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1. Introduction

Discrete multitone (DMT) is a digital implementation of the multicarrier transmission
technique for digital subscriber line (DSL) standard (Golden et al., 2006; Starr et al., 1999).
An all-digital implementation of multicarrier modulation called DMT modulation has been
standardised for asymmetric digital subscriber line (ADSL), ADSL2, ADSL2+ and very high
bit rate DSL (VDSL) (ITU, 2001; 2002; 2003). ADSL modems rely on DMT modulation,
which divides a broadband channel into many narrowband subchannels and modulated
encoded signals onto the narrowband subchannels. The major impairments such as the
intersymbol interference (ISI), the intercarrier interference (ICI), the channel distortion, echo,
radio-frequency interference (RFI) and crosstalk from DSL systems are induced as a result
of large bandwidth utilisation over the telephone line. However, the improvement can be
achieved by the equalisation concepts. A time-domain equaliser (TEQ) has been suggested
for equalisation in DMT-based systems (Bladel & Moenclaey, 1995; Baldemair & Frenger, 2001;
Wang & Adali, 2000) and multicarrier systems (Lopez-Valcarce, 2004).
The so-called shortened impulse response (SIR) which is basically the convolutional result
of TEQ and channel impulse response (CIR) is preferably shortened as most as possible. By
employing a TEQ, the performance of a DMT system is less sensitive to the choice of length
of cyclic prefix. It is inserted between DMT symbols to provide subchannel independency
to eliminate intersymbol interference (ISI) and intercarrier interference (ICI). TEQs have been
introduced in DMT systems to alleviate the effect of ISI and ICI in case that the length of SIR
or shorter than the length of cyclic prefix (F-Boroujeny & Ding, 2001). The target impulse
response (TIR) is a design parameter characterising the derivation of the TEQ. By employing
a TEQ, the performance of a DMT system is less sensitive to the choice of length of the cyclic
prefix. In addition to TEQ, a frequency-domain equaliser (FEQ) is provided for each tone
separately to compensate for the amplitude and phase of distortion. An ultimate objective of
most TEQ designs is to minimise the mean square error (MSE) between output of TEQ and
TIR which implies that TEQ and TIR are optimised in the MSE sense (F-Boroujeny & Ding,
2001).
Existing TEQ algorithms are based upon mainly in the MMSE-based approach (Al-Dhahir
& Cioffi, 1996; Lee et al., 1995; Yap & McCanny, 2002; Ysebaert et al., 2003). These include
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the MMSE-TEQ design algorithm with the unit tap constraint (UTC) in (Lee et al., 1995) and
the unit energy constraint (UEC) in (Ysebaert et al., 2003). Only a few adaptive algorithms
for TEQ are proposed in the literature. In (Yap & McCanny, 2002), a combined structure
using the order statistic normalised averaged least mean fourth (OS-NALMF) algorithm for
TEQ and order statistic normalised averaged least mean square (OS-NALMS) for TIR is
presented. The advantage of a class of order statistic least mean square algorithms has been
presented in (Haweel & Clarkson, 1992) which are similar to the usual gradient-based least
mean square (LMS) algorithm with robust order statistic filtering operations applied to the
gradient estimate sequence.
The purpose of this chapter is therefore finding the adaptive low-complexity time-domain
equalisation algorithm for DMT-based systems which more robust as compared to existing
algorithms. The chapter is organised as follows. In Section 2 , we describe the overview of
system and data model. In Section 3 , the MMSE-based time-domain equalisation is reviewed.
In Section 4 , the derivation of normalised least mean square (NLMS) algorithm with the
constrained optimisation for TEQ and TIR are introduced. We derive firstly the stochastic
gradient-based TEQ and TIR design criteria based upon the well known low-complexity
NLMS algorithm with the method of Lagrange multiplier. It is simple and robust for ISI and
ICI. This leads into Section 5 , where the order statistic normalised averaged least mean square
(OS-NALMS) TEQ and TIR are presented. Consequently, the adaptive step-size order statistic
normalised averaged least mean square (AS-OSNALMS) algorithms for TEQ and TIR can be
introduced as the solution of MSE sense. This allows to track changing channel conditions and
be quite suitable and flexible for DMT-based systems. In Section 6 , the analysis of stability
of proposed algorithm for TEQ and TIR is shown. In Section 7 and Section 8 , the simulation
results and conclusion are presented.

