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1. Introduction    

Regenerative medicine using pluripotent stem cells is indispensable for cell transplantation 

therapy for the patients; however, the production of human embryonic stem (hES) cells from 

fertilized embryos or cloned embryos often become the ethical concerns because it needs 

destruction of viable embryos. On the other hand, the production of induced pluripotent 

stem (iPS) cells do not need viable embryos; whereas, it is necessary to confirm safety for the 

use of iPS cells that containing viruses or expression plasmids. Here, we would like to 

propose parthenogenetic ES (PGES) cells as the 3rd pluripotent stem cells for cell 

transplantation therapy because the production of PGES cells from fertilization-failure or 

surplus oocytes overcome both problems (Fig. 1). PGES cells do not need destruction of 

viable embryos and viruses or expression plasmids for the establishment. Nevertheless, 

PGES cells have a big hurdle to overcome, namely genomic imprinting. 

Mammalian parthenotes cannot develop to term.  Mouse parthenogenetic embryos die by 

day 10 of gestation (Surani et al., 1984; Surani et al., 1986).  Most notably, they fail in the 

trophectoderm and primitive endoderm, which results in failure of the extraembryonic 

tissues in the whole parthenogenetic conceptus (Surani et al., 1983).  Alternatively, viable 

parthenogenetic chimeras can be produced by normal host embryo rescue, and 

parthenogenetic cells can give rise to a functional germline (Stevens et al., 1977; Stevens, 

1978).  In the somatic-lineages of chimeras, parthenogenetic cells are allocated initially 

randomly in the embryo proper (Clarke et al., 1988a; Clarke et al., 1988b; Thomson & Solter, 

1989), but this is followed by a progressive elimination of parthenogenetic cells, most 

notably between days 13 and 15 of gestation (Fundele et al., 1990).  In addition, PG chimeras 

often show the reduction of body weight. These can be explained by parent-specific 

epigenetic modification of the genome, genomic imprinting which leads to the altered 

expressions of imprinted genes in parthenogenetic cells. In general, gene expressions of 

imprinted genes are greatly dependent on the cytosine-guanine (CpG)  methylation status in 

differentially methylated regions (DMRs) of imprinted genes (Fig. 2).  In PG with the two 

maternal genomes, paternally expressed genes, Peg1/Mest (Kaneko-Ishino et al., 1995), Peg3 

(Kuroiwa et al., 1996), Snrpn (Barr et al., 1995) and Igf2 (DeChiara et al., 1991), are silenced; 

whereas, maternally expressed genes, Igf2r (Barlow et al., 1991), p57kip2 (Hatada & Mukai, 

1995) and H19 (Bartolomei et al., 1991; Ferguson-Smith et al., 1991), are expressed 

excessively (Fig. 3). Thus, biallelic expression and repression of imprinted genes in 

parthenogenetic cells could restrict to produce transplantable tissues for regenerative 
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medicine; however, PGES cell chimeras are more normal in their tissue contribution of 

donor cells and body weight compared to PG chimeras (Allen et al., 1994).  We expected that 

these phenomena were associated with the more normal epigenotype of PGES cells. 

To elucidate the epigenetic mechanisms underlying this, we analyzed DNA methylation 

status and mRNA expression of imprinted genes in PG and PGES cell chimeras (Horii et al., 

2008). Interestingly, the PGES cells showed reprogramming of maternal imprints and 

acquired more normal pluripotency. In this chapter, we propose that such reprogrammed 

PGES cells might be utilized for the regenerative medicine. 
 

 

Fig. 1. Production of pluripotent stem cells using various methods. 

 
Fig. 2. Representative regulation of gene expression by CpG methylation. 
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Fig. 3. Genomic imprinting in normal and parthenogenetic cells. 

2. Epigenetic reprogramming occurred in PGES cells 

2.1 Production of PG and PGES cells 
To elucidate the epigenetic difference between PG and PGES cells, we analyzed DNA 

methylation status and mRNA expression of imprinted genes in PG and PGES cells.  Diploid 

PG were produced as previously described (Horii et al., 2008). Briefly, oocytes at the 

metaphase stage of the second meiotic division (MII) were collected from the oviducts after 

human chorionic gonadotrophin (hCG) superovulation, and then cumulus cells were 

removed by digestion with hyaluronidase in M2 medium. Artificial activation was 

performed by brief exposure to SrCl2 and cytochalasin B in Ca2+-free M16 embryo culture 

medium for 6 hours.  After activation, the embryos were cultured in M16 medium until 

developing to the blastocyst stage. 

