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1. Introduction 

The problem of fault detection and diagnosis (FDD) in dynamic systems has received 

considerable attention in last decades due to the growing complexity of modern engineering 

systems and ever increasing demand for fault tolerance, cost efficiency, and reliability 

(Willsky, 1976; Basseville, 1988). Existing FDD approaches can be roughly divided into  

two major categories including model-based and knowledge-based approaches 

(Venkatasubramanian et al., 2003a; Venkatasubramanian et al., 2003b). Model-based 

approaches make use of the quantitative analytical model of a physical system. Knowledge-

based approaches do not need full analytical modeling and allow one to use qualitative 

models based on the available information and knowledge of a physical system. Whenever 

the mathematical models describing the system are available, analytical model-based 

methods are preferred because they are more amenable to performance analysis.  
Generally, there are two steps in the procedure of model-based FDD. First, on the basis of 
the available observations and a mathematical model of the system, the state variable x and 
test statistics are required to be obtained. Then, based on the generated test statistics, it is 
required to decide on the potential occurrence of a fault. For linear and Gaussian systems, 
the Kalman filter (KF) is known to be optimal and employed for state estimation. The 
innovations from the KF are used as the test statistics, based on which hypothesis tests can 
be carried out for fault detection (Belcastro & Weinstein, 2002). In reality, however, the 
models representing the evolution of the system and the noise in observations typically 
exhibit complex nonlinearity and non-Gaussian distributions, thus precluding analytical 
solution. One popular strategy for estimating the state of such a system as a set of 
observations becomes available online is to use sequential Monte-Carlo (SMC) methods, also 
known as particle filters (PFs) (Doucet et al., 2001). These methods allow for a complete 
representation of the posterior probability distribution function (PDF) of the states by 
particles (Guo & Wang, 2004; Li & Kadirkamanathan, 2001). 
The aforementioned FDD strategies are single-model-based. However, a single-model-based 

FDD approach is not adequate to handle complex failure scenarios. One way to treat this 
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problem is the interacting multiple model (IMM) filter (Zhang & Li, 1998). For the IMM 

approach, the single-model-based filters running in parallel interact each other in a highly 

cost-effective fashion and thus lead to significantly improved performance. The initial 

estimate at the beginning of each cycle for each filter is a mixture of all most recent estimates 

from the single-model-based filters. It is this mixing that enables the IMM to effectively take 

into account the history of the modes (and, therefore, to yield a more fast and accurate 

estimate for the changed system states) without the exponentially growing requirements in 

computation and storage as required by the optimal estimator. The probability of each mode 

is calculated, which indicates clearly the mode in effect and the mode transition at each time. 

This is directly useful for the detection and diagnosis of system failures. In view of these, 

there is a strong hope that it will be an effective approach to FDD and thus has been 

extensively studied during the last decade, see (Zhang & Jiang, 2001; Yen &Ho, 2003; 

Tudoroiu & Khorasani, 2005; Rapoport & Oshman, 2007), and reference therein. 

A shortcoming of the IMM approach lies in that the mode declaration of the IMM filter may 

not reflect a true faulty situation because the model probability of the nominal model tends 

to become dominant especially when 1) the states and control inputs converge to the steady 

state at a nominal trim flight, or 2) a fault tolerant controller works well after the first failure. 

Besides, the IMM filter with the constant transition probability matrix has a problem 

diagnosing the second failure. To cope with the abovementioned problems, a new FDD 

technique is proposed using IMM filter and fuzzy logic for sensor and actuator failures. In 

this study, fuzzy logic is used to determinate the transition probability among the models 

not only to enhance the FDD performance after the first failure but also to diagnose the 

second one as fast and accurately as possible. 

On the other hand, fuel cell technology offers high efficiency and low emissions, and holds 

great promise for future power generation systems. Recent developments in polymer 

electrolyte membrane (PEM) technology have dramatically increased the power density of 

fuel cells, and made them viable for vehicular and portable power applications, as well as 

for stationary power plants. A typical fuel cell power system consists of numerous 

interconnected components, as presented comprehensively in the books (Blomen & 

Mugerwa, 1993), (Larminie & Dicks, 2000), (Pukrushpan et al. 2004b), and more concisely in 

the survey paper (Carette et al. 2001) and (Kakac et al. 2007). Faults in the fuel cell systems 

can occur in sensors, actuators, and the other components of the system and may lead to 

failure of the whole system (Hernandez et al. 2010). They can be modeled by the abrupt 

changes of components of the system. Typical faults of main concern in the fuel cell systems 

are sensor or actuator failures, which will degrade or even disable the control performance. 

In the last a few years, a variety of FDD approaches have been developed for various 

failures (Riascos et al., 2007; Escobet et al., 2009; Gebregergis et al. 2010). However, only 

simple failure scenarios, such as failure in sensor or actuator, are concerned therein. 

