regulate cell migration, 3) specify differentiation into particular lineages, and 4) regulate 

apoptosis, during early embryogenesis.   

2.2 Human embryonic stem cells: A model system for understanding the cellular and 
molecular mechanisms regulating early human embryogenesis 

Thompson and colleagues first isolated pluripotent hESC lines from surplus embryos 

donated by individuals undergoing infertility treatment (Thomson et al. 1998). Inner mass 

cells isolated from these embryos were allowed to develop to the blastocyst stage and then 

passaged in defined media (to maintain pluripotency) to increase cell numbers. Five diploid 

cell lines (H1, H7, H9, H13 and H14) were obtained from 14 blastocysts.  These cells are Oct-

4, SSEA1, SSEA-3, SSEA-4, TRA 1-60, TRA 1-81 and alkaline phosphatase positive. 

hESC derived from the inner cell mass of the blastocyst can be differentiated into EBs which 

resemble the early post-implantation embryo (blastocyst containing all 3 germ layers) 

(O'Shea 1999).  hESC also can be differentiated into columnar neuroectodermal cells and 

mimics in vivo neuroectodermal development in terms of timing and morphology (Li and 

Zhang 2006). In vitro, hESC differentiate into primitive neuroectodermal (or neural 

precursor) cells at around day 10 and then neuroectodermal cells that exhibit neural tube-

like rosettes in 14–17 days of differentiation in a chemically defined neural induction media 

(Fig. 1; Gallego et al., 2010; Zhang et al. 2001).  These structures are predominantly 

composed of neuroectodermal cells akin to those that form the neural tube and are neural 

precursor cells/neural stem cells that can be further differentiated into different neural 

lineages. Considering hESC are equivalent to a 5-6 days embryo, development of the 

neuroectoderm in vitro takes about 18-20 days, the time window when the neural tube forms 

in a human embryo (Muller and O'Rahilly 1985; Zhang 2003).  The ability to manipulate the 

hormonal milieu of cultured hESC, embryroid bodies or neuroectodermal rosettes during 

this time period, either positively or negatively, allows for the identification of signaling 

pathways involved in cell division, differentiation and apoptosis during embryogenesis.  
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Fig. 1. Time course for the induction of embryoid bodies and neuroectodermal rosettes by 
hCG and P4.  hESC can be differentiated into primitive blastocyst-like structures (embryoid 
bodies (EBs) that contain the 3 germ layers) and then into primitive neuroectodermal cells 
(NE; or neural precursor cells) at ~day 10 and then NE that exhibit neural tube-like rosettes 
in 14–17 days of differentiation (Okabe et al. 1996; Zhang et al. 2001).  Above Line: 
Physiological hormones secreted by trophoblasts demonstrated to induce cell division 
(hCG) during EB formation and cell differentiation (P4) during neuroectodermal rosette 
formation. Below Line: Current unspecified medias used to generate EBs and 
neuroectodermal rosettes.  These processes are negatively regulated by TGF-ǃ signaling and 
by blocking signaling via PR 

2.3 Trophoblastic hormone secretion during early embryogenesis 

Zygotic division into a blastocyst establishes the extra-embryonic tissues (trophoblast layer 
or outer cell mass) and hypoblast (extraembryonic endoderm) that support the embryonic 
epiblast (inner cell mass) early in embryogenesis (Gilbert 2003).  Trophoblasts secrete an 
array of hormones (Cemerikic et al. 1994; DiPirro and Kristal 2004; Gallego et al. 2009, 2010; 
Pidoux et al. 2007; Zhuang and Li 1991) including P4, endorphins, hCG, 17ǃ-estradiol (E2) 
and gonadotropin-releasing hormone (GnRH) (Fig. 2).  The dramatic elevation in the 
production of hCG by the trophoblastic layer of the blastocyst during the early embryonic 
stage (from 5 to ≥1000 mIU/mL in the maternal serum; Braunstein 1976; Pidoux et al. 2007) 
signals both the corpus lutea and trophoblast (Golos, et al. 2006) to synthesize and secrete P4 

