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1. Introduction

Nowadays nearly all the control algorithms are implemented digitally and consequently
discrete-time systems have been receiving ever increasing attention. However, as to the
development of nonlinear adaptive control methods, which are generally regarded as smart
ways to deal with system uncertainties, most researches are conducted for continuous-time
systems, such that it is very difficult or even impossible to directly apply many well
developed methods in discrete-time systems, due to the fundamental difference between
differential and difference equations for modeling continuous-time and discrete-time systems,
respectively. Even some concepts for discrete-time systems have very different meaning from
those for continuous-time systems, e.g., the “relative degrees” defined for continuous-time
and discrete-time systems have totally different physical explanations Cabrera & Narendra
(1999). Therefore, nonlinear adaptive control of discrete-time systems needs to be further
investigated.
On the other hand, the early studies on adaptive control were mainly concerning on the
parametric uncertainties, i.e., unknown system parameters, such that the designed control
laws have limited robustness properties, where minute disturbances and the presence of
nonparametric model uncertainties can lead to poor performance and even instability of
the closed-loop systems Egardt (1979); Tao (2003). Subsequently, robustness in adaptive
control has been the subject of much research attention for decades. However, due to
the difficulties associated with discrete-time uncertain nonlinear system model, there are
only limited researches on robust adaptive control to deal with nonparametric nonlinear
model uncertainties in discrete-time systems. For example, in Zhang et al. (2001), parameter
projection method was adopted to guarantee boundedness of parameter estimates in presence
of small nonparametric uncertainties under certain wild conditions. For another example,
the sliding mode method has been incorporated into discrete-time adaptive control Chen
(2006). However, in contrast to continuous-time systems for which a sliding mode controller
can be constructed to eliminate the effects of the general uncertain model nonlinearity, for
discrete-time systems, the uncertain nonlinearity is normally required to be of small growth
rate or globally bounded, but sliding mode control is yet not able to completely compensate
for the effects of nonlinear uncertainties in discrete-time. As a matter of fact, unlike in
continuous-time systems, it is much more difficulty in discrete-time systems to deal with
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nonlinear uncertainties. When the size of the uncertain nonlinearity is larger than a certain
level, even a simple first-order discrete-time system cannot be globally stabilized Xie & Guo
(2000). In an early work on discrete-time adaptive systems, Lee (1996) it is also pointed
out that when there is large parameter time-variation, it may be impossible to construct
a global stable control even for a first order system. Moreover, for discrete-time systems,
most existing robust approaches only guarantee the closed-loop stability in the presence of
the nonparametric model uncertainties, but are not able to improve control performance by
complete compensation for the effect of uncertainties.
Towards the goal of complete compensation for the effect of nonlinear model uncertainties
in discrete-time adaptive control, the methods using output information in previous steps
to compensate for uncertainty at current step have been investigated in Ma et al. (2007)
for first order system, and in Ge et al. (2009) for high order strict-feedback systems. We
will carry forward to study adaptive control with nonparametric uncertainty compensation
for NARMA system (nonlinear auto-regressive moving average), which comprises a general
nonlinear discrete-time model structure and is one of the most frequently employed form in
discrete-time modeling process.

2. Problem formulation

In this chapter, NARMA system to be studied is described by the following equation

y(k + n) =
n

∑
i=1

θT
i φi(y(k + n − i)) +

m

∑
j=1

gju(k − m + j) + ν(z(k − τ)) (1)

where y(k) and u(k) are output and input, respectively. Here

y(k) = [y(k), y(k − 1), . . . , y(k − n + 1)]T (2)

u(k) = [u(k − 1), u(k − 2), . . . , u(k − m + 1)]T (3)

and z(k) = [yT(k), uT(k − 1)]T. And for i = 1, 2, · · · , n, φi(·) : Rn → Rpi are known

vector-valued functions, θT
i = [θi,1, . . . , θi,pi

], and gj are unknown parameters. And the last
term ν(z(k − τ)) represents the nonlinear model uncertainties (which can be regarded as
unmodeled dynamics uncertainties) with unknown time delay τ satisfying 0 ≤ τmin ≤ τ ≤
τmax for known constants τmin and τmax. The control objective to make sure the boundedness
of all the closed-loop signals while to make the output y(k) asymptotically track a given
bounded reference y∗(k).
Time delay is an active topic of research because it is frequently encountered in engineering
systems to be controlled Kolmanovskii & Myshkis (1992). Of great concern is the effect
of time delay on stability and asymptotic performance. For continuous-time systems
with time delays, some of the useful tools in robust stability analysis have been well
developed based on the Lyapunov’s second method, the Lyapunov-Krasovskii theorem and
the Lyapunov-Razumikhin theorem. Following its success in stability analysis, the utility
of Lyapunov-Krasovskii functionals were subsequently explored in adaptive control designs
for continuous-time time delayed systems Ge et al. (2003; 2004); Ge & Tee (2007); Wu (2000);
Xia et al. (2009); Zhang & Ge (2007). However, in the discrete-time case there dos not exist
a counterpart of Lyapunov-Krasovskii functional. To resolve the difficulties associated with
unknown time delayed states and the nonparametric nonlinear uncertainties, an augmented
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states vector is introduced in this work such that the effect of time delays can be canceled at
the same time when the effects of nonlinear uncertainties are compensated.
In the NARMA system described in (1), we can see that there is a “relative degree” n which
can be regarded as response delay from input to output. Thus, the control input at the kth
step, u(k), will actually only determine the output at n-step ahead. The n-step ahead output
y(k + n) also depends on the following future outputs:

y(k + 1), y(k + 2), . . . , y(k + n − 2), y(k + n − 1) (4)

and ideally the controller should also incorporate the information of these states. However,
dependence on these future states will make the controller non-causal!
If system (1) is linear, e.g., there is no nonlinear functions φi, we could find a so called
Diophantine function by using which system (1) can be transformed into an n-step predictor
where y(k + n) only depends on outputs at or before the k-th step. Then, linear adaptive
control can be designed under certainty equivalence principal to emulate a deadbeat controller,
which forces the n-step ahead future output to acquire a desired reference value. However,
transformation of the nonlinear system (1) into an n-step predictor form would make the
known nonlinear functions and unknown parameters entangled together and thus not
identifiable. Thus, we propose future outputs prediction, based on which adaptive control can
be designed properly.
Throughout this chapter, the following notations are used.

• ‖ · ‖ denotes the Euclidean norm of vectors and induced norm of matrices.

• Z+
t represents the set of all integers which are not less than a given integer t.

• 0[q] stands for q-dimension zero vector.

• A := B means that A is defined as B.

• (ˆ) and (˜) denote the estimates of unknown parameters and estimate errors, respectively.

3. Assumptions and preliminaries

Some reasonable assumptions are made in this section on the system (1) to be studied. In
addition, some useful lemmas are introduced in this section to facilitate the later control
design.