For establishment of PGES cell lines, parthenogenetic blastocysts were cultured for 7 days in 

Serum-free ES medium, following standard procedures (Horii et al., 2003). After 7 days, 

ICM outgrowths were harvested in Trypsin/ EDTA, disaggregated by mouth pipetting and 

plated onto feeder cells in ES medium.  Clones resembling ES cells in morphology were then 

picked and disaggregated a second time.  They were then expanded and passaged prior to 

freezing or use. 

2.2 Epigenetic reprogramming occurred in PGES cells 
The methylation status of PG and PGES cells was analyzed for the DMRs of maternally 

methylated imprinted genes Peg1/Mest, Snrpn and Igf2r. To identify methylated CpG sites, 

sodium bisulfite treatment, by which only unmethylated cytosine residues were changed to 

thymines, was carried out.  PCR amplification for DMRs of Peg1/Mest, Snrpn and Igf2r was 

carried out on each set of isolated cells as described (Horii et al., 2008).  PCR products were 

subcloned into the TA cloning vector, and positive clones in each sample were sequenced. 
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Fig. 4. Epigenetic reprogramming occurred in PGES cells. DNA methylation of normal 

embryos, PG and PGES cells was analyzed by bisulfite genomic sequencing.  

The methylation status of maternally methylated imprinted genes, Peg1/Mest, Snrpn and 

Igf2r is shown schematically. Percentages of methylated CpGs are shown to the right of the 

sequences. 

At the 8-cell stage, normal embryos had both methylated and unmethylated alleles of 

maternally methylated imprinted genes; whereas, almost all alleles were methylated in PG 

(Fig. 4).  The loss of imprinting was observed at parthenogenetic blastocysts in more 2 days 

of culture. This partial demethylation also occurred in in vitro cultured normal blastocysts as 

reported previously (Doherty et al., 2000; Mann et al., 2004).  Perhaps, parthenogenetic 

blastocysts also occurs demethylation as well as in normal blastocysts in vitro. Anyway, this 

demethylation was very partial and sparse. On the other hand, completely demethylated 
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alleles existed in almost all PGES cell samples (Fig. 4; arrows). At this point, loss of 

imprinting in PGES cells seems to be more progressive than that of PG. 

We found that the methylation difference between PG and PGES cells have already exist 

before differentiation. In the following section, we elucidate whether such a difference 

affects the pluripotency of PG and PGES cells. 

3. Improvement of pluripotency by epigenetic reprogramming 

3.1 Production of PG and PGES cell chimeras 
Chimeric mice were produced to examine developmental potential and epigenetic status of 

PG and PGES cells (Fig. 5).  Briefly, PG chimeric embryos were produced by aggregating the 

4-8 cell stage of GFP+ parthenogenetic embryos with the same stage of normal host 

embryos.  PGES chimeric embryos were produced by introducing GFP+ PGES cells to host 

embryos. Then, 135 PG chimeric embryos and 338 PGES cell chimeric embryos were  
 

 

Fig. 5. Production of PG and PGES cell chimeras and analysis for their derivatives. 
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transferred to the uterine horns of pseudopregnant recipient females, and 18 PG chimeras 

and 56 PGES cell chimeras were obtained, respectively.  In newborns, growth retardation 

was not observed in PGES chimeras (normal 1.48 +/ - 0.21g vs chimera 1.48 +/ - 0.37 g; P = 

0.45), as previously reported (Allen et al., 1994).  Contribution of PGES cells was found in all 

tissues tested (Fig. 6). 
 

 

Fig. 6. Various tissue contributions of PGES cells (1days post partum). 

3.2 Epigenetic status of PG- and PGES cell-derived somatic cells 
To examine epigenetic status of PG- and PGES cell-derived cells in chimeras, primary mouse 

embryonic fibroblasts (MEFs) from E13.5 chimeras were isolated, and sorted by fluorescent-

activated cell sorter (Fig. 5). In MEFs of PG chimeras, genomic imprinting of donor cells 

were almost totally maintained (Fig. 7, PG). In contrast, genomic imprinting of donor cells in 
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PGES cell chimeras were frequently reprogrammed (Fig. 7, PGES #1 and #2).  Completely 

demethylated alleles were included in some PGES cell-derivatives. 
 

