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1. Introduction

In this chapter, we report some work on decentralized adaptive control of discrete-time
multi-agent systems. Multi-agent systems, one important class of models of the so-called
complex systems, have received great attention since 1980s in many areas such as physics,
biology, bionics, engineering, artificial intelligence, and so on. With the development of
technologies, more and more complex control systems demand new theories to deal with
challenging problems which do not exist in traditional single-plant control systems.
The new challenges may be classified but not necessarily restricted in the following aspects:

• The increasing number of connected plants (or subsystems) adds more complexity to the
control of whole system. Generally speaking, it is very difficult or even impossible to
control the whole system in the same way as controlling one single plant.

• The couplings between plants interfere the evolution of states and outputs of each plant.
That is to say, it is not possible to completely analyze each plant independently without
considering other related plants.

• The connected plants need to exchange information among one another, which may bring
extra communication constraints and costs. Generally speaking, the information exchange
only occurs among coupled plants, and each plant may only have local connections with
other plants.

• There may exist various uncertainties in the connected plants. The uncertainties may
include unknown parameters, unknown couplings, unmodeled dynamics, and so on.

To resolve the above issues, multi-agent system control has been investigated by many
researchers. Applications of multi-agent system control include scheduling of automated
highway systems, formation control of satellite clusters, and distributed optimization of
multiple mobile robotic systems, etc. Several examples can be found in Burns (2000); Swaroop
& Hedrick (1999).
Various control strategies developed for multi-agent systems can be roughly assorted into
two architectures: centralized and decentralized. In the decentralized control, local control
for each agent is designed only using locally available information so it requires less
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computational effort and is relatively more scalable with respect to the swarm size. In
recent years, especially since the so-called Vicsek model was reported in Vicsek et al. (1995),
decentralized control of multi-agent system has received much attention in the research
community (e.g. Jadbabaie et al. (2003a); Moreau (2005)). In the (discrete-time) Vicsek model,
there are n agents and all the agents move in the plane with the same speed but with different
headings, which are updated by averaging the heading angles of neighor agents. By exploring
matrix and graph properties, a theoretical explanation for the consensus behavior of the
Vicsek model has been provided in Jadbabaie et al. (2003a). In Tanner & Christodoulakis
(2005), a discrete-time multi-agent system model has been studied with fixed undirected
topology and all the agents are assumed to transmit their state information in turn. In
Xiao & Wang (2006), some sufficient conditions for the solvability of consensus problems
for discrete-time multi-agent systems with switching topology and time-varying delays have
been presented by using matrix theories. In Moreau (2005), a discrete-time network model
of agents interacting via time-dependent communication links has been investigated. The
result in Moreau (2005) has been extended to the case with time-varying delays by set-value
Lyapunov theory in Angeli & Bliman (2006). Despite the fact that many researchers have
focused on problems like consensus, synchronization, etc., we shall notice that the involved
underlying dynamics in most existing models are essentially evolving with time in an
invariant way determined by fixed parameters and system structure. This motivates us to
consider decentralized adaptive control problems which essentially involve distributed agents
with ability of adaptation and learning. Up to now, there are limited work on decentralized
adaptive control for discrete-time multi-agent systems.
The theoretical work in this chapter has the following motivations:

1. The research on the capability and limitation of the feedback mechanism (e.g. Ma (2008a;b);
Xie & Guo (2000)) in recent years focuses on investigating how to identify the maximum
capability of feedback mechanism in dealing with internal uncertainties of one single system.

2. The decades of studies on traditional adaptive control (e.g. Aström & Wittenmark (1989);
Chen & Guo (1991); Goodwin & Sin (1984); Ioannou & Sun (1996)) focus on investigating
how to identify the unknown parameters of a single plant, especially a linear system or
linear-in-parameter system.

3. The extensive studies on complex systems, especially the so-called complex adaptive systems
theory Holland (1996), mainly focus on agent-based modeling and simulations rather than
rigorous mathematical analysis.

Motivated by the above issues, to investigate how to deal with coupling uncertainties as well
as internal uncertainties, we try to consider decentralized adaptive control of multi-agent
systems, which exhibit complexity characteristics such as parametric internal uncertainties,
parametric coupling uncertainties, unmodeled dynamics, random noise, and communication
limits. To facilitate mathematical study on adaptive control problems of complex systems, the
following simple yet nontrivial theoretical framework is adopted in our theoretical study:

1. The whole system consists of many dynamical agents, and evolution of each agent can be
described by a state equation with optional output equation. Different agents may have
different structures or parameters.

2. The evolution of each agent may be interacted by other agents, which means that the
dynamic equations of agents are coupled in general. Such interactions among agents
are usually restricted in local range, and the extent or intensity of reaction can be
parameterized.
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3. There exist information limits for all of the agents: (a) Each agent does not have access
to internal structure or parameters of other agents while it may have complete or limited
knowledge to its own internal structure and values of internal parameters. (b) Each agent
does not know the intensity of influence from others. (c) However, each agent can observe
the states of neighbor agents besides its own state.

4. Under the information limits above, each agent may utilize all of the information in hand
to estimate the intensity of influence and to design local control so as to change the state of
itself, consequently to influence neighbor agents. In other words, each agent is selfish and
it aims to maximize its local benefits via minimizing the local tracking error.

Within the above framework, we are to explore the answers to the following basic problem: Is
it possible for all of the agents to achieve a global goal based on the local information and local control?
Here the global goal may refer to global stability, synchronization, consensus, or formation,
etc. We shall start from a general model of discrete-time multi-agent system and discuss
adaptive control design for several typical cases of this model. The ideas in this chapter can
be also applied in more general or complex models, which may be considered in our future
work and may involve more difficulties in the design and theoretical analysis of decentralized
adaptive controller.
The remainder of this chapter is organized as follows: first, problem formulation will be given
in Section 2 with the description of the general discrete-time multi-agent system model and
several cases of local tracking goals; then, for these various local tracking tasks, decentralized
adaptive control problem for a stochastic synchronization problem is discussed in Section 3
based on the recursive least-squares estimation algorithm; in Section 4, decentralized adaptive
control for a special deterministic tracking problem, whereas the system has uncertain
parameters, is given based on least-squares estimation algorithm; and Section 5 studies
decentralized adaptive control for the special case of a hidden leader tracking problem, based
on the normalized gradient estimation algorithm; finally, we give some concluding remarks
in the last section.

2. Problem formulation

In this section, we will first describe the network of dynamic systems and then formulate
the problems to be studied. We shall study a simple discrete-time dynamic network. In
this model, there are N subsystems (plants), and each subsystem represents evolution of one
agent. We denote the state of Agent i at time t by xi(t), and, for simplicity, we assume that
linear influences among agents exist in this model. For convenience, we define the concepts
of “neighbor” and “neighborhood” as follows: Agent j is a neighbor of Agent i if Agent j
has influence on Agent i. Let Ni denote the set of all neighbors of Agent i and Agent i
itself. Obviously neighborhood Ni of Agent i is a concept describing the communication limits
between Agent i and others.

