
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Jun Yoneyama, Yuzu Uchida and Shusaku Nishikawa
Aoyama Gakuin University

Japan

1. Introduction

When we consider control problems of physical systems, we often see time-delay in the
process of control algorithms and the transmission of information. Time-delay often appear in
many practical systems and mathematical formulations such as electrical system, mechanical
system, biological system, and transportation system. Hence, a system with time-delay is a
natural representation for them, and its analysis and synthesis are of theoretical and practical
importance. In the past decades, research on continuous-time delay systems has been active.
Difficulty that arises in continuous time-delay system is that it is infinite dimensional and a
corresponding controller can be a memory feedback. This class of controllers may minimize
a certain performance index, but it is difficult to implement it to practical systems due to
a memory feedback. To overcome such a difficulty, a memoryless controller is used for
time-delay systems. In the last decade, sufficient stability conditions have been given via
linear matrix inequalities (LMIs), and stabilization methods by memoryless controllers have
been investigated by many researchers. Since Li and de Souza considered robust stability
and stabilization problems in (8), less conservative robust stability conditions for continuous
time-delay systems have been obtained ((7), (11)). Recently, H∞ disturbance attenuation
conditions have also been given ((10), (15), (16)).
On the other hand, research on discrete-time delay systems has not attracted as much attention
as that of continuous-time delay systems. In addition, most results have focused on state
feedback stabilization of discrete-time systems with time-varying delays. Only a few results
on observer design of discrete-time systems with time-varying delays have appeared in the
literature(for example, (9)). The results in (3), (12), (14), (18) considered discrete-time systems
with time-invariant delays. Gao and Chen (4), Hara and Yoneyama (5), (6) gave robust
stability conditions. Fridman and Shaked (1) solved a guaranteed cost control problem.
Fridman and Shaked (2), Yoneyama (17), Zhang and Han (19) considered the H∞ disturbance
attenuation. They have given sufficient conditions via LMIs for corresponding control
problems. Nonetheless, their conditions still show the conservatism. Hara and Yoneyama
(5) and Yoneyama (17) gave least conservative conditions but their conditions require many
LMI slack variables, which in turn require a large amount of computations. Furthermore,
to authors’ best knowledge, few results on robust observer design problem for uncertain
discrete-time systems with time-varying delays have given in the literature.
In this paper, we consider the stabilization for a nominal discrete-time system with
time-varying delay and robust stabilization for uncertain system counterpart. The system
under consideration has time-varying delays in state, control input and output measurement.
First, we obtain a stability condition for a nominal time-delay system. To this end, we define
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a Lyapunov function and use Leibniz-Newton formula and free weighting matrix method.
These methods are known to reduce the conservatism in our stability condition, which are
expressed as linear matrix inequality. Based on such a stability condition, a state feedback
design method is proposed. Then, we extend our stabilization result to robust stabilization for
uncertain discrete-time systems with time-varying delay. Next, we consider observer design
and robust observer design. Similar to a stability condition, we obtain a condition such that
the error system, which comes from the original system and its observer, is asymptotically
stable. Using a stability condition of the error system, we proposed an observer design
method. Furthermore, we give a robust observer design method for an uncertain time-delay
system. Finally, we give some numerical examples to illustrate our results and to compare
with existing results.

2. Time-delay systems

Consider the following discrete-time system with a time-varying delay and uncertainties in
the state and control input.

x(k + 1) = (A + ∆A)x(k) + (Ad + ∆Ad)x(k − dk) + (B + ∆B)u(k)

+(Bd + ∆Bd)u(k − dk) (1)

where x(k) ∈ ℜn is the state and u(k) ∈ ℜm is the control. A, Ad, B and Bd are system matrices
with appropriate dimensions. dk is a time-varying delay and satisfies 0 ≤ dm ≤ dk ≤ dM and
dk+1 ≤ dk where dm and dM are known constants. Uncertain matrices are of the form

[

∆A ∆Ad ∆B ∆Bd

]

= HF(k)
[

E Ed E1 Eb

]

(2)

where F(k) ∈ ℜl×j is an unknown time-varying matrix satisfying FT(k)F(k) ≤ I and H, E, Ed,
E1 and Eb are constant matrices of appropriate dimensions.

Definition 2.1. The system (1) is said to be robustly stable if it is asymptotically stable for all
admissible uncertainties (2).