 

Fig. 7. Epigenetic reprogramming occurred in PGES cell-derived somatic tissues (E13.5 

MEFs). DNA methylation of normal, PG-derived and PGES cell-derived MEFs were 

analyzed by bisulfite genomic sequencing. Percentages of methylated CpGs are shown to 

the right of the sequences. 

Next, quantitative real-time RT-PCR was carried out to clarify whether demethylation is 

correlated to expression levels of imprinted genes.  Maternally methylated imprinted genes, 

Peg1/Mest and Snrpn are expressed only from the paternal allele because these expressions 

are suppressed by DNA methylation in maternal allele.  Therefore, in parthenogenetic cells, 

the loss of imprints leads to the upregulation of Peg1/Mest and Snrpn.  In fact, the average 

expression level of each gene were upregulated in PGES cell-derivatives (Fig. 8). There were 

significant correlations (P<0.05) between the methylation status of DMRs and the gene 

expression level in these two genes (Fig. 9).  On the other hand, paternally imprinted genes, 

Igf2, which are regulated by H19 DMR methylation, were generally unmethylated in both 

PG and PGES cell-derived cells (data not shown), and the expression level of both genes did 

not differ between PG and PGES chimeras (Fig. 8). Then, correlations between the 

demethylation of imprinted genes and the tissue contribution of PGES cell-derived cells 

were examined. For E13.5 chimeras, there was low correlation between the percentage of 

methylation and the percentage of chimerism (R2 = 0.4719); however, this correlation was 

much higher in newborn chimeras (R2 = 0.6981; Fig. 10).   
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Fig. 8. Expression of imprinted genes in MEFs derived from PG (n = 6), PGES (n = 11) and 

normal biparental embryos (N; n = 2). Quantitative real-time PCR was performed for 

Peg1/Mest, Snrpn and Igf2 genes.  Standard deviations are indicated by bars. 

 

 

Fig. 9. Epigenetic reprogramming correlated to the gene expression level.  The percentage of 

DMR methylation is plotted against the relative gene expression level for PG chimeras 

(filled circles; n = 6) and PGES cell chimeras (open circles; n = 11).  Significant correlations 

(P<0.05) were found for these imprinted genes. 

 

Fig. 10. Epigenetic reprogramming corelated to the pluripotency of PGES cells.  Low 

correlation was observed in E13.5 fetuses (n = 11), whereas higher correlation was observed 

in newborns (n = 7). 

www.intechopen.com



Reprogrammed Parthenogenetic ES Cells - New Choice for Regenerative Medicine   

 

229 

3.3 Improvement of pluripotency by epigenetic reprogramming 
In parthenogenetic chimeras, PGES cells resembled PG cells in their pluripotency.  However, 

PGES chimeras are more normal in body weight and tissue contribution than PG chimeras.  

We postulated that this difference might be caused by the modified expressions of 

imprinted genes, due to loss of imprinting in PGES cells.  To investigate the epigenetic 

status of parthenogenetic cells in somatic-lineages, we produced parthenogenetic chimeras 

using PG and PGES cells. 

In general, higher overall levels of PGES cells are detected than PG cells in terms of tissue 

contribution.  Furthermore, no significant growth retardation is apparent in PGES chimeras, 

irrespective of their degree of chimerism or the PGES cell lines used (Allen et al., 1994).  Also in 

our study, growth retardation was not found in PGES chimeras.  A phenotypic difference is 

expected to be caused by the difference in expressions of imprinted genes due to the loss of 

imprints in PGES derivatives.  In some PGES chimeras, the loss of imprints was observed in 

Peg1/Mest and Snrpn genes.  Especially, the Peg1/Mest gene is related to embryonic growth 

(Lefebvre et al., 1998).  Therefore, there is no doubt that these alterations of gene expressions 

improve the tissue contribution of PGES cells in chimeras.  In PG chimeras, progressive 

elimination of PG cells occurs after day 13 of gestation (Fundele et al., 1990).   We found higher 

positive correlations between demethylation and chimerism in newborns than in E13.5 fetuses, 

suggesting that demethylated parthenogenetic cells evaded progressive elimination from 

tissues after day 13 of gestation.  Summary of results are shown in Fig. 11. 
 