Assumption 3.1. In system (1), the functional uncertainty ν(·), satisfies Lipschitz condition, i.e.,
‖ν(ε1) − ν(ε2)‖ ≤ Lν‖ε1 − ε2‖, ∀ε1, ε2 ∈ Rn, where Lν < λ∗ with λ∗ being a small number
defined in (58). The system functions φi(·), i = 1, 2, . . . , n, are also Lipschitz functions with Lipschitz
coefficients Lj.

Remark 3.1. Any continuously derivable function is Lipschitz on a compact set, refer to Hirsch &
Smale (1974) and any function with bounded derivative is globally Lipschitz. As our objective is
to achieve global asymptotic stability, it is not stringent to assume that the nonlinearity is globally
Lipschitz.
In fact, Lipschitz condition is a common assumption for nonlinearity in the control community
Arcak et al. (2001); Nešić & Laila (July, 2002); Nešić & Teel (2006); Sokolov (2003). In addition, it
is usual in discrete-time control to assume that the uncertain nonlinearity is of small Lipschitz
coefficient Chen et al. (2001); Myszkorowski (1994); Zhang et al. (2001); Zhu & Guo (2004).
When the Lipschitz coefficient is large, discrete-time uncertain systems are not stabilizable as
indicated in Ma (2008); Xie & Guo (2000); Zhang & Guo (2002). Actually, if the discrete-time

209Discrete-Time Adaptive Predictive Control with Asymptotic Output Tracking

www.intechopen.com



models are derived from continuous-time models, the growth rate of nonlinear uncertainty
can always be made sufficient small by choosing sufficient small sampling time.

Assumption 3.2. In system (1), the control gain coefficient gm of current instant control input u(k)
is bounded away from zero, i.e., there is a known constant g

m
> 0 such that |gm| > g

m
, and its sign is

known a priori. Thus, without loss of generality, we assume gm > 0.

Remark 3.2. It is called unknown control direction problem when the sign of the control gain is
unknown. The unknown control direction problem of nonlinear discrete-time system has been well
addressed in Ge et al. (2008); Yang et al. (2009) but it is out the scope of this chapter.

Definition 3.1. Chen & Narendra (2001) Let x1(k) and x2(k) be two discrete-time scalar or vector
signals, ∀k ∈ Z+

t , for any t.

• We denote x1(k) = O[x2(k)], if there exist positive constants m1, m2 and k0 such that ‖x1(k)‖ ≤
m1 maxk′≤k ‖x2(k

′)‖+ m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time function α(k) satisfying limk→∞ α(k) =
0 and a constant k0 such that ‖x1(k)‖ ≤ α(k)maxk′≤k ‖x2(k

′)‖, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and x2(k) = O[x1(k)].

Assumption 3.3. The input and output of system (1) satisfy

u(k) = O[y(k + n)] (5)

Assumption 3.3 implies that the system (1) is bounded-output-bounded-input (BOBI) system
(or equivalently minimum phase for linear systems).
For convenience, in the followings we use O[1] and o[1] to denote bounded sequences and
sequences converging to zero, respectively. In addition, if sequence y(k) satisfies y(k) =
O[x(k)] or y(k) = o[x(k)], then we may directly use O[x(k)] or o[x(k)] to denote sequence
y(k) for convenience.
According to Definition 3.1, we have the following proposition.

Proposition 3.1. According to the definition on signal orders in Definition 3.1, we have following
properties:

(i) O[x1(k + τ)] + O[x1(k)] ∼ O[x1(k + τ)], ∀τ ≥ 0.

(ii) x1(k + τ) + o[x1(k)] ∼ x1(k + τ), ∀τ ≥ 0.

(iii) o[x1(k + τ)] + o[x1(k)] ∼ o[x1(k + τ)], ∀τ ≥ 0.

(iv) o[x1(k)] + o[x2(k)] ∼ o[|x1(k)|+ |x2(k)|].

(v) o[O[x1(k)]] ∼ o[x1(k)] + O[1].

(vi) If x1(k) ∼ x2(k) and limk→∞ ‖x2(k)‖ = 0, then limk→∞ ‖x1(k)‖ = 0.

(vii) If x1(k) = o[x1(k)] + o[1], then limk→∞ ‖x1(k)‖ = 0.

(viii) Let x2(k) = x1(k) + o[x1(k)]. If x2(k) = o[1], then limk→∞ ‖x1(k)‖ = 0.

Proof. See Appendix A.

Lemma 3.1. Goodwin et al. (1980) (Key Technical Lemma) For some given real scalar sequences s(k),
b1(k), b2(k) and vector sequence σ(k), if the following conditions hold:
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(i) limk→∞
s2(k)

b1(k)+b2(k)σT(k)σ(k)
= 0,

(ii) b1(k) = O[1] and b2(k) = O[1],

(iii) σ(k) = O[s(k)].

Then, we have
a) limk→∞ s(k) = 0, and b) σ(k) is bounded.

Lemma 3.2. Define

Z(k) = [z(k − τmax), . . . , z(k − τ), . . . , z(k − τmin)] (6)

and

lk = arg min
l≤k−n

‖Z(k)− Z(l)‖ (7)

such that

Z(lk) = [z(lk − τmax), . . . , z(lk − τ), . . . , z(lk − τmin)] (8)

and

∆Z(k) = Z(k)− Z(lk) (9)

Then, if ‖Z(k)‖ is bounded we have ‖∆Z(k)‖ → 0 as well as ‖ν(z(k − τ))− ν(z(lk − τ))‖ → 0.
Proof. Given the definition of lk in (7), it has been proved in Ma (2006); Xie & Guo (2000) that
the boundedness of sequence Z(k) leads to ‖∆Z(k)‖ → 0. As 0 ≤ ‖ν(z(k − τ)) − ν(z(lk −
τ))‖ ≤ ‖∆Z(k)‖, it is obvious that ‖ν(z(k − τ))− ν(z(lk − τ))‖ → 0 as k → ∞.

According to the definition of ∆Z(k) in (9) and Assumption 3.1, we see that

|ν(z(k − τ))− ν(z(lk − τ))| ≤ Lν‖∆Z(k))‖ (10)

The inequality above serves as a key to compensate for the nonparametric uncertainty, which
will be demonstrated later.

4. Future output prediction

In this section, an approach to predict the future outputs in (4) is developed to facilitate control
design in next section. To start with, let us define an auxiliary output as

ya(k + n − 1) =
n

∑
i=1

θT
i φi(y(k + n − i)) + ν(z(k − τ)) (11)

such that (1) can be rewritten as

y(k + n) = ya(k + n − 1) +
m

∑
j=1

gju(k − m + j) (12)

It is easy to show that

ya(k + n − 1) = ya(k + n − 1)− ya(lk + n − 1) + ya(lk + n − 1)

=
n

∑
i=1

θT
i [φi(y(k + n − i))− φi(y(lk + n − i))]−

m

∑
j=1

gju(lk − m + j)

+y(lk + n) + (ν(z(k − τ))− ν(z(lk − τ)) (13)
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For convenience, we introduce the following notations

∆φi(k + n − i) = φi(y(k + n − i))− φi(y(lk + n − i)) (14)

∆u(k − m + j) = u(k − m + j)− u(lk − m + j)

∆ν(k − τ) = ν(z(k − τ))− ν(z(lk − τ)) (15)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m.