2. System and data model

The basic structure of the DMT transceiver is illustrated in Fig. 1. The incoming bit stream
is likewise reshaped to a complex-valued transmitted symbol for mapping in quadrature
amplitude modulation (QAM). Then, the output of QAM bit stream is split into N parallel bit
streams that are instantaneously fed to the modulating inverse fast Fourier transform (IFFT).
After that, IFFT outputs are transformed into the serial symbols including the cyclic prefix
(CP) between symbols in order to prevent intersymbol interference (ISI) (Henkel et al., 2002)
and then fed to the channel. The transmission channel will be used throughout the chapter is
based on parameters in (ITU, 2001). The transmitted signal sent over the channel with impulse
response is generally corrupted by the additive white Gaussian noise (AWGN).
The received signal is also equalised by TEQ. The number of coefficients of TEQ is particularly
used to make the shortened-channel impulse response (SIR) length, which is the desired
length of the channel after equalisation. The frequency-domain equaliser (FEQ) is essentially
a one-tap equaliser that is the fast Fourier transform (FFT) of the composite channel of
the convolution between the coefficients of the channel (h) and the tap-weight vector (w)
of TEQ. The parallel of received symbols are eventually converted into serial bits in the
frequency-domain.
The data model is based on a finite impulse response (FIR) model of transmission channel
and will be used for equaliser in DMT-based systems. The basic data model is assumed that
the transmission channel, including the transmitter and receiver filter front end. This can
be represented with an FIR model h. The k-th received sample vector which is used for the
detection of the k-th transmitted symbol vector xk,N , is given by
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Fig. 1. Block diagram for time-domain equalisation.
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where

• The notation for the received sample vectors yk,l+∆:N−l+∆ and the received samples yk,l+∆

are introduced by

yk,l+∆:N−l+∆ = [ yk,l+∆ · · · yk,N−l+∆ ]T, (2)

where l determines the first considered sample of the k-th received DMT-symbol and
depends on the number of equaliser taps L. The parameter ∆ is a synchronisation delay.

• h̄ is the CIR vector h with coefficients in reverse order.

• I is an n × n identity matrix and ⊗ denotes the Kronecker product. The (N + ν)× N matrix
Pν, which adds the cyclic prefix of length ν , is introduced by

xk,−ν:N−1 =

[
0ν×(N−ν) |Iν

IN

]

︸ ︷︷ ︸
Pν

xk,0:N−1, (3)

where the sample vector xk,−ν:−1 is called a cyclic prefix (CP).

• FH
N = F ∗

N is the N × N IDFT matrix.

• The N × 1 transmitted symbol vector xk,N is introduced by

xk,N = [ xk,0 · · · xk,N−1 ]T = [ x∗k,N−1 · · · x∗
k, N

2 +1
]T, (4)

• The vector ηk,l+∆:N−1+∆ is a sample vector with additive channel noise, and its

autocorrelation matrix is denoted as Σ2
η = E{ηkη

T
k }.

• The matrices 0(1) and 0(2) in Eq.(1) are the zero matrices of size (N − l)× (N − L + 2ν +

∆ + l) and (N − l)× (N + ν − ∆), respectively.

• The transmitted symbol vector is denoted as xk−1:k+1,N , where xk−1,N and xk+1,N introduce
ISI. The xk,N is the symbol vector of interest.
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Fig. 2. Block diagram of MMSE-TEQ.

Some notation will be used throughout this chapter as follows: E{·}, (·)T, (·)H denote as
the expectation, transpose and Hermitian operators, respectively. The vectors are in bold
lowercase and matrices are in bold uppercase.

3. Minimum mean square error-based time-domain equalisation

The design of minimum mean square error time-domain equalisation (MMSE-TEQ) is based
on the block diagram in Figure 2. The transmitted symbol x is sent over the channel with the
impulse response h and corrupted by AWGN η. The convolution of the L-tap TEQ filter
w and the CIR h of Nh + 1 samples are sufficiently shortened so that overall of impulse
response has length ν + 1 that should make TEQ as a channel shortener c = h ∗ w, called
the shorten impulse response (SIR). Then the orthogonality between the tones are restored
and ISI vanishes (Melsa et al., 1996).
The result of time-domain error e between the TEQ output and the TIR output is then
minimised in the mean-square sense as

min
w,b

E{|e|2} = min
w,b

E{|yTw − xT
∆b|2} (5)

= min
w,b

wTΣ2
yw + bTΣ2

xb − 2bTΣxy(∆)w, (6)

where Σ2
y = E{yyT} and Σ2

x = E{xxT} are autocorrelation matrices, and where Σxy(∆) =

E{x∆yT} is a cross-correlation matrix.
To avoid the trivial all-zero solution w = 0, b = 0, a constraint on the TEQ or TIR is therefore
imposed.
Some constraints that are added on the TEQ and TIR (Ysebaert et al., 2003) as follows.

