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Discrete Time Mixed LQR/H, Control Problems
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School of Electrical Engineering, Wuhan University
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1. Introduction

This chapter will consider two discrete time mixed LQR/ H, control problems. One is the
discrete time state feedback mixed LQR/ H, control problem, another is the non-fragile
discrete time state feedback mixed LQR/ H, control problem. Motivation for mixed
LQOR/ H,, control problem is to combine the LQR and suboptimal H, controller design
theories, and achieve simultaneously the performance of the two problems. As is well
known, the performance measure in optimal LQR control theory is the quadratic
performance index, defined in the time-domain as

Ji= 3 (T (K)Qu(k) + u” (K)Ru(k) M)
k=0

while the performance measure in H, control theory is H, norm, defined in the

frequency-domain for a stable transfer matrix T,,(z) as

”TZW(Z)”oo = Sup o-max[Tzw(ejw)]
wel0,27]

where, Q>0,R>0, o,..[°] denotes the largest singular value.
The linear discrete time system corresponding to the discrete time state feedback mixed
LQR/ H,, control problem is

x(k +1) = Ax(k) + Byw(k) + Byu(k) (2.a)
z(k) = Cyx(k) + Dy u(k) (2.b)

with state feedback of the form
u(k) = Kx(k) )

where, x(k)eR" is the state, u(k)e R™ is the control input, w(k)e R" is the disturbance
input that belongs to L,[0,x), z(k) € R” is the controlled output. A, B, ,B, ,C; and D;,
are known matrices of appropriate dimensions. Let x(0) = x,.

The closed loop transfer matrix from the disturbance input w to the controlled output z is
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160 New Trends in Technologies

Ta(2)= {AKBK} = Cel - A ) By

where, Ay :=A+B,K,By:=B; ,Cx =C;+D,K.

Recall that the discrete time state feedback optimal LQR control problem is to find an
admissible controller that minimizes the quadratic performance index (1) subject to the
systems (2) (3) with w =0, while the discrete time state feedback H_ control problem is to
find an admissible controller such that ||Tzw (z)||oO <y subject to the systems (2)(3) for a given
number y >0 . While we combine the two problems for the systems (2)(3) with w € L,[0,),
the quadratic performance index (1) is a function of the control input u(k) and disturbance
input w(k) in the case of x(0) being given and y being fixed. Thus, it is not possible to pose
a mixed LQR/ H_ control problem that is to find an admissible controller that achieves the
minimization of quadratic performance index (1) subject to ||Tzw(z)||oO <y for the systems
(2)(3) with w € L,[0,0) because the quadratic performance index (1) is an uncertain function
depending on the uncertain disturbance input w(k) . In order to eliminate this difficulty, the
design criteria of state feedback mixed LQR/ H,, control problem should be replaced by the
design criteria

sup inf{]} subject to T ()], <7

wel,,

because for all w € L,[0,), the following inequality always exists

iIIgf{]} < sup inf{J}

weL,,

The stochastic problem corresponding to this problem is the combined LQG/ H, control
problem that was first presented by Bernstein & Haddad (1989). This problem is to find an
admissible fixed order dynamic compensator that minimizes the expected cost function of
the form

J=LimE(x"Qx +u"Ru) subject to [T, [, <7
—>00

Here, the disturbance input w of this problem is restricted to be white noise. Since the
problem of Bernstein & Haddad (1989) involves merely a special case of fixing weighting
matrices Q and R, it is considered as a mixed H, / H, problem in special case. Doyle et
al. (1989b) considered a related output feedback mixed H, / H, problem (also see Doyle et
al., 1994). The two approaches have been shown in Yeh et al. (1992) to be duals of one
another in some sense. Also, various approaches for solving the mixed H, /H, problem
are presented (Rotea & Khargonekar , 1991; Khargonekar & Rotea, 1991; Zhou et al., 1994;
Limebeer et al. 1994; Sznaier ,1994; Rotstein & Sznaier, 1998 ; Sznaier et al. , 2000) . How-
ever, no approach has involved the mixed LQR/ H_ control problem until the discrete time
state feedback controller for solving this problem was presented by Xu (1996). Since then,
several approaches to the mixed LQR / H, control problems have been presented in Xu
(2007, 2008).

The first goal of this chapter is to, based on the results of Xu (1996,2007), present the simple
approach to discrete time state feedback mixed LQR / H, control problem by combining
the Lyapunov method for proving the discrete time optimal LQR control pro-blem with an
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Discrete Time Mixed LQR/H.. Control Problems 161

extension of the discrete time bounded real lemma, the argument of compl-etion of squares
of Furuta & Phoojaruenchanachi (1990) and standard inverse matrix man-ipulation of Souza
& Xie (1992).

On the other hand, unlike the discrete time state feedback mixed LQR / H_ control
problem, state feedback corresponding to the non-fragile discrete time state feedback mixed
LQR/ H,, control problem is a function of controller uncertainty AF(k), and is given by

A

u(k)=FE x(k), E, =F, + AF(k) (4)

where, AF(k) is the controller uncertainty.
The closed-loop transfer matrix from disturbance input w to the controlled output zand
quadratic performance index for the closed-loop system (2) (4) is respectively

E, . 1
....... .0....] =Cp (2I-Ap ) 'By
and
J=241Q72x(k)| +|R"2u(k)| 7> [w]}
k=0
where, Aﬁw =A+ Bzﬁw , BI:; =B, Cﬁw =C; + DlZﬁw , ¥ >0 isa given number.