Combining (12) and (13), we obtain

y(k + n) =
n

∑
i=1

θT
i ∆φi(k + n − i) +

m

∑
j=1

gj∆u(k − m + j) + y(lk + n) + ∆ν(k − τ) (16)

Step 1:

Denote θ̂i(k) and ĝj(k) as the estimates of unknown parameters θi and gj at the kth step,
respectively. Then, according to (16), one-step ahead future output y(k + 1) can be predicted
at the kth step as

ŷ(k + 1|k) =
n

∑
i=1

θ̂T
i (k − n + 2)∆φi(k − i + 1) +

m

∑
j=1

ĝj(k − n + 2)∆u(k − m + j − n + 1)

+y(lk−n+1 + n) (17)

Now, based on ŷ(k + 1|k), we define

∆φ̂1(k + 1|k) = φ1(ŷ(k + 1|k))− φ1(y(lk−n+2 + n − 1)) (18)

which will be used in next step for prediction of two-step ahead output and where

ŷ(k + 1|k) = [ŷ(k + 1|k), y(k), . . . , y(k − n + 2)]T (19)

Step 2: By using the estimates θ̂i(k) and ĝj(k) and according to (16), the two-step ahead future
output y(k + 2) can be predicted at the kth step as

ŷ(k + 2|k) = θ̂T
1 (k − n + 3)∆φ̂1(k + 1|k) +

n

∑
i=2

θ̂T
i (k − n + 3)∆φi(k − i + 2)

+
m

∑
j=1

ĝj(k − n + 3)∆u(k − m + j − n + 2) + y(lk−n+2 + n) (20)

Then, by using ŷ(k + 1|k) and ŷ(k + 2|k), we define

∆φ̂1(k + 2|k) = φ1(ŷ(k + 2|k))− φ1(y(lk−n+3 + n − 1))

∆φ̂2(k + 1|k) = φ2(ŷ(k + 1|k))− φ2(y(lk−n+3 + n − 2)) (21)
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which will be used for prediction in next step and where

ŷ(k + 2|k) = [ŷ(k + 2|k), ŷ(k + 1|k), y(k), . . . , y(k − n + 3)]T (22)

Continuing the procedure above, we have three-step ahead future output prediction and so
on so forth until the (n − 1)-step ahead future output prediction as follows:
Step (n − 1): The (n − 1)-step ahead future output is predicted as

ŷ(k + n − 1|k) =
n−2

∑
i=1

θ̂T
i (k)∆φ̂i(k + n − 1 − i|k) +

n

∑
i=n−1

θ̂T
i (k)∆φi(k − (i − (n − 1)))

+
m

∑
j=1

ĝj(k)∆u(k − m + j − 1) + y(lk−1 + n) (23)

where

∆φ̂i(k + l|k) = φi(ŷ(k + l|k))− φi(y(lk−n+i+l + n − i)) (24)

for i = 1, 2, . . . , n − 2 and l = 1, 2, . . . , n − i − 1.
The prediction law of future outputs is summarized as follows:

ŷ(k + l|k) =
l−1

∑
i=1

θ̂T
i (k − n + l + 1)∆φ̂i(k + l − i|k) +

n

∑
i=l

θ̂T
i (k − n + l + 1)∆φi(k − (i − l))

+
m

∑
j=1

ĝj(k)∆u(k − m − n + l + j) + y(lk−n+l + n) (25)

for l = 1, 2, . . . , n − 1.

Remark 4.1. Note that θ̂i(k − n + l + 1) and ĝj(k − n + l + 1) instead of θ̂i(k) and gj(k) are used
in the prediction law of the l-step ahead future output. In this way, the parameter estimates appearing
in the prediction of ŷ(k + l|k) and ŷ(k + l|k + 1) are at the same time step, such that the analysis of
prediction error will be much simplified.

Remark 4.2. Similar to the prediction procedure proposed in Yang et al. (2009), the future output
prediction is defined in such a way that the j-step prediction is based on the previous step predictions.
The prediction method Yang et al. (2009) is further developed here for the compensation of the effect
of the nonlinear uncertainties ν(z(k − τ)). With the help of the introduction of previous instant lk

defined in (7), it can been seen that in the transformed system (16) that the output information at
previous instants is used to compensate for the effect of nonparametric uncertainties ν(z(k − τ)) at the
current instant according to (15).

The parameter estimates in output prediction are obtained from the following update laws

θ̂i(k + 1) = θ̂i(k − n + 2)−
ap(k)γp∆φi(k − i + 1)ỹ(k + 1|k)

Dp(k)

ĝj(k + 1) = ĝj(k − n + 2)−
ap(k)γp∆u(k − m + j − n + 1)ỹ(k + 1|k)

Dp(k)

i = 1, 2, . . . , n, j = 1, 2, . . . , m (26)
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with

ỹ(k + 1|k) = ŷ(k + 1|k)− y(k + 1)

Dp(k) = 1 +
n

∑
i=1

‖∆φi(k − i + 1)‖2 +
m

∑
j=1

∆u2(k − m + j − n + 1) (27)

ap(k) =

⎧

⎪

⎨

⎪

⎩

1 − λ‖∆Z(k−n+1)‖
|ỹ(k+1|k)|

,

if |ỹ(k + 1|k)| > λ‖∆Z(k − n + 1)‖
0 otherwise

(28)

θ̂i(0) = 0[q], ĝj(0) = 0 (29)

where 0 < γp < 2 and λ can be chosen as a constant satisfying Lν ≤ λ < λ∗, with λ∗ defined
later in (58).

Remark 4.3. The dead zone indicator ap(k) is employed in the future output prediction above, which is
motivated by the work in Chen et al. (2001). In the parameter update law (38), the dead zone implies that
in the region |ỹ(k + 1|k)| ≤ λ‖∆Z(k − n + 1)‖, the values of parameter estimates at the (k + 1)-th
step are same as those at the (k + n − 2)-th step. While the estimate values will be updated outside of
this region. The threshold of the dead zone will converge to zero because limk→∞ ‖∆Z(k − n + 1)‖ =
0, which will be guaranteed by the adaptive control law designed in the next section. The similar dead
zone method will also be used in the parameter update laws of the adaptive controller in the next section.

With the future outputs predicted above, we can establish the following lemma for the
prediction errors.