When we discuss a nominal system, we consider the following system.

x(k + 1) = Ax(k) + Adx(k − dk) + Bu(k) + Bdu(k − dk). (3)

Our problem is to find a control law which makes the system (1) or (3) robustly stable. Let us
now consider the following memoryless feedback:

u(k) = Kx(k) (4)

where K is a control gain to be determined. Applying the control (4) to the system (1), we have
the closed-loop system

x(k + 1) = ((A + ∆A) + (B + ∆B)K)x(k) + ((Ad + ∆Ad) + (Bd + ∆Bd)K)x(k − dk). (5)

For the nominal case, we have

x(k + 1) = (A + BK)x(k) + (Ad + BdK)x(k − dk). (6)

In the following section, we consider the robust stability of the closed-loop system (5) and the
stability of the closed-loop system (6).
The following lemma is useful to prove our results.
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Lemma 2.2. ((13)) Given matrices Q = QT, H, E and R = RT
> 0 with appropriate dimensions.

Q + HF(k)E + ET FT(k)HT
< 0

for all F(k) satisfying FT(k)F(k) ≤ R if and only if there exists a scalar ε > 0 such that

Q +
1

ε
HHT + εETRE < 0.

3. Stability analysis

This section analyzes the stability and robust stability of discrete-time delay systems.
Section 3.1 gives a stability condition for nominal systems and Section 3.2 extends the stability
result to a case of robust stability.

3.1 Stability for nominal systems

Stability conditions for discrete-time delay system (6) are given in the following theorem.

Theorem 3.1. Given integers dm and dM, and control gain K. Then, the time-delay system (6) is
asymptotically stable if there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, S > 0, M > 0,

L =

⎡

⎢

⎢

⎢

⎣

L1
L2
L3
L4
L5

⎤

⎥

⎥

⎥

⎦

, N =

⎡

⎢

⎢

⎢

⎣

N1
N2
N3
N4
N5

⎤

⎥

⎥

⎥

⎦

, T =

⎡

⎢

⎢

⎢

⎣

T1
T2
T3
T4
T5

⎤

⎥

⎥

⎥

⎦

satisfying

Φ =

[

Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT + ΞT
T

√
dMZ√

dMZT −S

]

< 0 (7)

where

Φ1 =

⎡

⎢

⎢

⎢

⎣

P1 0 0 0 0
0 Φ22 0 0 0
0 0 −Q1 − M 0 0
0 0 0 Φ44 −P2
0 0 0 −P2 P2 − Q2

⎤

⎥

⎥

⎥

⎦

,

Φ22 = −P1 + Q1 + (dM − dm + 1)M,

Φ44 = P2 + Q2 + dMS,

Z =

⎡

⎢

⎢

⎢

⎣

0
0
0

−P2
P2

⎤

⎥

⎥

⎥

⎦

+ N,

ΞL =
[

L −L 0 −L 0
]

,

ΞN =
[

0 N −N 0 0
]

,

ΞT =
[

T −T(A + BK) −T(Ad + BdK) 0 0
]

.
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Proof: First, we note from Leibniz-Newton formula that

2ξT(k)L[x(k + 1)− x(k)− e(k)] = 0, (8)

2ξT(k)N[x(k)− x(k − dk)−
k−1

∑
i=k−dk

e(i)] = 0 (9)

where e(k) = x(k + 1)− x(k) and

ξT(k) = [xT(k + 1) xT(k) xT(k − dk) eT(k) eT(k − dk)].

It is also true that

2ξT(k)T[x(k + 1)− (A + BK)x(k)− (Ad + BdK)x(k − dk)] = 0. (10)

Now, we consider a Lyapunov function

V(k) = V1(k) + V2(k) + V3(k) + V4(k)

where

V1(k) = xT(k)P1x(k) +
k−1

∑
i=k−dk

eT(i)P2

k−1

∑
i=k−dk

e(i),

V2(k) =
k−1

∑
i=k−dk

xT(i)Q1x(i) +
k−1

∑
i=k−dk

eT(i)Q2e(i),

V3(k) =
−1

∑
i=−dk

k−1

∑
j=k+i

eT(j)Se(j),

V4(k) =
−dm

∑
j=−dM

k−1

∑
i=k+j

xT(i)Mx(i),

and P1, P2, Q1, Q2, S and M are positive definite matrices to be determined. Then, we calculate
the difference ∆V = V(k + 1)− V(k) and add the left-hand-side of equations (8)-(10).
Since ∆Vi(k), i = 1, · · · , 4 are calculated as follows;

∆V1(k) = xT(k + 1)P1x(k + 1) +
k

∑
i=k+1−dk+1

eT(i)P2

k

∑
i=k+1−dk+1

e(i)

−xT(k)P1x(k)−
k−1

∑
i=k−dk

eT(i)P2

k−1

∑
i=k−dk

e(i)

≤xT(k + 1)P1x(k + 1)− xT(k)P1x(k) + eT(k)P2e(k)

−2eT(k)P2e(k − dk) + 2eT(k)P2

k−1

∑
i=k−dk

e(i)

+eT(k − dk)P2e(k − dk)− 2eT(k − dk)P2

k−1

∑
i=k−dk

e(i),
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∆V2(k) =
k

∑
i=k+1−dk+1

xT(i)Q1x(i) +
k

∑
i=k+1−dk+1

eT(i)Q2e(i)

