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1. Introduction  

All cellular blood components in adults are derived from hematopoietic stem cells resided in 
bone marrow (BM). However, along with the events in ontogeny, the process of 
hematopoiesis is a long and complex progression over time and space. It is classically 
assumed that the first blood cells generated in blood islands of the extraembryonic yolk sac 
are large nucleated erythroblasts, representing a primitive wave of the initial hematopoiesis. 
A second wave of the blood cell generation, named definitive hematopoiesis, has its origin 
in the aorta/gonad/mesonephros (AGM) region. These definitive hematopoietic cells (HCs) 
are endowed with property of hematopoietic stem cells that can rescue lethally radiated 
animals and hold the potential to generate all blood cell progenies. Consequently, 
hematopoiesis is shifted to fetal liver in the midgestation and later to BM, where 
hematopoietic stem cells inhabit life long. Recent findings support a model that yolk sac also 
provides committed and mature blood cells with multipotential property, allowing survival 
until AGM-derived hematopoietic stem cells can emerge, and then seed the liver and 
differentiate into mature blood cells.  
Transplantation of human hematopoietic stem cells (HSCs) in clinical therapies has been 
well applied to the patients suffering with malignant dysfunction of the hematopoietic 
system or after deadly radiation therapy for cure of leukemia. Although knowledge about 
the mechanisms underpinning the early development of hematopoiesis during embryonic 
and fetal stages have been largely expounded by various gene-targeting technologies, 
because of the restriction to use living human embryos, the early genesis of the human 
hematopoietic system, especially during embryonic / fetal stages, is largely unknown. 
Recently, the establishment of human embryonic stem cells (hESCs) greatly expanded our 

view to elucidate the events in early human ontogeny. The ESCs derived from the inner 

cell mass of the human balstocyst are capable of growing indefinitely while maintaining 

pluripotency, namely to differentiate into all tissues of the body, including blood cells. 

www.intechopen.com



 Embryonic Stem Cells - Recent Advances in Pluripotent Stem Cell-Based Regenerative Medicine 

 

240 

The characteristics of both stemness and multipotency provide two main expectations on 

hESCs in basic research and clinical applications. First, they provide models for studies of 

basic disease mechanisms, screens for drug discovery, and tissue engineering for new 

treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, 

myocardial infarction and cancers. On the other hand, the pluripotency and embryonic 

property of these stem cells provide a unique tool in exploring the basic mechanisms of 

early development and differentiation of human beings, which never can be mimicked in 

lower level species.  

During the past decade, hESCs have been utilized to characterize molecular and cellular 

mechanisms controlling the differentiation of hematopoietic progenitors and mature, 

functional blood cells. Almost all types of blood cells derived from hESCs have recently 

been reported, including functionally mature erythrocytes and neutrophils, platelets, 

megakaryocytes, eosinophils, monocytes, dendritic cells (DCs), nature killer (NK) cells, mast 

cells (MCs), and B-, T-lineage lymphoid cells.  The advances in research are leading to a 

clinical translation of hESC-derived HCs as novel therapies in near future. Based on recent 

success, the initial clinical application of blood cells derived from hESCs will possibly be in 

the field of transfusion therapies (erythrocytes and platelets) and immune therapies (NK 

cells and DCs). However, hESC-derived hematopoietic stem cells capable of long-term, 

multilineage engraftment are still under searching. On the other hand, ethical recognition 

must be appropriately addressed before clinical utilization of hESC-derived cellular 

therapies.  

This review outlines the current progress, including data collected in our laboratory, in the 

research on hESC-derived hematopoiesis and the aspects of what needs to be tackled in 

future in this research fields. The possibility of hESC-derived cellular therapies in clinical 

application will also be discussed. 

2. Methodology  

ESCs are cells capable of being indefinitely growing with multipotency if provided 

appropriate culture conditions. At the same time, they undergo spontaneous and 

synchronous differentiation into all cell lineages when deprived from the optimal 

conditions. Because ESCs under the undifferentiated state form teratomas when 

transplanted into the living body, the efficient in vitro induction of ESCs to differentiate into 

a specific cell lineage are of importance.  