Note that the feedback matrix E, of the considered closed-loop system is a function of the
controller uncertainty AF(k), this results in that the quadratic performance index (1) is not
only a function of the controller F, and disturbance input w(k) but also a function of the
controller uncertainty AF(k) in the case of x(0)being given and y being fixed. We can
easily know that the existence of disturbance inputw(k) and controller uncertainty AF(k)
makes it impossible to find sup,;  infg{]J}, while the existence of controller uncertainty
AF(k) also makes it difficult to find sup,,.;, {J} . In order to eliminate these difficulties, the
design criteria of non-fragile discrete time state feedback mixed LQR/ H, control problem
should be replaced by the design criteria

SUP cr,. {J} subjectto T, (z), <7 -

Motivation for non-fragile problem came from Keel & Bhattacharyya (1997). Keel &
Bhattacharyya (1997) showed by examples that optimum and robust controllers, designed
by using the H, ,H,_, ', and u formulations, can produce extremely fragile controllers, in
the sense that vanishingly small perturbations of the coefficients of the designed controller
destabilize the closed-loop system; while the controller gain variations could not be avoided
in most applications.This is because many factors, such as the limitations in available com-
puter memory and word-length capabilities of digital processor and the A/D and D/A
converters,result in the variation of the controller parameters in controller implementation.
Also, the controller gain variations might come about because of external effects such as
temperature changes.Thus, any controller must be insensitive to the above-mentioned con-
toller gain variation. The question arised from this is how to design a controller that is inse-
nsitive, or non-fragile to error/uncertainty in controller parameters for a given plant. This
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problem is said to be a non-fragile control problem. Recently, the non-fragile controller
approach has been used to a very large class of control problems (Famularo et al. 2000,
Haddad et al. 2000, Yang et al 2000, Yang et al. 2001 and Xu 2007).

The second aim of this chapter is to, based on the results of Xu (2007), present a non-fragile
controller approach to the discrete-time state feedback mixed LQR/ H_, control problem
with controller uncertainty.

This chapter is organized as follows. In Section 2, we review several preliminary results, and
present two extensions of the well known discrete time bounded real lamma. In Section 3,
we define the discrete time state feedback mixed LQR/ H,, control problem. Based on this
definition, we present the both Riccati equation approach and state space approach to the
discrete time state feedback mixed LQR/ H, control problem. In Section 4, we intro-duce
the definition of non-fragile discrete time state feedback mixed LQR/ H,, control problem,
give the design method of a non-fragile discrete time state feedback mixed LQR / H,_,
controller, and derive the necessary and sufficient conditions for the existence of this
controller. In Section 5, we give two examples to illustrate the design procedures and their
effectiveness, respectively. Section 6 gives some conclusions.

Throughout this chapter, AT denotes the transpose of A, A7' denotes the inverse of A,
AT is the shorthand for (A™)", G™(z) denotes the conjugate system of G(z) and is the
shorthand for G'(z™),L,(—0,+w) denotes the time domain Lebesgue space, L,[0,+x)
denotes the subspace of L,(—o,+x) , L,(—,0] denotes the subspace of L,(—w,+x), L,, is
the shorthand for L,[0,+0) and L,_ is the shorthand for L,(—x,0].

2. Preliminaries

This section reviews several preliminary results. First, we consider the discerete time Riccati
equation and discrete time Riccati inequality, respectively

X=ATX(I+RX)'A+Q (5)

and
ATX(I+RX)TA+Q-X<0 (6)

with Q=Q" >0 and R=R" >0.

We are particularly interested in solution s X of (5) and (6) such that (I+RX)™" A is stable.
A symmetric matrix X is said to the stabilizing solution of discrete time Riccati equation (5)
if it satisfies (5) and is such that (I+RX)™"A is stable. Moreover, for a sufficiently small
constant ¢ >0, the discrete time Riccati inequality (6) can be rewritten as

X=A"X(I+RX)TA+Q+6I 7)

Based on the above relation, we can say that if a symmetric matrix X is a stabilizing
solution to the discrete time Riccati equation (7), then it also is a stabilizing solution to the
discrete time Riccati inequality (6). According to the concept of stabilizing solution of
discrete time Riccati equation, we can define the stabilizing solution X to the discrete time
Riccati inequality (6) as follow: if there exists a symmetric solution X to the discrete time
Riccati inequality (6) such that (I+RX)"Ais stable, then it is said to be a stabilizing
solution to the discrete time Riccati inequality (6) .
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If A is invertible, the stabilizing solution to the discerete time Riccati equation (5) can be
obtained through the following simplectic matrix

®)

A+RATTQ -RAT
-ATTQ AT
Assume that S has no eigenvalues on the unit circle, then it must have n eigenvalues in

|4]<1 and nin |[4|>1 (i=1,2,--,n,n+1,--,2n). If n eigenvectors corresponding to n
eigenvalues in |/1i| <1 of the simplectic matrix (8) is computed as

U;
Ui
then a stabilizing solution to the discerete time Riccati equation (5) is given by

X=[o, - o] - un]—l

Secondly, we will introduce the well known discrete time bounded real lemma (see Zhou et
al., 1996; Iglesias & Glover, 1991; Souza & Xie, 1992) .
Lemma 2.1 (Discrete Time Bounded Real Lemma)

AiB
Suppose that y>0, M(z):[CD}eRHW then the following two statements are
equivalent:
Lo M), <7 -

ii. There exists a stabilizing solution X>0 (X >0 if (C,A)is observable ) to the discrete
time Riccati equation

ATXA-X+y2(ATXB+C"D)U;'(B"XA+D'C)+C'C=0

such that U, =1 -y *(D'D+B"XB)>0.
In order to solve the two discrete time state feedback mixed LQR/ H, control problems
considered by this chapter, we introduce the following reference system

Cl D12
x(k +1) = Ax(k) + Byw(k) + Byu(k) 2(k) = Q%H x(k) + Q%m u(k) 9)
0 I

0 k
where, Q=F§ R} and z(k) ={;((k))} :

The following lemma is an extension of the discrete time bounded real lemma.