Lemma 4.1. Define ỹ(k + l|k) = ŷ(k + l|k)− y(k + l) , then there exist constant cl such that

|ỹ(k + l|k)| = o[O[y(k + l)]] + λ∆s(k, l), l = 1, 2, . . . , n − 1 (30)

where

∆s(k, l) = max
1≤k′≤l

{‖∆Z(k − n + k′)‖} (31)

Proof. See Appendix B.

5. Adaptive control design

By introducing the following notations

θ̄ = [θT
1 , θT

2 , . . . , θT
n ]

T

φ̄(k + n − 1) = [∆φ1(y(k + n − 1)), ∆φ2(y(k + n − 2)), . . . , ∆φn(y(k))]
T

ḡ = [g1, g2, . . . , gm]
T

ū(k) = [∆u1(k − m + 1), ∆u2(k − m + 2), . . . , ∆um(k)]
T (32)

we could rewrite (16) in a compact form as follows:

y(k + n) = θ̄T φ̄(k + n − 1) + ḡT ū(k) + y(lk + n) + ∆ν(k − τ) (33)
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Define ˆ̄θ(k) and ˆ̄g(k) as estimate of θ̄ and ḡ at the kth step, respectively, and then, the controller
will be designed such that

y∗(k + n) = ˆ̄θT(k) ˆ̄φ(k + n − 1) + ˆ̄g(k)T ū(k) + y(lk + n) (34)

Define the output tracking error as

e(k) = y(k)− y∗(k) (35)

A proper parameter estimate law will be constructed using the following dead zone indicator
which stops the update process when the tracking error is smaller than a specific value

ac(k) =

{

1 −
λ‖∆Z(k−n)‖+|β(k−1)|

|e(k)|
, if |e(k)| > λ‖∆Z(k − n)‖+ |β(k − 1)|

0 otherwise
(36)

where

β(k − 1) = ˆ̄θT(k − n)( ˆ̄φ(k − 1)− φ̄(k − 1)) (37)

and λ is same as that used in (28).
The parameter estimates in control law (34) are calculated by the following update laws:

ˆ̄θ(k) = ˆ̄θ(k − n) +
γcac(k)φ̄(k − 1)

Dc(k)
e(k)

ˆ̄g(k) = ˆ̄g(k − n) +
γcac(k)ū(k − n)

Dc(k)
e(k) (38)

with

Dc(k) = 1 + ‖φ̄(k − 1)‖2 + ‖ū(k − n)‖2 (39)

and 0 < γc < 2.

Remark 5.1. To explicitly calculate the control input from (34), one can see that the estimate of gm,
ĝm(k), which appears in the denominator, may lead to the so called “controller singularity” problem
when the estimate ĝm(k) falls into a small neighborhood of zero. To avoid the singularity problem, we
may take advantage of the a priori information of the lower bound of gm, i.e. g

m
, to revise the update

law of ĝm(k) in (38) as follows:

ˆ̄g′(k) = ˆ̄g(k − n) +
γcac(k)ū(k − n)

Dc(k)
e(k)

ˆ̄g(k) =

{

ˆ̄g′(k), if ĝ′m(k) > g
m

ˆ̄gr(k) otherwise
(40)

(41)

where

ˆ̄g′(k) = [ĝ′1(k), ĝ′2(k), . . . , ĝ′m(k)]

ˆ̄gr(k) = [ĝ′1(k), ĝ′2(k), . . . , g
m
]T (42)

In (40), one can see that in case where the estimate of control gain ĝm(k) falls below the known
lower bound, the update laws force it to be at least as large as the lower bound such that the potential
singularity problem will be solved.
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6. Main results and closed-loop system analysis

The performance of the adaptive controller designed above is summarized in the following
theorem:

Theorem 6.1. Under adaptive control law (34) with parameter estimation law (38) and with
employment of predicted future outputs obtained in Section 4, all the closed-loop signals are guaranteed
to be bounded and, in addition, the asymptotic output tracking can be achieved:

lim
k→∞

|y(k)− y∗(k)| = 0 (43)

To prove the above theorem, we proceed from the expression of output tracking error.
Substitute control law (34) into the transformed system (33) and consider the definition of
output tracking error in (35), then we have

e(k) = − ˜̄θT(k − n)φ̄(k − 1)− ˜̄gT(k − n)ū(k − n)− β(k − 1) + ∆ν(k − n − τ) (44)

where ˜̄θ(k) = ˆ̄θ(k)− θ̄ and ˜̄g(k) = ˆ̄g(k)− ḡ ∆ν(k − n − τ) satisfies

‖∆ν(k − n − τ)‖ ≤ λ‖∆Z(k − n)‖ (45)

From the definition of dead zone indicator ac(k) in (36), we have

ac(k)[|e(k)|(λ‖∆Z(k − n)‖+ |β(k − 1)|)− e2(k)] = −a2
c(k)e

2(k) (46)

Let us choose a positive definite Lyapunov function candidate as

Vc(k) =
k

∑
l=k−n+1

(‖ ˜̄θ(l)‖2 + ‖ ˜̄g(l)‖2) (47)

and then by using (46) the first difference of the above Lyapunov function can be written as

∆Vc(k) = Vc(k)− Vc(k − 1)

≤ ˜̄θT(k) ˜̄θ(k)− ˜̄θT(k − n) ˜̄θ(k − n) + ˜̄g2(k)− ˜̄g2(k − n)

= [‖φ̄(k − 1)‖2 + ‖ū(k − n)‖2]
a2

c (k)γ
2
c e2(k)

D2
c (k)

+[ ˜̄θT(k − n)φ̄(k − 1) + ˜̄gT(k − n)ū(k − n)]e(k)
2ac(k)γc

Dc(k)

≤
a2

c (k)γ
2
c e2(k)

Dc(k)
−

2ac(k)γce2(k)

Dc(k)

+
2ac(k)γc|e(k)|(λ‖∆Z(k − n)‖+ |β(k − 1)|)

Dc(k)

≤ −
γc(2 − γc)a2

c (k)e
2(k)

Dc(k)
(48)

Noting that 0 < γc < 2, we have the boundedness of Vc(k) and consequently the boundedness

of ˆ̄θ(k) and ˆ̄g(k). Taking summation on both hand sides of (48), we obtain

∞

∑
k=0

γc(2 − γc)
a2

c (k)e
2(k)

Dc(k)
≤ Vc(0)− Vc(∞)
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which implies

lim
k→∞

a2
c (k)e

2(k)

Dc(k)
= 0 (49)