The earliest report for mouse ESCs to generate hematopoietic and mature blood cells was 

published two and half decades ago (TC. Doetschman, et al. 1985). By a coculture system, 

Nakano et al. successfully induced undifferentiated mouse ESCs into almost all lineages of 

mature blood cells (T. Nakano, et al. 1994), providing evidence that ESCs may play a role as 

sources of blood cells, experimentally as well as clinically. After then, the mouse stromal cell 

line they used, OP9, became a widely and standard matrix to be used to induce 

hematopoiesis both in mouse and human ESCs. 

Since the first study on hESC-derived hematopoiesis reported (D. Kaufman, et al. 2001), 

derivations of mature blood cells from hESCs have been confirmed by many groups 

including ours. The efficiency and stability of the in vitro blood cell inducing system have 

also been improved. However, by different culture systems, hESC-derived blood cells are 

more or less diverse in their maturities. The methods commonly used to develop blood cells 
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from hESCs are categorized as: (1) the formation of embryoid bodies (EBs, three-

dimensional colonies of differentiating ESCs) and (2) the coculturing of ESCs with stromal 

layers.  

When formed EBs in suspension cultures, hESCs develop into a sac-like structure mimicking 
the early development of the zygote. Within the EBs,  hESC-derived cells interact with each 
other among a microenvironment  semi-separated from the culture medium, providing a 
suitable condition for differentiation, mainly spontaneous. Because the EBs mimic the early 
yolk sac structure, when with the stimulation of hematopoiesis-directing factors, the early 
blood cells including primitive erythrocytes can be gained. However, because accessibility 
of the external factors into this complex structure is limited, EBs may be disadvantageous in 
regulating differentiation of hESCs toward definitive hematopoiesis to generate fully 
matured blood cells. (H. Sakamoto, et al. 2010).   
While EBs serve a microenvironment for initiation of primitive hematopoiesis, the coculture 
of ESCs with stromal cells, most of them derived from fetal /newborn hematopoietic niches, 
provide a more subtle and efficient way to generate mature blood cells. There are a variety 
of cell lines employed in coculture systems with mouse and human ESCs, among them the 
OP9 being most widely used (T. Nakano,et al. 1994; Y. Mukouyama, et al. 1998). OP9 was 
established from an op/op mouse deficient in macrophage colony-stimulating factor (M-
CSF), and has some deleterious effects on the early development of HCs. Results 
accumulated from murine experiments showed that Flk1-expressing cells, representing the 
development of mesoderm, in EBs are detected up to day 4 and their number declines 
thereafter (WJ. Zhang, et al. 2005). While cocultures of mouse ESCs and OP9 cells give rise to 
high-level expression of Flk1 up to day 6 in differentiation, suggesting a prolonged 
mesodermal development may provide a proper environment for the ESCs to differentiate 
to HCs when cocultured with OP9.   
By coculture with OP9 cells, differentiation of the HCs from mouse and human ESCs into 
various blood cell lineages can be observed. In mouse, coculture of ESCs with OP9 to 
generate erythrocytes (T. Nakano, et al. 1994; N. Motoyama, et al. 1999), B-lymphocytes (T. 
Nakano, et al. 1994; SK Cho, et al. 1999), megakaryocytes, NK cells and DCs (T. Era, et al. 
2000; N. Nakayama, et al. 1998; S. Senju, et al. 2003) have been reported. OP9 cells 
expressing Delta-like ligand 1 (OP9-DL1), a ligand of Notch, also induce the differentiation 
of hematopoietic progenitors into T lymphocytes (TM. Schmitt, et al. 2004). OP9 and OP9-
DL1 cells now have been widely used to induce the differentiation of HCs from both 
nonhuman primate and human ESCs (II Slukvin, et al. 2006; K. Umeda, et al. 2004; M Gaur, 
et al. 2006; N Takayama, et al. 2008; F. Timmermans, et al. 2009).  
We also have reported efficient methods to induce human and non-human primate ESCs to 
differentiate into HCs by coculture with mouse AGM region-derived and fetal liver-derived 
stromal cells (MJ. Xu, et al. 1998; F. Ma, et al. 2001; F. Ma, et al. 2007; F. Ma, et al. 2008a; F. 
Ma, et al. 2008b).  With these mouse fetal hematopoiesis-centered tissue stromas, human and 
non-human primate ESCs generate functionally mature blood cells through a first primitive 
hematopoiesis wave, mimicking the early hematopoiesis during the yolk sac stage, and then 
definitive hematopoiesis pathway. 