2.1 System model

The general model of each agent has the following state equation (i = 1, 2, . . . , N) :

xi(t + 1) = fi(zi(t)) + ui(t) + γi x̄i(t) + wi(t + 1) (2.1)

with zi(t) = [xi(t), ui(t)]
T, xi(t) = [xi(t), xi(t − 1), . . . , xi(t − ni + 1)]T and ui(t) =

[ui(t), ui(t − 1), . . . , ui(t − mi + 1)]T, where fi(·) represents the internal structure of Agent
i, ui(t) is the local control of Agent i, wi(t) is the unobservable random noise sequence, and
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γi x̄i(t) reflects the influence of the other agents towards Agent i. Hereinafter, x̄i(t) is the
weighted average of states of agents in the neighborhood of Agent i, i.e.,

x̄i(t) = ∑
j∈Ni

gijxj(t) (2.2)

where the nonnegative constants {gij} satisfy ∑
j∈Ni

gij = 1 and γi denotes the intensity of

influence, which is unknown to Agent i. From graph theory, the network can be represented
by a directed graph with each node representing an agent and the neighborhood of Node i
consists of all the nodes that are connected to Node i with an edge directing to Node i. This
graph can be further represented by an adjacent matrix

G = (gij), gij = 0 if j �∈ Ni. (2.3)

Remark 2.1. Although model (2.1) is simple enough, it can capture all essential features that
we want, and the simple model can be viewed as a prototype or approximation of more
complex models. Model (2.1) highlights the difficulties in dealing with coupling uncertainties
as well as other uncertainties by feedback control.

2.2 Local tracking goals

Due to the limitation in the communication among the agents, generally speaking, agents can
only try to achieve local goals. We assume that the local tracking goal for Agent i is to follow a
reference signal xref

i , which can be a known sequence or a sequence relating to other agents as
discussed below:
Case I (deterministic tracking). In this case, xref

i (t) is a sequence of deterministic signals

(bounded or even unbounded) which satisfies |xref
i (t)| = O(tδ).

Case II (center-oriented tracking). In this case, xref
i (t) = x̄(t)

∆
= 1

N ∑
N
i=1 xi(t) is the center state

of all agents, i.e., average of states of all agents.
Case III (loose tracking). In this case, xref

i (t) = λx̄i(t), where constant |λ| < 1. This case means

that the tracking signal xref
i (t) is close to the (weighted) average of states of neighbor agents

of Agent i, and factor λ describes how close it is.
Case IV (tight tracking). In this case, xref

i (t) = x̄i(t). This case means that the tracking signal

xref
i (t) is exactly the (weighted) average of states of agents in the neighborhood of Agent i.

In the first two cases, all agents track a common signal sequence, and the only differences are
as follows: In Case I the common sequence has nothing with every agent’s state; however,
in Case II the common sequence is the center state of all of the agents. The first two cases
mean that a common “leader” of all of agents exists, who can communicate with and send
commands to all agents; however, the agents can only communicate with one another under
certain information limits. In Cases III and IV, no common “leader” exists and all agents attempt
to track the average state x̄i(t) of its neighbors, and the difference between them is just the
factor of tracking tightness.

2.3 Decentralized adaptive control problem

In the framework above, Agent i does not know the intensity of influence γi; however, it can
use the historical information

{xi(t), x̄i(t), ui(t − 1), xi(t − 1), x̄i(t − 1), ui(t − 2), . . . , xi(1), x̄i(1), ui(0)} (2.4)
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to estimate γi and can further try to design its local control ui(t) to achieve its local goal. Such a
problem is called a decentralized adaptive control problem since the agents must be smart enough
so as to design a stabilizing adaptive control law, rather than to simply follow a common rule
with fixed parameters such as the so-called consensus protocol, in a coupling network. Note that
in the above problem formulation, besides the uncertain parameters γi, other uncertainties
and constraints are also allowed to exist in the model, which may add the difficulty of
decentralized adaptive control problem. In this chapter, we will discuss several concrete
examples of designing decentralized adaptive control laws, in which coupling uncertainties,
external noise disturbance, internal parametric uncertainties, and even functional structure
uncertainties may exist and be dealt with by the decentralized adaptive controllers.

3. Decentralized synchronization with adaptive control

Synchronization is a simple global behavior of agents, and it means that all agents tend to
behave in the same way as time goes by. For example, two fine-tuned coupled oscillators
may gradually follow almost the same pace and pattern. As a kind of common and important
phenomenon in nature, synchronization has been extensively investigated or discussed in the
literature (e.g., Time et al. (2004); Wu & Chua (1995); Zhan et al. (2003)) due to its usefulness
(e.g. secure communication with chaos synchronization) or harm (e.g. passing a bridge
resonantly). Lots of existing work on synchronization are conducted on chaos (e.g.Gade &
Hu (2000)), coupled maps (e.g.Jalan & Amritkar (2003)), scale-free or small-world networks
(e.g.Barahona & Pecora (2002)), and complex dynamical networks (e.g.Li & Chen (2003)),
etc. In recent years, several synchronization-related topics (coordination, rendezvous, consensus,
formation, etc.) have also become active in the research community (e.g.Cao et al. (2008);
Jadbabaie et al. (2003b); Olfati-Saber et al. (2007)). As for adaptive synchronization, it has
received the attention of a few researchers in recent years (e.g.Yao et al. (2006); Zhou et al.
(2006)), and the existing work mainly focused on deterministic continuous-time systems,
especially chaotic systems, by constructing certain update laws to deal with parametric
uncertainties and applying classical Lyapunov stability theory to analyze corresponding
closed-loop systems.
In this section, we are to investigate a synchronization problem of a stochastic dynamic
network. Due to the presence of random noise and unknown parametric coupling,
unlike most existing work on synchronization, we need to introduce new concepts of
synchronization and the decentralized learning (estimation) algorithm for studying the
problem of decentralized adaptive synchronization.

3.1 System model

In this section, for simplicity, we assume that the internal function fi(·) is known to each
agent and the agents are in a common noisy environment, i.e. the random noise {w(t),Ft}
are commonly present for all agents. Hence, the dynamics of Agent i (i = 1, 2, . . . , N) has the
following state equation:

xi(t + 1) = fi(zi(t)) + ui(t) + γi x̄i(t) + w(t + 1). (3.1)

In this model, we emphasize that coupling uncertainty γi is the main source to prevent
the agents from achieving synchronization with ease. And the random noise makes that
traditional analysis techniques for investigating synchronization of deterministic systems
cannot be applied here because it is impossible to determine a fixed common orbit for
all agents to track asymptotically. These difficulties make the rather simple model here
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non-trivial for studying the synchronization property of the whole system, and we will find
that proper estimation algorithms, which can be somewhat regarded as learning algorithms
and make the agents smarter than those machinelike agents with fixed dynamics in previous
studies, is critical for each agent to deal with these uncertainties.

3.2 Local controller design

As the intensity of influence γi is unknown, Agent i is supposed to estimate it on-line via
commonly-used recursive least-squares (RLS) algorithm and design its local control based on
the intensity estimate γ̂i(t) via the certainty equivalence principle as follows:

ui(t) = − fi(zi(t))− γ̂i(t)x̄i(t) + xref
i (t) (3.2)

where γ̂i(t) is updated on-line by the following recursive LS algorithm

γ̂i(t + 1) = γ̂i(t) + σ̄i(t) p̄i(t)x̄i(t)[yi(t + 1)− γ̂i(t)x̄i(t)]
p̄i(t + 1) = p̄i(t)− σ̄i(t)[ p̄i(t)x̄i(t)]

2 (3.3)

with yi(t) = xi(t)− fi(zi(t − 1))− ui(t − 1) and

σ̄i(t)
∆
=
[

1 + p̄i(t)x̄
2
i (t)

]−1
, p̄i(t)

∆
=

[

t−1

∑
k=0

x̄2
i (k)

]−1

(3.4)

Let eij(t)
∆
= xi(t) − xj(t), and suppose that xref

i (t) = x∗(t) for i = 1, 2, . . . , N in Case I. And
suppose also matrix G is an irreducible primitive matrix in Case IV, which means that all of
the agents should be connected and matrix G is cyclic (or periodic from the point of view of
Markov chain).
Then we can establish almost surely convergence of the decentralized LS estimator and the
global synchronization in Cases I—IV.