(Bukovsky et al. 1995; Carr et al. 1982; Casper and Yen 1979; Duncan et al. 1996; Richardson 
and Masson 1985; Strauss et al. 2000).  Trophoblastic secretion of these hormones appears to 
occur during the migration of the blastocyst through the fallopian tube and its implantation 
into the endometrium and subsequently from the placental tissues during later stages of 
embryogenesis.  This is most clearly demonstrated by the elevation in maternal hCG during 
the early embryonic period. 
The secretion of P4, endorphins, hCG, E2 and GnRH by trophoblasts that lie adjacent to the 
embryoblast in the blastocyst suggests that these hormones may directly signal the growth 
and development of the embryoblast.  Evidence supporting this notion includes the 
presence of placental opioid-enhancing factor in amniotic fluid and placenta, and that the 
ingestion of placenta potentiates delta- and kappa-opioid antinociception (DiPirro and 
Kristal 2004).  Likewise, trophoblastic and corpa luteal production of hCG/P4 is markedly 
elevated post-conception and is obligatory for the maintenance of pregnancy (Larson et al. 
2003).  An autocrine/paracrine role for hCG secreted from invasive extravillous 
cytotrophoblasts (Handschuh et al. 2007) in the induction of neoangiogenesis during 
endometrial vascularization has previously been proposed (Licht et al. 2001).  hCG signaling 
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via full-length LH/hCG receptors (LHCGR) on trophoblasts has been shown to modulate 
differentiation of the trophoblasts for subsequent villus projection and placentation. 
Given the close spatial localization of trophoblasts to the embryoblast, and the availability of 

hESC that can be cultured continuously, i.e. embryoblast-derived stem cells, it has become 

possible to explore trophoblastic hormone function in the development of the embryo. 

 

hCG

hCG

hCG

Inner Cell Mass 

(embryoblast)

Trophoblast

Blastocyst Cavity 

(blastocoele)

Human blastocyst

 

Fig. 2. Trophoblastic hCG secretion from the human blastocyst.  Illustration of hCG 
autocrine (dotted line) and paracrine/endocrine (full line) secretion from the trophopblastic 
layer of a human blastocyst. Modified from: Muckle, C, Feinberg, E, Glob. libr. women's 
med., (ISSN: 1756-2228) 2008; DOI 10.3843/GLOWM.10002 

3. Trophoblastic hormones and early human embryogenesis 

3.1 Regulation of blastulation by human chorionic gonadotropin, progesterone and 
opioids 

The first evidence for a function of any trophoblastic hormone in the regulation of human 

embryogenesis was ironically demonstrated by the finding that hCG induces the expression 

of the adhesion and neuritogenic protein amyloid-ǃ precursor protein (AǃPP; Porayette et 

al. 2007), a protein normally associated with the neurodegenerative pathology of 

Alzheimer’s disease (AD; Hardy and Selkoe 2002).  AǃPP expression was detected at the 

transcriptional and translational levels (Porayette et al. 2007, 2009).  These results indicated a 

critical molecular signaling link between the hormonal environment of pregnancy and the 

expression of AǃPP in hESC that was suggestive of an important function for this protein 

during early human embryogenesis prior to the formation of neural precursor cells 

(Porayette et al. 2007).   

That hCG could induce changes in epiblast protein expression was subsequently supported 

by the finding that hESCs express mRNA and protein for the full-length mature LHCGR 

(Gallego et al. 2008, 2010). That LHCGR is expressed on hESC implicates hCG as an 
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important signaling molecule in the growth and development of the embryo. LHCGR 

expression did not alter upon differentiation into EBs (structures that resemble early post-

implantation embryos containing all three germ layers) (O'Shea 1999), or into 

neuroectodermal rosettes, which consist of >90% columnar neural precursor cells (NPC) and 

are the in vitro equivalent of a rudimentary neural tube (Gallego et al. 2008, 2010; Li and 

Zhang 2006).  The comparable level of LHCGR expression between the different cell lineages 

was suggestive of 1) the existence of a tight regulatory system for the maintenance of hCG 

signaling during embryonic stem cell division and differentiation, and 2) a basal 

requirement for LH/hCG signaling during this early stage of embryogenesis.  Indeed, hCG 

signaling via its hESC receptor was found to be essential for the proliferation of hESC (Fig. 