−
k−1

∑
i=k−dk

xT(i)Q1x(i)−
k−1

∑
i=k−dk

eT(i)Q2e(i)

≤ xT(k)Q1x(k) + eT(k)Q2e(k)− xT(k − dk)Q1x(k − dk)
−eT(k − dk)Q2e(k − dk),

∆V3(k) = dk+1eT(k)Se(k)−
k−1

∑
i=k−dk+1

eT(i)Se(i) · · · −
k−1

∑
i=k−dk

eT(i)Se(i)

≤ dMeT(k)Se(k)−
k−1

∑
i=k−dk

eT(i)Se(i),

∆V4(k) = (dM − dm + 1)xT(k)Mx(k)−
k−dm

∑
i=k−dM+1

xT(i)Mx(i)

≤ (dM − dm + 1)xT(k)Mx(k)− xT(k − dk)Mx(k − dk),

we have

∆V(k) = ∆V1(k) + ∆V2(k) + ∆V3(k) + ∆V4(k)

≤ ξT(k)[Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT + ΞT
T ]ξ(k) +

k−1

∑
i=k−dk

ξT(k)ZS−1ZTξ(k)

−
k−1

∑
i=k−dk

(ξT(k)Z + eT(i)S)S−1(ZTξ(k) + Se(i))

≤ ξT(k)[Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT + ΞT
T + dMZS−1ZT]ξ(k)

If (7) is satisfied, by Schur complement formula, we have Φ1 + ΞL + ΞT
L + ΞN + ΞT

N + ΞT +

ΞT
T + dMZS−1ZT

< 0. It follows that ∆V(k) < 0 and hence the proof is completed.

Remark 3.2. We employ
k−1

∑
i=k−dk

(⋆) in our Lyapunov function instead of
k−1

∑
i=k−dM

(⋆). This gives a less

conservative stability condition.

3.2 Robust stability for uncertain systems

By extending Theorem 3.1, we obtain a condition for robust stability of uncertain system (5).

Theorem 3.3. Given integers dm and dM, and control gain K. Then, the time-delay system (5) is
robustly stable if there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, S > 0, M > 0,

L =

⎡

⎢

⎢

⎢

⎢

⎣

L1

L2

L3

L4

L5

⎤

⎥

⎥

⎥

⎥

⎦

, N =

⎡

⎢

⎢

⎢

⎢

⎣

N1

N2

N3

N4

N5

⎤

⎥

⎥

⎥

⎥

⎦

, T =

⎡

⎢

⎢

⎢

⎢

⎣

T1

T2

T3

T4

T5

⎤

⎥

⎥

⎥

⎥

⎦
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and a scalar λ > 0 satisfying

Π =

[

Φ + λĒT Ē H̄T

H̄ −λI

]

< 0, (11)

where Φ is given in Theorem 3.1, and

H̄ =
[

−HTTT
1 −HTTT

2 −HTTT
3 −HTTT

4 −HTTT
5 0

]

,

and

Ē =
[

0 E + E1K Ed + EbK 0 0 0
]

.

Proof: Replacing A, Ad, B and Bd in (7) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain a robust stability condition for the system (5).

Φ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (12)

By Lemma 2.2, a necessary and sufficient condition that guarantees (12) is that there exists a
scalar λ > 0 such that

Φ + λĒT Ē +
1

λ
H̄T H̄ < 0 (13)

Applying Schur complement formula, we can show that (13) is equivalent to (11).

4. State feedback sabilization

This section proposes a state feedback stabilization method for the uncertain discrete-time
delay system (1). First, stabilization of nominal system is considered in Section 4.1. Then,
robust stabilization is proposed in Section 4.2

4.1 Stabilization

First, we consider stabilization for the nominal system (3). Our problem is to find a
control gain K such that the closed-loop system (6) is asymptotically stable. Unfortunately,
Theorem 3.1 does not give LMI conditions to find K. Hence, we must look for another method.

Theorem 4.1. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
asymptotically stabilizes the time-delay system (3) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0,
Q̄2 > 0, S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡

⎢

⎢

⎢

⎢

⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤

⎥

⎥

⎥

⎥

⎦

, N̄ =

⎡

⎢

⎢

⎢

⎢

⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤

⎥

⎥

⎥

⎥

⎦

,

satisfying

Ψ =

[

Ψ1 + ΘL + ΘT
L + ΘN + ΘT

N + ΘT + ΘT
T

√
dMZ̄√

dMZ̄T −S̄

]