3.3 Assumptions

We need the following assumptions in our analysis:

Assumption 3.1. The noise sequence {w(t),Ft} is a martingale difference sequence (with {Ft} being
a sequence of nondecreasing σ-algebras) such that

sup
t

E
[

|w(t + 1)|β|Ft

]

< ∞ a.s. (3.5)

for a constant β > 2.

Assumption 3.2. Matrix G = (gij) is an irreducible primitive matrix.

3.4 Main result

Theorem 3.1. For system (3.1), suppose that Assumption 3.1 holds in Cases I—IV and Assumption
3.2 holds also in Case IV. Then the decentralized LS-based adaptive controller has the following
closed-loop properties:
(1) All of the agents can asymptotically correctly estimate the intensity of influence from others, i.e.,

lim
t→∞

γ̂i(t) = γi. (3.6)
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(2) The system can achieve synchronization in sense of mean, i.e.,

lim
T→∞

1

T

T

∑
t=1

|eij(t)| = 0, ∀i �= j. (3.7)

(3) The system can achieve synchronization in sense of mean squares, i.e.,

lim
T→∞

1

T

T

∑
t=1

|eij(t)|2 = 0, ∀i �= j. (3.8)

3.5 Lemmas

Lemma 3.1. Suppose that Assumption 3.1 holds in Cases I, II, III, and IV. Then, in either case, for
i = 1, 2, . . . , N and m ≥ 1, 0 ≤ d < m, we have

t

∑
k=1

|γ̃i(mk − d)x̄i(mk − d)|2 = o(t) a.s.,

t

∑
k=1

|γ̃i(mk − d)x̄i(mk − d)| = o(t) a.s.

(3.9)

Proof. See Ma (2009).

Lemma 3.2. Consider the following iterative system:

Xt+1 = AtXt + Wt, (3.10)

where At → A as t → ∞ and {Wt} satisfies

t

∑
k=1

‖Wk‖2 = o(t). (3.11)

If the spectral radius ρ(A) < 1, then

t

∑
k=1

‖Xk‖ = o(t),
t

∑
k=1

‖Xk‖2 = o(t). (3.12)

Proof. See Ma (2009).

Lemma 3.3. The estimation γ̂i(t) of γi converges to the true value γi almost surely with the
convergence rate

|γ̃i(t)| = O

(
√

log r̄i(t)
r̄i(t)

)

. (3.13)

where ri(t) and r̄i(t) are defined as follows

ri(t)
∆
= 1 + ∑

t−1
k=0 x2

i (k)

r̄i(t)
∆
= 1 + ∑

t−1
k=0 x̄2

i (k)
(3.14)

Proof. This lemma is just the special one-dimensional case of (Guo, 1993, Theorem 6.3.1).
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3.6 Proof of theorem 3.1

Putting (3.2) into (3.1), we have

xi(t + 1) = −γ̂i(t)x̄i(t) + xref
i (t) + γi x̄i(t) + w(t + 1)

= xref
i (t) + γ̃i(t)x̄i(t) + w(t + 1).

(3.15)

Denote
X(t) = (x1(t), x2(t), . . . , xN(t))T,

Z(t) = (xref
1 (t), xref

2 (t), . . . , xref
N (t))T,

X̄(t) = (x̄1(t), x̄2(t), . . . , x̄N(t))T,

W(t + 1) = w(t + 1)1 = (w(t + 1), w(t + 1), . . . , w(t + 1))T ,
Γ̃(t) = diag(γ̃1(t), γ̃2(t), . . . , γ̃N(t)),

1 = [1, . . . , 1]T .

(3.16)

Then we get
X(t + 1) = Z(t) + Γ̃(t)X̄(t) + W(t + 1). (3.17)

According to (2.2), we have
X̄(t) = GX(t), (3.18)

where the matrix G = (gij). Furthermore, we have

X̄(t + 1) = GX(t + 1) = GZ(t) + GΓ̃(t)X̄(t) + W(t + 1). (3.19)

By Lemma 3.3, we have γ̃(t) → 0 as t → ∞. Thus, Γ̃(t) → 0.
By (3.15), we have

xi(t + 1)− xref
i (t)− w(t + 1) = γ̃i(t)x̄i(t). (3.20)

Let eij(t)
∆
= xi(t)− xj(t), ηi(t) = γ̃i(t)x̄i(t). Then

eij(t + 1) = [ηi(t)− ηj(t)] + [xref
i (t)− xref

j (t)]. (3.21)

For convenience of later discussion, we introduce the following notations:

GT = (ζ1, ζ2, . . . , ζN),
E(t) = (e1N(t), e2N(t), . . . , eN−1,N(t), 0)T ,
η(t) = (η1(t), η2(t), . . . , ηN(t))T.

(3.22)

Case I. In this case, xref
i (t) = x∗(t), where x∗(t) is a bounded deterministic signal. Hence,

eij(t + 1) = ηi(t)− ηj(t). (3.23)

Consequently, by Lemma 3.1, we obtain that (i �= j)

t

∑
k=1

|eij(k + 1)|2 = O

(

t

∑
k=1

η2
i (t)

)

+ O

(

t

∑
k=1

η2
j (t)

)

= o(t), (3.24)

and similarly ∑
t
k=1 |eij(k + 1)| = o(t) also holds.

Case II. In this case, xref
i (t) = x̄(t) = 1

N

N
∑

i=1
xi(t). The proof is similar to Case I.

Case III. Here xref
i (t) = λx̄i(t) = λζT

i X(t). Noting that ζT
i 1 = 1 for any i, we have
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ζT
i X(t)− ζT

j X(t) = ζT
i [X(t)− xN(t)1]− ζT

j [X(t)− xN(t)1] = ζT
i E(t)− ζT

j E(t), (3.25)

and, thus,
eij(t + 1) = [ηi(t)− ηj(t)] + λ[x̄i(t)− x̄j(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i X(t)− ζT

j X(t)]

= [ηi(t)− ηj(t)] + λ[ζT
i E(t)− ζT

j E(t)].
(3.26)

Taking j = N and i = 1, 2, . . . , N, we can rewrite (3.26) into matrix form as

E(t + 1) = [η(t)− ηN(t)1] + λ[G − 1ζT
N ]E(t) = λHE(t) + ξ(t), (3.27)

where
H = G − GN = G − 1ζT

N , ξ(t) = η(t)− ηN(t). (3.28)

By Lemma 3.1, we have
t

∑
k=1

‖η(k)‖2 = o(t). (3.29)

Therefore,
t

∑
k=1

‖ξ(k)‖2 = o(t). (3.30)

Now we prove that ρ(H) ≤ 1. In fact, for any vector v such that vTv = 1, we have

|vT Hv| = |vTGv − vT GNv|
≤ max

(

λmax(G)‖v‖2 − λmin(GN)‖v‖2,

λmax(GN)‖v‖2 − λmin(G)‖v‖2
)

≤ max
(

‖v‖2, λmax(GN)‖v‖2
)

= 1

(3.31)

which implies that ρ(H) ≤ 1.
Finally, by (3.27), together with Lemma 3.2, we can immediately obtain

t

∑
k=1

‖E(k)‖ = o(t),
t

∑
k=1

‖E(k)‖2 = o(t). (3.32)

Thus, for i = 1, 2, . . . , N − 1, as t → ∞, we have proved

1

t

t

∑
k=1

|eiN(k)| → 0,
1

t

t

∑
k=1

[eiN(k)]
2 → 0. (3.33)

Case IV. The proof is similar to that for Case III. We need only prove that the spectral radius
ρ(H) of H is less than 1, i.e., ρ(H) < 1; then we can apply Lemma 3.2 like in Case III.
Consider the following linear system:

z(t + 1) = Gz(t). (3.34)