1); inhibition of LHCGR signaling with P-antisense oligonucleotides suppressed hESC 

proliferation, as did a specific blocking antibody against the extracellular activation site of 

LHCGR, an effect that was reversed by treatment with hCG (Gallego et al. 2008, 2010).  

These data are supported by the known proliferative properties of (hyperglycosylated) hCG, 

which has been demonstrated to act as an autocrine factor on extravillous invasive 

cytotrophoblast cells to initiate and control invasion as occurs at implantation of pregnancy 

and the establishment of hemochorial placentation, and malignancy as occurs in invasive 

hydatidiform mole and choriocarcinoma (Cole 2009). 

In addition to its cell cycle signaling activity, signaling of hCG via the hESC receptor rapidly 

upregulated steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport 

and the synthesis of P4, a neurogenic steroid (Fig. 3; Brewer et al. 1993; Wang et al. 2005).  

StAR, a key rate-limiting step in the production of sex steroids in reproductive tissues, was 

detected in hESC at both mRNA and protein (37-kDa, 30-kDa and 20-kDa variants) levels.  

hCG treatment dose-dependently suppressed the expression of these StAR variants, while 

P4 treatment decreased the truncation of the 37-kDa to the 30/32-kDa variants of StAR, 

indicative of decreased cholesterol transport across the mitochondrial membrane for 

steroidogenesis (Epstein and Orme-Johnson 1991; Krueger and Orme-Johnson 1983; Pon et 

al. 1986; Stocco 2001; Stocco and Chen 1991; Yamazaki et al. 2006). Importantly, hCG 

treatment markedly increased P4 secretion 15-fold, indicating that embryoblast-derived 

hESC already possess the machinery to transport cholesterol and synthesize sex steroids.  

Together, these findings indicate negative feedback pathways exist for the regulation of 

hCG/LH signaling and mitochondrial cholesterol uptake for the synthesis of sex steroids in 

hESC and differentiating lineages.  

hESC and EBs express P4 receptor A (PR-A; Gallego et al. 2010; Hong et al. 2004; Sauter et al. 

2005) implying P4 signals hESC differentiation.  The requirement for P4 in the differentiation 

of hESC into EBs was confirmed by the finding that RU-486, a PR competitive antagonist 

(Fiala 2006), potently inhibited the differentiation of hESC into EBs (Fig. 1).  RU-486 treated 

colonies failed to form normal cystic structures after 10 days in culture, and instead formed 

solid irregular spheres that were ~20% the size of normal spheroidal EBs (Gallego et al. 2008, 

2009, 2010).    

Trophoblastic production of endorphins (Zhuang and Li 1991) also is crucial for 
embryogenesis (Gallego et al. 2009).  Treatment of hESC colonies with the delta opioid 
receptor selective antagonist ICI 174,864 (Corbett et al. 1984; Paterson et al. 1984) inhibits the 
formation of the EB cystic structure, and instead forms non-spherical structures ~40% the 
size of normal spheroidal EBs. The mechanism by which opioid signaling promotes 
blastulation is unclear, however delta opioid antagonists may function to inhibit 

www.intechopen.com



 Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis 

 

256 

embryogenesis by regulating hCG release (Cemerikic et al. 1992) required for P4 production. 
Thus, the tight regulation of hCG signaling, and sex steroid and opioid synthesis and 
signaling, is required to coordinate hESC proliferation and differentiation during 
gastrulation. 
 