3. Hematopoietic progenitor cells derived from hESCs 

Since the first establishment of hESC lines had been done 12 years ago (JA. Thomson, et al. 

1998), knowledge about the early hematopoiesis during human embryonic stage has been 
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extensively refreshed by applying hESC-differentiating methods.  Through a large variety of 

experiments, it has been identified that the first progenitor cells holding hematopoietic 

activity mostly share an endothelial cell (EC) potential, thus they are named as 

hemangioblasts (ET. Zambidis, et al. 2005; M. Kennedy, et al. 2007).   The onset of the EC 

and HC bipotential progenitors derived from hESCs express FLK-1, CD31, VE-Cadherin, 

CD34, but lacking CD45 on their surface (CD45- PFV cells) (L. Wang, et al. 2004), giving rise 

to both ECs and HCs when properly induced. Furthermore, this fraction of CD45- PFV cells 

can reconstitute the hematopoietic system in immunocompromised mice when injected into 

the bone marrow (L. Wang, et al. 2005a, L. Wang, et al. 2005b), suggesting that the CD45- 

PFV population containing hematopoietic stem cells. 

When continuously maintained on an environment favoring hematopoiesis development, 

such as coculture on OP9 or on fetal liver stromal cells, these hemangioblastic progenitors 

further differentiate into mature blood cells (ET. Zambidis, et al. 2005; F. Ma, et al, 2008a). 

The hESC-derived hematopoietic progenitors coexpress CD34, CD43 and CD45, and give 

rise to myeloid and lymphoid cells (MA. Vodyanik, et al. 2006).  Through a coculture with 

OP9 cells, a hESC-derived common myeloid progenitor cell fraction that share a phenotype 

of lineage specific marker- CD34+CD45+ CD43+ are capable of generating functionally 

mature myelomonocytic cells with high efficiency, including neutrophils, eosinophils, 

macrophages, osteoclasts, dentritic cells and Langerhans cells (KD. Choi, et al. 2009). These 

techniques for generating hESC-derived hematopoietic progenitor cells, especially 

multipotential myeloid progenitors, may play roles in searching and expanding new clinical 

approaches by generating large number of patient-specific cells for in vitro study and drug 

screening.   

4. Functionally mature blood cells derived from hESCs. 

By applying lineage-specific stimulation methods such as addition of cytokines or culturing 

on normal or genetically manipulated stromal cells, hESCs can be further induced to 

functionally mature cells along to a specific lineage with high purity.  This ensures a distinct 

scientific base to trace the early development of human hematopoiesis along with a specific 

blood cell lineage, especially when hESCs are used as models. In addition, hESCs may 

provide a novel source for regenerative medicine. To fulfill this aim, induction of hESC-

derived blood cells with full maturation is critical. Recently, various mature blood cells with 

functional maturation have been produced in vitro, challeging to translate use of these cells 

to clinical application. 

Notably, the hESC-derived erytrocytes and pletelets should be the most feasible products in 

near future clinical applications, because both RBCs and platelets do not have a nucleus and 

are with minimal genetic material thus role out the possibility for malignant transformation 

of these particular cell types.   