< 0 (14)
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where

Ψ1 =

⎡

⎢

⎢

⎢

⎢

⎣

P̄1 0 0 0 0
0 Ψ22 0 0 0
0 0 −Q̄1 − M̄ 0 0
0 0 0 Ψ44 −P̄2

0 0 0 −P̄2 P̄2 − Q̄2

⎤

⎥

⎥

⎥

⎥

⎦

,

Ψ22 = −P̄1 + Q̄1 + (dM − dm + 1)M̄,

Ψ44 = P̄2 + Q̄2 + dMS̄,

Z̄ =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

−P̄2

P̄2

⎤

⎥

⎥

⎥

⎥

⎦

+ N̄,

ΘL =
[

L̄ −L̄ 0 −L̄ 0
]

,

ΘN =
[

0 N̄ −N̄ 0 0
]

,

ΘT =

⎡

⎢

⎢

⎢

⎢

⎣

ρ1YT −ρ1(AYT + BG) −ρ1(AdYT + BdG) 0 0
ρ2YT −ρ2(AYT + BG) −ρ2(AdYT + BdG) 0 0

ρ3YT −ρ3(AYT + BG) −ρ3(AdYT + BdG) 0 0

ρ4YT −ρ4(AYT + BG) −ρ4(AdYT + BdG) 0 0

ρ5YT −ρ5(AYT + BG) −ρ5(AdYT + BdG) 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

In this case, a controller gain in the controller (4) is given by

K = GY−T (15)

Proof: Let Ti = ρiY
−1, i = 1, · · · , 5 where each ρi is given. We substitute them into (7). Then,

we calculate Ψ = ΣΦΣT with Σ = diag[Y Y Y Y Y]. Defining P̄i = YPiY
T, Q̄i = YQiY

T, i =
1, 2, S̄ = YSYT, M̄ = YMYT, L̄ = YLYT, N̄ = YNYT, we obtain Θ < 0 in (14) where we let
G = KYT. If the condition (14) hold, state feedback control gain matrix K is obviously given
by (15).

Remark 4.2. Should Y be singular, Let L̄1 = 0. In this case, it follows from (1, 1)-block of Ψ that
P̄1 + ρ1(Y + YT) < 0. Then, if (14) holds, Y must be nonsingular.

4.2 Robust stabilization

In a similar way to robust stability, we extend a stabilization result in the previous section to
robust stabilization for uncertain discrete-time delay system (1).

Theorem 4.3. Given integers dm and dM, and scalars ρi, i = 1, · · · , 5. Then, the controller (4)
robustly stabilizes the time-delay system (1) if there exist matrices P̄1 > 0, P̄2 > 0, Q̄1 > 0, Q̄2 > 0,
S̄ > 0, M̄ > 0, G, Y

L̄ =

⎡

⎢

⎢

⎢

⎢

⎣

L̄1

L̄2

L̄3

L̄4

L̄5

⎤

⎥

⎥

⎥

⎥

⎦

, N̄ =

⎡

⎢

⎢

⎢

⎢

⎣

N̄1

N̄2

N̄3

N̄4

N̄5

⎤

⎥

⎥

⎥

⎥

⎦

,
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and a scalar λ > 0 satisfying

Λ =

[

Ψ + λĤT Ĥ ÊT

Ê −λI

]

< 0, (16)

where

Ĥ =
[

−ρ1HT −ρ2HT −ρ3HT −ρ4HT −ρ5HT 0
]

,

and

Ê =
[

0 EYT + E1G EdYT + EbG 0 0 0
]

.

In this case, a controller gain in the controller (4) is given by (15).

Proof: Replacing A, Ad, B and Bd in (14) with A + HF(k)E, Ad + HF(k)Ed, B + HF(k)E1 and
B + HF(k)Eb, respectively, we obtain robust stability conditions for the system (1):

Ψ + H̄T F(k)Ē + ĒT FT(k)H̄ < 0 (17)

By Lemma 2.2, a necessary and sufficient condition that guarantees (17) is that there exists a
scalar λ > 0 such that

Ψ + λH̄T H̄ +
1

λ
ĒT Ē < 0 (18)

Applying Schur complement formula, we can show that (18) is equivalent to (16).

5. State estimation

All the information on the state variables of the system is not always available in a physical
situation. In this case, we need to estimate the values of the state variables from all the
available information on the output and input. In the following, we make analysis of the
existence of observers. Section 5.1 analyzes the observer of a nominal system, and Section 5.2
considers the robust observer analysis of an uncertain system.