Now, we will show that equation (49) results in limk→∞ ac(k)e(k) = 0 using Lemma 3.1, the
main stability analysis tool in adaptive discrete-time control. In fact, from the definition of
dead zone ac(k) in (36), when |e(k)| > λ‖∆Z(k − n)‖+ |β(k − 1)|, we have

ac(k)|e(k)| = |e(k)| − λ‖∆Z(k − n)‖ − |β(k − 1)| > 0

and when |e(k)| ≤ λ‖∆z(k − n)‖+ |β(k − 1)|, we have

ac(k)|e(k)| = 0 ≥ |e(k)| − λ‖∆Z(k − n)‖ − |β(k − 1)|

Thus, we always have

|e(k)| − λ‖∆Z(k − n)‖ − |β(k − 1)| ≤ ac(k)|e(k)| (50)

Considering the definition of β(k − 1) in (37) and the boundedness of ˆ̄θ(k), we obtain that
β(k − 1) = o[O[y(k)]].
Since y(k) ∼ e(k), we have β(k − 1) = o[O[e(k)]]. According to the Proposition 3.1, we have

|y(k)| ≤ C1 max
k′≤k

{|e(k′)|}+ C2

≤ C1 max
k′≤k

{|e(k′)| − λ‖∆Z(k′ − n)‖ − |β(k′ − 1)|

+λ‖∆Z(k′ − n)‖+ |β(k′ − 1)|}+ C2

≤ C1 max
k′≤k

{ac(k
′)|e(k′)|}+ λC1 max

k′≤k
{‖∆Z(k′ − n)‖}+ C1 max

k′≤k
{|β(k′ − 1)|}

+C2, ∀k ∈ Z+
−n (51)

According to Lemma 4.1 and Assumption 3.1, there exits a constant cβ such that

|β(k + n − 1)| ≤ o[O[y(k + n − 1)]] + λcβ∆s(k, n − 1) (52)

Considering ∆Z(k) defined in (9) and ∆s(k, m) defined in (31), Lemma (3.3), and noting the
fact lk ≤ k − n, there exist constants cz,1, cz,2, cs,1 and cs,2 such that

∆Z(k − n) ≤ cz,1 max
k′≤k

{|y(k′)|}+ cz,2 (53)

∆s(k, n − 1) = max
1≤k′≤n−1

{‖Z(k − n + k′)− Z(lk−n+k′)‖}

≤ cs,1 max
k′≤k

{|y(k′ + n − 1)|}+ cs,2 (54)

According to the definition of o[·] in Definition 3.1, and (52), (54), it is clear that ∀k ∈ Z+
−n

|β(k + n − 1)| ≤ o[O[y(k + n − 1)]] + λcβ∆s(k, n − 1)

≤ (α(k)cβ,1 + λcβcs,1)max
k′≤k

{|y(k′ + n − 1)|}+ α(k)cβ,2 + λcβcs,2 (55)
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where limk→∞ α(k) = 0, and cβ,1 and cβ,2 are positive constants. Since limk→∞ α(k) = 0, for
any given arbitrary small positive constant ǫ1, there exists a constants k1 such that α(k) ≤ ǫ1,
∀k > k1. Thus, it is clear that

|β(k + n − 1)| ≤ (ǫ1cβ,1 + λcβcs,1)max
k′≤k

{|y(k′ + n − 1)|}+ ǫ1cβ,2 + λcβcs,2, ∀k > k1 (56)

From inequalities (51), (53), and (56), it is clear that there exist an arbitrary small positive
constant ǫ2 and constants C3 and C4 such that

max
k′≤k

{|y(k′)|} ≤ C1 max
k′≤k

{ac(k
′)|e(k′)|}+ (λC3 + ǫ2)max

k′≤k
{|y(k′)|}+ C4, k > k1 (57)

which implies the existence of a small positive constant

λ∗ =
1 − ǫ2

C3
(58)

such that

max
k′≤k

{|y(k′)|} ≤
C1

1 − λC3 − ǫ2
max
k′≤k

{ac(k
′)|e(k′)|}+

C4

1 − λC3 − ǫ2
, k > k1 (59)

holds for all λ < λ∗, where C3 = (c̄ccz,1 + cβcs,1)C1, ǫ2 = ǫ1cβ,1C1 and C4 = C2 + ǫ1cβ,2C1 +
λc̄ccz,2C1 + λcβcs,2C1. Note that inequality (59) implies y(k) = O[ac(k)e(k)]. From φ̄(y(k +
n − 1)) defined in (32) and Assumption 3.1, it can be seen that φ̄(y(k − 1)) = O[y(k − 1)].
According to the definition of Dc(k) in (39), y(k) ∼ e(k), lk−n ≤ k − 2n, the boundedness of
y∗(k) , and (53), we have

D
1
2
c (k) ≤ 1 + ‖φ̄(k − 1)‖+ |ū(k − n)|

= O[y(k)] = O[ac(k)e(k)]

Then, applying Lemma 3.1 to (49) yields

lim
k→∞

ac(k)e(k) = 0 (60)

From (59) and (60), we can see that the boundedness of y(k) is guaranteed. It follows that
tracking error e(k) is bounded, and the boundedness of u(k) and z(k) in (75) can be obtained
from (5) in Lemma 3.3, and thus all the signals in the closed-loop system are bounded. Due to
the boundedness of z(k), by Lemma 3.2, we have

lim
k→∞

‖∆Z(k)‖ = 0 (61)

which further leads to

lim
k→∞

‖∆s(k, n − 1)‖ = 0 (62)

Next, we will show that limk→∞ ac(k)e(k) = 0 implies limk→∞ e(k) = 0. In fact, considering
(52) and noting that y(k) ∼ e(k) ∼ e(k), it follows that

|β(k − 1)| ≤ o[O[e(k)]] + λcβ∆s(k − n, n − 1) (63)
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which yields

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n − 1) ≥ |e(k)| − o[O[e(k)]]

≥ (1 − α(k)m1)|e(k)| − α(k)m2 (64)

according to Definition 3.1, where m1 and m2 are positive constants, and limk→∞ α(k) = 0.
Since limk→∞ α(k) = 0, there exists a constant k2 such that α(k) ≤ 1/m1, ∀k > k2. Therefore,
it can be seen from (64) that

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n − 1) + α(k)m2 ≥ (1 − α(k)m1)|e(k)| ≥ 0, ∀k > k2 (65)

From (50), it is clear that

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n − 1) + α(k)m2

≤ ac(k)|e(k)|+ λ‖∆Z(k − n)‖+ λcβ∆s(k − n, n − 1) + α(k)m2 (66)

which implies that limk→∞ e(k) = 0 according to (60)-(62), and (65), which further yields
limk→∞ e(k) = 0 because of e(k) ∼ e(k). This completes the proof.

Remark 6.1. The underlying reason that the asymptotic tracking performance is achieved lies in that
the uncertain nonlinear term ν(k− n− τ) in the closed-loop tracking error dynamics (44) will converge
to zero because limk→∞ ‖∆Z(k)‖ = 0 as shown in (61).