Moreover, upon FDD problem for the PEM fuel cell systems, there is little result so far by 

IMM approach.  
In this chapter, a self-contained framework to utilize IMM approach for FDD of PEM fuel 
cell systems is presented. As mentioned above, the constant transition probability matrix 
based IMM approach has problem in diagnosing the second failure, even though a fault 
tolerant controller works well after the first failure. Therefore, in our study, fuzzy logic is 
introduced to update the transition probability among multiple models, which makes the 
proposed FDD approach smooth and the possibility of false fault detection reduced. In 
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addition to the “total” (or “hard”) actuator and/or sensor failures, “partial” (or “soft”) faults 
are also considered. Compared with the existing results on FDD for fuel cell systems, more 
complex failure situations, including the total/partial senor and actuator failures, are 
considered. Simulation results considering both single and simultaneous sensor and/or 
actuator faults are given to illustrate the effectiveness of the proposed approach. 

2. IMM for fault detection and diagnosis revisited 

In this section, the details on generating the fault dynamics process using jump Markov 
linear hybrid dynamic models is first described. Then, the IMM estimation approach is 
developed for FDD. 

2.1 Jump Markov hybrid systems 

A stochastic hybrid system can be described as one with both continuous-valued base state 
and discrete-valued Structural/parametric uncertainty. A typical example of such a system 
is one subject to failures since fault modes are structurally different from each other and 
from the normal (healthy) mode. An effective and natural estimation approach for such a 
system is the one based on IMMs, in which a bank of filters running in parallel at every time 
with jumps in mode modeled as transition between the assumed models. 
The IMM approach assumes that the state of the actual system at any time can be modeled 
accurately by the following jump Markov hybrid system: 

 ( 1) ( , ( 1)) ( ) ( , ( 1)) ( ) ( , ( 1)) ( , ( 1))ux k A k m k x k B k m k u k B k m k k m kω ω+ = + + + + + +  (1) 

0 0
ˆ(0) ( , )x N x P∈  

 ( ) ( , ( )) ( ) ( , ( )) ( ) ( , ( )) ( , ( ))uz k C k m k x k D k m k u k D k m k k m kυ υ= + +  (2) 

with the system mode sequence assumed to be a first-order Markov chain with transition 
probabilities 

 { ( 1)| ( )} ( ), ,j i ij i jP m k m k k m m Sπ+ = ∀ ∈  (3) 

and  

 ( ) 1,0 ( ) 1, 1,...,ij ij
j

k k i sπ π= ≤ ≤ =∑  (4) 

where ( )x k  is the state vector, ( )z k  is the mode-dependent measurement vector, and ( )u k  is 
the control input vector; ( )kω  and ( )kυ  are mutually independent discrete-time process and 
measurement noises with mean ( )kω  and ( )kυ , and covariances ( )Q k  and ( )R k ; { }P ⋅  is the 
probability operator; ( )m k  is the discrete-value modal state (i.e., the index of the normal or 
fault mode in our FDD scenario) at time k , which denotes the mode in effect during the 
sampling period ending at kt ; ijπ  is the transition probability from mode im  to mode jm ; 
the event that jm  is in effect at time k  is denoted as ( ) : { ( ) }j jm k m k m= = . The mode set 

1 2{ , ,..., }sS m m m=  is the set of all possible system modes. 
The nonlinear system (1)-(2), known as a “jump linear system”, can be used to model 
situations where the system behavior pattern undergoes sudden changes, such as system 
failures in this chapter and target maneuvering in (Li & Bar-Shalom, 1993). The FDD 
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problem in terms of the hybrid system may be stated as that of determining the current 
model state. That is, determining whether the normal or a faulty mode is in effect based on 
analyzing the sequence of noisy measurements. 
How to design the set of models to represent the possible system modes is a key issue in the 
application of the IMM approach, which is problem dependent. As pointed in (Li, 1996), this 
design should be done such that the models (approximately) represent or cover all possible 
system modes at any time. This is the model set design problem, which will be discussed in 
the next subsection. 

2.2 Model set design for IMM based FDD 

In the IMM method, assume that a set of N models has been set up to approximate the 
hybrid system (1)-(2) by the following N pairs of equations: 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( )j uj jx k A k x k B k u k B k kω ω+ = + +  (5) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )j uj jz k C k x k D k u k D k kυ υ= + +  (6) 

where N s≤  and subscript j denotes quantities pertaining to model jm ∈M  (M  is the set of 

all designed system models to represent the possible system modes in S . System matrices 

jA , ujB , jBω , jC , ujD , and jDυ  may be of different structures for different j . 
The model set design (i.e., the design of fault type, magnitude, and duration) is critical for 
IMM based FDD. Design of a good set of models requires a priori knowledge of the possible 
faults of the system. As pointed out in (Li & Bar-Shalom, 1996; Li, 2000), caution must be 
exercised in designing a model set. For example, there should be enough separation 
between models so that they are “identifiable” by the IMM estimator. This separation 
should exhibit itself well in the measurement residuals, especially between the filters based 
on the matched models and those on the mismatched ones. Otherwise, the IMM fault 
estimator will not be very selective in terms of correct FDD because it is the measurement 
residuals that have dominant effects on the model probability computation which in turn 
affect the correctness of FDD and the accuracy of overall state estimates. On the other hand, 
if the separation is too large, numerical problems may occur due to ill conditions in the set 
of model likelihood functions. A total actuator failures may be modeled by annihilating the 
appropriate column(s) of the control input matrix Bu and Du : 

 ( 1) ( ) ( ) [ ( ) ] ( ) ( ) ( )u Bjx k A k x k B k M u k B k kω ω+ = + + +  (7) 

 ( ) ( ) ( ) [ ( ) ] ( ) ( ) ( )u djz k C k x k D k M u k D k kυ υ= + + +  (8) 

That is, choose the matrix BjM  with all zero elements except that the jth column is taken to 

be the negative of the jth column of uB . 