5.1 Observer analysis

Using the results in the previous sections, we consider an observer design for the system (1),
which estimates the state variables of the system using measurement outputs.

x(k + 1) = (A + ∆A)x(k) + (Ad + ∆Ad)x(k − dk), (19)

y(k) = (C + ∆C)x(k) + (Cd + ∆Cd)x(k − dk) (20)

where uncertain matrices are of the form:
[

∆A ∆Ad

∆C ∆Cd

]

=

[

H
H2

]

F(k)
[

E Ed

]

where F(k) ∈ ℜl×j is an unknown time-varying matrix satisfying FT(k)F(k) ≤ I and H, H2, E
and Ed are constant matrices of appropriate dimensions.
We consider the following system to estimate the state variables:

x̂(k + 1) = Ax̂(k) + K̄(y(k)− Cx̂(k)) (21)
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where x̂ is the estimated state and K̄ is an observer gain to be determined. It follows from (19),
(20) and (21) that

xc(k + 1) = (Ã + H̃F(k)Ẽ)xc(k) + (Ãd + H̃F(k)Ẽd)xc(k − dk). (22)

where xT
c = [xT eT ]T, e(k) = x(k)− x̂(k) and

Ã =

[

A 0
0 A − K̄C

]

, Ãd =

[

Ad 0
Ad − K̄Cd 0

]

,

H̃ =

[

H
H − K̄H2

]

, Ẽ =
[

E 0
]

, Ẽd =
[

Ed 0
]

.

We shall find conditions for (22) to be robustly stable. In this case, the system (21) becomes an
observer for the system (19) and (20).
For nominal case, we have

xc(k + 1) = Ãxc(k) + Ãdxc(k − dk). (23)

We first consider the asymptotic stability of the system (23). The following theorem gives
conditions for the system (23) to be asymptotically stable.

Theorem 5.1. Given integers dm and dM, and observer gain K̄. Then, the system (23) is
asymptotically stable if there exist matrices 0 < P̃1 ∈ ℜ2n×2n, < P̃2 ∈ ℜ2n×2n, 0 < Q̃1 ∈ ℜ2n×2n,
0 < Q̃2 ∈ ℜ2n×2n, 0 < S̃ ∈ ℜ2n×2n, 0 < M̃ ∈ ℜ2n×2n,

L̃ =

⎡

⎢

⎢

⎢

⎢

⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, Ñ =

⎡

⎢

⎢

⎢

⎢

⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, T̃ =

⎡

⎢

⎢

⎢

⎢

⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n

satisfying

Φ̃ =

[

Φ̃1 + Ξ̃L + Ξ̃T
L + Ξ̃N + Ξ̃T

N + Ξ̃T + Ξ̃T
T

√
dMZ̃√

dMZ̃T −S̃

]

< 0 (24)

where

Φ̃1 =

⎡

⎢

⎢

⎢

⎢

⎣

P̃1 0 0 0 0
0 Φ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Φ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤

⎥

⎥

⎥

⎥

⎦

,

Φ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,

Φ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

−P̃2

P̃2

⎤

⎥

⎥

⎥

⎥

⎦

+ Ñ,

Ξ̃L =
[

L̃ −L̃ 0 −L̃ 0
]

,

Ξ̃N =
[

0 Ñ −Ñ 0 0
]

,

Ξ̃T =
[

T̃ −T̃Ã −T̃Ãd 0 0
]

.
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Proof: We follow similar lines of proof of Theorem 3.1 for the stability of the system (23). Then,
the result is straightforward.

5.2 Robust observer analysis

Now, we extend the result for the uncertain system (23).

Theorem 5.2. Given integers dm and dM, and observer gain K̄. Then, the system (22) is robustly stable
if there exist matrices 0 < P̃1 ∈ ℜ2n×2n, < P̃2 ∈ ℜ2n×2n, 0 < Q̃1 ∈ ℜ2n×2n, 0 < Q̃2 ∈ ℜ2n×2n,
0 < S̃ ∈ ℜ2n×2n, 0 < M̃ ∈ ℜ2n×2n,

L̃ =

⎡

⎢

⎢

⎢

⎢

⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, Ñ =

⎡

⎢

⎢

⎢

⎢

⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, T̃ =

⎡

⎢

⎢

⎢

⎢

⎣

T̃1

T̃2

T̃3

T̃4

T̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n

and a scalar λ > 0 satisfying

Π̃ =

[

Φ̃ + λÊT Ê ĤT

Ĥ −λI

]

< 0

where Φ̃ is given in Theorem 5.1, and

Ĥ =
[

−H̃TT̃T
1 −H̃T T̃T

2 −H̃T T̃T
3 −H̃T T̃T

4 −H̃T T̃T
5 0

]

,

Ê =
[

0 Ẽ Ẽd 0 0 0
]

.

Proof: Replacing Ã and Ãd in (24) with Ã + H̃F(k)Ẽ and Ãd + H̃F(k)Ẽd, respectively, and
following similar lines of proof of Theorem 3.3, we have the desired result.

6. Observer design

This section gives observer design methods for discrete-time delay systems. Section 6.1
provides an observer design method for a nominal delay system, and Section 6.2 proposes
for an uncertain delay system.

6.1 Nominal observer

Similar to Theorem 3.1, Theorem 5.1 does not give a design method of finding an observer
gain K̄. Hence, we obtain another theorem below.