Lemma 2.2 Given the system (2) under the influence of the state feedback (3), and suppose
that >0, T,,(z)eRH,; then there exists an admissible controller K such that
||Tzw (z)”oO <y if there exists a stabilizing solution X, >0 to the discrete time Riccati
equation

ARX, Ag =X, + 7 2ARX, BeU'BE X Ay +CLCx +Q+ K RK =0 (10)
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such that U, =1 -y ?BLX By >0.
Proof: Consider the reference system (9) under the influence of the state feedback (3), and
define T, as

....... A 1B
Ty(z) = Q%[I} : .
K

then the closed-loop transfer matrix from disturbance input w to the controlled output Z is

T Z . .
T, (2) = [ ]iw((z))} . Note that ;/21 T.,T;, >0 is equivalent to
0

y21 =T, T, >TyT, >0 forall welL,[0,),

Zw " zw

and T,,(z)eRH,is equivalent to Ts,(z)e RH,, so |Tx,(2)|, <y implies |T,,(z) <7
Hence, it follows from Lemma 2.1. Q.E.D.
To prove the result of non-fragile discrete time state feedback mixed LQR/ H, control
problem, we define the inequality

Ag,m X Ap ~ X+ ;/_ZAEO X.Bj u;'B} X, Ap + cgwcﬁw +Q+FIRF, <0 (11)

0

where, Uy =1-y7B X,,B; >0.

In terms of the inequality (11), we have the following lemma:

Lemma 2.3 Consider the system (2) under the influence of state feedback (4) with controler
uncertainty, and suppose that y >0 is a given number, then there exists an admissible non-
fragile controller F, such that ||Tzw||oO <y if for any admissible uncertainty AF(k), there
exists a stabilizing solution X, >0 to the inequality (11) such that U;=
I- y—zBT X.B: >0.

Proof: Suppose that for any admissible uncertainty AF(k), there exists a stabilizing solution
X, >0 to the inequality (11) such that U; =1- y‘ZBT X,B; >0 . This implies that the
solution X, >0 issuchthat A +y 2B Ul_lBT X Ap is stable

Let Ap =A+B,F, and C = C1 +D,,E,’; then we can rewrite (11) as

AL X, Ap =X, +y AL X,B: Uy'BL X, Ap +Cf Cp +Q
+FI'RE, —(ATU,B, + FIU,)U," (BJU3A + U,E,) + ANy < 0
where, U, =BjU;B, +I+R, U=y "X,B; U;'B} X, +X,,,
ANy = (ATU;B, + FXU, + AFT (k)U, U, (B U, A + U,F, + U,AF(k)).

Since AF(k) is an admissible norm-bounded time- varying uncertainty, there exists a time-
varying uncertain number J(k) > 0 satisfying

Af X, Ap —X, +y?AL X, Bs UllBTX Ap +Cf Cp +Q+E]RF,

(12)
—(ATU,B, + EIU,)U5' (ByU3A + U,E, )+ ANy + 8(k)I =0
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Note that A +;/_ZB UllBg X,A; is stable for any admissible uncertainty AF(k). This
implies that AF +y 2B lll B X AF is stable.

Hence, (UlleX Ap. ,AF ) is detectable. Then it follows from standard results on
Lyapunov equations (see Lemma 2.7 a), Iglesias & Glover 1991) and the equation (12) that
Ap isstable. Thus, g = Ap, +BAF (k) is stable for any admissible uncertainty AF(k).
Define V(x(k)):=x (k)X x(k), where, x is the solution to the plant equations for a given

input w , then it can be easily established that

(~AV (x(k)) + xT (k + 1)X_x(k + 1) - x (k) X_x(k)}

T
[Ms

T
)

2
AV () -2 + ol - 7>

I
[Ms

1
ul/Z(w —y?U;'BL XA x)

ﬂ%

xT (AL X, Ap —X, + 7y Af X,B; Up'Bl X, A +C[ C; )x)

©

Add the above zero equality to | to get

y 2
U{2(w-y Uy B} X,,Ap x)

J= 2 AV ER) [ + 7 o] -7
k=0
+x" (AL X, Ap —X, +y Al X, B U;'B} X,,Ax +C}Cp +Q+ERE, )x}

Substituting (11) for the above formula,we get that for any u(k) and w(k) and x(0)=0,

1 2
<[22 + 7 Jol} - 2|t -y U BL X4, )
2

Note that ||ZO||§ = kZ;)ch(k)ch(k) , and define that r:=w - 7—2u;113}3; X, Ap x, we get

-7 fwly <~

2
2 Ull/zr
2

Suppose that I' is the operator with realization
x(k+1) = (A+B,E, )x(k) + B w(k)
r(k)=—y2U; "B XAz x(k)+w(k)

which maps w to r.
Since I'"! exists (and is given by x(k+1)=(A + Bzﬁw + 7/_2Bﬁ U{lBlg X Ag )x(k)+Bg r(k),

w(k)=y ZU{lBT X Ap x(k) +r(k)), we can write

2
22| =2 reof? < folf

2l - 7 el <~
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for some positive x .This implies that there exists an admissible non-fragile controller such
that ”Tiw”oo <y .Note that y*I-T, T, >0 is equivalent to

zwt Zw

7?1 =TT, >TyT, >0 forall weL,[0,)

Zw " zw
0 [Tz,

controller such that ||Tzw||oO <y.Q.E.D.