1. The unit-norm constraint (UNC) on the TIR
By solving Eq.(6) subject to

bT b = 1. (7)

The solution of b is the eigen-vector and w can be given as

w = (Σ2
y)

−1 ΣT
xy b. (8)

2. The unit-tap constraint (UTC) on the TEQ
A UTC on w can be calculated with the method of the linear equation

eT
j w = 1 or eT

j w = − 1 , (9)
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where ej is the canonical vector with element one in the j-th position. By determining
the dominant generalised eigen-vector, the vector w can be obtained as the closed-form
solution

w =
A−1 ej

eT
j A−1 ej

, (10)

where A = Σ2
y − ΣT

xy (Σ
2
x)

−1 Σxy.

3. The unit-tap constraint (UTC) on the TIR
Similarly, a UTC on b can be described as

eT
j b = 1 or eT

j b = − 1 , (11)

After computing the solution for b as

b =
A−1 ej

eT
j A−1 ej

. (12)

The coefficients of TEQ w can be computed by Eq.(8).

4. The unit-energy constraint (UEC) on TEQ and TIR
Three UECs can be considered as

wT
Σ

2
yw = 1 or bT

Σ
2
xb = 1 or wT

Σ
2
yw = 1 & bT

Σ
2
xb = 1. (13)

It has been shown that each of all constraints results in Eq.(13), which can be incorporated
into the one-tap FEQs in frequency domain (Ysebaert et al., 2003).

Most TEQ designs are based on the block-based computation to find TIR (Al-Dhahir & Cioffi,
1996; F-Boroujeny & Ding, 2001; Lee et al., 1995), it will make high computational complexity
for implementation. However, this algorithm has much better performance and is used for
the reference for on-line technique.

4. The proposed normalised least mean square algorithm for TEQ and TIR

We study the use of the LMS algorithm by means of the simplicity of implementation
and robust performance. But the main limitation of the LMS algorithm is slow rate of
convergence (Diniz, 2008; Haykin, 2002). Most importantly, the normalised least mean square
(NLMS) algorithm exhibits a rate of convergence that is potentially faster than that of the
standard LMS algorithm. Following (Haykin, 2002), we derive the normalised LMS algorithm
for TEQ and TIR as follows.
Given the channel-filtered input vector y(n) and the delay input vector d(n), to determine the
tap-weight vector of TEQ w(n + 1) and the tap-weight vector of TIR b(n + 1). So, the change
δw(n + 1) and δb(n + 1) are defined as

δw(n + 1) = w(n + 1)− w(n) , (14)

δb(n + 1) = b(n + 1)− b(n) , (15)

and subject to the constraints

wH(n + 1) y(n) = g1(n) , (16)

bH(n + 1) d(n) = g2(n) , (17)
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where e(n) is the estimation error

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (18)

The squared Euclidean norm of the change δw(n + 1) and δb(n + 1) may be expressed as

‖ δw(n + 1)‖ 2 =
M−1

∑
k=0

| wk(n + 1)− wk(n)|
2 , (19)

‖ δb(n + 1)‖ 2 =
M−1

∑
k=0

| bk(n + 1)− bk(n)|
2 . (20)

Given the tap-weight of TEQ wk(n) and TIR bk(n) for k = 0, 1, . . . , M − 1 in terms of their real
and imaginary parts by

wk(n) = ak(n) + j bk(n) , (21)

bk(n) = uk(n) + j vk(n) . (22)

The tap-input vectors y(n) and d(n) are defined in term of real and imaginary parts as

y(n) = y1(n) + j y2(n) , (23)

d(n) = d1(n) + j d2(n) . (24)

Let the constraints g1(n) and g2(n) be expressed in terms of their real and imaginary parts as

g1(n) = g1a(n) + j g1b(n) , (25)

g2(n) = g2a(n) + j g2b(n) . (26)

To rewrite the complex constraint of Eq.(16) as the pair of real constraints

g1(n) =
M−1

∑
k=0

[wk(n + 1)]H y(n)

=
M−1

∑
k=0

{
[ak(n + 1) + j bk(n + 1)]∗ [y1(n − k) + j y2(n − k)]

}

=
M−1

∑
k=0

{[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]

+ j [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]}

= g1a(n) + j g1b(n) .

(27)

Therefore,

g1a(n) =
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] , (28)

g1b(n) =
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] . (29)
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To formulate the complex constraint of Eq.(17) as the pair of real constraints.

g2(n) =
M−1

∑
k=0

[bk(n + 1)]H d(n)

=
M−1

∑
k=0

{
[uk(n + 1) + j vk(n + 1)]∗ [d1(n − k) + j d2(n − k)]

}

=
M−1

∑
k=0

{[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]

+ j [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]}

= g2a(n) + j g2b(n) .