7. Further discussion on output-feedback systems

In this section, we will make some discussions on the application of control design technique
developed before to nonlinear system in lower triangular form. The research interest of
lower triangular form systems lies in the fact that a large class of nonlinear systems can
be transformed into strict-feedback form or output-feedback form, where the unknown
parameters appear linearly in the system equations, via a global parameter-independent
diffeomorphism. In a seminal work Kanellakopoulos et al. (1991), it is proved
that a class of continuous nonlinear systems can be transformed to lower triangular
parameter-strict-feedback form via parameter-independent diffeomorphisms. A similar result
is obtained for a class of discrete-time systems Yeh & Kokotovic (1995), in which the geometric
conditions for the systems transformable to the form are given and then the discrete-time
backstepping design is proposed. More general strict-feedback system with unknown control
gains was first studied for continuous-time systems Ye & Jiang (1998), in which it is indicated
that a class of nonlinear triangular systems T1S proposed in Seto et al. (1994) is transformable
to this form. The discrete-time counterpart system was then studied in Ge et al. (2008), in
which discrete Nussbaum gain was exploited to solve the unknown control direction problem.
In addition to strict-feedback form systems, output-feedback systems as another kind of
lower-triangular form systems have also received much research attention. The discrete-time
output-feedback form systems have been studied in Zhao & Kanellakopoulos (2002), in
which a set of parameter estimation algorithm using orthogonal projection is proposed and
it guarantees the convergence of estimated parameters to their true values in finite steps. In
Yang et al. (2009), adaptive control solving the unknown control direction problem has been
developed for the discrete-time output-feedback form systems.
As mentioned in Section 1, NARMA model is one of the most popular representations of
nonlinear discrete-time systemsLeontaritis & Billings (1985). In the following, we are going to
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show that the discrete-time output-feedback forms systems are transformable to the NARMA
systems in the form of (1) so that the control design in this chapter is also applicable to the
systems in the output-feedback form as below:

⎧

⎨

⎩

xi(k + 1) = θT
i φi(x1(k)) + gixi+1(k) + υi(x1(k)), i = 1, 2, . . . , n − 1

xn(k + 1) = θT
n φn(x1(k)) + gnu(k) + υn(x1(k))

y(k) = x1(k)
(67)

where xi(k) ∈ R, i = 1, 2, . . . , n are the system states, n ≥ 1 is system order; u(k) ∈ R,
y(k) ∈ R is the system input and output, respectively; θi are the vectors of unknown constant
parameters; gi ∈ R are unknown control gains and gi �= 0; φi(·), are known nonlinear vector
functions; and υi(·) are nonlinear uncertainties.
It is noted that the nonlinearities φi(·) as well as υi(·) depend only on the output y(k) = x1(k),
which is the only measured state. This justifies the name of “output-feedback” form.
According to Ge et al. (2009), for system (67) there exist prediction functions Fn−i(·) such that
y(k + n − i) = Fn−i(y(k), u(k − i)), i = 1, 2, . . . , n − 1, where

y(k)=[y(k), y(k − 1), . . . , y(k − n + 1)]T (68)

u(k − i)=[u(k − i), u(k − i − 1), . . . , u(k − n + 1)]T (69)

By moving the ith equation (n − i) step ahead, we can rewrite system (67) as follows

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1(k + n) = θT
1 φ1(y(k + n − 1)) + g1x2(k + n − 1) + υ1(y(k + n − 1))

x2(k + n − 1) = θT
2 φ2(y(k + n − 2)) + g2x3(k + n − 2) + υ2(y(k + n − 2))

...

xn(k + 1) = θT
n φn(y(k)) + gnu(k) + υn(y(k))

(70)

Then, we submit the second equation to the first and obtain

x1(k + n) = θT
1 φ1(y(k + n − 1)) + g1θT

2 φ2(y(k + n − 2))

+g1g2x3(k + n − 2) + υ1(y(k + n − 1)) + g1υ2(Fn−2(y(k), u(k − 2)) (71)

Continuing the iterative substitution, we could finally obtain

y(k + n) =
n

∑
i=1

θT
f iφi(y(k + n − i)) + gu(k) + ν(z(k)) (72)

where

θ f1
= θ1, θ fi

= θi

i−1

∏
j=1

gj, i = 2, 3, . . . , n

g f1
= 1, g fi

=
i−1

∏
j=1

gj, i = 2, 3, . . . , n, g =
n

∏
j=1

gj (73)

and

ν(z(k)) =
n

∑
i=1

g fi
νi(z(k)), z(k) = [yT(k), uT(k − 1)]T (74)
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with

νi(z(k)) = υi(y(k + n − i)) = υi(Fn−i(y(k), u(k − i))), i = 1, 2, . . . , n − 1,

νn(z(k)) = υn(y(k)) (75)

with z(k) defined in the same manner as in (1). Now, it is obvious that the transformed
output-feedback form system (72) is a special case of the general NARMA model (1).

8. Study on periodic varying parameters

In this section we shall study the case where the parameters θi and gj, i = 1, 2, . . . , n, j =
1, 2, . . . , m in (1) are periodically time-varying. The lth element of θi(k) is periodic with known
period Ni,l and the period of gi(k) is Ngi, i.e. θi,l(k) = θi,l(k − Ni,l) and gj(k) = gj(k − Ngj) for
known positive constants Ni,l and Ngj, l = 1, 2, . . . , pi.
To deal with periodic varying parameters, periodic adaptive control (PAC) has been developed
in literature, which updates parameters every N steps, where N is a common period such
that every period Ni,l and Ngj can divide N with an integer quotient, respectively. However,
the use of the common period will make the periodic adaptation inefficient. If possible, the
periodic adaptation should be conducted according to individual periods. Therefore, we will
employ the lifting approach proposed in Xu & Huang (2009).
Firstly, we define the augmented parametric vector and corresponding vector-valued
nonlinearity function. As there are Ni,j different values of the jth element of θi at different
steps, denote an augmented vector combining them together by

θ̄i,l = [θi,j,1, θi,j,2, . . . , θi,j,Ni,l
]T (76)

with constant elements. We can construct an augmented vector including all pi periodic
parameters

Θi = [θ̄T
i,1, θ̄T

i,2, . . . , θ̄T
i,pi

]T = [θi,1,1, . . . , θi,1,Ni,1
, . . . , θi,pi,1, . . . , θi,pi,Ni,pi

]T (77)

with all elements being constant. Accordingly, we can define an augmented vector

Φi(y(k + n − 1)) = [φ̄i,1(y(k + n − 1)), . . . , φ̄i,pi
(y(k + n − 1))]T (78)

where φ̄i,l(y(k + n − 1)) = [0, . . . , 0, φi(y(k + n − i)), 0, . . . , 0]T ∈ RNi,l and the element φi(k)

appears in the qth position of φ̄i,l(y(k + n − 1)) only when k = sNi,l + q, for i = 1, 2, . . . , Ni,l . It

can be seen that n functions φi(k), rotate according to their own periodicity, Ni,l , respectively.
As a result, for each time instance k, we have