<y implies ”Tzw”w <y, and we conclude that there exists an admissible non-fragile

3. State Feedback

In this section, we will consider the discrete time state feedback mixed LQR/ H_ control
problem. This problem is defined as follows: Given the linear discrete-time systems (2)(3)
with we L,[0,0) and x(0)=x, and the quadratic performance index (1), for a given
number y >0, determine an admissible controller K that achieves

sup iQf{]} subject to ||Tzw(z)||00 <y.

wel,,

If this controller K exists, it is said to be a discrete time state feedback mixed LQR/ H
controller.

Here, we will discuss the simplified versions of the problem defined in the above. In order
to do this, the following assumptions are imposed on the system

Assumption 1 (C;,A) is detectable.

Assumption 2 (A,B,) is stabilizable.
Assumption 3 D},[C; Dy,]|=[0 I].

The solution to the problem defined in the above involves the discrete time Riccati equation

ATX, A-X, -ATX_B(B"X,B+R)'B'X A+CI'C,+Q=0 (13)

0 R+I

discrete time Riccati equation (13) can be obtained through the following simplectic matrix

A A _I 0
where, B= [7‘1 B, Bz} , R ={ } . If A is invertible, the stabilizing solution to the

. A+BR'BTATT(CICc,+Q) -BR'BTAT
. -AT(C[C+Q) AT

In the following theorem, we provide the solution to discrete time state feedback mixed
LQR/ H_, control problem.

Theorem 3.1 There exists a state feedback mixed LQR/ H_ controller if the discrete time
Riccati equation (13) has a stabilizing solution X, >0 and U, =1-»>B] X, B, >0.
Moreover, this state feedback mixed LQR/ H,, controller is given by

K =-U;'BjU,A

where, U, =R+I1+BjU,;B,,and U, = X, +y>X,B,U;'B{ X, .
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In this case, the state feedback mixed LQR/ H _, controller will achieve

sup i?f{]} - xg(Xoo + 7_2Xw - X,)x, subject to ||Tzw||oo <y.

weL,,
where, Ay =Ag +7 B U BEX, Ay, X, = S (AT ALX, BUBEX A AL}, and
k=0
X, = 2 (AW CkCrAR)
k=0
Before proving Theorem 3.1, we will give the following lemma.

Lemma 3.1 Suppose that the discrete time Riccati equation (13) has a stabilizing solution
X,>0 and U, =I-yB{ X B, >0, and let A, =A+B,K and K =-U,'BJU,A; then Ay is
stable.

Proof: Suppose that the discrete time Riccati equation (13) has a stabilizing solution X, >0
and U, =1-y?B{ X_B, >0. Observe that

-1pT -1pT
o n B I 0 -u B/ X, B
BTXOOB-i-R: Y 1 XOO|:7/_1B1 B2:|+|: :|: 1 Y 102

B} 0 R+I] |47'BJX B, BjX,B,+R+I

Also, note that U, =I-y2BIX B, >0,U;=X, +y X, BU;'BIX, , and U,=R+I
+B;U5B, ; then it can be easily shown by using the similar standard matrix manipulations as
in the proof of Theorem 3.1 in Souza & Xie (1992) that

BTX. B+ Ry = {—UF +Uy By UG B U UIlBluf?}

u,'Biuy! u,'
where, 1§1 =y 'BIX B, .
Thus, we have
ATX B(B'X,B+R)'BTX, A=-y2ATX BU;'BIX A+ ATU,B,U,'BIU,A

Rearraging the discrete time Riccati equation (13), we get

X, =A"X, A+y2A"X B,U;'B{ X, A~ ATU;B,U5'ByUsA +C{C; +Q

=ATX A+y?ATX, BU;'B] X, A+CIC, +Q - ATU,B,U,"B} (X,, + > X, B,U;'B] X)) A
- AT(X, + 77X, BU;"B{ X,)B,U,'BIU,A
+ ATU,B U, [R+ 1+ B (X, + 7 ° X, B,U;'BI X,)B, JU,'BIU, A

=(ATX A-ATU,B,U,'BI X A - ATX, B,U;'BjU,A+ ATU,B,U,"B; X, B,U, By U5 A)
+(C{C, + ATU,B,U>'U, By U, A) + ATULB,U, ' RU, ' BIUL,A + Q
+(y?ATX BU'BI X, A-y?A"U,B,U,'Bi X, B,U;'BI X A

—y2ATX BU;'B X B,U,'ByU,A + y 2 AU, B, U, BT X, B,U; B X, B,U5 By UL A)

=(A- B2U51B§U3A)T X (A= BzuileTusA) +(C - D12uileTu3A)T (C - D12U§1B2TU3A)

+K'RK +Q+y2(A-B,U,'Blu, A X B,U;'Bl X (A - B,U,'BIU,A)
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that is,
ALX Ay - X, +y72ALX B UT'BEX, Ag +CLCr +Q+KTRK =0 (14)

Since the discrete time Riccati equation (13) has a stabilizing solution X >0, the discrete
time Riccati equation (14) also has a stabilizing solution X, >0. This implies that
AK = Ay + 7 2B U 'BLX Ay is stable. Hence (U;'BxX, Ay, Ay) is detectable. Based on this,
it follows from standard results on Lyapunov equations (see Lemma 2.7 a), Iglesias &
Glover 1991) that Ay is stable.Q. E. D.