(30)

Therefore,

g2a(n) =
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] , (31)

g2b(n) =
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] . (32)

4.1 The proposed normalised least mean square time-domain equalisation (NLMS-TEQ)

We define the real-valued cost function J1(n) for the constrained optimisation using Lagrange
multiplier.1 (Haykin, 2002)

J1(n) = ‖ δw(n + 1)‖2 + λ1 { [ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)] − g1a(n)}

+ λ2 { [ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)] − g1b(n)}

=
M−1

∑
k=0

{ [ak(n + 1)− ak(n)]
2 + [bk(n + 1)− bk(n)]

2}

+ λ1 {
M−1

∑
k=0

[ak(n + 1)y1(n − k) + bk(n + 1)y2(n − k)]− g1a(n)}

+ λ2 {
M−1

∑
k=0

[ak(n + 1)y2(n − k)− bk(n + 1)y1(n − k)]− g1b(n)} ,

(33)

where λ1 and λ2 are Lagrange multipliers. We find the optimum values of ak(n + 1) and
bk(n + 1) by differentiating the cost function J1(n) with respect to these parameters and set
the both results equal to zero. Hence,

∂J1(n)

∂ak(n + 1)
= 0 ,

1 The method of Lagrange multiplier is defined as a new real-valued Lagrange function h(w)

h(w) = f (w) + λ1Re [C(w)] + λ2 Im [C(w)]

where f (w) is the real function and C(w) is the complex constraint function. The parameters λ1 and λ2

are the Lagrange multipliers, where λ = λ1 + j λ2

389Adaptive Step-size Order Statistic LMS-based
Time-domain Equalisation in Discrete Multitone Systems

www.intechopen.com



and
∂J1(n)

∂bk(n + 1)
= 0 .

The results are given by

2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k) = 0 , (34)

2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k) = 0 . (35)

From Eq.(21) and Eq.(23), we combine these two real results into a single complex one as

∂J1(n)

∂wk(n + 1)
=

∂J1(n)

∂ak(n + 1)
+ j

∂J1(n)

∂bk(n + 1)
= 0 . (36)

Therefore,

∂J1(n)

∂wk(n + 1)
= {2 [ak(n + 1)− ak(n)] + λ1y1(n − k) + λ2y2(n − k)}+

j {2 [bk(n + 1)− bk(n)] + λ1y2(n − k)− λ2y1(n − k)}

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

λ1 [y1(n − k) + j y2(n − k)]− j λ2 [y1(n − k) + j y2(n − k)]

= 2 [ak(n + 1) + j bk(n + 1)]− 2 [ak(n) + j bk(n)] +

(λ1 − j λ2) [y1(n − k) + j y2(n − k)]

= 0 .

(37)

Thus, we get

2 [wk(n + 1)− wk(n)] + λ∗
wy(n − k) = 0, f or k = 0, 1, . . . , M − 1 (38)

where λw is a complex Lagrange multiplier for TEQ as

λw = λ1 + j λ2 . (39)

In order to find the unknown λ∗
w, we multiply both sides of Eq.(38) by y∗(n − k) and then sum

over all integer values of k for 0 to M − 1. Thus, we have

2 [wk(n + 1)− wk(n)] y∗(n − k) = −λ∗
w y(n − k) y∗(n − k)

2
M−1

∑
k=0

[ wk(n + 1)y∗(n − k)− wk(n)y
∗(n − k) ] = −λ∗

w

M−1

∑
k=0

|y(n − k)|2

2
[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
= −λ∗

w‖y(n)‖2

Therefore, the complex conjugate Lagrange multiplier λ∗
w can be formulated as

λ∗
w =

−2

‖y(n)‖2

[
wT(n + 1) y∗(n)− wT(n) y∗(n)

]
, (40)
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where ‖y(n)‖2 is the Euclidean norm of the tap-input vector y(n).
From the definition of the estimation error e(n) in Eq.(18), the conjugate of e(n) is written as

e∗(n) = wT(n + 1) y∗(n)− bT(n + 1) d∗(n) . (41)

The mean-square error | e(n)| 2 is minimised by the derivative of | e(n)| 2 with respect to w(n+
1) be equal to zero.