θT
i (k)φi(y(k + n − i)) = ΘT

i Φi(y(k + n − 1)) (79)

which converts periodic parameters into an augmented time invariant vector.
Analogously, we convert gi(k) into an augmented vector ḡi = [gi,1, gi,2, . . . , gi,Ngj

] and
meanwhile define a vector

ϕj(k) = [0, . . . , 0, 1, 0, . . . , 0]T ∈ RNgj (80)

where the element 1 appears in the qth position of ϕj(k) only when k = sNgj + q. Hence
for each time instance k, we have gj(k) = ḡj ϕj(k), i.e., gi(k) is converted into an augmented
time-invariant vector.
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Then, system (1) with periodic time-varying parameters θi(k) and gj(k) can be transformed
into

y(k + n) =
n

∑
i=1

ΘT
i Φi(y(k + n − i)) +

m

∑
j=1

ḡj ϕj(k)u(k − m + j) + ν(z(k − τ)) (81)

such that the method developed in Sections 4 and 5 is applicable to (81) for control design.

9. Conclusion

In this chapter, we have studied asymptotic tracking adaptive control of a general class of
NARMA systems with both parametric and nonparametric model uncertainties. The effects
of nonlinear nonparametric uncertainty, as well as of the unknown time delay, have been
compensated for by using information of previous inputs and outputs. As the NARMA
model involves future outputs, which bring difficulties into the control design, a future output
prediction method has been proposed in Section 4, which makes sure that the prediction error
grows with smaller order than the outputs.
Combining the uncertainty compensation technique, the prediction method and adaptive
control approach, a predictive adaptive control has been developed in Section 5 which
guarantees stability and leads to asymptotic tracking performance. The techniques developed
in this chapter provide a general control design framework for high order nonlinear
discrete-time systems in NARMA form. In Sections 7 and 8, we have shown that the proposed
control design method is also applicable to output-feedback systems and extendable to
systems with periodic varying parameters.
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11. Appendix A: Proof of Proposition 3.1

Only proofs of properties (ii) and (viii) are given below. Proofs of other properties are easy
and are thus omitted here.
(ii) From Definition 3.1, we can see that ‖o[x(k)]‖ ≤ α(k)maxk′≤k+τ ‖x(k′)‖, ∀k > k0, τ ≥ 0,
where limk→∞ α(k) = 0. It implies that there exist constants k1 and ᾱ1 such that α(k) ≤ ᾱ1 < 1,
∀k > k1. Then, we have

‖x(k + τ) + o[x(k)]‖ ≤ ‖x(k + τ)‖+ ‖o[x(k)]‖ ≤ (1 + ᾱ1) max
k′≤k+τ

‖x(k′)‖, ∀k > k1

which leads to x(k + τ) + o[x(k)] = O[x(k + τ)]. On the other hand, we have

max
k1<k′≤k+τ

‖x(k′)‖ ≤ ‖ max
k1<k′≤k+τ

x(k′) + o[x(k)]‖+ ‖o[x(k)]‖

≤ ‖ max
k1<k′≤k+τ

x(k′) + o[x(k)]‖+ ᾱ1 max
k1<k′≤k+τ

{‖x(k′)}

and

max
k1<k′≤k+τ

‖x(k′)‖ ≤
1

1 − ᾱ1
‖ max

k1<k′≤k
x(k′) + o[x(k′)]‖,∀k > k1
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which implies x(k + τ) = O[x(k) + o[x(k)]]. Then, it is obvious that x(k + τ) + o[x(k)] ∼ x(k).
(viii) First, let us suppose that x1(k) is unbounded and define ik = arg maxi≤k ‖x1(i)‖. Then,
it is easy to see that ik → ∞ as k → ∞. Due to limk→∞ α(k) = 0, there exist a constant k2

such that α(ik) ≤ 1
2 and ‖o[x1(k)]‖ ≤ 1

2 maxk′≤k ‖x1(k
′)‖, ∀k > k2. Considering x2(k) =

x1(k) + o[x1(k)], we have

‖x2(ik)‖ = ‖x1(ik) + o[x1(ik)]‖ ≥ ‖x1(ik)‖ − ‖o[x1(ik)]‖ ≥
1

2
‖x1(ik)‖, ∀k > k2

which leads to ‖x1(ik)‖ ≤ 2‖x2(ik)‖, ∀k ≥ k2. Then, the unboundedness of x1(k) conflicts
with limk→∞ ‖x2(k)‖ = 0. Therefore, x1(k) must be bounded. Noting that α(k) → 0, we have

0 ≤ ‖x1(k)‖ ≤ ‖x1(k) + o[x1(k)]‖+ ‖o[x1(k)]‖ ≤ ‖x2(k)‖+ α(k)max
k′≤k

‖x1(k
′)‖ → 0

which implies limk→∞ ‖x1(k)‖ = 0.

12. Appendix B: Proof of Lemma 4.1

It follows from (16) and (17) that

ỹ(k + 1|k) = ŷ(k + 1|k)− y(k + 1)

=
n

∑
i=1

θ̃T
i (k − n + 2)∆φi(k − i + 1) +

m

∑
i=1

g̃j(k − n + 2)∆u(k − m + j − n + 1)

−∆ν(k − n + 1 − τ) (82)

which results in

−{
n

∑
i=1

θ̃T
i (k − n + 2)∆φi(k − i + 1) +

m

∑
j=1

g̃j(k − n + 2)∆u(k − m + j − n + 1)}ỹ(k + 1|k)

= −{ỹ(k + 1|k) + ∆ν(k − n + 1 − τ)}ỹ(k + 1|k)

= −ỹ2(k + 1|k)− ∆ν(k − n + 1 − τ)ỹ(k + 1|k)

≤ −ỹ2(k + 1|k) + λ|ỹ(k + 1|k)|‖∆Z(k − n + 1)‖ (83)

To prove the boundedness of all the estimated parameters, let us choose the following
Lyapunov function candidate

Vp(k) =
k

∑
l=k−n+2

⎛

⎝

n

∑
i=1

θ̃2
i (l) +

m

∑
j=1

g̃2
j

⎞

 (84)

Using the parameter update law (26), the difference of Vp(k) is

∆Vp(k) = Vp(k + 1)− Vp(k)

=
n

∑
i=1

[θ̃2
i (k + 1)− θ̃2

i (k − n + 2)] +
m

∑
j=1

[g̃2
j (k + 1)− g̃2

j (k − n + 2)]

=
a2

p(k)γ
2
pỹ2(k + 1|k)[∑n

i=1 ‖∆φi(k − i + 1)‖2 + ∑
m
j=1 ∆u2(k − m + j − n + 1)]

D2
p(k)