Alternatively, the jth actuator failure may be modeled by an additional process noise term 

( )j kε : 

 ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jx k A k x k B k u k B k k kω ω ε+ = + + +  (9) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k kυ υ ε= + + +  (10) 
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For total sensor failures, a similar idea can be followed. The failures can be modeled by 
annihilating the appropriate row(s) of the measurement matrix C described as 

 ( ) [ ( ) ] ( ) ( ) ( ) ( ) ( )j uz k C k L x k D k u k D k kυ υ= + + +  (11) 

or by an additional sensor noise term ( )je k  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u jz k C k x k D k u k D k k e kυ υ= + + +  (12) 

Partial actuator (or sensor) failures are modeled by multiplying the appropriate column (or 
row) of Bu (or C) by a (scaling) factor of effectiveness. They can also be modeled by 
increasing the process noise covariance matrix Q or measurement noise covariance matrix R. 

Here we consider more complex failure situations, including total actuator and/or sensor 
failures, partial actuator and/or sensor failures, and simultaneous partial actuator and 
sensor failures. These situations require that the FDD algorithm be more responsive and 

robust. It is difficult for single-model-based approach to handle such complex failure 
scenarios. 

2.3 Procedures of IMM approach to FDD 

The following procedures should be performed in the application of the IMM estimation 
technique for fault detection and diagnosis: (i) filter reinitialization; (ii) model-conditional 

filtering; (iii) model probability updating; (iv) fault detection and diagnosis; (v) estimate 
fusion.  
The detailed steps for the IMM algorithm are described next (Zhang & Li, 1998; Mihaylova 
& Semerdjiev, 1999; Johnstone & Krishnamurthy, 2001). 

Step 1. Interaction and mixing of the estimates: filter reinitialization (interacting the 
estimates) obtained by mixing the estimates of all the filters from the previous time 
(this is accomplished under the assumption that a particular mode is in effect at the 
present time). 

1. Compute the predicted model probability from instant k to k+1: 

 
1

( 1| ) ( )
N

j ij i
i

k k kμ π μ
=

+ =∑  (13) 

2. Compute the mixing probability: 

 | ( ) ( ) ( 1| )i j ij i jk k k kμ π μ μ= +  (14) 

3. Compute the mixing estimates and covariance: 

 0
|

1

ˆ ˆ( | ) ( | ) ( )
N

j i i j
i

x k k x k k kμ
=

=∑  (15) 

 0 0 0
|

1

ˆ ˆ ˆ ˆ( | ) { ( | ) [ ( | ) ( | )][ ( | ) ( | )] } ( )
N

T
j i j i j i i j

i

P k k P k k x k k x k k x k k x k k kμ
=

= + − −∑  (16) 

where the superscript 0 denotes the initial value for the next step. 
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Step 2. Model-conditional filtering 
The filtering techniques such as (extended) Kalman filter, unscented Kalman filter, and 
particle filter can be applied for model-conditioning filtering. In this study, a linear Kalman 

filter is used as the individual filter of the IMM approach. 
Step 2.1: Prediction step 

1. Compute the predicted state and covariance from instant k to k+1: 

 0ˆ ˆ( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )j j j uj jx k k A k x k k B k u k B k kω ω+ = + +  (17) 

 0( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T T
j j j j j j jP k k A k P k k A k B k Q k B kω ω+ = +  (18) 

2. Compute the measurement residual and covariance: 

 ˆ( 1) ( 1) ( 1| ) ( ) ( ) ( ) ( )j j j uj jr z k C k x k k D k u k D k kυ υ= + − + + − −  (19) 

 ( 1) ( 1| ) ( 1) ( ) ( ) ( )T T
j j j j j jS C k P k k C k D k R k D kυ υ= + + + +  (20) 

3. Compute the filter gain: 

 1( 1| ) ( 1)T
j j j jK P k k C k S−= + +  (21) 

Step 2.2:  Correction step 

Update the estimated state and covariance matrix: 

 ˆ ˆ( 1| 1) ( 1| )j j j jx k k x k k K r+ + = + +  (22) 

 ( 1| 1) ( 1| ) T
j j j j jP k k P k k K S K+ + = + −  (23) 

 

Step 3. Updating the model probability 
The model probability is an important parameter for the system fault detection and 
diagnosis. For this, a likelihood function should be defined in advance, and then the model 

probability be updated based on the likelihood function. 
1. Compute the likelihood function: 

 11 1
( 1) exp

22

T
j j j j

j

L k r S r
Sπ

−⎡ ⎤+ = −⎢ ⎥⎣ ⎦
 (24) 

2. Update the model probability: 

 

1

( 1| ) ( 1)
( 1)

( 1| ) ( 1)

j j
j N

j jj

k k L k
k

k k L k

μ
μ

μ
=

+ +
+ =

+ +∑
 (25) 