 

Fig. 3. Model of the autocrine and paracrine pathways regulating blastulation and 
neurulation. Putative autocrine and endocrine signalling pathways involved in cell 
proliferation, steroidogenesis and differentiation of the blastocyst and primitive neural tube.  
For details see Gallego et al., (2010) 

3.2 Regulation of neurulation by human chorionic gonadotropin and progesterone 

In addition to the obligatory signaling of P4 for gastrulation, P4 signaling also is required for 

the specification of NPCs from hESC (Fig. 1; Gallego et al. 2008, 2009, 2010).  hCG treatment 

suppresses expression of the pluripotent marker Oct-3/4, suggesting hCG, or steroid 

production initiated by hCG signaling, could direct lineage commitment (Gallego et al. 2008, 
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2010).  In the presence of P4, hESC colonies differentiate into spherical structures containing 

a minimum of three neuroectodermal rosettes inside of the cavity, while hESC colonies 

treated without P4 or with RU-486 failed to form rosettes with columnar neuroectodermal 

cells after 17 days in culture (Gallego et al. 2008, 2009, 2010).  Morphological changes were 

more severe in the absence of P4 than with RU-486.  P4, and to a lesser extend E2, were found 

to increase the expression of nestin, an early marker of NPC formation, in hESC.  RU-486 

completely suppressed nestin expression.  Interestingly, ‘E2 priming’ is required for 

induction of PR expression in other tissues (Atwood et al. 2000; Mylonas et al. 2007). Thus, 

the increase in nestin expression with E2 treatment may reflect increased PR expression 

together with endogenous P4 signaling, and explain the current requirement for serum 

priming of hESC colonies in the preparation of neuroectodermal rosettes.   

Interestingly, hESCs default towards a primitive neural stem cell fate if maintained for any 
length of time in culture (Munoz-Sanjuan and Brivanlou 2002).  Since hCG treatment 
induces nestin expression in hESC, endogenous gonadotropin production by hESC or 
trophoblastic cells (Golos et al. 2006) may be sufficient for NPC formation, thereby 
explaining the intrinsic hormonal signals regulating the ‘default pathway’ of hESC 
differentiation into neuronal lineages (Munoz-Sanjuan and Brivanlou 2002).    
These results suggest that trophoblastic hCG production adjacent to the embryoblast is 

required not only for trophoblast steroidogenesis and attachment of the blastocyst to the 

uterine wall (Wahabi et al. 2007), but also for signaling normal proliferation and 

differentiation of the epiblast (Fig. 3).  hCG-induced P4 synthesis therefore has, in addition to 

its role in uterine decidualization for the implantation and maintenance of pregnancy, an 

obligatory role prior to the formation of neural precursor cells, as well as an inductive role 

in the directed differentiation and specification of the first neuronal cell types 

(organogenesis) and the formation of the neural tube.  While the structural importance of P4 

and alloprogesterone has previously been recognized by its early synthesis (by at least day 

13) within the developing rat central nervous system (Pomata et al. 2000), these results 

demonstrate an early (within the first 7 days) and absolute requirement for P4 during 

human blastulation and neurulation.  In this respect, it has been shown that P4 is necessary 

and sufficient (in Neurobasal media) for the maintenance and differentiation of primary 

hippocampal/cortical/striatal neurons in vitro (Brewer et al. 1993).  That P4 is the hormone 

regulating these key events is perhaps not surprising given its location high in the 

steroidogenic synthetic pathway; P4 is the first steroid synthesized from pregnenolone, the 

precursor to all other steroids.   

Opioid signaling also is required for neuroectodermal rosette formation since ICI 174,864 

(Corbett et al. 1984; Paterson et al. 1984) inhibits normal neuroectodermal rosette formation 

and nestin expression (Gallego et al. 2009, 2010).  Previous data has implicated P4 as acting 

in the arcuate nucleus and anteroventral periventricular nucleus through beta-endorphin 

and dynorphin B neurons to affect preoptic area GnRH neurons and gonadotropin secretion 

(Dufourny et al. 2005; Gu and Simerly 1994).  Thus, delta opioid receptor signaling is 

required both for normal human blastulation and neurulation, but it remains to be 

determined if there is crosstalk between opioid signaling and the regulation of 

GnRH/gonadotropin secretion. 