Noting that G is a stochastic matrix, then, by Assumption 3.2 and knowledge of the Markov
chain, we have

lim
t→∞

Gt = 1πT, (3.35)

237Decentralized Adaptive Control of Discrete-Time Multi-Agent Systems

www.intechopen.com



where π is the unique stationary probability distribution of the finite-state Markov chain with
transmission probability matrix G. Therefore,

z(t) = Gtz(0) → 1πTxref
0 = (πTxref

0 )1 (3.36)

which means that all elements of z(t) converge to a same constant πTxref
0 . Furthermore, let

z(t) = (xref
1 (t), xref

2 (t), . . . , xref
N (t))T and ν(t) = (ν1(t), ν2(t), . . . , νN−1(t), 0)T , where νi(t) =

xref
i (t)− xref

N (t) for i = 1, 2, . . . , N. Then we can see that

ν(t + 1) = (G − GN)ν(t) = Hν(t) (3.37)

and limt→∞ ν(t) = 0 for any initial values νi(0) ∈ R, i = 1, 2, . . . , N − 1. Obviously ν(t) =
Htν(0), and each entry in the Nth row of Ht is zero since each entry in the Nth row of H is
zero. Thus, denote

Ht ∆
=

[

H0(t) ∗
0 0

]

, (3.38)

where H0(t) is an (N − 1)× (N − 1) matrix. Then, for i = 1, 2, . . . , N − 1, taking ν(0) = ei,
respectively, by lim

t→∞
ν(t) = 0 we easily know that the ith column of H0(t) tends to zero vector

as t → ∞. Consequently, we have
lim
t→∞

H0(t) = 0, (3.39)

which implies that each eigenvalue of H0(t) tends to zero too. By (3.38), eigenvalues of Ht are
identical with those of H0(t) except for zero, and, thus, we obtain that

lim
t→∞

ρ
(

Ht
)

= 0 (3.40)

which implies that
ρ(H) < 1. (3.41)

This completes the proof of Theorem 3.1.

4. Decentralized tracking with adaptive control

Decentralized tracking problem is critical to understand the fundamental relationship
between (local) stability of individual agents and the global stability of the whole system,
and tracking problem is the basis for investigating more general or complex problems such as
formation control. In this section, besides the parametric coupling uncertainties and external
random noise, parametric internal uncertainties are also present for each agent, which require
each agent to do more estimation work so as to deal with all these uncertainties. If each agent
needs to deal with both parametric and non-parametric uncertainties, the agents should adopt
more complex and smart leaning algorithms, whose ideas may be partially borrowed from Ma
& Lum (2008); Ma et al. (2007a); Yang et al. (2009) and the references therein.

4.1 System model

In this section, we study the case where the internal dynamics function fi(·) is not completely
known but can be expressed into a linear combination with unknown coefficients, such that
(2.1) can be expressed as follows:

xi(t + 1) +
ni

∑
k=1

aikxi(t − k + 1) =
mi

∑
k=1

bikui(t − k + 1) + γi ∑
j∈Ni

gijxj(t) + wi(t + 1) (4.1)
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which can be rewritten into the well-known ARMAX model with additional coupling item

∑j∈Ni
ḡijxj(t) (letting ḡij

∆
= γigij) as follows:

Ai(q
−1)xi(t + 1) = Bi(q

−1)ui(t) + wi(t + 1) + ∑
j∈Ni

ḡijxj(t) (4.2)

with Ai(q
−1) = 1 + ∑

ni

j=1 aijq
−j, Bi(q

−1) = bi1 + ∑
mi

j=2 bijq
−j+1 and back shifter q−1.

4.2 Local controller design

For Agent i, we can rewrite its dynamic model as the following regression model

xi(t + 1) = θT
i φi(t) + wi(t + 1) (4.3)

where θi holds all unknown parameters and φi(t) is the corresponding regressor vector.
Then, by the following LS algorithm

θ̂i(t + 1) = θ̂i(t) + σi(t)Pi(t)φi(t)[xi(t + 1)−φT
i (t)θ̂i(t)]

Pi(t + 1) = Pi(t)− σi(t)Pi(t)φi(t)φ
T
i (t)Pi(t)

σi(t) = [1 +φT
i (t)Pi(t)φi(t)]

−1
(4.4)

we can obtain the estimated values θ̂i(t) of θi at time t. For Agent i, to track a given local

reference signal x
re f
i (t) ⊜ x∗i (t), with the parameter estimate θ̂i(t) given by the above LS

algorithm, it can then design its adaptive control law ui(t) by the “certainty equivalence”
principle, that is to say, it can choose ui(t) such that

θ̂T
i (t)φi(t) = x∗i (t + 1) (4.5)

where x∗i (t) is the bounded desired reference signal of Agent i, i.e. Agent i is to track the
deterministic given signal x∗i (t).
Consequently we obtain

ui(t) =
1

b̂i1(t)
{x∗i (t + 1)

+[âi1(t)xi(t) + · · ·+ âi,pi
(t)xi(t − pi + 1)]

−[b̂i2(t)ui(t − 1) + · · ·+ b̂i,qi
(t)ui(t − qi + 1)]

− ˆ̄gT
i (t)X̄i(t)}

(4.6)

where ˆ̄gi(t) is a vector holding the estimates ˆ̄gij(t) of gij (j ∈ Ni) and X̄i(t) is a vector holding
the states xij(t) (j ∈ Ni).

In particular, when the high-frequency gain bi1 is known a priori, let θ̄i denote the parameter
vector θi without component bi1, φ̄i(t) denote the regression vector φi(t) without component
ui(t), and similarly we introduce notations āi(t), P̄i(t) corresponding to ai(t) and Pi(t),
respectively. Then, the estimate θ̄i(t) at time t of θ̄i can be updated by the following
algorithm:

θ̄i(t + 1) = θ̄i(t) + σ̄i(t)P̄i(t)φ̄i(t)
×[xi(t + 1)− bi1ui(t)− φ̄T

i (t)θ̄i(t)]
P̄i(t + 1) = P̄i(t)− σ̄i(t)P̄i(t)φ̄i(t)φ̄

T
i (t)P̄i(t)

σ̄i(t) = [1 + φ̄T
i (t)P̄i(t)φ̄i(t)]

−1

(4.7)
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When the high-frequency gain bi1 is unknown a priori, to avoid the so-called singularity
problem of b̂i1(t) being or approaching zero, we need to use the following modified b̂i1(t),

denoted by ˆ̂bi1(t), instead of original b̂i1(t):

ˆ̂bi1(t) =

⎧

⎨

⎩

b̂i1(t) if |b̂i1(t)| ≥ 1√
log ri(t)

b̂i1(t) +
sgn(b̂i1(t))√

log ri(t)
if |b̂i1(t)| < 1√

log ri(t)

(4.8)

and consequently the local controller of Agent i is given by

ui(t) =
1

ˆ̂bi1(t)
{x∗i (t + 1)

+[âi1(t)xi(t) + · · ·+ âi,pi
(t)xi(t − pi + 1)]

−[b̂i2(t)ui(t − 1) + · · ·+ b̂i,qi
(t)ui(t − qi + 1)]

− ˆ̄gT
i (t)X̄i(t)}.

(4.9)

4.3 Assumptions

Assumption 4.1. (noise condition) {wi(t),Ft} is a martingale difference sequence, with {Ft} being
a sequence of nondecreasing σ-algebras, such that

sup
t≥0

E[|wi(t + 1)|β |Ft] < ∞, a.s.

for some β > 2 and

lim
t→∞

1
t

t
∑

k=1
|wi(k)|2 = Ri > 0, a.s.

Assumption 4.2. (minimum phase condition) Bi(z) �= 0, ∀z ∈ C : |z| ≤ 1.