Step 4. Fault detection and diagnosis 

1. Define the model probability vector 1 2( 1) [ ( 1), ( 1),..., ( 1)]Nk k k kμ μ μ μ+ = + + +
f

. The 

maximum value of the model probability vector for FDD can be obtained as 
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 FDDmax max ( 1)kμ μ= +
f

 (26) 

The index of the maximum value of the model probability vector component can be 
determined as 

 FDDmaxfind( ( 1))j kμ μ= == +
f

 (27) 

2. Fault decision–FDD logic 
The mode probabilities provide an indication of mode in effect at the current sampling 
period. Hence, it is natural to be used as an indicator of a failure. According to the 
information provided by the model probability, both fault detection and diagnosis can be 
achieved. The fault decision can be determined by  

 FDDmax
1

: Delare fault corresponding to th mode

: No fault

T j

T

H j

H

μ
μ

μ

≥ ⇒⎧⎪
⎨
< ⇒⎪⎩

 (28) 

Or alternatively,   

 

'

FDDmax

'
1

: Delare fault corresponding to th mode

max ( 1) : No fault

T j

Ti j

H j

k H

μμ
μ μ

≠

⎧≥ ⇒⎪
⎨

+ < ⇒⎪⎩
f  (29) 

Step 5. Estimate fusion and combination that yields the overall state estimate as the 
probabilistically weighted sum of the updated state estimates of all the filters. The 
probability of a mode in effect plays a key role in determining the weights 
associated with the fusion of state estimates and covariances. The estimates and 
covariance matrices can be obtained as: 

 
1

ˆ ˆ( 1| 1) ( 1| 1) ( 1)
N

j j
j

x k k x k k kμ
=

+ + = + + +∑  (30) 

1

( 1| 1)

ˆ ˆ ˆ ˆ[ ( | ) ( ( 1| 1) ( 1| 1))( ( 1| 1) ( 1| 1)) ] ( 1)
N

T
j j j j

j

P k k

P k k x k k x k k x k k x k k kμ
=

+ + =

= + + + − + + + + − + + +∑  (31) 

It will be seen from Section 4 that the transition probability plays an important role in the 
IMM approach to FDD. In this study, the transition probability is adapted online through 
the Takagi-Sugeno fuzzy logic (Takagi & Sugeno, 1985). The overall framework of the 
proposed fuzzy logic based IMM FDD algorithm is illustrated in Fig. 1. 
It is worth noting that decision rule (28) or (29) provides not only fault detection but also the 

information of the type (sensor or actuator), location (which sensor or actuator), size (total 

failure or partial fault with the fault magnitude) and fault occurrence time, that is, 

simultaneous detection and diagnosis. For partial faults, the magnitude (size) can be 

determined by the probabilistically weighted sum of the fault magnitudes of the 

corresponding partial fault models. Another advantage of the IMM approach is that FDD is 

integrated with state estimation. The overall estimate provides the best state estimation of 

the system subject to failures. Furthermore, unlike other observer-based or Kalman filter 
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based approaches, there is no extra computation for the fault decision because the mode 

probabilities are necessary in the IMM algorithm. Furthermore, the overall estimate is 

generated by the probabilistically weighted sum of estimates from the single-model-based 

filters. Therefore, it is better and more robust than any single-model-based estimate. This 

state estimate does not depend upon the correctness of fault detection and in fact, the 

accurate state estimation can facilitate the correct FDD. The detection threshold μT is 

universal in the sense that it does not depend much on the particular problem at hand and a 

robust threshold can be determined easily. In other words, the FDD performance of the 

IMM approach varies little in most cases with respect to the choice of this threshold (Zhang 

& Li, 1998). On the other hand, the residual-based fault detection logic relies heavily on the 

threshold used, which is problem-relevant. Quite different detection thresholds have to be 

used for FDD problems of different systems and design of such a threshold is not trivial. 

Moreover, without comparing with the threshold, the value of the measurement residual 

itself does not provide directly meaningful detection and indication of the fault situations. 

 
 

 
 

Fig. 1. Block diagram of the proposed fuzzy logic based IMM FDD approach 

3. Update of transition probability by fuzzy logic 

As aforementioned, the transition probability plays an important role in interacting and 

mixing the information of each individual filter. However, an assumption that the transition 

probability is constant over the total period of FDD can lead to some problems. Even if the 

fault tolerant control treats the first failure successfully, the unchanged transition probability 

Nμμμ      21 A Nμ

μ
μ

A
2

1

)1|1(

)1|1(ˆ

++
++

kkP

kkx

N

N
 

)1|1(

)1|1(ˆ

2

2

++
++

kkP

kkx
 

)1|1(

)1|1(ˆ

2

2

++
++

kkP

kkx
 

1r

2r

Nr

)|(

)|(ˆ

1

1

kkP

kkx
 

)|(

)|(ˆ

2

2

kkP

kkx
 

)|(

)|(ˆ

kkP

kkx

N

N
 

In
te

ra
ct

io
n

 

B  

Filter 1 

Filter 2 

Filter N 

B

)1( +kz

Fuzzy logic based model 

probability update 

Estimation  

fusion 

B  

)1|1(

)1|1(ˆ

++
++

kkP

kkx
 

Nμ

μ
μ

A
2

1

Tj
j

μμ
?