Proof of Theorem 3.1: Suppose that the discrete time Riccati equation (13) has a stabilizing
solution X, >0 and U, =I-y?B{X_B, >0. Then, it follows from Lemma 3.1 that Ay is
stable. This implies that T,,(z) € RH, . By using the same standard matrix manipulations as
in the proof of Lemma 3.1, we can rewrite the discrete time Riccati equation (13) as follows:

ATX A-X_ +y2ATX BU'BI X, A - ATU,B,U,'BIU,A+CIC, +Q=0

or equivalently,
ARX, Ag =X, +y 2 ARX, BeU;'BE X, Ay +CLCx +Q+ K RK =0

Thus, it follows from Lemma 2.2 that ||Tzw(z)||oO <y.
Define V(x(k)) = x" (k)X x(k) , where X, is the solution to the discrete time Riccati equation
(13), then taking the difference AV(x(k)) and completing the squares we get

AV (x(k)) = x" (k+1)X, x(k +1) - x" (k)X x(k)
= xT (k) (AR X, Ax — X, )x(k)+ x" (k) Af X, Byw(k)
+w! (k)BgX,, Agx(k)+ w (k)Bg X, Byw(k)

2

= el + 2 o - 72 g2 - U BEX, Agx)

+x (ALX Ag =X, + 7 2ALX B U'BEX, Ay +CLCy)x
Based on the above, the cost function | can be rewritten as:

2
1
U (072U BEX, Ag)

= i 2T ()Qk(k) = i AV ) |2 + 72w - 72
k=0 k=0

(15)
+xT(ARX Ay =X, +y2ALX, B U 'BLX  Ap + ChCy + Q + KTRK)x)

On the other hand, it follows from the similar argumrnts as in the proof of Theorem 3.1 in
Furuta & Phoojaruenchanachai (1990) that

ALX Ay - X, +y72ALX B U'BR X, Ay +CiCy +Q+K'RK
=ATX A-X, +y?A"X BU'BI X, A-A"U,B,U,'BIU,A+CIC, +Q
+ (K +U;'ByU,A) U, (K + U, 'BIU, A)

At the same time note that
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-y 2ATX BU'B] X, A+ ATU,B,U,'BIU, A

_ oy gl U AU B BIUT UL
” u;'BTu;? u;!

=ATX_B(B'X B+R)'B'X_ A

BTX_ A

We have

ARX Ag =X, +7 2 ArX, BU ' Bg X, Ay + CkCy +Q+K'RK
=ATX, A-X, - ATX_ B(B'X B+R)'B'X, A+ClC,+Q
+ (K +U;'ByU3A) U, (K + U, ' BJU;A)
Also, noting that the discrete time Riccati equation (13) and substituting the above equality

for (15), we get

o) ) 2
J= 3 & (0080 = Y A-AV () |2 + 2 ol - 72 |uf2 (- 2U BEX, Ac)
k=0 k=0

(16)
Y 2
+||Us2(K + U, ByUsA)x| )
Based on the above, it is clear that if K =-U,'BjU,A , then we get
. T 2 2p2 2l v -2y -1pT ?
1?f{]} =X XX —”2”2 +y ||w||2 =y |\U{*(w -y Uy Bg X, Agx) (17)
2

By letting w(k) = y 2U;' B X, Agx(k) for all k>0, we get that x(k)= Akx, with Ay which
belongs to L,[0,+w) since A, =A—-B(B'X_B+R)™"B"X_ A is stable. Also, we have

[ = 7425 X %0, |20k = x5 X.xg

Then it follows from (17) that
sup 111'<1f{]} N xg(Xm + 7_2Xw - Xz)xO
weL,,
Thus we conclude that there exists an admissible state feedback controller such that

sup inf{]} = x (X,, + 72X, = X, )x, subject to Tl <7 QE.D.

wel,,

4. Non-fragile controller

In this section, we will consider the non-fragile discrete-time state feedback mixed
LQR/ H,, control problem with controller uncertainty. This problem is defined as follows:
Consider the system (2) (4) satisfying Assumption 1-3 with we L,[0,0) and x(0)=x,, for a
given number y >0 and any admissible controller uncertainty, determine an admissible
non-fragile controller F, such that
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sup I subject to ||Tz,w(z)||oO <y.

weL,,

where, the controller uncertainty AF(k) considered here is assumed to be of the following
structure:

AF(k) = HgF(k)E

where, Hy and Ey are known matrices of appropriate dimensions. F(k) is an uncertain
matrix satisfying

FT(k)E(k)<I

with the elements of F(k) being Lebesgue measurable.

If this controller exists, it is said to be a non-fragile discrete time state feedback mixed
LQR/ H,, controller.