4.1 Erythrocytes 

The limitation of blood sources hampers the sufficient utilization of red blood cells (RBCs) 

in transfusion medicine. Sufficient blood supply is always in great demand from a 

therapeutic standpoint. Since the mature RBCs lack nuclei and are free of concerns for 

tumagenicity, they represent an attractive, maybe the first generation of, product from the 

stem cell derivations.  Large-scale production of erythroid cells from hESCs may provide 
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us a novel and safer source of RBCs for transfusions. hESC-derived mature erythrocytes 

with a universal blood type such as blood group O and suppressed expression of HLA 

molecules will be an ideal source of erythrocytes in transfusions.  Large-scale productions 

of mature erythroid cells from hESCs have recently been reported by several groups, 

including ours (F. Ma, et al. 2008a; SJ Lu, et al. 2008; EN. Olivier, et al. 2006). By co-

culturing hESCs with murine fetal liver-derived stromal cells, we first produced 

multipotential hematopoietic progenitors that could give rise to huge pure erythroid 

colonies.  After harvesting these pure erythroid colonies, we successfully obtained large 

quantity of mature erythroid cells. When we traced these hESC-derived erythrocytes at 

clone level, we found that hESC-derived progenitors were fated mostly to become 

definitive erythrocytes that finally undergo enucleation, switching to adult-type ┚-globin 

at almost 100% along times in culture. Furthermore, these hESC-derived mature 

erythrocytes functioned as oxygen carriers. As much as 1 x104 undifferentiated hESCs 

roughly generated 1 x 106 mature erythrocytes (F. Ma, et al. 2008a). Our study not only 

provide evidence that hESC-derived erythrocytes can be induced to a definitive stage 

with functional maturity, but also offer a method to scale up the production of 

erythrocytes that may be employed in future clinical use. Actually, by a multistage 

protocol involving EB formation, defined cytokines plus a recombinant tPTD-HOXB4 

protein to produce hematopoietic differentiation, Lu SJ et al also achieved up to 1010 to 

1011 RBCs from one 6-well plate of undifferentiated hESCs (SJ. Lu, et al. 2008).  However, 

although a promising direction has been provided, substantial effort should still be paid 

to bring hESC-derived RBCs to a scale needed for future clinical applications.  Since the 

transfusion therapy is routinely applied in daily surgeries and the insufficiency of fresh 

blood sources always remains an headeache worldwidely, research on hESC-derived 

erythrocytes should be predominantly pushed up and hESC-derived RBCs may serve the 

first product from the benifit of stem cells.  

4.2 Megakaryocytes and platelets 

For the same reason as hESC-derived RBCs, platelets derived from hESCs will also meet the 

potential need for future transfusion medicin.When cocultured with murine bone marrow 

stromal (S17) and yolk sac endothelial cell (C166) lines, Kaufman et al produced 

hematopoietic progenitors that could generate mature megakaryocyte-containing clononies 

in semisolid culture (D. Kaufman, et al, 2001). Gaur et al applied a coculture with OP9 

stromal cells to generate megakaryocytes from hESCs with characteristic DNA polyploid 

nucleus, specific cytoskeletal and surface proteins, and ability to signal through integrin 

┙IIbβ3 (M. Gaur, et al, 2006). However, they did not confirm the production of pletelets 

from these hESC-derived magakaryocytes. Subsequently, using coculture with either OP9 or 

C3H10T1/2 cells in the presence of thrombopoietin for longer periods of time (over 3 

weeks), Takayama et al made a comparitively large production of mature hESC-derived 

megakaryocytes (2–5 x 105 platelet-producing megakaryocytes per 105 undifferentiated 

hESCs) (N. Takayama, et al. 2008).  These hESC-generated mature megakaryocytes 

produced platelets with morphology and function similar to those human pletelets isolated 

from fresh plasma. However, the lower yeilding of hESC-derived pletelets when compared 

to in vivo process indicate that further improvement should be paid to reach a possible 

clinical trial. 
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4.3 Neutrophils 