}{max > Fault  

Decision 

www.intechopen.com



Fuzzy Logic Based Interactive Multiple Model Fault Diagnosis for PEM Fuel Cell Systems   

 

433 

can mislead the FDD to intermittently declare a false failure alarm. This is because the fact 

that the normal mode before the first failure occurrence is not the normal mode any longer. 

The declared fault mode should be changed to a new normal mode after the first failure. On 

that account, the fuzzy-tuning algorithm of the transition probability is proposed in this 

study. 

The transition probability from any particular failure mode to the normal  mode is generally 

set larger than others in order to prevent a false fault diagnosis. However, it may have a bad 

influence on performing correct fault diagnosis because the model probability of the healthy 

mode tends to increase again as the current failed system converges to the steady state by 

the fault tolerant control law even after a fault occurs. This problem can be overcome by 

adjusting the transition probability after the fault occurrence. For example, if the model 

probability of a certain failure mode remains larger than that of any other mode for an 

assigned time, the transition probability related to the corresponding failure mode should be 

increased. On the other hand, the transition probability related to the previous mode should 

be decreased to reflect the fact that the failed mode selected by the fault decision algorithm 

becomes currently dominant. In this work, the fuzzy-tuning algorithm is adopted to adjust 

the transition probabilities effectively. 

Now introduce a determination variable Ci which decides whether or not the transition 

probabilities should be adjusted. First, the initial value of each mode’s determination 

variable is set to zero. The increment of the determination variable can be obtained through 

the fuzzy logic with inputs composed of the model probabilities at every step. If the 

determination variable Ci of a certain mode exceeds a predefined threshold value CT, then 

the transition probabilities are adjusted, and the determination value of each mode is 

initialized. The overall process is illustrated in Fig. 2. 

3.1 Fuzzy input 

A fuzzy input for adjusting transition probabilities includes the model probabilities from the 

IMM filter. At each sampling time, the model probabilities of every individual filter are 

transmitted to the fuzzy system. In this work, the membership function is designed as in 

Fig. 3 for the fuzzy input variables “small,” “medium,” and “big” representing the relative 

size of the model probability. 

3.2 Fuzzy rule 

The T-S fuzzy model is used as the inference logic in this work. The T-S fuzzy rule can be 

represented as 

 If χ  is A and ξ  is B then Ζ = f( χ , ξ ) (32) 

 

where A and B are fuzzy sets, and Ζ = f( χ , ξ ) is a non-fuzzy function. The fuzzy rule of 

adjusting transition probabilities is defined using the T-S model as follows 

 

If  is small,  then 0

If  is medium,  then 0.5

If  is big,  then 1

s
j j

m
j j

b
j j

C

C

C

μ

μ

μ

Δ =

Δ =

Δ =

 (33) 
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Fig. 2. Flowchart of T-S fuzzy logic for adaptive model probability update 

 

 

Fig. 3. Fuzzy membership function 
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3.3 Fuzzy output 

The output of the fuzzy system using the T-S model can be obtained by the weighted 
average using a membership degree in a particular fuzzy set as follows: 

 ( )

s s m m b b
j j j j j j

j s m b
j j j

w C w C w C
C k

w w w

Δ + Δ + Δ
Δ =

+ +
 (34) 

where s
jw , m

jw , and b
jw  is the membership degree in the jth mode for group small, 

medium, and big, respectively. During the monitoring process, the determination variable 

of the jth mode is accumulated as 

 ( 1) ( ) ( 1)j j jC k C k C kΔ + = + Δ +  (35) 

The designed fuzzy output surface of the T-S fuzzy interference system is shown in Fig. 4. 

 

 

Fig. 4. Output surface of the fuzzy interference system 

Once the determination variable of a certain fault mode exceeds the threshold value TC , 

then all the elements of the transition probability matrix from the other modes to the 

corresponding fault mode are increased.  

3.4 Transition probability design 

The diagonal elements of the transition probability matrix can be designed as follows 

(Zhang & Li, 1998). 

 max ,1jj j
j

T
lπ

τ

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 (36) 

where T , jτ , and jl  are the sampling time, the expected sojourn time, and the predefined 

threshold of the transition probability, respectively. For example, the “normal-to-normal’’ 
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transition probability, 11π , can be obtained by 11 11 /Tπ τ= −  (here 1τ  denotes the mean 

time between failures) since T is much smaller than 1τ  in practice. The transition probability 

from the normal mode to a fault mode sums up to 111 π− . To which particular fault mode it 

jumps depends on the relative likelihood of the occurrence of the fault mode. While in 

reality mean sojourn time of total failures is the down time of the system, which is usually 

large and problem-dependent, to incorporate various fault modes into one sequence for a 

convenient comparison of different FDD approaches, the sojourn time of the total failures is 

assumed to be the same as that of the partial faults in this work. 
“Fault-to-fault’’ transitions are normally disallowed except in the case where there is sufficient 

prior knowledge to believe that partial faults can occur one after another. Hence, by using (36), 

the elements of the transition probability related to the current model can be defined by 