Assumption 4.3. (reference signal) {x∗i (t)} is a bounded deterministic signal.

4.4 Main result

Theorem 4.1. Suppose that Assumptions 4.1—4.3 hold for system (4.1). Then the closed-loop system
is stable and optimal, that is to say, for i = 1, 2, . . . , N, we have

lim sup
t→∞

1
t

t
∑

k=1
[|xi(k)|2 + |ui(k − 1)|2] < ∞, a.s.

and

lim
t→∞

1
t

t

∑
k=1

|xi(k)− x∗i (k)|2 = Ri, a.s.

Although each agent only aims to track a local reference signal by local adaptive controller
based on recursive LS algorithm, the whole system achieves global stability. The optimality
can also be understood intuitively because in the presence of noise, even when all the
parameters are known, the limit of

Ji(t)
∆
= lim

t→∞

1
t

t−1

∑
k=0

|xi(k + 1)− x∗i (k + 1)|2

cannot be smaller than Ri.
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4.5 Lemmas

Lemma 4.1. Under Assumption 4.1, we have |wi(t)| = O(di(t)), where {di(t)} is an increasing
sequence and can be taken as tδ (δ can be any positive number).

Proof. In fact, by using Markov inequality, we obtain that

∞

∑
t=1

P(|wi(t + 1)|2 ≥ t2δ|Ft) ≤
∞

∑
t=1

E[|wi(t+1)|β|Ft]
tβδ < ∞

holds almost surely. By applying the Borel-Cantelli-Levy lemma, immediately we have
|wi(t + 1)| = O(tδ), a.s.

Lemma 4.2. If ξ(t + 1) = B(z)u(t),∀t > 0, where polynomial (q ≥ 1)

B(z) = b1 + b2z + · · ·+ bqzq−1

satisfies
B(z) �= 0, ∀z : |z| ≤ 1, (4.10)

then there exists a constant λ ∈ (0, 1) such that

|u(t)|2 = O(
t+1
∑

k=0
λt+1−k|ξ(k)|2). (4.11)

Proof. See Ma et al. (2007b).

Lemma 4.3. Under Assumption 4.1, for i = 1, 2, . . . , N, the LS algorithm has the following properties
almost surely:
(a)

θ̃T
i (t + 1)P−1

i (t + 1)θ̃i(t + 1) = O(log ri(t))

(b)
t

∑
k=1

αi(k) = O(log ri(t))

where

δi(t)
∆
= tr(Pi(t)− Pi(t + 1))

σi(k)
∆
= [1 +φT

i (k)Pi(k)φi(k)]
−1

αi(k)
∆
= σi(k)|θ̃T

i (k)φt(k)|2

ri(t)
∆
= 1 +

t
∑

k=1
φT

i (k)φi(k)

(4.12)

Proof. This is a special case of (Guo, 1994, Lemma 2.5).

Lemma 4.4. Under Assumption 4.1, for i = 1, 2, . . . , N, we have

t
∑

k=1
|xi(k)|2 → ∞, lim inf

t→∞

1
t

t
∑

k=1
|xi(k)|2 ≥ Ri > 0, a.s. (4.13)

Proof. This lemma can be obtained by estimating lower bound of
t

∑
k=1

[xi(k + 1)]2 with the help

of Assumption 4.1 and the martingale estimation theorem. Similar proof can be found in Chen
& Guo (1991).
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4.6 Proof of Theorem 4.1

To prove Theorem 4.1, we shall apply the main idea, utilized in Chen & Guo (1991) and Guo
(1993), to estimate the bounds of signals by analyzing some linear inequalities. However, there
are some difficulties in analyzing the closed-loop system of decentralized adaptive control
law. Noting that each agent only uses local estimate algorithm and control law, but the agents
are coupled, therefore for a fixed Agent i, we cannot estimate the bounds of state xi(t) and
control ui(t) without knowing the corresponding bounds for its neighborhood agents. This is
the main difficulty of this problem. To resolve this problem, we first analyze every agent, and
then consider their relationship globally, finally the estimation of state bounds for each agent
can be obtained through both the local and global analysis.
In the following analysis, δi(t), σi(k), αi(k) and ri(t) are defined as in Eq. (4.12).
Step 1: In this step, we analyze dynamics of each agent. We consider Agent i for i =
1, 2, . . . , N. By putting the control law (4.9) into (4.3), noting that (4.5), we have

xi(t + 1) = θT
i φi(t) + wi(t + 1)

= x∗i (t + 1)− θ̂T
i (t)φi(t) + θT

i φi(t) + wi(t + 1)
= x∗i (t + 1) + θ̃T

i (t)φi(t) + wi(t + 1)

By Lemma 4.1, we have |wi(t)|2 = O(di(t)). Noticing also

|θ̃i(t)φi(t)|2 = αi(t)[1 +φT
i (t)Pi(t)φi(t)]

= αi(t)[1 +φT
i (t)Pi(t + 1)φi(t)]

+αi(t)φ
T
i (t)[Pi(t)− Pi(t + 1)]φi(t)

≤ αi(t)[2 + δi(t)‖φi(t)‖2]

and the boundedness of x∗i (t + 1), we can obtain that

|xi(t + 1)|2 ≤ 2αi(t)δi(t)‖φi(t)‖2 + O(di(t)) + O(log ri(t)). (4.14)

Now let us estimate ‖φi(t)‖2. By Lemma 4.2, there exists λi ∈ (0, 1) such that

|ui(t)|2 = O(
t+1
∑

k=0
λt+1−k

i (|xi(k)|2 + ‖X̄i(k)‖2 + |wi(k + 1)|2)).

It holds for all i = 1, 2, . . . , N, but we cannot estimate |ui(t)|2 directly because it involves
{xj(k), j ∈ Ni} in X̄i(k).
Let

ρ = max(λ1, · · · , λN) ∈ (0, 1)
X(k) = [x1(k), · · · , xN(k)]T

d̄(k) = max(d1(k), · · · , dN(k)).

Obviously we have

|xi(k)|2 = O(‖X(k)‖2), ‖X̄i(k)‖2 = O(‖X(k)‖2).

Now define

Lt
∆
=

t

∑
k=0

ρt−k‖X(k)‖2.
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Then, for i = 1, 2, . . . , N, we have

|ui(t)|2 = O(Lt+1) + O(
t+1
∑

k=0
ρt+1−kd̄(k))

= O(Lt+1) + O(d̄(t + 1)).

Since
φi(t) = [xi(t), · · · , xi(t − pi + 1), ui(t − 1), · · · , ui(t − qi + 1), X̄T

i (t)]
T

we can obtain that
‖φi(t)‖2 = O(‖X(t)‖2) + O(Lt) + O(d̄(t))

+O(log ri(t) + di(t))
= O(Lt + log r̄(t) + d̄(t))

where

r̄(t)
∆
=max(r1(t), r2(t), · · · , rN(t)).

Hence by (4.14), for Agent i, there exists Ci > 0 such that

|xi(t + 1)|2 ≤ Ciαi(t)δi(t)Lt

+O(αi(t)δi(t)[log r̄(t) + d̄(t)])
+O(di(t) + log ri(t)).

Then noticing
αi(t)δi(t) = O(log ri(t))

we obtain that

|xi(t + 1)|2 ≤ Ciαi(t)δi(t)Lt + O(log ri(t)[log r̄(t) + d̄(t)]). (4.15)

Step 2: Because (4.15) holds for i = 1, 2, . . . , N, we have

‖X(t + 1)‖2 =
N

∑
i=1

|xi(t + 1)|2

≤ [
N
∑

i=1
Ciαi(t)δi(t)]Lt

+O(Nd̄(t) log r̄(t)) + O(N log2 r̄(t)).