∂| e(n)| 2

∂w(n + 1)
=

[
wH(n + 1) y(n)− bH(n + 1) d(n)

]
y∗(n) = 0 . (42)

Hence, we have
wH(n + 1) y(n) = bH(n + 1) d(n) , (43)

and the conjugate of Eq.(43) may expressed as

wT(n + 1) y∗(n) = bT(n + 1) d∗(n) . (44)

To substitute Eq.(44) and Eq.(41) into Eq.(40) and then formulate λ∗
w as

λ∗
w =

2

‖y(n)‖2
e∗(n) . (45)

We rewrite Eq.(38) using Eq.(14) by writing,

2 δw(n + 1) = −λ∗
w y(n) (46)

The change δw(n + 1) is redefined by substituting Eq.(45) in Eq.(46). We thus have

δw(n + 1) =
−1

‖y(n)‖2
y(n) e∗(n) . (47)

To introduce a step-size for TEQ denoted by µw and then we may express the change δw(n +
1) as

δw(n + 1) =
−µw

‖y(n)‖2
y(n) e∗(n) . (48)

We rewrite the tap-weight vector of TEQ w(n + 1) as

w(n + 1) = w(n) + δw(n + 1) . (49)

Finally, we may obtain the tap-weight vector of TEQ w(n + 1) in the well-known NLMS
algorithm.

w(n + 1) = w(n)−
µw

‖y(n)‖2
y(n) e∗(n) . (50)

where e∗(n) is described in Eq.(41).
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4.2 The proposed normalised least mean square-target impulse response (NLMS-TIR)

We formulate the real-valued cost function J2(n) for the constrained optimisation problem
using Lagrange multiplier.

J2(n) = ‖ δb(n + 1)‖2 + λ3 { [uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)] − g2a(n)}

+ λ4 { [uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)] − g2b(n)}

=
M−1

∑
k=0

{ [uk(n + 1)− uk(n)]
2 + [vk(n + 1)− vk(n)]

2}

+ λ3 {
M−1

∑
k=0

[uk(n + 1)d1(n − k) + vk(n + 1)d2(n − k)]− g2a(n)}

+ λ4 {
M−1

∑
k=0

[uk(n + 1)d2(n − k)− vk(n + 1)d1(n − k)]− g2b(n)} ,

(51)

where λ3 and λ4 are Lagrange multipliers. We find the optimum values of uk(n + 1) and
vk(n + 1) by differentiating the cost function J2(n) with respect to these parameters and then
set the results equal to zero. Hence,

∂J2(n)

∂uk(n + 1)
= 0 ,

and
∂J2(n)

∂vk(n + 1)
= 0 .

The results are

2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k) = 0 , (52)

2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k) = 0 . (53)

From Eq.(22) and Eq.(24), we combine these two real results into a single complex one as

∂J2(n)

∂bk(n + 1)
=

∂J2(n)

∂uk(n + 1)
+ j

∂J2(n)

∂vk(n + 1)
= 0 . (54)

Therefore,

∂J2(n)

∂bk(n + 1)
= {2 [uk(n + 1)− uk(n)] + λ3d1(n − k) + λ4d2(n − k)}+

j {2 [vk(n + 1)− vk(n)] + λ3d2(n − k)− λ4d1(n − k)}

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

λ3 [d1(n − k) + j d2(n − k)]− j λ4 [d1(n − k) + j d2(n − k)]

= 2 [uk(n + 1) + j vk(n + 1)]− 2 [uk(n) + j vk(n)] +

(λ3 − j λ4) [d1(n − k) + j d2(n − k)]

= 0 .

(55)
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Thus, we have

2 [bk(n + 1)− bk(n)] + λ∗
bd(n − k) = 0, f or k = 0, 1, . . . , M − 1 (56)

where λb is a complex Lagrange multiplier for TIR

λb = λ3 + j λ4 (57)

To multiply both side of Eq.(56) by d∗(n − k) to find the unknown λ∗
b and then sum over all

possible integer values of k for 0 to M − 1. Thus, we get

2 [bk(n + 1)− bk(n)] d∗(n − k) = −λ∗
b d(n − k) d∗(n − k)

2
M−1

∑
k=0

[ bk(n + 1)d∗(n − k)− bk(n)d
∗(n − k) ] = −λ∗

b

M−1

∑
k=0

|d(n − k)|2

2
[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
= −λ∗

b‖d(n)‖2

Therefore,

λ∗
b =

−2

‖d(n)‖2

[
bT(n + 1) d∗(n)− bT(n) d∗(n)

]
. (58)

where ‖d(n)‖2 is the Euclidean norm of the tap-input vector d(n).
To substitute Eq.(41) and Eq.(44) into Eq.(58) and then formulate λ∗

b as

λ∗
b =

2

‖d(n)‖2
e∗(n) . (59)

We rewrite Eq.(56) using Eq.(15) by

2 δb(n + 1) = λ∗
b d(n) (60)

To redefine the change δb(n + 1) by substituting Eq.(59) in Eq.(60). We thus get,

δb(n + 1) =
1

‖d(n)|2
d(n) e∗(n) . (61)

To introduce a step-size for TIR µb and then we redefine the change δb(n + 1) simply as