Theorem 6.1. Given integers dm and dM, and scalars ρi and ρ̂i, i = 1, · · · , 5. Then, (21) becomes
an observer for the system (19) and (20) with ∆A = ∆Ad = 0, ∆C = ∆Cd = 0 if there exist matrices
0 < P̃1 ∈ ℜ2n×2n, 0 < P̃2 ∈ ℜ2n×2n, 0 < Q̃1 ∈ ℜ2n×2n, 0 < Q̃2 ∈ ℜ2n×2n, 0 < S̃ ∈ ℜ2n×2n,
0 < M̃ ∈ ℜ2n×2n, G̃ ∈ ℜn×n, Y ∈ ℜn×n

L̃ =

⎡

⎢

⎢

⎢

⎢

⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, Ñ =

⎡

⎢

⎢

⎢

⎢

⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, T =

⎡

⎢

⎢

⎢

⎢

⎣

T1

T2

T3

T4

T5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ5n×n, T̂ =

⎡

⎢

⎢

⎢

⎢

⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ5n×n
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satisfying

Ψ̃ =

[

Ψ̃1 + Θ̃L + Θ̃T
L + Θ̃N + Θ̃T

N + Θ̃T + Θ̃T
T

√
dMZ̃√

dMZ̃T −S̃

]

< 0 (25)

where

Ψ̃1 =

⎡

⎢

⎢

⎢

⎢

⎣

P̃1 0 0 0 0
0 Ψ̃22 0 0 0
0 0 −Q̃1 − M̃ 0 0
0 0 0 Ψ̃44 −P̃2

0 0 0 −P̃2 P̃2 − Q̃2

⎤

⎥

⎥

⎥

⎥

⎦

,

Ψ̃22 = −P̃1 + Q̃1 + (dM − dm + 1)M̃,
Ψ̃44 = P̃2 + Q̃2 + dMS̃,

Z̃ =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

−P̃2

P̃2

⎤

⎥

⎥

⎥

⎥

⎦

+ Ñ,

Θ̃L =
[

L̃ −L̃ 0 −L̃ 0
]

,
Θ̃N =

[

0 Ñ −Ñ 0 0
]

,

Θ̃T =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T1 ρ1Y −T1A −ρ1(YA − G̃C) −T1Ad − ρ1(YAd − G̃Cd) 0 0 0 0 0
T̂1 ρ̂1Y −T̂1A −ρ̂1(YA − G̃C) −T̂1Ad − ρ̂1(YAd − G̃Cd) 0 0 0 0 0
T2 ρ2Y −T2A −ρ2(YA − G̃C) −T2Ad − ρ2(YAd − G̃Cd) 0 0 0 0 0
T̂2 ρ̂2Y −T̂2A −ρ̂2(YA − G̃C) −T̂2Ad − ρ̂2(YAd − G̃Cd) 0 0 0 0 0
T3 ρ3Y −T3A −ρ3(YA − G̃C) −T3Ad − ρ3(YAd − G̃Cd) 0 0 0 0 0
T̂3 ρ̂3Y −T̂3A −ρ̂3(YA − G̃C) −T̂3Ad − ρ̂3(YAd − G̃Cd) 0 0 0 0 0
T4 ρ4Y −T4A −ρ4(YA − G̃C) −T4Ad − ρ4(YAd − G̃Cd) 0 0 0 0 0
T̂4 ρ̂4Y −T̂4A −ρ̂4(YA − G̃C) −T̂4Ad − ρ̂4(YAd − G̃Cd) 0 0 0 0 0
T5 ρ5Y −T5A −ρ5(YA − G̃C) −T5Ad − ρ5(YAd − G̃Cd) 0 0 0 0 0
T̂5 ρ̂5Y −T̂5A −ρ̂5(YA − G̃C) −T̂5Ad − ρ̂5(YAd − G̃Cd) 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In this case, an observer gain in the observer (21) is given by

K̄ = Y−1G̃. (26)

Proof: Proof is similar to that of Theorem 4.1. Let

Ti =

[

Ti ρiY
T̂i ρ̂iY

]

, i = 1, · · · , 5

where ρi and ρ̂i, i = 1, · · · , 5 are given. We substitute them into (24). Defining G̃ = YK̄, we
obtain Ψ̃ < 0 in (25). If the condition (25) hold, observer gain matrix K̄ is obviously given by
(26).