Thus by the definition of Lt, we have

Lt+1 = ρLt + ‖X(t + 1)‖2

≤ [ρ + C
N

∑
i=1

αi(t)δi(t)]Lt

+O(Nd̄(t) log r̄(t)) +O(N log2 r̄(t))

where
C = max(C1, C2, · · · , CN).

Let η(t) =
N

∑
i=1

αi(t)δi(t), then

Lt+1 = O(Nd̄(t) log r(t) + N log2 r̄(t))

+O(N
t−1
∑

k=0

t
∏

l=k+1
[ρ + Cη(l)]

×[d̄(k) log r̄(k) + log2 r̄(k)]).

(4.16)
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Since
∞

∑
k=0

δi(k) =
∞

∑
k=0

[tr Pi(k)− tr Pi(k + 1)] ≤ tr Pi(0) < ∞,

we have δi(k) → 0 as k → ∞. By Lemma 4.3,

∞

∑
k=0

αi(k) = O(log ri(k)) = O(log r̄(k)).

Then, for i = 1, 2, . . . , N and arbitrary ǫ > 0, there exists k0 > 0 such that

ρ−1C
t

∑
k=t0

αi(k)δi(k) ≤ 1
N ǫ log r̄(t)

for all t ≥ t0 ≥ k0. Therefore

ρ−1C
t

∑
k=t0

η(k) ≤ ǫ log r̄(t).

Then, by the inequality 1 + x ≤ ex, ∀x ≥ 0 we have

t
∏

k=t0

[1 + ρ−1Cη(k)] ≤ exp{ρ−1C
t

∑
k=t0

η(k)}
≤ exp{ǫ log r̄(t)} = r̄ǫ(t).

Putting this into (4.16), we can obtain

Lt+1 = O(log ri(t)[log r̄(t) + d̄(t)]r̄ǫ(t)).

Then, by the arbitrariness of ǫ, we have

Lt+1 = O(d̄(t)r̄ǫ(t)), ∀ǫ > 0.

Consequently, for i = 1, 2, . . . , N, we obtain that

‖X(t + 1)‖2 ≤ Lt+1 = O(d̄(t)r̄ǫ(t))

|ui(t)|2 = O(Lt+1 + d̄(t + 1)) = O(d̄(t)r̄ǫ(t))

‖φi(t)‖2 = O(Lt + log r̄(t) + d̄(t)) = O(d̄(t)r̄ǫ(t)).

(4.17)

Step 3: By Lemma 4.4, we have

lim inf
t→∞

ri(t)
t ≥ Ri > 0, a.s.

Thus t = O(ri(t)) = O(r̄(t)), together with d̄(t) = O(tδ), ∀δ ∈ ( 2
β , 1), then we conclude that

d̄(t) = O(r̄ǫ(t)). Putting this into (4.17), and by the arbitrariness of ǫ, we obtain that

‖φi(t)‖2 = O(r̄δ(t)), ∀δ ∈ ( 2
β , 1).
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Therefore
t

∑
k=0

|θ̃T
i (k)φi(k)|2

=
t

∑
k=0

αi(k)[1 +φT
i (k)Pi(k)φi(k)]

= O(log ri(t)) + O(
t

∑
k=0

αi(k)‖φi(k)‖2)

= O(log r̄(t)) + O(r̄δ(t)
t

∑
k=0

αi(k))

= O(r̄δ(t) log r̄(t)), ∀δ ∈ ( 2
β , 1).

Then, by the arbitrariness of δ, we have

t
∑

k=0
|θ̃T

i (k)φi(k)|2 = O(r̄δ(t)), ∀δ ∈ ( 2
β , 1). (4.18)

Since
xi(t + 1) = θ̃T

i (t)φi(t) + x∗i (t + 1) + wi(t + 1)

we have
t

∑
k=0

|xi(k + 1)|2 = O(r̄δ(t)) + O(t) + O(log r̄(t))

= O(r̄δ(t)) + O(t)
t

∑
k=0

|ui(k − 1)|2 = O(r̄δ(t)) + O(t)

From the above, we know that for i = 1, 2, . . . , N,

ri(t) = 1 +
t

∑
k=0

‖φi(k)‖2 = O(r̄δ(t)) + O(t)

∀δ ∈ ( 2
β , 1).

Hence
r̄(t) = max{ri(t), 1 ≤ i ≤ N}

= O(r̄δ(t)) + O(t), ∀δ ∈ ( 2
β , 1).

Furthermore, we can obtain
r̄(t) = O(t)

which means that the closed-loop system is stable.
Step 4: Now we give the proof of the optimality.

t
∑

k=0
|xi(k + 1)− x∗i (k + 1)|2

=
t

∑
k=0

[wi(k + 1)]2 +
t

∑
k=0

[ψi(k)]
2 + 2

t
∑

k=0
ψi(k)wi(k + 1)

(4.19)

where

ψi(k)
∆
= θ̃T

i (k)φi(k).
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By (4.18) and the martingale estimate theorem, we can obtain that the orders of last two items
in (4.19) are both O(r̄δ(t)), ∀δ ∈ ( 2

β , 1). Then we can obtain

lim
t→∞

1
t

t
∑

k=0
|xi(k + 1)− x∗i (k + 1)|2 = Ri, a.s.

Furthermore
t

∑
k=0

|xi(k)− x∗i (k)− wi(k)|2 =
t

∑
k=0

‖ψi(k)‖2

= O(r̄δ(t)) = o(t), a.s.

This completes the proof of the optimality of the decentralized adaptive controller.

5. Hidden leader following with adaptive control

In this section, we consider a hidden leader following problem, in which the leader agent
knows the target trajectory to follow but the leadership of itself is unknown to all the others,
and the leader can only affect its neighbors who can sense its outputs. In fact, this sort of
problems may be found in many real applications. For example, a capper in the casino lures
the players to follow his action but at the same time he has to keep not recognized. For another
example, the plainclothes policeman can handle the crowd guide work very well in a crowd
of people although he may only affect people around him. The objective of hidden leader
following problem for the multi-agent system is to make each agent eventually follow the
hidden leader such that the whole system is in order. It is obvious that the hidden leader
following problem is more complicated than the conventional leader following problem and
investigations of this problem are of significance in both theory and practice.

5.1 System model

For simplicity, we do not consider random noise in this section. The dynamics of the
multi-agent system under study is in the following manner:

Ai(q
−1)xi(t + 1) = Bi(q

−1)ui(t) + γi x̄i(t) (5.1)

with Ai(q
−1) = 1 + ∑

ni

j=1 aijq
−j, Bi(q

−1) = bi1 + ∑
mi

j=2 bijq
−j+1 and back shifter q−1, where

ui(t) and xi(t), i = 1, 2, . . . , N, are input and output of Agent i, respectively. Here x̄i(t) is the
average of the outputs from the neighbors of Agent i:

x̄i(t)
∆
= 1

Ni
∑

j∈Ni

xj(t) (5.2)

where
Ni = {si,1, si,2, . . . , si,Ni

} (5.3)

denotes the indices of Agent i’s neighbors (excluding Agent i itself) and Ni is the number of
Agent i’s neighbors. In this model, we suppose that the parameters aij (j = 1, 2, . . . , mj), bij

(j = 1, 2, . . . , nj) and γi are all a priori unknown to Agent i.