 

Fig. 11. Summary of epigenetic status of normal embryo, PG and PGES cell. 

4. Why epigenetic reprogramming occurred in PGES Cells? 

The partial or complete loss of imprints was observed in undifferentiated PGES cells and its 

derivatives.  Why did loss of imprints occur mostly in PGES cells?  

A first consideration is that the culture conditions of preimplantation embryos and ES cells 

sometimes influence the methylation status of genomic imprinting.  For example, a sub-

optimal culture medium can cause aberrant genomic imprinting of the Snrpn and H19 gene, 

whereas embryos cultured in potassium simplex optimized medium with added amino 

acids (KSOMAA) show global gene expression, genomic imprinting and embryo 
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development resembling that found in in vivo developed embryos (Doherty et al., 2000; 

Mann et al., 2004).  Furthermore, long term culture of ES cells also affects the methylation 

status of imprinted genes and their totipotency (Dean et al., 1998; Horii et al., 2010).   

A second consideration is that XX ES cells including PGES cells are more susceptible to 

demethylation than XO and XY ES cells (Zvetkova et al., 2005).  XO and XY ES cells are able 

to restore the methylation imprints; whereas, XX ES cells are not able to restore them 

enough.  PGES cells have generally two X chromosomes, so that demethylated PGES cells 

could be demethylated, or progress the demethylation of imprinted genes in chimeras.  

Then, why XX ES cells including PGES cells show demethylation of imprints? There is a 

speculation that X chromosome encodes a modifier locus whose product represses de novo 

methyltransferases.  The de novo methyltransferase, Dnmt3a and Dnmt3b, are known to play 

a critical role for the restoration of methylation post implantation (Okano et al., 1998; Okano 

et al., 1999).  Cells with two active X chromosomes will overexpress the modifier and 

therefore have reduced levels of the enzymes.  In evidence, the forced expression of Dnmt3a 

or Dnmt3b restores the DNA methylation of XX ES cells (Zvetkova et al., 2005), suggesting 

that the expression levels of Dnmt3a and/ or Dnmt3b are not sufficient for PGES cells.  On 

the other hand, once methylation of imprinted genes is completely lost in XX ES cells, the 

loss is not restored by the forced expression of Dnmt3a or Dnmt3b in vitro (Zvetkova et al., 

2005).  According to the bisulfite genomic sequencing of PG and PGES cells, demethylation 

was sparse in parthenogenetic blastocysts; whereas, completely demethylated alleles existed 

in undifferentiated PGES cells (Fig. 4), suggesting that completely demethylated alleles in 

PGES cells were not able to be remethylated post implantation. 

5. Comparison among ES cell, iPS cell and PGES cell. 

PGES cells have been proposed as a source of patient-derived therapeutic materials (Cibelli 

et al., 2002).  In addition to normal ES cells and iPS cells, parthenogenesis is another tool for 

creating pluripotent stem cells.  Human PGES cells have already been isolated from human 

parthenogenetic blastocysts (Mai et al., 2007; Revazova et al., 2007).  As described in the 

introduction, the advantage using PGES cells is that PGES cells do not need destruction of 

viable biparental embryos like normal ES cells.  In addition, PGES cells do not need viruses 

or expression plasmids for the establishment like iPS cells.  The genomic imprinting with 

uniparental genome sets is the biggest problem for PGES cells; however, we and others 

clarified that PGES cells partially lost maternally methylated imprints and obtained more 

normal imprint patterns (Jiang et al., 2007; Horii et al., 2008; Li et al., 2009).  In this study, we 

clarified correlation of expression and methylation of imprinted genes with pluripotency of 

PGES cells.  Even more surprisingly, live parthenogenetic pups were recently produced 

from reprogrammed PGES cells through tetraploid embryo complementation (Chen et al., 

2009).  These reports suggest that PGES cells have more normal pluripotency than PG.  In 

contrast, even normal biparental ES cells sometimes obtain abnormal imprinting which 

influences pluripotency during long-term culture (Dean et al., 1998; Horii et al., 2010).  In 

addition, iPS cells occasionally show aberrant silencing of imprinted genes on chromosome 

12qF1 (Stadtfeld et al., 2010).  Thus, reprogrammed PGES cells have pluripotency nearly 

equivarent to normal biparental ES cells or iPS cells.  Besides these merits, there are other 

advantages to use PGES cells for cell transplantation therapy. 