6.2 Robust observer

Extending Theorem 4.1, we have the following theorem, which proposes a robust observer
design for an uncertain delay system.
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Theorem 6.2. Given integers dm and dM, and scalars ρi, ρ̂i, i = 1, · · · , 5. Then, (21) becomes an
observer for the system (19) and (20) if there exist matrices 0 < P̃1 ∈ ℜ2n×2n, 0 < P̃2 ∈ ℜ2n×2n,
0 < Q̃1 ∈ ℜ2n×2n, 0 < Q̃2 ∈ ℜ2n×2n, 0 < S̃ ∈ ℜ2n×2n, 0 < M̃ ∈ ℜ2n×2n, G ∈ ℜn×n, Y ∈ ℜn×n

L̃ =

⎡

⎢

⎢

⎢

⎢

⎣

L̃1

L̃2

L̃3

L̃4

L̃5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, Ñ =

⎡

⎢

⎢

⎢

⎢

⎣

Ñ1

Ñ2

Ñ3

Ñ4

Ñ5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ10n×2n, T =

⎡

⎢

⎢

⎢

⎢

⎣

T1

T2

T3

T4

T5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ5n×n, T̂ =

⎡

⎢

⎢

⎢

⎢

⎣

T̂1

T̂2

T̂3

T̂4

T̂5

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℜ5n×n,

and a scalar λ > 0 satisfying

Λ̃ =

[

Ψ̃ + λẼT Ẽ H̃T

H̃ −λI

]

< 0 (27)

where Ψ̃ is given in Theorem 6.1, and

H̃ = −
[

HTTT
1 + ρ1(YH − G̃H2)

T HT T̂T
1 + ρ̂1(YH − G̃H2)

T HTTT
2 + ρ2(YH − G̃H2)

T

HT T̂T
2 + ρ̂2(YH − G̃H2)

T HTTT
3 + ρ3(YH − G̃H2)

T HT T̂T
3 + ρ̂3(YH − G̃H2)

T

HTTT
4 + ρ4(YH − G̃H2)

T HT T̂T
4 + ρ̂4(YH − G̃H2)

T HT TT
5 + ρ5(YH − G̃H2)

T

HT T̂T
5 + ρ̂5(YH − G̃H2)

T 0 0
]

,
Ẽ =

[

0 0 E 0 Ed 0 0 0 0 0 0 0
]

.

In this case, an observer gain in the observer (21) is given by (26).

Proof: Replacing A and Ad in (27) with A + HF(k)E and Ad + HF(k)Ed, respectively, and
following similar lines of proof of Theorem 4.3, we have the desired result.

7. Examples

In this section, the following examples are provided to illustrate the proposed results. First
example shows stabilization and robust stabilization. Second one gives observer design and
robust observer design.

Example 7.1. Consider the following discrete-time delay system:

x(k + 1) =

[

1.1 + α 0
0 0.97

]

x(k) +

[

−0.1 0
−0.1 −0.1

]

x(k − dk)

+

[

0.1
0.5

]

u(k) +

[

0.2
0.3

]

u(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). First, we consider the stabilization for a
nominal time-delay system with α(k) = 0 by Theorem 4.1. Table 1 shows control gains for different
time-invariant delay dk, while Table 2 gives control gains for different time-varying delay dk.
Next, we consider the robust stabilization for the uncertain time-delay system with α(k) �= 0. In this
case, system matrices can be represented in the form of (1) with matrices given by

A =

[

1.1 0
0 0.97

]

, Ad =

[

−0.1 0
−0.1 −0.1

]

, E =
[

1 0
]

, Ed = E1 =
[

0 0
]

,

B =

[

0.1
0.5

]

, Bd =

[

0.2
0.3

]

, H =

[

ᾱ
0

]

, F(k) =
α(k)

ᾱ
.
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dk ρ’s K
1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1316 − 0.1360]
2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9690 − 0.0976]
3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7908 − 0.0545]
4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5815 − 0.0306]

Table 1. The stabilization for time-invariant delay dk

dk ρ’s K

0 ≤ dk ≤ 1 [0.1 0.1 − 0.1 0.5 0.1] [−1.1209 − 0.1174]
0 ≤ dk ≤ 2 [0.1 0.1 − 0.1 0.5 0.1] [−0.9429 − 0.0839]
0 ≤ dk ≤ 3 [0.1 0.1 − 0.1 0.5 0.1] [−0.7950 − 0.0469]
0 ≤ dk ≤ 4 [0.09 0.05 − 0.1 0.55 0.1] [−0.5586 − 0.0253]

Table 2. The stabilization for time-varying delay dk

dk ᾱ ρ’s K
3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8622 − 0.0059]
3 0.10 [0.1 0.1 − 0.1 0.5 0.1] [−0.6243 − 0.0000]
2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.2515 − 0.0115]

Table 3. The robust stabilization for time-invariant delay dk

dk ᾱ ρ’s K
0 ≤ dk ≤ 3 0.05 [0.1 0.1 − 0.1 0.5 0.1] [−0.8394 − 0.0047]
0 ≤ dk ≤ 3 0.10 [0.12 0.1 − 0.1 0.5 0.1] [−1.2539 − 0.0108]
0 ≤ dk ≤ 2 0.15 [0.12 0.12 − 0.1 0.5 0.05] [−1.1740 − 0.0015]

Table 4. The robust stabilization for time-varying delay dk

For time-invariant delay dk, Theorem 4.3 gives control gains for different ᾱ in Table 3. Table 4 provides
the result for time-varying delay dk.