−
2ap(k)γ

Dp(k)
×

{
n

∑
i=1

θ̃T
i (k − n + 2)∆φi(k − i + 1) +

m

∑
j=1

g̃j(k − n + 2)∆u(k − m + j − n + 1)}ỹ(k + 1|k)
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According to the definition of Dp(k) in (27) and inequality (83), the difference of Vp(k) above
can be written as

∆Vp(k) ≤
a2

p(k)γ
2ỹ2(k + 1|k)

Dp(k)
−

2ap(k)γỹ2(k + 1|k)

Dp(k)

+
2ap(k)γpλ|ỹ(k + 1|k)|‖∆Z(k − n + 1)‖

Dp(k)

=
a2

p(k)γ
2
pỹ2(k + 1|k)

Dp(k)
−

2a2
p(k)γỹ2(k + 1|k)

Dp(k)

= −
a2

p(k)γp(2 − γp)ỹ2(k + 1|k)

Dp(k)
(85)

where the following equation obtained from the definition of dead zone (28) is used:

− 2a2
p(k)γỹ2(k + 1|k) = −2ap(k)γỹ2(k + 1|k)

+2ap(k)γpλ|ỹ(k + 1|k)|‖∆Z(k − n + 1)‖ (86)

Noting that 0 < γp < 2, we can see from (85) that the difference of Lyapunov function
Vp(k), is non-positive and thus, the boundedness of Vp(k) is guaranteed. It further implies

the boundedness of θ̂i(k) and ĝj(k). Thus, there exist finite constants bθi
and bgj

such that

‖θ̂i(k)‖ ≤ bθi
, ĝj(k) ≤ bgj

, ∀k ∈ Z+
−n (87)

Taking summation on both hand sides of (85), we obtain

∞

∑
k=0

a2
p(k)γ(2 − γ)ỹ2(k + 1|k)

Dp(k)
≤ Vp(0)− Vp(∞) (88)

Note that the left hand side of inequality (88) is the summation of a non-decreasing sequence
and thus the boundedness of Vp(k) implies

a2
p(k)ỹ

2(k + 1|k)

Dp(k)
:= α(k) → 0 (89)

Noting that lk−n+1 ≤ k − 2n + 1 by (7) and considering Assumption 3.1, (5) in Lemma 3.3, we
see that Dp(k) in (27) satisfies

D
1
2
p (k) = O[y(k + 1)] (90)

From (89) and (90), we have

ap(k)|ỹ(k + 1|k)| = α
1
2 (k)D

1
2
p (k) = o[D

1
2
p (k)] = o[O[y(k + 1)]] (91)

From the definition of dead zone in (28), when |ỹ(k + 1|k)| > λ‖∆Z(k − n + 1)‖, we have

ap(k)|ỹ(k + 1|k)| = |ỹ(k + 1|k)| − λ‖∆Z(k − n + 1)‖ > 0
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while when |ỹ(k + 1|k)| ≤ λĉp(k − n + 2)‖∆Z(k − n + 1)‖, we have

ap(k)|ỹ(k + 1|k)| = 0 ≥ |ỹ(k + 1|k)| − λ‖∆Z(k − n + 1)‖.

In summary, the definition of dead zone in (28) guarantees the following inequality

|ỹ(k + 1|k)| ≤ ap(k)|ỹ(k + 1|k)|+ λĉp(k − n + 2)‖∆Z(k − n + 1)‖ (92)

which together with (91), boundedness of the parameter estimates, and the definition of
∆s(k, m) in (31) yields

|ỹ(k + 1|k)| ≤ o[O[y(k + 1)]] + λc1∆s(k, 1) (93)

with c1 = 1. Now, let us analyze the two-step prediction error:

ỹ(k + 2|k)=ŷ(k + 2|k)− y(k + 2)

=ỹ(k + 2|k + 1) + y̆(k + 2|k) (94)

where

ỹ(k + 2|k + 1) = ŷ(k + 2|k + 1)− y(k + 2)

y̆(k + 2|k) = ŷ(k + 2|k)− ŷ(k + 2|k + 1) (95)

From (93), it is easy to see that

|ỹ(k + 2|k + 1)| ≤ o[O[y(k + 2)]] + λc1∆s(k, 2) (96)

From (17), and (20), it is clear that y̆(k + 2|k) in (95) can be written as

y̆(k + 2|k) = ŷ(k + 2|k)− ŷ(k + 2|k + 1)

= θ̂T
1 (k − n + 3)[∆φ̂(k + 1|k)− ∆φ(k + 1)] (97)

Using (93) and the Lipschitz condition of ∆φi(·) (or equivalently φi(·)) with Lipschitz
coefficient Li, we have

‖∆φ̂(k + 1|k)− ∆φ(k + 1)‖ ≤ L1|ỹ(k + 1|k)| ≤ o[O[y(k + 1)]] + λc1L1∆s(k, 1) (98)

which yields

|y̆(k + 2|k)| ≤ o[O[y(k + 1)]] + λL1bθ1
∆s(k, 1) (99)

From (94), (96) and (99), it is clear that there exists a constant c2 such that

|ỹ(k + 2|k)| ≤ o[O[y(k + 2)]] + λc2∆s(k, 2) (100)

Continuing the analysis above, for l-step estimate error ỹ(k + l|k), we have

ỹ(k + l|k) = ŷ(k + l|k)− y(k + l)

= y̆(k + l|k) + ỹ(k + l|k + 1) (101)

where

ỹ(k + l|k + 1)=ŷ(k + l|k + 1)− y(k + l)

y̆(k + l|k)=ŷ(k + l|k)− ŷ(k + l|k + 1) (102)
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For (l − 1)-step estimate error ỹ(k + l − 1|k), it can be seen that there exist constants c̃l−1 and
c̆l−1 such that

|ỹ(k + l − 1|k)|≤o[O[y(k + l − 1)]] + λc̃l−1∆s(k, l − 1)

|y̆(k + l − 1|k)|≤o[O[y(k + l − 2)]] + λc̆l−1∆s(k, l − 2) (103)

From (25) and (102), it is clear that y̆(k + l|k) can be expressed as

y̆(k + l|k) =
l−1

∑
i=1

θ̂T
i (k − n + l + 1)[∆φ̂(k + l − i|k)− ∆φ̂(k + l − i|k + 1)] (104)

From (102), we have

ŷ(k + l − i|k)− ŷ(k + l − i|k + 1) = y̆(k + l − i|k) (105)

According to the Lipschitz condition of φ(·) and (105), the following equality holds:

l−1

∑
i=1

‖∆φ̂(k + l − i|k)− ∆φ(k + l − i)‖ ≤ max{Lj}1≤j≤l−1

l−1

∑
i=1

|y̆(k + l − i|k)| (106)

From (93),(101)-(106), it follows that there exist constants cl such that

|ỹ(k + l|k)| ≤ o[O[y(k + l)]] + λcl∆s(k, l)

which completes the proof.
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