 1n
n

T
p

τ
= − ,  

1

1
n

n

p
p

N

−
=

−
#  (37) 

 1f
f

T
p

τ
= − ,  1f fp p= −#  (38) 

where np  and fp  are the diagonal elements of the normal and failure mode, respectively, 

and np#  and fp#  are off-diagonal elements to satisfy the constraint that all the row sum of the 

transition probability matrix should be equal to one. In addition, N is the total number of the 

assumed models, and nτ  and fτ  are the expected sojourn times of the normal and failure 

mode, respectively. 
After a failure declaration by the fuzzy decision logic, the transition probability from the 

other modes to the corresponding failure model (say the mth mode) should be increased, 

whereas the transition probabilities related to the nonfailed model should be relatively 

decreased. For this purpose, the transition probability matrix of each mode is set as 

follows. 
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4. PEM fuel cell description and modeling 

The fuel cell system studied in this work is shown in Fig. 5. It is assumed that the stack 
temperature is constant. This assumption is justified because the stack temperature changes 
relatively slowly, compared with the ~100 ms transient dynamics included in the model to 
be developed. Additionally, it is also assumed that the temperature and humidity of the 
inlet reactant flows are perfectly controlled, e.g., by well designed humidity and cooling 
subsystems. It is further assume that the cathode and anode volumes of the multiple fuel 
cells are lumped as a single stack cathode and anode volumes. The anode supply and return 
manifold volumes are small, which allows us to lump these volumes to one ‘‘anode’’ 
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volume. We denote all the variables associated with the lumped anode volume with a 
subscript (an). The cathode supply manifold (sm) lumps all the volumes associated with 
pipes and connection between the compressor and the stack cathode (ca) flow field.The 
cathode return manifold (rm) represents the lumped volume of pipes downstream of the 
stack cathode. In this study, an expander is not included; however, we will consider this 
part in future models for FDD. It is assumed that the properties of the flow exiting a volume 
are the same as those of the gas inside the volume. Subscripts (cp) and (cm) denote variables 
associated with the compressor and compressor motor, respectively. 
 
 

 
 

 

Fig. 5. Simplified fuel cell reactant supply system 

The rotational dynamics and a flow map are used to model the compressor. The law of 
conservation of mass is used to track the gas species in each volume. The principle of mass 
conservation is applied to calculate the properties of the combined gas in the supply and 
return manifolds. The law of conservation of energy is applied to the air in the supply 
manifold to account for the effect of temperature variations. Under the assumptions of a 
perfect humidifier and air cooler, and the use of proportional control of the hydrogen valve, 
the only inputs to the model are the stack current, Ist, and the compressor motor voltage, vcm. 
The parameters used in the model are given in Table 1 (Pukrushpan et al., 2004a). The model 
is developed primarily based on physics. However, several phenomena are described in 
empirical equations. The models for the fuel cell stack, compressor, manifolds, air cooler and 
humidifier are presented in state-space model as specified by (40)-(41) with the relating 
matrices given in Table 1. 

 c uc cx A x B u bω ω= + +$  (40) 

 c uc cz C x D u Dω ω= + +  (41) 

Wan,out=0 

Wan,in 

Wrm,out 

Cooler & 

Humidifier 

Ist 

Compressor 

(CP) 

Wcp 

Supply 

Manifold 

(SM) 

Wca,in 

Cathode 

(CA) 

Wca,out 

Return Manifold 

(RM)

H2 Tank 

Anode 

(AN) 

M
E

M
B

E
R

 

www.intechopen.com



 Discrete Time Systems 

 

438 

where [ , ]Tcm stu v I= , and [ , , ]Tcp sm stz W p v= , the stochastic noise or disturbance ω  models 

the uncertainties caused by the linearization and measurement noises, etc. Note that the 

nominal operating point is chosen to be Pnet=40 kW and λO2 =2, which correspond to 

nominal inputs of Ist=191 Amp and vcm=164 Volt. The state vector 

2 2 2 2 ,[ , , , , , , , , ]TO H N cp sm sm O w an rmx m m m p m m m pω= . In more details, the fuel cell system model 

developed above contains eight states. The compressor has one state: rotor speed. The 

supply manifold has two states: air mass and air pressure. The return manifold has one 

state: air pressure. The stack has four states: O2, and N2 masses in the cathode, and H2 and 

vapor masses in the anode. These states then determine the voltage output of the stack. 
 

Symbol  Variable  Value 

rm,dry Membrane dry density 0.002 kg/cm3 

Mm,dry Membrane dry equivalent weight 1.1 kg/mol 
tm Membrane thickness 0.01275 cm 
n  Number of cells in stack 381 
Afc Fuel cell active area 280 cm2 
dc Compressor diameter 0.2286 m 
Jcp Compressor and motor inertia 531025 kg.m2 
Van Anode volume 0.005 m3 
Vca Cathode volume 0.01 m3 
Vsm Supply manifold volume 0.02 m3 
Vrm Return manifold volume 0.005 m3 