Previous studies have demonstrated the importance of P4 and related steroids as 

neurotrophic agents that promote adult neurogenesis, neuronal survival and 

neuroprotection (Brewer et al. 1993; Ciriza et al. 2004; Cutler et al. 2006; Guo et al. 2006; 
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Mauch et al. 2001; Schumacher et al. 2003, 2004; VanLandingham et al. 2006; Wang et al. 

2005). Clinical studies supporting the neurotrophic actions of P4 administration are 

demonstrated by the decrease in mortality rate and improved outcome following acute 

traumatic brain injury in humans (Wright et al. 2007).  

Dependent upon the timing of administration during pregnancy, suppression of P4 

signaling with RU-486 (Fiala and Gemzel-Danielsson 2006) aside from intrauterine 

disruptive functions (decidual breakdown and trophoblast detachment) also will disrupt 

time-sensitive developmental processes. The requirement of P4 during cavitation processes 

indicates the structural influence of these molecular pathways on the developing embryo 

within the first 7 days, but also on the formation of the neural tube at around day 17-19, 

which will influence future neural connectivity.  The relative binding affinity of RU-486 for 

the PR is twice that of P4 (Heikinheimo et al. 2003), and is used at a dose of 200-600 mg for 

the termination of pregancies (Fiala 2006) (this equates to ~6-19 µM, equivalent to that used 

in Gallego et al.  2008, 2009, 2010).  Thus, the abortifacient effects of RU-486 in blocking PR 

signaling also extend to blocking blastulation and neurulation and the normal growth and 

development of the embryo. 

3.3 Regulation of organogenesis by human chorionic gonadotropin and progesterone 

Aside from the induction of blastulation and neurulation early in embryogenesis, hCG/LH 

and P4 signaling may play a role in the development of other tissues (LH is the adult hCG 

homolog with 83 % homology and binds the same receptor - LHCGR).  LHCGR and PR 

have been identified on numerous reproductive and non-reproductive tissues (Ascoli et al. 

2002; Bouchard 1999; Bukovsky et al. 2003; Mulac-Jericevic and Conneely 2004). With regard 

hCG/LH, the free glycoprotein -subunit of gonadotropins has been shown to stimulate 

differentiation of prolactin cells in the pituitary (Avsian-Kretchmer and Hsueh 2004) and 

endometrial stromal cell decidualization in the placenta (Blithe et al. 1991).  Although it has 

not been demonstrated if hCG/LH has a developmental function during organogenesis, 

hyperglycosylated hCGǃ has potent cell growth and invasion properties as observed in 

early pregnancy, gestational choriocarcinoma and testicular cancers (Cole 2009).  

Interestingly, in the adult brain, subcutaneous administration of LH has been shown to 

induce neurogenesis in the hippocampus of the adult mouse (Mak et al. 2007), while in 

sheep there is evidence that GnRH directly, or indirectly via LH, induces neurogenesis in 

the hippocampus (Hawken et al. 2009).  hCG also is known to promote angiogenesis by 

inducing the up-regulation of vascular endothelial growth factor (Berndt et al. 2006; Licht et 

al. 2002; Zygmunt et al. 2002) and P4 (Rogers et al. 2009).   

The potential for P4 to regulate organogenesis has been reported during puberty and 

adulthood, where P4 is obligatory for the development of the tertiary ducts on the mammary 

gland, and the functional differentiation of the lobuloalveolar system from the lobular buds 

(Atwood et al. 2000).  In the adult, P4 and related metabolites have been demonstrated to 

regulate bone formation (Prior 1990), promote angiogenesis and arteriogenesis (Rogers et al. 

2009), promote formation of the placenta and promote neurogenesis by increasing rat 

neuroprogenitor cell proliferation and human neural stem cell proliferation (Wang et al. 