In order to solve the problem defined in the above, we first connect the its design criteria
with the inequality (11).

Lemma 4.1 Suppose that y >0, then there exists an admissible non-fragile controller F,_
that achieves

sup {J} = xd X x, subject to ”Tzw”w <y

wel,,
if for any admissible uncertainty AF(k), there exists a stabilizing solution X, >0 to the
inequality (11) such that U; =1 -y ZBT X,B; >0.
Proof: Suppose that for any adm1s51b1e uncertamty AF(k), there exists a stabilizing solution
X, 20 to the inequality (11) such that U;=1- 7szT X,B: >0. This implies that the
solution X, >0 is such that A; +7/_2B UllBT X, Ap s stable. Then it follows from
Lemma 2.3 that ||T w|| <y . Using the same argument as in the proof of Lemma 2.3, we get
that A, £ is stable and | can be rewritten as follows:

2

= S -AVGOE) [ + 77 e’ =72 Ui - U BL X, 4, ) )
k=0 * *
+xT (AL XA =X, +y AL X,B; U'BE X, Ap +ClCp +Q+E[RE, )x)
Substituting (11) for (18) to get
Vo gt ’
J <xb X oxo — |22 + 7 s - 2 |Ui 2 (w -2y By X, A; ) 2 (19a)
or
7 T 2 2 % 27 71T ?
J<x9 X%y — ||Z||2 -y U (w—y Uy Bﬁw XooAﬁwx) ) (19b)

By letting wz;/_zlll_lBg X Ap x  for all k>0, we get that x(k)=All§ X, with

A

Ap =Ap + y‘zBﬁwU{lBngwAﬁw which belongs to L,[0,+x) since Aﬁw is stable. It follows

www.intechopen.com



Discrete Time Mixed LQR/H.. Control Problems 171

from (19b) that sup{j} = x{ X, x, - Thus, we conclude that there exists an admissible

<y.Q.E.D.

wel,,

non-fragile controller such that sup{f} = xg X% subject to ||T

wel,, Zw”oo

Remark 4.1 In the proof of Lemma 4.1, we let w = 772U{1B£ X,A; x forall k>0 to get that

A

x(k)= Af xy with Ay =A; +y 7B, U;'Bf X,,A; which belongs to L,[0,+x) since A, is

©

stable. Also, we have

”wni = 7_4ngzux0 ’ Z”i = ngsz !

Then it follows from (19a) that

] < xg(Xw + 7_2Xw - Xz)xO (20)

where, X, = > {(Af )T Al X, BU*B{X,A; AL}, and X, =Y {(Af)'CLC; AL .

k=0 k=0
Note that Aﬁ depends on the controller uncertainty AF(k), thus it is difficult to find an
upper bound of either of X, and X,. This implies that the existence of controller
uncertainty AF(k) makes it difficult to find sup,,;, {J} by using (20). Thus, it is clear that
the existence of the controller uncertainty makes the performance of the designed system
become bad.
In order to give necessary and sufficient conditions for the existence of an admissible non-
fragile controller for solving the non-fragile discrete-time state feedback mixed LQR/ H,
control problem, we define the following parameter-dependent discrete time Riccati
equation:

ATX_ A-X, - ATX_ B(B"X,B+R)'B"X, A+ p?ELE, +CIC, +Q; =0 (21)

A A _I 0
where, B = [ y‘lBl BZJ ,R= { 0 I R} , Qs =Q+0I with 6>0 being a sufficiently small
+

constant, p is a given number satisfying p?I - HyU,Hy >0, U, =I-yB{ X, B, >0,
U,=ByUsB, +I+R and U,=X, +y2X _BU;'B]X,. If A is invertible, the parameter-

dependent discrete time Riccati equation (21) can be solved by using the following
symplectic matrix

¢ |AT BRBTAT(p?ELE, +CIC, +Q5) —-BR'BTATT
o ~AT (p*EgEx +C1Cy +Q5) AT

The following theorem gives the solution to non-fragile discrete time state feedback mixed
LQR/ H,, control problem.

Theorem 4.1 There exists a non-fragile discrete time state feedback mixed LQR/ H,
controller iff for a given number p and a sufficiently small constant & >0, there exists a
stabilizing solution X, >0 to the parameter-dependent discrete time Riccati equation (21)
such that U, =1 -y 2Bl X, B, >0 and p*I-HjU,H; >0.
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Moreover, this non-fragile discrete time state feedback mixed LQR/ H,, controller is

E, =-U;'ByU A

A

and achieves sup{J},;, = xt X, x, subject to ||Tzw||oO <y.

Proof: Sufficiency: Suppose that for a given number p and a sufficiently small constant
0 >0, there exists a stabilizing solution X, >0 to the parameter-dependent Riccati
equation (21) such that U, =I-»°BI X, B, >0 and p°I - HLU,H >0 . This implies that the
solution X_ >0 is such that A—B(ETXOOLA3+IA{)’1 éTXOOA is stable. Define respectively the
state matrix and controlled output matrix of closed-loop system

Ap =A+By(-Uy ' ByUsA + HyF(k)Ex)

Cp =Cy +Dyp(-Uy'ByUs A + HyF(k)Eg)

and let Ay =A- B,U,'BiU,A and F, =-U,'BjU,A + HyF(k)Ey, then it follows from the
square completion that