CD,rm Return manifold throttle discharge coefficient 0.0124 

AT,rm Return manifold throttle area 0.002 m2 

ksm,out Supply manifold outlet orifice constant 0.362931025 kg/(s.Pa) 

kca,out Cathode outlet orifice constant 0.217731025 kg(s.Pa) 
kv Motor electric constant 0.0153 V/(rad/s) 
kt Motor torque constant 0.0153 N-m/A 
Rcm Compressor Motor circuit resistance 0.816 V 
hcm Compressor Motor efficiency 98% 

Table 1. Model parameters for vehicle-size fuel cell system 

Three measurements are investigated: compressor air flow rate, z1=Wcp , supply manifold 

pressure, z2=psm , and fuel cell stack voltage, z3=Vst . These signals are usually available 

because they are easy to measure and are useful for other purposes. For example, the 

compressor flow rate is typically measured for the internal feedback of the compressor. The 

stack voltage is monitored for diagnostics and fault detection purposes. Besides, the units of 

states and outputs are selected so that all variables have comparable magnitudes, and are as 

follows: mass in grams, pressure in bar, rotational speed in kRPM, mass flow rate in g/sec, 

power in kW, voltage in V, and current in A.  

In this study, the simultaneous actuator and sensor faults are considered. The fuel cell 

systems of interest considered here have two actuators and three sensors. Therefore, there 

are potentially only six modes, with the first mode being designated as the normal mode as 

(40)-(41) and the other five modes designated as the faulty modes associated with each of 

the faulty actuators or sensors.  
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Table 2. Parameters for the linear fuel cell model in (40)-(41) 
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Table 3. Parameters for the discretized model 

Actuator (or control surface) failures were modeled by multiplying the respective column of 

1uB  and 1 ,uD  by a factor between zero and one, where zero corresponds to a total (or 

complete) actuator failure or missing control surface and one to an unimpaired (normal) 

actuator/control surface. Likewise for sensor failures, where the role of 1uB  and 1uD  is 

www.intechopen.com



 Discrete Time Systems 

 

440 

replaced with 1C . It was assumed that the damage does not affect the fuel cell system 

dynamic matrix 1A , implying that the dynamics of the system are not changed. 
Let sampling period 1T = s. Discretization of (40)-(41) yields the matrices for normal mode 

1
cA TA e= , 1 0

( )c
T A

u cB e d Bτ τ= ∫ , 1 0
( )c

T A
cB e d Bτ

ω ωτ= ∫ , 1 cC C= , 1 1,u uD D= , 1 1,D Dυ υ= , which 

are specified in Table 3. 
The fault modes in this work are more general and complex than those considered before, 

including total single sensor or actuator failures, partial single sensor or actuator failures, 

total and partial single sensor and/or actuator failures, and simultaneous sensor and 

actuator failures.  

5. Results and discussion 

Scenario 1: Single total/partial actuator faulty mode 

First, in order to compare the performance between the conventional IMM and the proposed 

fuzzy logic based IMM approach, consider the simplest situation in which only a single total 

(or partial) sensor or actuator is running failure. Specifically, only partial failure for the 

actuator according to the second control input, i.e. stack current, Ist, is considered. The 

failure occurs after the 50th sampling period with failure amplitude of 50%. Two models 

consisting the normal mode and second actuator failure with amplitude of 50% are used for 

the IMM filter. The fault decision criterion in (29) is used with the threshold ' 2.5Tμ = . The 

transition matrix for the conventional IMM and the initial for the proposed approach are set 

as follows 

0.99 0.01

0.1 0.9

    

       

⎡ ⎤
Π = ⎢ ⎥

⎣ ⎦
 

The results of the FDD based on our proposed approach are compared with that of the 
conventional IMM filter. Fig. 6 (a) and (b) represent the model probabilities of the 2 models 
and the mode index according to (29) for the conventional IMM, respectively. From Fig. 6, it 
is obvious that the model probability related to the failure model does not keep a dominant 
value for the conventional IMM approach. On that account, momentary false failure mode is 
declared after the failure although the approach works well before the first failure occurs, 
 

      

Fig. 6. The model probabilities and the mode index for the conventional IMM approach 
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just as shown in Fig. 6 (b). The performance of the proposed fuzzy logic based IMM 
approach is stable to hold a higher model probability than that of the conventional filter (cf. 
Fig. 7 (a)-(b)). This concludes that the improved IMM approach has better performance and, 
more importantly, reliability that the conventional IMM filter. 
 

       

Fig. 7. The model probabilities and the mode index for the proposed fuzzy logic based IMM 
approach 

Scenario 2: Single total/partial sensor/actuator faulty mode sequence 

Consider the situation in which only a single total (or partial) sensor or actuator failure is 
possible. Then there are a total of 4 possible model (one normal plus 3 failure models) for 
sensor failure and 3 possible models (one normal plus 2 failure models) for actuator failures. 
Similarly, there are 4 partial sensor failure models and 3 partial actuator failures models. 
Due to the space limitation, only the simulation results for the sensor failure case are 
presented herein. Let the pairs (z1, un), (z2, us1), (z3, us2), (z4, us3) designate the measurements 
and corresponding causes associated with the normal/fault-free mode, and sensor fault for 
the first to the third sensor, respectively. Furthermore, let the pair (z5, us3p) denote the 
measurement and corresponding causes associated with the partial fault for the third sensor. 
Consider the sequence of events designated by z=[z1, z2, z1, z3, z1, z4, z1, z5, z1] and u=[ un, us1, 
un, us2, un, us3, un, us3p, un], where the first, second, third total sensor failures, and the partial 
third sensor failure occur at the beginning of the time horizon windows [31, 50], [81, 110], 
[141, 180], and [211, 250], respectively. Note that z1 corresponds to the normal mode. The 
faults persist for the duration of 20, 30, 40, and 40 samples, respectively. 