2005).  While our knowledge of hCG/LH and P4 during organogenesis is rudimentary at 

this point, the above evidence indicates these hormones likely play important functions in 

many tissues during organogenesis. 
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4. Utilizing human embryonic stem cells as a model system to understand 
the molecular basis of aging-related diseases 

It is becoming clear that the hormonal mechanisms that regulate the coordinated division 

and differentiation of cells early in life become dysregulated later in life following 

menopause and during andropause (which starts at ~ 30 years of age; see Vadakkadath 

Meethal et al. 2005; Atwood and Bowen 2011), and that these dysregulated hormonal 

mechanisms drive aberrant re-entry of cells into the cell cycle and their abortive death 

leading to tissue compromise and ultimately disease  (Atwood et al. 2005).   

The reproductive endocrine dyscrasia associated with menopause and andropause are 

intimately associated with disease (Bowen and Atwood 2004; Atwood and Bowen, 2011).  

The decline in sex steroid production by the gonads following menopause and during 

andropause leads to a loss of hypothalamic feedback inhibition that stimulates GnRH and 

gonadotropin production (Carr 1998).  In addition, the decrease in gonadal inhibin 

production at this time (Reichlin 1998) results in decreased activin receptor inhibition, and 

together with the increase in bioavailable activin (Gray et al. 2002) leads to a further increase 

in the secretion of GnRH and gonadotropins (MacConell et al. 1999; Schwall et al. 1988; 

Weiss et al. 1993).  Thus, the lack of negative feedback from the ovary (P4, E2 and inhibin) is 

responsible for the unopposed and marked elevations in the secretion of GnRH and 

gonadotropins with ovarian and testicular senescence (Atwood et al. 2005; Chakravarti et al. 

1976; Neaves et al. 1984; Reame et al. 1996; Schmidt et al. 1996). 

The concentration of brain sex steroids, including P4, is a mixture of peripherally derived sex 

steroids, converted peripheral steroids, and neuro-sex steroids.  The contribution of 

peripheral sex steroids to total brain sex steroids is unknown, but post-reproductive declines 

in peripheral P4 would be expected to impact brain P4 concentrations.  While elevations in 

GnRH and gonadotropin concentrations might promote brain neurosteroid production (see   

Vadakkadath Meethal et al. 2009), including P4, it is not known if this is sufficient to counter 

the loss of peripherally-derived sex steroids. The consequences of these hormonal 

alterations are discussed below in the context of AD. 

4.1 Alzheimer’s disease 

Dementia accounts for 3% of deaths in the USA (CDC National Vital Statistics Report, 2009) 

although by the age of 85 ~45% of the population has some form of dementia. AD accounts 

for ~70% of all dementia cases and is characterized neurologically by age-related 

progressive memory loss, impairments in behavior, language, and visuo-spatial skills 

(Atwood et al. 2005; Vadakkadath Meethal et al. 2005). 

Unlike development, where mitogenic and differentiative signaling are both elevated, 

senescence is associated with elevated mitogenic (i.e. gonadotropins, GnRH) signaling but 

decreased differentiative signaling (i.e. sex steroids). 

The age-related loss of P4 is of particular importance given the differentiative properties of 

this steroid described above.  Also of importance are the aging-related elevations in serum 

GnRH, FSH and LH, especially given the known proliferative properties of hCG/LH (Cole 

2009; Gallego et al. 2008, 2010). In this regard, LH/hCG is known to have powerful 

mitogenic properties in certain reproductive tissues (Davies et al. 1999; Harris et al. 2002; 

Horiuchi et al. 2000; Sriraman et al. 2001; Webber and Sokoloff 1981), the brain (Mak et al., 

2007; Hawken et al., 2009) and are frequently expressed by tumor cells (Krichevsky et al. 
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1995; Whitfield and Kourides 1985; Yokotani et al. 1997 and reviewed in Cole 2009).  Thus, 

these multiple changes in hormonal signaling with menopause/andropause, i.e. increased 

mitogenic signaling but decreased differentiation signaling (dyotic signaling) might be 

expected to impact normal cell cycle dynamics.  Indeed, accumulating evidence suggests 

there is a reactivation of the cell cycle with aging (see Bowen and Atwood 2004) as has been 

demonstrated for post-mitotic pyramidal neurons of the brains of aged individuals with AD 