δb(n + 1) =
µb

‖d(n)‖2
d(n) e∗(n) , (62)

where µb is the step-size for the NLMS-TIR.
We rewrite the tap-weight vector of TIR b(n + 1) as

b(n + 1) = b(n) + δb(n + 1) . (63)

Finally, we may formulate the tap-weight vector of TIR b(n + 1) in the normalised LMS
algorithm.

b(n + 1) = b(n) +
µb

‖d(n)‖2
d(n) e∗(n) , (64)

where e∗(n) is given in Eq.(41).
To comply with the Euclidean norm constraint, the tap-weight vector of TIR b(n + 1) is
normalised as

b(n + 1) =
b(n + 1)

‖b(n + 1)‖
. (65)
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5. Adaptive step-size order statistic-normalised averaged least mean

square-based time-domain equalisation

Based on least mean square (LMS) algorithm, a class of adaptive algorihtms employing order
statistic filtering of the sampled gradient estimates has been presented in (Haweel & Clarkson,
1992), which can provide with the development of simple and robust adaptive filter across a
wide range of input environments. This section is therefore concerned with the development
of simple and robust adaptive time-domain equalisation by defining normalised least mean
square (NLMS) algorithm.
Following (Haweel & Clarkson, 1992), we present the NLMS algorithm which replaces linear
smoothing of gradient estimates by order statistic averaged LMS filter. A class of order statistic
normalised averaged LMS algorithm with the adaptive step-size scheme for the proposed
NLMS algorithm in Eq.(50) and Eq.(64) that are shown as (Sitjongsataporn & Yuvapoositanon,
2007).

ŵ(n + 1) = ŵ(n)−
µw(n)

‖y(n)‖2
Mw aw , (66)

b̂(n + 1) = b̂(n) +
µb(n)

‖d(n)‖2
Mb ab , (67)

with

Mw = T̃{ ẽ∗(n)y(n), ẽ∗(n − 1)y(n − 1), . . . , ẽ∗(n − Nw + 1)y(n − Nw + 1)} , (68)

Mb = T̃{ ẽ∗(n)d(n), ẽ∗(n − 1)d(n − 1), . . . , ẽ∗(n − Nb + 1)d(n − Nb + 1)} , (69)

ẽ(n) = ŵH(n)y(n)− b̂
H
(n)d(n) , (70)

and

aw = [aw(1), aw(2), . . . , aw(Nw)] , aw(i) = 1/Nw ; i = 1, 2, . . . , Nw. (71)

ab = [ab(1), ab(2), . . . , ab(Nb)] , ab(j) = 1/Nb ; j = 1, 2, . . . , Nb. (72)

where ẽ(n) is a priori estimation error and T̃{·} operation denotes as the algebraic ordering
transformation. The parameters aw and ab are the average of the gradient estimates of
weighting coefficients as described in (Chambers, 1993). The parameters µw(n) and µb(n)

are the step-size of ŵ(n) and b̂(n). The parameters Nw and Nb are the number of tap-weight
vectors for TEQ and TIR, respectively.

Following (Benveniste et al., 1990), we demonstate the derivation of adaptive step-size
algorithms of µw(n) and µb(n) based on the proposed NLMS algorithm in Eq.(50) and Eq.(64).
The cost function Jmin(n) may be expressed as

Jmin(n) = min
w,b

E{|e(n)|2} , (73)

e(n) = wH(n + 1) y(n)− bH(n + 1) d(n) . (74)

We then form the stochastic approximation equations for µw(n + 1) and µb(n + 1) as (Kushner
& Yang, 1995)

µw(n + 1) =µw(n) + αw
{
−∇Jmin(µw)} , (75)

µb(n + 1) =µb(n) + αb

{
−∇Jmin(µb)} , (76)
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Fig. 3. Block diagram of adaptive step-size order statistic normalised averaged least mean
square (AS-OSNALMS) TEQ and TIR.

where ∇Jmin(µw) and ∇Jmin(µb) denote as the value of the gradient vectors. The parameters
αw and αb are the adaptation constant of µw and µb, respectively.
By differentiating the cost function in Eq.(73) with respect to µw and µb, we get

∂Jmin

∂µw
= ∇Jmin(µw) = e(n) yT(n)Ψw , (77)

∂Jmin

∂µb
= ∇Jmin(µb) = −e(n) dT(n)Ψb , (78)

where Ψw = ∂w(n)
∂µw

and Ψb = ∂b(n)
∂µb

are the derivative of w(n + 1) in Eq.(50) with respect to

µw(n) and of b(n + 1) in Eq.(64) with respect to µb(n) (Moon & Stirling, 2000).
By substituting Eq.(77) and Eq.(78) in Eq.(75) and Eq.(76), we get the adaptive step-size µw(n)
and µb(n) as