Let the initial model probability for both the conventional IMM and the fuzzy logic based 
IMM approach (0)μ =  [0.2, 0.2, 0.2, 0.2, 0.2]T. The transition matrix for the conventional 
IMM and the initial one for the proposed approach are set as 

0.96 0.01 0.01 0.01 0.01

0.1 0.9 0 0 0

0.1 0 0.9 0 0

0.1 0 0 0.9 0

0.1 0 0 0 0.9
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The mode indexes as a function of sampling period for the conventional IMM and the fuzzy 
logic based IMM approach are compared in Fig. 8.  
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Fig. 8. The mode index in the 2nd scenario for (a) the conventional IMM; and (b) the fuzzy 
logic based IMM 

Scenario 3: Simultaneous faulty modes sequence 

Let the pairs (z1, un), (z2, us1), (z3, us2), (z4, us3), (z5, ua1), (z6, ua2) stand for the measurements 

and corresponding causes associated with the normal mode, sensor fault for the first to the 

third sensor, and the actuator fault for the first and second actuator, respectively. 

Furthermore, let (z7, ua1s2), (z8, ua2s2), (z9, ua1a2), (z10, ua1s3), (z11, ua2s3), (z12, us2s3) designate the 

measurements and the inputs due to the presence of simultaneous double faulty modes 

caused by different combination of sensors and actuators, respectively. For simplicity and 

clarity, only sensor and actuator partial failures are considered herein. 

The initial model probabilities are (0) 1 / Nμ = , where N = 12 represents the number of 

modes; the threshold model probability ' 2.5Tμ = ; and the initial one for the proposed 

approach are set as 
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where 19 /20a = , 1 /220b = , 9 /10c = , and 1 /10d = . Two faulty sequences of events are 

considered. The first sequence is 1-2-3-4-6-12, for which the events occur at the beginning of 

the 1st, 51st, 101st, 141st, 201st, 251st sampling point, respectively. The second sequence is 1-3-
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5-7-8-9-10-11-12, for which the events occur at the beginning of the 1st, 41st, 71st, 111st, 141st, 

181st, 221st, 251st, 281st sampling point, respectively. Note that z1 corresponds to the normal 

mode. Then, for the first case the faults persist for the duration of 40, 40, 60, 50, and 50 

samples within each window. For the second case the faults persist for 30, 40, 30, 40, 40, 30, 

30, and 20 samples, respectively. For space reason, only the performance and capabilities of 

the proposed approach are shown. The results for the two cases are shown in Fig. 9 and Fig. 

10, respectively. A quick view on the results, we may find that there is generally only one 

step of delay in detecting the presence of the faults. However, a more insight on both figures 

may reveal that at the beginning of the mode 4, it always turns out to be declared as mode 

10, while taking mode 8 for mode 12, and vice versa. This may be attributed to the similarity 

between the mode 4 and 10, 8 and 12. However, the results settled down quickly, only 5-6 

samples on average. 
 

 

Fig. 9. The mode index in the 3rd scenario of sequence 1-2-3-4-6-12 

 

 

Fig. 10. The mode index in the 3rd scenario of sequence 1-3-5-7-8-9-10-11-12 
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6. Conclusion and future work 

A self-contained framework to utilize IMM approach for fault detection and diagnosis for 

PEM fuel cell systems has been presented in this study. To overcome the shortcoming of the 

conventional IMM approach with constant transition matrix, a Takagi-Sugeno fuzzy model 

has been introduced to update the transition probability among multiple models, which 

makes the proposed FDD approach smooth and the possibility of false fault detection 

reduced. Comparing with the existing results on FDD for fuel cell systems , “partial” (or 

“soft”) faults in addition to the “total” (or “hard”) actuator and/or sensor failures have also 

been considered in this work. Simulation results for three different scenarios considering 

both single and simultaneous sensor and/or actuator faults have been given to illustrate the 

effectiveness of the proposed approach. 

The scenarios considered correspond to representative symptoms in a PEM fuel cell system, 

and therefore the set of the considered models can’t possibly cover all fault situations that 

may occur. Note that in case the fuel cell system undergoes a fault that it has not seen 

before, there is a possibility that the system might become unstable as a result of the IMM 

algorithm decision. It is indeed very difficult to formally and analytically characterize this, 

but based on our extensive simulation results presented, all the faulty can be detected 

precisely and timely. 

It is worth mentioning that the main objective of this work was to develop and present 

simulation results for the applicability and the effectiveness of the fuzzy logic based IMM 

approach for fault diagnosis of a PEM fuel cell system. The proposed approach can be 

readily extended to IMM-based fault-tolerant control and provides extremely useful 

information for system compensation or fault-tolerant control subsequent to the detection of 

a failure. This work is under investigation and will be reported in the near future. 
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