T 2T -1pT T TI'pT
Aﬁw }(001415Oc - Xoo +y Aﬁm XwBﬁm U1 Bﬁw XooAﬁw + Cﬁmcﬁw + Q + Foo RFoo
=ATX, A-X_+y?ATX BU;'B] X, A+C{C, +Q+E!BjU,A+ A"U,B,F, + E/U,F, (22)
=ATX A-X, +y?ATX BU;'BI X, A+CiC, +Q- A"U,B,U,'BIU,A + AN

where, AN = E}F" (k)HU,H F(k)E .
Noting that p*I - HgU,Hy >0, we have
AN = ~ELFT (k)(p*1 - HRU Hy )E(K)Eg + p°ELET (WF(Ex < p*EXEg (23)
Considering (22) and (23) to get
T 24T ~1pT T FTpE
Aﬁw XOOAIEOO — Xoo +y Aﬁm XOOBﬁw Ul Bﬁw XDOAﬁw + Cﬁm Cﬁw + Q + FOO RFOO (24)
T 22T ~1pT T 2T T ~1pT
SA X A-X, +y A X BU B X, A+CCy+Q+ p ExEx — A" U;B,U, B U3 A

Also, it can be easily shown by using the similar standard matrix manipulations as in the
proof of Theorem 3.1 in Souza & Xie (1992) that

ATX B(B"X,B+R)'BTX, A=-yATX B U;'BI X A+ ATU,B,U,'BIU,A
This implies that (21) can be rewritten as
ATX A-X, +y?ATX, BU;'B] X, A+C{C; +Qs— ATU;B,U5'ByUsA + p°ExEx =0 (25)

Thus, it follows from (24) and (25) that there exists a non-negative-definite solution to the
inequality

T 2 AT 1T T TpT
Aﬁw )(001415OC _Xoo +y AﬁonoBﬁwul BﬁwaAﬁw +CI_200C1300 + Q +Foo RFoo <0
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Note that A—B(BTXOOB + ﬁ)_l BTX A= A +7/‘2Bll,ll_lBlTXaoARc is stable and AF(k) is an
admissible uncertainty, we get that A + nyBﬁ u; 1B£XOOA13 is stable. By Lemma 4.1, there

exists a non- fragile discrete time state feedback mixed LQR/ H,, controller.

Necessity: Suppose that there exists a non-fragile discrete time state feedback mixed
LQR/ H,, controller. By Lemma 4.1, there exists a stabilizing solution X_ >0 to the

inequality (11) such that U, =1 —nyBE X.B; >0, ie., there exists a symmetric non-
negative-definite solution X to the inequality (11) such that A; + 772815 U{lBg X, Ap s
stableand U; =1 - 772812 XDOBﬁw >0 for any admissible uncertainty AF(k).

Rewriting (11) to get

AL X, Ap =X, +7 AL X, BU;'B] X, Ap +Cf Cp +Q+FEIRE, +AN <0

; (26)
AN = (ATU,B, + EIU,)AF (k) + AFT (k)(ByU, A + U,E, ) + AFT (k)U,AF (k)

Note that p?I - H{U,H, >0 and

AN = p?ELFT (k)F(k)Eg +(ATU5B, + FIU,)H (p?I - HLU,H ) HY
x (ByUz A +U,E, )= ((A"U3B, + EJ Uy ) Hy (071 = Hy,Hy )™ = EgFT (k)
X (,021 - HI];LIZHK)((:DZI - lequK)_l HIE(BzTusA +U,E,) - F(k)Eg)
< p?EfEx +(ATULB, + EIUL) Hy (p*] - HRU,H ) Hy (BSULA + ULE,)

(27)

It follows from (26) and (27) that

AL X, Ap =X, +y?Af X, BU;'B{ X, Ap +Cf Cp +Q+ERF, + p°EgEg

(28)
+(ATU,B, + EIU,)Hy (p*1 - HYU,H ) "HE (BIUL A + ULE, ) < 0

Using the argument of completion of squares as in the proof of Theorem 3.1 in Furuta &
Phoojaruenchanachai (1990), we get from (28) that F, =-U,'BjU;A, where X, is a
symmetric non- negative-definite solution to the inequality

ATX A-X, +y?ATX BU;'B{ X, A+C{C; + Q- ATU,B,U,"'BIU, A + p*EfEy <0

or equivalently, X, is a symmetric non-negative-definite solution to the parameter-
dependent discrete time Riccati equation

ATX A-X, +y?ATX, BU'B] X, A+C]C, + Qs — ATU,BU,"'ByUs A + p?EfEx =0 (29)
Also, we can rewrite that Riccati equation (29) can be rewritten as

ATX_ A-X, - ATX B(B"X,B+R)'B"X_ A+ p?ELE, +CIC, +Q, =0 (30)
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by using the similar standard matrix manipulations as in the proof of Theorem 3.1 in Souza
& Xie (1992). Note that A-B(B"X, B+R)'B'X,A= Ay +yBU;'B{X,A; and AF(k) is
an admissible uncertainty, the assumption that A; + nyBﬁ U{lBlz X,A; is stable implies
that A-B(B"X,_B+R)™"B"X_ A is stable Thus, we conclude that for a given number p and
a sufficiently small number & > 0, the parameter-dependent discrete time Riccati equation
(30) has a stabilizing solution X, and U, =I-p2B{X_B,>0 and p*I-HyU,H, >0.
Q.E.D.