Example 7.2. Consider the following discrete-time delay system:

x(k + 1) =

[

0.85 + 0.1α 0
0 0.97

]

x(k) +

[

−0.1 0
−0.1 −0.1

]

x(k − dk),

y(k) =
[

0.5 0.2
]

x(k) +
[

0.1 0.1
]

x(k − dk)

where α satisfies |α| ≤ ᾱ for ᾱ is an upper bound of α(k). We first consider the observer design for a
nominal time-delay system with α(k) = 0 by Theorem 6.1. Table 5 shows observer gains for different
time-invariant delay dk, while Table 6 gives observer gains for different time-varying delay dk. In the
following observer design, all ρ’s are set to be zero for simplicity.
Next, we consider the robust observer design for the uncertain time-delay system with α(k) �= 0. In
this case, system matrices can be represented in the form of (1) with matrices given by

A =

[

0.85 0
0 0.97

]

, Ad =

[

−0.1 0
−0.1 −0.1

]

, E =
[

ᾱ 0
]

, Ed = E1 =
[

0 0
]

,

C =
[

0.5 0.2
]

, Cd =
[

0.1 0.1
]

, H =

[

0.1
0

]

, F(k) =
α(k)

ᾱ
.
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dk ρ̂’s K̄

1 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

[

0.4835
0.3622

]

2 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[

0.5372
0.3348

]

3 [−23.4 8.6 0.2 − 1.9 − 1.9]

[

0.5174
0.3910

]

4 [−9.0 26.4 0.2 − 2.5 − 1.9]

[

−3.2281
0.0459

]

5 [−9.0 25.9 0.2 − 2.5 − 1.9]

[

−2.3508
−0.7232

]

Table 5. The observer design for time-invariant delay dk

dk ρ̂’s K̄

0 ≤ dk ≤ 1 [−20.2 6.5 − 2.1 − 2.5 − 1.9]

[

0.6295
0.3777

]

0 ≤ dk ≤ 2 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[

0.5817
0.3475

]

0 ≤ dk ≤ 3 [−22.0 8.6 0.2 − 1.9 − 1.9]

[

0.5490
0.3037

]

0 ≤ dk ≤ 4 [−22.0 8.6 0.2 − 2.5 − 1.9]

[

0.5157
0.2921

]

0 ≤ dk ≤ 5 [−22.5 8.6 0.2 − 1.9 − 3.1]

[

0.5170
0.2956

]

Table 6. The observer design for time-varying delay dk

dk ᾱ ρ̂’s K̄

1 0.5 [−22.6 2.5 − 2.1 − 1.9 − 1.9]

[

0.5047
0.3813

]

2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[

0.5625
0.3633

]

3 0.3 [−23.4 8.6 0.2 − 1.9 − 1.9]

[

0.5264
0.3641

]

4 0.3 [−9.0 26.4 0.2 − 2.5 − 1.9]

[

−2.6343
−1.6768

]

5 0.2 [−9.0 25.9 0.2 − 2.5 − 1.9]

[

−2.5959
−1.5602

]

Table 7. The observer design for time-invariant delay dk

For time-invariant delay dk, Theorem 6.2 gives observer gains for different ᾱ in Table 7. Table 8 provides
observer gains for time-varying delay dk by the same theorem.

8. Conclusions

In this paper, we proposed stabilization and robust stabilization method for discrete-time
systems with time-varying delay. Our conditions were obtained by introducing new
Lyapunov function and using Leibniz-Newton formula and free weighting matrix method.
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dk ᾱ ρ̂’s K̄

0 ≤ dk ≤ 1 0.5 [−20.2 6.5 − 2.1 − 2.5 − 1.9]

[

0.6345
0.3520

]

0 ≤ dk ≤ 2 0.4 [−21.9 6.7 − 0.3 − 2.6 − 1.9]

[

0.5870
0.3153

]

0 ≤ dk ≤ 3 0.3 [−22.0 8.6 0.2 − 1.9 − 1.9]

[

0.5675
0.3003

]

0 ≤ dk ≤ 4 0.3 [−22.0 8.6 0.2 − 2.5 − 1.9]

[

0.5375
0.3444

]

0 ≤ dk ≤ 5 0.2 [−22.5 8.6 0.2 − 1.9 − 3.1]

[

0.5077
0.3425

]

Table 8. The observer design for time-varying delay dk

Similarly, we also gave observer design and robust observer design methods. Numerical
examples were given to illustrate our proposed design method.
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