(Herrup and Yang 2007; Raina et al. 2000).  This data includes 1) the ectopic expression of 

cell cycle proteins in those regions of the brain affected by AD, but not in areas unaffected 

by AD pathology or in control brains, 2) chromosomal replication (endoreduplication) in 

differentiated AD neurons, demonstrating entry into S-phase of the cell cycle, 3) elevated 

cytoplasmic mitochondrial DNA and Cox-1 expression, suggestive of de novo mitochondrion 

synthesis, and 4) upregulated growth factor signal transduction pathways. Importantly, the 

spatio-temporal expression of sex hormone receptors throughout the brain is in those areas 

of AD neurodegeneration. Other parallels between embryonic neurogenesis and adult 

neurodegeneration include the expression of AǃPP, secretases and tau, together with the 

processing of AǃPP either towards the amyloidogenic or non-amyloidogenic pathways, and 

the phosphorylation of tau (Porayette et al. 2009) (Atwood and Porayette, unpublished 

data).  Similarly, the fetal brain has been reported to display a number of biochemical 

similarities to the AD brain, namely the presence of Aǃ and AǃPP (Arai et al. 1997; 

Takashima et al. 1990), presenilin-1 expression (Berezovska et al. 1997) and hyper-

phosphorylated tau (Goedert et al. 1993).  The phosphorylation of tau is a mitogenic-

associated event that normally occurs during metaphase of neuronal division, and is 

observed during differentiation of neurons in the fetal brain (Goedert et al. 1993; Liu, et al. 

2004).  
This increased developmental protein expression in the AD brain suggests reactivation of 
the cell cycle in differentiated neurons of the AD brain (Herrup and Yang 2007) and explains 
the majority of the biochemical and pathological features associated with the disease 
(Atwood et al. 2005; Meethal et al. 2005).  Two recent studies support this claim.  Forced cell 
cycle activation in terminally differentiated neurons via conditional expression of the simian 
virus 40 large T antigen (oncogene) forms Aǃ deposits and tau pathology in the mouse 
cortex (Park et al. 2007).  Similarly, forced cell cycle activation in primary neurons is 
accompanied by tau phosphorylation (McShea et al. 2007). These data suggest that AD 
neuropathology is a result of an imbalance in cell cycle regulation in the adult brain. 

4.2 Amyloid-β precursor protein and neurogenesis 

That amyloidogenic pathways are involved in neurogenesis has recently been reported by a 
number of workers (Calafiore et al. 2006; Heo et al. 2007; Liu et al. 2004; Lopez-Toledano 
and Shelanski 2004). In this context, an increase in neurogenesis has been reported in young 
transgenic mice overexpressing human mutant AǃPP (Jin et al. 2004; Lopez-Toledano and 
Shelanski 2007). Moreover, the overexpression of wild-type or FAD mutant AǃPP, which 
promotes Aǃ generation (Citron et al. 1997), also has been shown to promote the re-entry of 
primary neurons into the cell cycle, as demonstrated by the induction of DNA synthesis and 
cell cycle markers (McPhie et al. 2003).  Not surprisingly, AǃPP has structural similarity to 
growth factors (Trapp and Hauer 1994) and modulates several important neurotrophic 
functions, including neuritogenesis, synaptogenesis, and synaptic plasticity (Gralle and 
Ferreira 2007).   
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4.3 Hormonal regulation of neurogenesis via modulation of amyloid-β precursor 
protein metabolism 