µw(n + 1) =µw(n)− αw
{

e(n) yT(n)Ψw
}

, (79)

µb(n + 1) =µb(n) + αb

{
e(n) dT(n)Ψb

}
, (80)

where

Ψw(n + 1) =

[
I −

y(n)

‖y(n)‖2
µw(n) yT(n)

]
Ψw(n)−

y(n)

‖y(n)‖2
e∗(n) , (81)

Ψb(n + 1) =

[
I −

d(n)

‖d(n)‖2
µb(n) dT(n)

]
Ψb(n) +

d(n)

‖d(n)‖2
e∗(n) . (82)

Then, we apply the order statistic scheme in Eq.(81) and Eq.(82) as

Ψ̃w(n + 1) =

[
I −

y(n)

‖y(n)‖2
µw(n) yT(n)

]
Ψ̃w(n)−

Mw aw

‖y(n)‖2
, (83)

Ψ̃b(n + 1) =

[
I −

d(n)

‖d(n)‖2
µb(n) dT(n)

]
Ψ̃b(n) +

Mb ab

‖d(n)‖2
, (84)
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where Mw, Mb, aw, ab and ẽ(n) are given in Eq.(68)-Eq.(72).

6. Stability analysis of the proposed AS-OSNALMS TEQ and TIR

In this section, the stability of the proposed AS-OSNALMS algorithm for TEQ and TIR are
based upon the NLMS algorithm as given in (Haykin, 2002). This also provides for the optimal
step-size parameters for TEQ and TIR.

According to the tap-weight estimate vector ŵ(n) and b̂(n) computed in Eq.(66) and Eq.(67),
the difference between the optimum tap-weight vector wopt and ŵ(n) is calculated by the
weight-error vector of TEQ as

∆ w(n) = wopt − ŵ(n) , (85)

and, in the similar fashion, the weight-error vector of TIR is given by

∆ b(n) = bopt − b̂(n) , (86)

By substituting Eq.(66) and Eq.(67) from wopt and bopt, we have

∆ w(n + 1) = ∆ w(n) +
µw(n)

‖y(n)‖2
Mw aw , (87)

where Mw and aw are defined in Eq.(68) and Eq.(71).

∆ b(n + 1) = ∆ b(n)−
µb(n)

‖d(n)‖2
Mb ab , (88)

where Mb and ab are given in Eq.(69) and Eq.(72).
The stability analysis of the proposed AS-OSNALMS TEQ and TIR are based on the mean
square deviation (MSD) as

Dw(n) = E{‖∆w(n)‖2} , (89)

Db(n) = E{‖∆b(n)‖2} , (90)

where Dw(n) and Db(n) denote as the MSD on TEQ and TIR.
By taking the squared Euclidean norms of both sides of Eq.(87) and Eq.(88), we get

‖∆w(n + 1)‖2 = ‖∆w(n)‖2 + 2
µw(n)

‖y(n)‖2
∆wH(n) · (Mw aw)

+
µ2

w(n)

‖y(n)‖2

(Mw aw)
H (Mw aw)

‖y(n)‖2
, (91)

‖∆b(n + 1)‖2 = ‖∆b(n)‖2 − 2
µb(n)

‖d(n)‖2
∆bH(n) · (Mb ab)

+
µ2

b(n)

‖d(n)‖2

(Mb ab)
H (Mb ab)

‖d(n)‖2
. (92)

Then taking expectations and rearranging terms with Eq.(89) and Eq.(90), the MSD of ŵ(n) is
defined by

Dw(n + 1) = Dw(n) + 2 µw(n) E{ℜ(∆wH(n) ξw(n))}

+ µ2
w(n) E{ℜ(ξH

w (n) ξw(n))} , (93)
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where ξw(n) is given by

ξw(n) = E

{
Mw aw

‖y(n)‖2

}
, (94)

and ℜ(·) denote as the real operator.