For example, normal biparental ES cells derived from fertilized embryos are genetically 

divergent from any patient requiring tissue transplantation and bring an immune response 
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resulting in rejection (Drukker & Benvenisty, 2004).  The hES cell bank that contains sufficient 

cell lines with diverse human leukocyte antigen (HLA) genotypes (Taylor et al., 2005; , 

Nakajima et al., 2007) might serve most of the patients in a region; however, this system need 

numerous numbers of human embryos and might cause ethical issues.  On the other hand, 

PGES cell lines which are homozygous for HLA loci significantly reduce the number of cell 

lines required for the repository because tissues derived from homozygous PGES cells express 

only one set of histocompatibility antigens and are more readily matched to patients with less 

risk of immunological rejection (Fig. 12).  Thus, homozygous PGES cells have the potential for 

cell-based therapy in a significant number of individuals.  Athough recombination events 

occur between paired chromosomes in meiosis I (Kim et al., 2007), the successful derivation of 

stable homozygous PGES cell lines was reported (Lin et al., 2007; Revazova et al., 2008). 
 

 

Fig. 12. HLA genotypes in homozygous and hetero zygous ES cells. The most important 

HLA molecules to match for are the HLA class I molecules HLA-A and HLA-B, and the 

class II molecule HLA-DR. 

PGES cells also have a merit in viewpoint of tumorigenicity.  Transplanted stem cell-derived 

tissues occasionally forming tumors becomes a serious problem (Brickman et al., 2002).  In 

many cases, such tumors are teratomas or teratocarcinomas arising from undifferentiated stem 

cells residing in the differentiated cell population that have not completed the differentiation 

process.  A variety of approaches, such as selective pluripotent apoptotic agents (Bieberich et 

al., 2004),  magnetic and fluorescent activated cell sorting (MACS and FACS; Shibata et al., 

2006; Fong et al., 2009) and antibodies against undifferentiated stem cells (Choo et al., 2008; 

Tan et al., 2009), have been reported to help eliminate tumorigenesis; however, the final 

obstacle of teratoma formation has not been adequately addressed and remains a major safety 

hurdle that has to be overcome before tissue transplantations.  Interestingly, primary MEFs, 

whose entire genome is either exclusively paternal (androgenetic) or maternal 

(parthenogenetic), exhibit dramatically contrasting patterns of growth and tumorigenesis 

(Hernandez et al., 2003).  Parthenogenetic MEFs reach a lower saturation density and senesce; 

whereas, androgenetic and biparental MEFs increased saturation density, spontaneous 
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transformation, and formation of tumors.  Analysis of individual imprinted genes revealed 

that Igf2 regulates transformation and functions as a potent oncogene, converting primary 

fibroblasts into forming rapidly growing tumors.  In our study, high Igf2 expression was not 

detected in PGES cell-derived MEFs as well as PG-derived MEFs (Fig. 8), indicating that PGES 

cells rarely cause tumorigenesis.  In addition, H19, p57kip2 and Igf2r, which show excessive 

expression in parthenogenetic cells, are candidate tumor supressor genes (Hao et al., 1993; 

Matsuoka et al., 1995; De souza et al., 1995; Yoshimizu et al., 2008).  Therefore, expression 

patterns of oncogenes and tumor supressor genes in PGES cell-derived tissue could be one of 

the advantages for cell transplantation therapy (Fig. 13).  

Last, summary of comparison among PGES cells and other pluripotent stem cells are shown 

in Fig. 14. 

 

Fig. 13. Gene expression patterns of tumorigenesis related genes in PGES cells. 

 

Fig. 14. Comparison  among PGES cells and other pluripotent stem cells. 
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6. Conclusion 

In this study, we clarified epigenetic reprogramming occurred in PGES cells, resulted in 

nearly normal expression patterns of imprinted genes.  These reprogrammed PGES cells 

could be used for regenerative medicine as the 3rd pluripotent stem cells.  In mice, it is 

reported that uniparental ES cells can differentiate into transplantable hematopoietic 

progenitors in vitro that contribute to long-term hematopoiesis in recipients (Eckardt et al., 

2007).  The human PGES cells might be utilized for cell transplantation therapy in the near 

future. 
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