In hESC, the differential processing of AǃPP via secretase enzymes regulates the 
proliferation and differentiation of hESC; processing towards the amyloidogenic pathway is 
associated with cell proliferation, processing towards the non-amyloidogenic pathway is 
associated with cell specification and differentiation.  Specifically, P4 induces processing of 
AǃPP towards the production of the soluble AǃPP in hESC (Porayette et al. 2009), which 
has known differentiative properties (Milward et al. 1992).  Similarly, E2 has been shown to 
stimulate the processing of AǃPP by the nonamyloidogenic ǂ-secretory pathway and 
reduces cellular Aǃ production in both nonneuronal (Jaffe et al. 1994) and neuronal cultures 
(Greenfield et al. 2002; Manthey et al. 2001; Xu et al. 1998).  Conversely, the loss of sex 
steroids and elevation in gonadotropins following ovariectomy has been shown to increase 
Aǃ generation in non-transgenic animals (Petanceska et al. 2000).  Importantly, we have 
demonstrated that LH promotes the processing of AǃPP towards the amyloidogenic 
pathway in vitro, while suppression of serum LH in mice using GnRH agonists decreases the 
concentration of brain Aǃ1-40 and Aǃ1-42, the 2 major variants that deposit in the AD brain 
(Bowen et al. 2004).  It is therefore plausible that the interaction of these hormonal pathways 
on the modulation of the processing of AǃPP may regulate cell cycle events throughout life, 
with dyotic signaling by these hormones leading to the reactivation of the cell cycle in 
differentiated neurons of the AD brain (Herrup and Yang 2007).  This aberrant, albeit 
unsuccessful, re-entry of neurons into the cell cycle leads to synapse contraction and neuron 
death (see Atwood et al. 2005; Herrup et al. 2004; Raina et al. 2000 for reviews).  In addition 
to the loss of neurons following the reactivation of the cell cycle in differentiated neurons, it 
is possible that dyotic signaling prevents normal neurogenesis from resident neural stem 
cells, thereby preventing replacement of neurons.  Further studies are required to determine 
whether post-reproductive levels of GnRH/gonadotropins are sufficient to induce 
neurosteroidogenesis in neural stem cells and neuronal cell types, and whether the level of 
post-reproductive neurosteroid synthesis dictates normal or dyotic signaling in these cell 
types. 

5. Conclusion 

The advent of the human embryonic stem cell era has allowed experimental determination 
of the physiological hormone requirements for early embryogenesis. In this respect, 
although progestagens are often considered primarily reproductive hormones with 
maternal influences, it is now clear that progestagens and hCG are essential for the growth 
and development of the embryo as well as the normal health of the brain throughout life. 
Paracrine/juxtacrine signaling of hCG (and opioids) for mobilization of cholesterol for P4 
production by the epiblast/synctiotrophoblast following conception is obligatory for human 
blastulation and neurulation (Fig. 3). This paracrine/juxtacrine signaling by extraembryonic 
tissues is the commencement of trophic support by placental tissues in the growth and 
development of the human embryo. The identification of these hormones that regulate cell 
proliferation and differentiation of hESC in vitro will help direct the development of medias  
that most closely reflect their in utero environment for in vitro culture of these cells and their 
differentiation towards various cell lineages. Such medias could be used to further delineate 
the molecular basis of embryogenesis and organogenesis, as well as establish ex utero 
embryonic and fetal cultures. 
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The above discussion also indicates how hESC can provide insight into neurodegenerative 
disease (and likely many other aging-related diseases). While appropriate gonadotropin/ 
GnRH and P4 signaling is necessary for normal growth and development during 
embryogenesis, fetal life and childhood, and for the maintenance of brain health during 
adult reproductive life, the unopposed elevations in GnRH/gonadotropins with the loss of 
sex steroids following menopause/andropause appears to lead to dysregulation of cell cycle 
events (Bowen and Atwood 2004). 
It will be possible in the future to use hESC cells as a model for understanding how 
endocrine, paracrine and autocrine signals regulate cell cycle progression, from entry to exit, 
and how dysregulated signaling leads to entry but no exit from the cell cycle, i.e. leading to 
endoreduplication such as is apparent in the pyramidal neurons of the AD brain. Thus, 
hESC are a useful cell model system for examining questions related to early embryonic 
neurogenesis, adult neuroregeneration and neurodegeneration. 
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