Remark 5.1. From (5.1) we can find that there is no information to indicate which agent is the leader
in the system representation.
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5.2 Local Controller design

Dynamics equation (5.1) for Agent i can be rewritten into the following regression form

xi(t + 1) = θT
i φi(t)

where θi holds all unknown parameters and φi(t) is the corresponding regressor vector.
We assume that the bounded desired reference x∗(k) is only available to the hidden leader
and satisfies x∗(k + 1) − x∗(k) = o(1). Without loss of generality, we suppose that the first
agent is the hidden leader, so the control u1(t) for the first agent can be directly designed by

using the certainty equivalence principle to track xref
1 (k)

∆
= x∗(k):

θ̂T
1 (t)φ1(t) = x∗(t + 1) (5.4)

which leads to

u1(t) =
1

b̂11(t)
{x∗(t + 1) + [â11(t)x1(t) + · · ·+ â1,n1

(t)x1(t − n1 + 1)]

−[b̂12(t)u1(t − 1) + · · ·+ b̂1,m1
(t)u1(t − m1 + 1)]

−γ̂1(t)x̄1(t)}.

(5.5)

As for the other agents, they are unaware of either the reference trajectory or the existence
of the leader and the outputs of their neighbors are the only external information available
for them, consequently, the jth (j = 2, 3, · · · , N) agent should design its control uj(t) to track

corresponding local center xref
j (t)

∆
= x̄j(t) such that

θ̂T
j (t)φj(t) = x̄j(t) (5.6)

from which we can obtain the following local adaptive controller for Agent j:

uj(t) =
1

b̂j1(t)
{x̄j(t) + [âj1(t)xj(t) + · · ·+ âj,n1

(t)xj(t − nj + 1)]

−[b̂j2(t)uj(t − 1) + · · ·+ b̂j,mj
(t)uj(t − mj + 1)]

−γ̂j(t)x̄j(t)}.

(5.7)

Define

ỹ1(t) = x1(t)− x∗(t) (5.8)

and

ỹj(t) = xj(t)− x̄j(t − 1), j = 2, 3, · · · , N. (5.9)

The update law for the estimated parameters in the adaptive control laws (5.5) and (5.7) is
given below (j = 1, 2, . . . , N):

θ̂j(t) = θ̂j(t − 1) +
μj ỹj(t)φj(t−1)

Dj(t−1)

Dj(k) = 1 + ‖φj(k)‖2
(5.10)

where 0 < μj < 2 is a tunable parameter for tuning the convergence rate. Note that the above

update law may not guarantee that b̂j1(t) ≥ bj1, hence when the original b̂j1(t) given by (5.10),

denoted by b̂′j1(t) hereinafter, is smaller than bj1, we need to make minor modification to b̂j1(t)

as follows:

b̂j1(t) = bj1 if b̂′j1(t) < bj1. (5.11)

In other words, b̂j1(t) = max(b̂′j1(t), bj1) in all cases.
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5.3 Assumptions

Assumption 5.1. The desired reference x∗(k) for the multi-agent system is a bounded sequence and
satisfies x∗(k + 1)− x∗(k) = o(1).

Assumption 5.2. The graph of the multi-agent system under study is strongly connected such that
its adjacent matrix GA is irreducible.

Assumption 5.3. Without loss of generality, it is assumed that the first agent is a hidden leader who
knows the desired reference x∗(k) while other agents are unaware of either the desired reference or which
agent is the leader.

Assumption 5.4. The sign of control gain bj1, 1 ≤ j ≤ n, is known and satisfies |bj1| ≥ bj1 > 0.
Without loss of generality, it is assumed that bj1 is positive.

5.4 Main result

Under the proposed decentralized adaptive control, the control performance for the
multi-agent system is summarized as the following theorem.

Theorem 5.1. Considering the closed-loop multi-agent system consisting of open loop system in (5.1)
under Assumptions 5.1-5.4, adaptive control inputs defined in (5.5) and (5.7), parameter estimates
update law in (5.10), the system can achieve synchronization and every agent can asymptotically track
the reference x∗(t), i.e.,

lim
t→∞

ej(t) = 0, j = 1, 2, . . . , N (5.12)

where ej(k) = xj(k)− x∗(k).

Corollary 5.1. Under conditions of Theorem 5.1, the system can achieve synchronization in sense of
mean and every agent can successfully track the reference x∗(t) in sense of mean, i.e.,

lim
t→∞

1
t

t
∑

k=1
|ej(k)| = 0, j = 1, 2, . . . , N (5.13)

5.5 Notations and lemmas

Define

X(k) = [x1(k), x2(k), . . . , xN(k)]T (5.14)

Ỹ(k) = [ỹ1(k), ỹ2(k), . . . , ỹn(k)]
T (5.15)

H = [1, 0, . . . , 0]T ∈ RN (5.16)

From (5.2) and (5.14), we have

[0, x̄2(k), . . . , x̄n(k)] = ΛGAX(k) (5.17)

where

Λ =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0

0 1
N2

· · · 0
...

...
. . .

...

0 0 · · · 1
NN

⎤

⎥

⎥

⎥

⎥



. (5.18)
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and GA is an adjacent matrix of the multi-agent system (5.1), whose (i, j)th entry is 1 if j ∈
Ni or 0 if j �∈ Ni. Consequently, the closed-loop multi-agent system can be written in the
following compact form by using equality

X(k + 1) = ΛGAX(k) + Hx∗(k + 1) + Ỹ(k + 1) (5.19)

Definition 5.1. A sub-stochastic matrix is a square matrix each of whose rows consists of nonnegative
real numbers, with at least one row summing strictly less than 1 and other rows summing to 1.

Lemma 5.1. According to Assumption 5.2, the product matrix ΛGA is a substochastic matrix (refer
to Definition 5.1) such that ρ(ΛGA) < 1 (Dong et al. (2008)), where ρ(A) stands for the spectral
radius of a matrix A.

Definition 5.2. (Chen & Narendra, 2001) Let x1(k) and x2(k) be two discrete-time scalar or vector
signals, ∀k ∈ Z+

t , for any t.

• We denote x1(k) = O[x2(k)], if there exist positive constants m1, m2 and k0 such that ‖x1(k)‖ ≤
m1 maxk′≤k ‖x2(k

′)‖+ m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time function α(k) satisfying limk→∞ α(k) =
0 and a constant k0 such that ‖x1(k)‖ ≤ α(k)maxk′≤k ‖x2(k

′)‖, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and x2(k) = O[x1(k)].

For convenience, in the followings we use O[1] and o[1] to denote bounded sequences and
sequences converging to zero, respectively. In addition, if sequence y(k) satisfies y(k) =
O[x(k)] or y(k) = o[x(k)], then we may directly use O[x(k)] or o[x(k)] to denote sequence
y(k) for convenience.
According to Definition 5.2, we have the following lemma

Lemma 5.2. According to the definition on signal orders in Definition 5.2, we have following
properties:

(i) O[x1(k + τ)] + O[x1(k)] ∼ O[x1(k + τ)], ∀τ ≥ 0.

(ii) x1(k + τ) + o[x1(k)] ∼ x1(k + τ), ∀τ ≥ 0.

(iii) o[x1(k + τ)] + o[x1(k)] ∼ o[x1(k + τ)], ∀τ ≥ 0.

(iv) o[x1(k)] + o[x2(k)] ∼ o[|x1(k)|+ |x2(k)|].
(v) o[O[x1(k)]] ∼ o[x1(k)] + O[1].

(vi) If x1(k) ∼ x2(k) and limk→∞ ‖x2(k)‖ = 0, then limk→∞ ‖x1(k)‖ = 0.

(vii) If x1(k) = o[x1(k)] + o[1], then limk→∞ ‖x1(k)‖ = 0.

(viii) Let x2(k) = x1(k) + o[x1(k)]. If x2(k) = o[1], then limk→∞ ‖x1(k)‖ = 0.

The following lemma is a special case of Lemma 4.4 in Ma (2009).