5. Numerical examples

In this section, we present two examples to illustrate the design method given by Section 3
and 4, respectively.
Example 1 Consider the following discrete-time system in Peres and Geromel (1993)

x(k +1) = Ax(k) + Byw(k) + B,u(k)
z(k) = Cyx(k) + Dyu(k)

where,
0.2113 0.0087 0.4524 0.6135 0.6538
A=|0.0824 0.8096 0.8075|, B, =|0.2749 0.4899 |,
0.7599 0.8474 0.4832 0.8807 0.7741
1 0 0] [0 0]
010 00
C;=|0 0 1|, D,,=|0 0|and B;=1I.
000 10
10 0 0] 10 1]

In this example, we will design the above system under the influence of state feedback of the
form (3) by using the discrete-times state feedback mixed LQR/ H, control method
displayed in Theorem 3.1. All results will be computed by using MATLAB. The above
system is stabilizable and observable, and satisfies Assumption 3, and the eigenvalues of
matrix A are p; =1.6133, p, =0.3827 , p; =-0.4919 ;thus it is open-loop unstable.

10
Let y=2.89,R= [O J Q= , we solve the discrete-time Riccati equation (13) to get

S O =
S = O
_= O O

29683 1.1296 0.1359
X, =111296 6.0983 2.4073|>0,
0.1359 24073 4.4882
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0.6446 -0.1352 -0.0163
U, =I-y2BIX B, =|-0.1352 0.2698 —0.2882|>0.
~0.0163 —-0.2882  0.4626

Thus the discrete-time state feedback mixed LQR/ H_, controller is

[ -0.3640 -0.5138 -0.3715
| -02363 —0.7176 —0.7217 |

Example 2 Consider the following discrete-time system in Peres and Geromel (1993)

x(k +1) = Ax(k) + Byw(k) + B,u(k)
z(k) = Cyx(k) + Dy,u(k)

under the influences of state feedback with controller unceratinty of the form (4), where, A,
B;, B,, C; and D,, are the same as ones in Example 1; the controller uncertainty AF(k)
satisfies

AF(k) = ExF(k)E , F' (k)F(k) <1

where, By = 0 00100 0

o o R
)

0

0.0100 0 0
O 7 HK = .
1

In this example, we illustrate the proposed method by Theorem 4.1 by using MATLAB. As
stated in example 1, the system is stabilizable and observable, and satisfies Assumption 3,
and is open-loop unstable.

1 00

10

Let y=8.27, R:{O 1}, Q=0 1 0|, p=3.7800, and 6=0.0010, then we solve the
0 01

parameter-dependent discrete-time Riccati equation (21) to get

18.5238 3.8295 0.1664
X, =| 3.8295 51.3212 23.3226|>0,
0.1664 23.3226 22.7354

07292  —-0.0560 —0.0024
U,=1-y°B{ X, B, =|-0.0560 02496 —0.3410|>0, U, =

[609.6441 723.0571}
-0.0024 -0.3410 0.6676

723.0571 863.5683

14.2274 -0.0723 0
p I -HIU,H, =| -0.0723 14.2020 0 |[>0.
0 0  14.2884
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Based on this, the non-fragile discrete-time state feedback mixed LQR/ H,, controller is

| -0.4453 -0.1789 -0.0682
®|-0.1613 -1.1458 -1.0756

6. Conclusion

In this chapter, we first study the discrete time state feedback mixed LQR/ H, control
problem. In order to solve this problem, we present an extension of the discrete time
bounded real lemma. In terms of the stabilizing solution to a discrete time Riccati equation,
we derive the simple approach to discrete time state feedback mixed LQR/ H, control
problem by combining the Lyapunov method for proving the discrete time optimal LQR
control problem with the above extension of the discrete time bounded real lemma, the
argument of completion of squares of Furuta & Phoojaruenchanachi (1990) and standard
inverse matrix manipulation of Souza & Xie (1992).A related problem is the standard H,,
control problem (Doyle et al., 1989a; Iglesias & Glover, 1991; Furuta & Phoojaruenchanachai,
1990; Souza & Xie, 1992; Zhou et al. 1996), another related problem is the H_, optimal
control problem arisen from Basar & Bernhard (1991). The relations among the two related
problem and mixed LQR/ H,, control problem can be clearly explained by based on the
discrete time reference system (9)(3). The standard H, control problem is to find an
admissible controller K such that the H_-norm of closed-loop transfer matrix from
disturbance input w to the controlled output z is less than a given number y >0 while the
H_ optimal control roblem arisen from Basar & Bernhard (1991) is to find an admissible
controller such that the H_ -norm of closed-loop transfer matrix from disturbance input w
to the controlled output z, is less than a given number y >0 for the discre time reference
system (9)(3). Since the latter is equivalent to the problem that is to find an admissible
controller K such that sup,,.; infy{ 7}, we may recognize that the mixed LQR/ H, control
problem is a combination of the standard H_ control problem and H, optimal control
problem arisen from Basar & Bernhard (1991). The second problem considered by this
chapter is the non-fragile discrete-time state feedback mixed LQR/ H, control problem
with controller uncertainty. This problem is to extend the results of discrete-time state
feedback mixed LQR/ H, control problem to the system (2)(4) with controller uncertainty.
In terms of the stabilizing solution to a parameter-dependent discrete time Riccati equation,
we give a design method of non-fragile discrete-time state feedback mixed LQR/ H_
controller, and derive necessary and sufficient conditions for the existence of this non-
fragile controller.
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