Thus, the MSD of b̂(n) can be computed as

Db(n + 1) = Db(n)− 2 µb(n) E

{
ℜ

(
∆bH(n) ξb(n)

)}

+ µ2
b(n) E

{
ℜ

(
ξH

b (n) ξb(n)

)}
, (95)

where ξb(n) is calculated by

ξb(n) = E

{
Mb ab

‖d(n)‖2

}
. (96)

Following these approximations

lim
n→∞

Dw(n + 1) = lim
n→∞

Dw(n) , (97)

lim
n→∞

Db(n + 1) = lim
n→∞

Db(n) , (98)

are taken into Eq.(93) and Eq.(95). The normalised step-size parameters µw(n) and µb(n) are
bounded as

0 < µw(n) < 2

∣∣∣∣ℜ
(

∆wH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (99)

0 < µb(n) < 2 ℜ

(
∆bH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (100)

Therefore, the optimal step-size parameters µ
opt
w and µ

opt
b can be formulated by

µ
opt
w =

∣∣∣∣ℜ
(

∆wH(n) ξw(n)

ξH
w (n) ξw(n)

)∣∣∣∣ , (101)

µ
opt
b = ℜ

(
∆bH(n) ξb(n)

ξH
b (n) ξb(n)

)
. (102)

7. Simulation results

We implemented the ADSL transmission channel based on parameters as follows: the
sampling rate fs = 2.208 MHz, the size of FFT N = 512, and the input signal power of
-40dBm/Hz. The standard ADSL system parameters were shown in Table 1. The ADSL
downstream starting at active tones 38 up to tone 255 that comprises 512 coefficients of
channel impulse response. The signal to noise ratio gap of 9.8dB, the coding gain of 4.2dB
and the noise margin of 6dB were chosen for all active tones. The additive white Gaussian
noise (AWGN) with a power of −140dBm/Hz and near-end cross talk (NEXT) from 24
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Asymmetric Digital Subscriber Line (ADSL) Specifications

Taps of ŵ (Nw) 32 FFT size (N) 512

Taps of b̂ (Nb) 32 Cyclic prefix (ν) 32

Sampling rate ( fs) 2.208 MHz Signal to noise ratio gap 9.8 dB

Tone spacing 4.3125 KHz Noise margin 6 dB

TX-DMT block (M) 400 Coding gain 4.2 dB

TX sequence M×N Input power -40dBm/Hz

Input impedance 100 Ω AWGN power -140dBm/Hz

Table 1. The standard ADSL system for simulation.

ADSL disturbers were included over the entire test channel. The optimal synchronisation
delay (∆) can be obtained from the proposed algorithm that was equal to 45. The ADSL
downstream simulations with the carrier serving area (CSA) loop no. 1 was the representative
of simulations with all 8 CSA loops as detailed in (Al-Dhahir & Cioffi, 1996). The CSA#1 loop
is a 7700 ft, 26 gauge loop with 26 gauge bridged tap of length of 600 ft at 5900 ft.

The initial parameters of the proposed AS-OSNALMS algorithm were ŵ(0) = b̂(0) =

Ψ̃w(0) = Ψ̃b(0) = [0.001 0 · · · 0]T and of NLMS algorithm were µw = 0.15, µb = 0.075. The
NLMS algorithm was calculated with the fixed step-size for TEQ and TIR with the method
as described in Section 4. Fig. 4 depicts the original simulated channel, SIR and TIR of the
proposed AS-OSNALMS algorithm which compared with SIR of MMSE-UEC. It is noted that
the comparable lengths of SIR and TIR of proposed algorithm are shorter than the original
channel. This explains the channel-shortening capability of the proposed algorithm. Fig. 5
illustrates the MSE curves of proposed AS-OSNALMS and NLMS algorithms. The MSE curve
of proposed algorithm is shown to converge to the MMSE. Fig. 6 and Fig. 7 show the mean
square deviation (MSD) on TEQ and TIR of proposed AS-OSNALMS and NLMS algorithms.
The trajectories of µw(n) and µb(n) at the different of initial step-size µw0 and µb0

are presented
with the fixed at the adaptation parameters αw and αb in Fig. 8 and Fig. 9 and with the
different αw and αb in Fig. 10 and Fig. 11. Comparing the proposed AS-OSNALMS algorithm
with the fixed at the adaptation parameters, it has been shown that the proposed algorithms
have faster initial convergence rate with the different setting of initial step-size and adaptation
parameters. Their are shown to converge to their own equilibria.

8. Conclusion

In this chapter, we present the proposed adaptive step-size order statistic LMS-based TEQ
and TIR for DMT-based systems. We introduce how to derive the updated tap-weight vector

ŵ(n) and b̂(n) as the solution of constrained optimisation to obtain a well-known NLMS
algorithm, which an averaged order statistic scheme is replaced linear smoothing of the
gradient estimation. We demonstrate the derivation of adaptive step-size mechanism for the
proposed order statistic normalised averaged least mean square algorithm. The proposed
algorithms for TEQ and TIR can adapt automatically the step-size parameters. The adaptation
of MSE, MSD of TEQ and MSD of TIR curves of the proposed algorithms are shown to
converge to the MMSE in the simulated channel. According to the simulation results, the
proposed algorithms provide a good approach and are appeared to be robust in AWGN and
NEXT channel as compared to the existing algorithm.
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