Lemma 5.3. Consider the following iterative system

X(k + 1) = A(k)X(k) + W(k) (5.20)

where ‖W(k)‖ = O[1], and A(k) → A as k → ∞. Assume that ρ(A) is the spectral radius of A, i.e.
ρ(A) = max{|λ(A)|} and ρ(A) < 1, then we can obtain

X(k + 1) = O[1]. (5.21)
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5.6 Proof of Theorem 5.1

In the following, the proof of mathematic rigor is presented in two steps. In the first step, we
prove that x̃j(k) → 0 for all j = 1, 2, . . . , N, which leads to x1(k) − x∗(k) → 0 such that the
hidden leader follows the reference trajectory. In the second step, we further prove that the
output of each agent can track the output of the hidden leader such that the control objective
is achieved.

Step 1: Denote θ̃j(k)
∆
= θ̂j(k) − θj(k), especially b̃j1(k)

∆
= b̂j1(k) − bj1. For convenience, let

b̃′j1
∆
= b̂′j1 − bj1, where b̂′j1 denotes the original estimate of bj1 without further modification.

From the definitions of b̂′j1 and b̂j1, since b̂j1(t) = max(b̂′j1(t), bj1) and bj1 ≥ bj1, obviously we

have
b̃2

j1(k) ≤ b̃′2j1(k). (5.22)

Consider a Lyapunov candidate

Vj(k) = ‖θ̃j(k)‖2 (5.23)

and we are to show that Vj(k) is non-increasing for each j = 1, 2, . . . , N, i.e. Vj(k) ≤ Vj(k − 1).
Noticing the fact given in (5.22), we can see that the minor modification given in (5.11) will not
increase the value of Vj(k) when b̂′j1(k) < bj1, therefore, in the sequel, we need only consider

the original estimates without modification. Noting that

‖θ̂j(k)− θ̂j(k − 1)‖ = ‖θ̃j(k)− θ̃j(k − 1)‖ (5.24)

the difference of Lyapunov function Vj(k) can be written as

∆Vj(k) = Vj(k)− Vj(k − 1)

= ‖θ̃j(k)‖2 − ‖θ̃j(k − 1)‖2

= ‖θ̂j(k)− θ̂j(k − 1)‖2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)].

(5.25)

Then, according to the update law (5.10), the error dynamics (5.8) and (5.9), we have

‖θ̂j(k)− θ̂j(k − 1)‖2 + 2θ̃τ
j (k − 1)[θ̂j(k)− θ̂j(k − 1)]

≤
μ2

j ỹ2
j (k)

Dj(k − 1)
−

2μj ỹ
2
j (k)

Dj(k − 1)
= −

μj(2 − μj)ỹ
2
j (k)

Dj(k − 1)
.

Noting 0 < μj < 2, we see that ∆Vj(k) is guaranteed to be non-positive such that the

boundedness of Vj(k) is obvious, and immediately the boundedness of θ̂j(k) and b̂j1(k) is
guaranteed. Taking summation on both sides of the above equation, we obtain

∞

∑
k=0

μj(2 − μj)
ỹ2

j (k)

Dj(k − 1)
≤ Vj(0) (5.26)

which implies

lim
k→∞

ỹ2
j (k)

Dj(k − 1)
= 0, or ỹj(k) = αj(k)D

1
2

j (k − 1) (5.27)
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with αj(k) ∈ L2[0, ∞).
Define

Ȳj(k) = [xj(k), YT
j (k)]

T (5.28)

where Yj(k) is a vector holding states, at time k, of the jth agent’s neighbors. By (5.5) and (5.7),
we have

uj(k) = O[Ȳj(k + 1)]

φj(k) = O[Ȳj(k)] (5.29)

then it is obvious that

D
1
2

j (k − 1) ≤ 1 + ‖φj(k − 1)‖+ |uj(k − 1)|
= 1 + O[Ȳj(k)]. (5.30)

From (5.27) we obtain that

ỹj(k) = o[1] + o[Ȳj(k)], j = 1, 2, . . . , N (5.31)

Using o[X(k)] ∼ o[x1(k)] + o[x2(k)] + . . . + o[xn(k)], we may rewrite the above equation as

Ỹ(k) ∼ diag(o[1], . . . , o[1])(GA + I)X(k)

+[o[1], . . . , o[1]]T (5.32)

where I is the n × n identity matrix. Substituting the above equation into equation (5.19), we
obtain

X(k + 1) = (ΛGA + diag(o[1], . . . , o[1])(GA + I))X(k)

+[x∗(k + 1) + o[1], o[1], . . . , o[1]]T.

Since

(ΛGA + diag(o[1], . . . , o[1])(GA + I))Y(k) → ΛGA (5.33)

as k → ∞, noting ρ(ΛGA) < 1, according to Lemma 5.1 and

[x∗(k + 1) + o[1], o[1], . . . , o[1]]T = O[1] (5.34)

from Lemma 5.3, we have

X(k + 1) = O[1]. (5.35)

Then, together with equation (5.32), we have Ỹ(k) = [o[1], . . . , o[1]]T, which implies

ỹj(k) → 0 as k → ∞, j = 1, 2, . . . , N (5.36)

which leads to x1(k)− x∗(k) → 0.
Step 2: Next, we define a vector of the errors between each agent’s output and the hidden
leader’s output as follows

E(k) = X(k)− [1, 1, . . . , 1]Tx1(k) = [e11(k), e21(k), . . . , en1(k)]
T (5.37)

251Decentralized Adaptive Control of Discrete-Time Multi-Agent Systems

www.intechopen.com



where ej1(k) satisfies

e11(k + 1) = x1(k + 1)− x1(k + 1) = 0,

ej1(k + 1) = xj(k + 1)− x1(k + 1) = x̄j(k + 1)− x1(k + 1) + x̃j(k + 1),

j = 2, 3, . . . , N. (5.38)

Noting that except the first row, the summations of the other rows in the sub-stochastic matrix
ΛGA are 1, we have

[0, 1, . . . , 1]T = ΛGA[0, 1, . . . , 1]T

such that equations in (5.38) can be written as

E(k + 1) = ΛGX(k)− ΛGA[0, 1, . . . , 1]Tx1(k + 1)
+diag(0, 1, . . . , 1)Ỹ(k).

(5.39)

According to Assumption 5.1, we obtain

E(k + 1) = ΛGA(X(k)− [0, 1, . . . , 1]T x1(k))
+[0, 1, . . . , 1]T(x1(k)− x1(k + 1))
+[o[1], . . . , o[1]]T

= ΛGE(k) + [o[1], . . . , o[1]]T.

(5.40)

Assume that ρ′ is the spectral radius of ΛGA, then there exists a matrix norm, which is denoted
as ‖ · ‖p, such that

‖E(k + 1)‖p ≤ ρ′‖E(k)‖p + o[1] (5.41)

where ρ′ < 1. Then, it is straightforward to show that

‖E(k + 1)‖p → 0 (5.42)

as k → ∞. This completes the proof.

6. Summary

The decentralized adaptive control problems have wide backgrounds and applications in
practice. Such problems are very challenging because various uncertainties, including
coupling uncertainties, parametric plant uncertainties, nonparametric modeling errors,
random noise, communication limits, time delay, and so on, may exist in multi-agent systems.
Especially, the decentralized adaptive control problems for the discrete-time multi-agent
systems may involve more technical difficulties due to the nature of discrete-time systems
and lack of mathematical tools for analyzing stability of discrete-time nonlinear systems.
In this chapter, within a unified framework of multi-agent decentralized adaptive control,
for a typical general model with coupling uncertainties and other uncertainties, we
have investigated several decentralized adaptive control problems, designed efficient local
adaptive controllers according to local goals of agents, and mathematically established the
global properties (synchronization, stability and optimality) of the whole system, which in
turn reveal the fundamental relationship between local agents and the global system.
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