Human neutrophils are the most primary constituent of the peripheral blood leukocytes and 
play a central role in host defense against the invasion of microorganisms.  In some cases, 
congenital leukocyte function deficiencies and myelosuppressions caused by chemo- or 
radiotherapies need granulocyte transfusion therapy to protect the patient from lethal 
infections.  
Saeki et al reported a two-step method to generate mature neutrophils from hESCs (K. 
Saeki, et al, 2009). They first made formation of hESC-derived spheres by adding cytokines 
favoring the development of hematopoietic progenitor cells. After replated to adherent 
culture for 2 to 3 weeks, these hESC-derived spheres form sac-like structures holding round 
mature myeloid cell, with an approximately 40-50% ratio of mature neutrophils. Although 
these hESC-derived neutrophils phenotypically and functionally mimicked human mature 
neutrophils, their production is comparatively low (1 x 106 undifferentiated hESCs generate 
1 x 106 mature neutrophils). A more efficient method by first making EB formation and then 
coculturing with OP9 cells had been applied to generate hESC-derived mature neutrophils (Y. 
Yokoyama, et al, 2009).  In this system, high purity of mature neutrophils could be induced 
within 2 week in culture. These hESC-derived mature neutrophils showed various functions 
such as superoxide production, phagocytosis, bactericidal activity and chemotaxis that were 
similar to those with peripheral blood counterparts.  Although these studies provided good 
culture system to research on the development and functional maturation of hESC-derived 
neutrophils, they are still difficult to be used clinically as a transfusion therapy model.    

4.4 Nature killer cells 

NK cells stand at the center in immune defenses against pathogens and malignant tumors. 
Human NK cells provide critical cell-mediated antitumor activities. Furthermore, clinical 
trials have already confirmed the transplantable NK cells in recipient patients, suggesting 
the possible new therapy may be conducted by the NK cell transfusion to cure cancers (JS. 
Miller, et al. 2005; L. Ruggeri, et al, 2002). Thus, if properly induced to be mature NK cells, 
the unlimited potential of hESC may provide an ideal source of human NK cells that can be 
used in extensive antitumor therapies. 
Actually, the first confirmation of hESC-derived functional lymphocytes was NK cells (PS. 

Woll, et al, 2005). By a 2-step culture method, CD56+CD45+ lymphocytes with a function like 

mature NK cells could be induced from hESCs. The hESC-derived NK cells express killer 

cell-specific markers such as Ig-like receptors, natural cytotoxicity receptors, and CD16. 

These hESC-derived NK cells were able to lyse human tumor cells by both direct cell-

mediated cytotoxicity and antibody-dependent cellular cytotoxicity, showing their full 

function of antitumor activities. More recently, interesting result has been reported by the 

same research group, showing that hESC-derived mature NK cells are more efficiently to 

clear human tumor cells in vivo than human cord blood derived NK cells,  suggesting a 

potential clinical use for hESC-derived NK cells in cancer therapy (PS. Woll, et al. 2009). 

4.5 T- and B-lymphocytes 
Some earlier reports suggested development of lymphocytes from hESCs based on surface 
staining of markers such as CD3 (T cells) or CD19 (B cells) and RT–PCR analysis (X. Zhan, et 
al, 2004; MA. Vodyanik, et al. 2005), but without functional assays. By first using coculture 
with OP9 stromal cells to differentiate GFP-expressing hESCs into CD34+ and CD133+ cells 
and then injected them into human thymic tissues engrafted immunodeficient mice (SCID-
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hu mouse model), Galic et al successfully made engrafts of hESC-derived mature T-
lymphcytes in vivo (Z. Galic, et al, 2006). These hESC-derived T cells expressed T-specific 
surface markers such as CD4, CD8, CD1a, and CD7. Sequentially, the same research group 
has applied EB-mediated differentiation to generate T-cell progenitor cells in the SCID-hu 
model (Z. Galic, et al. 2009). In addition, function of the hESC-derived T cells has been tested 
based on increased expression of CD25 after CD3/CD28-mediated activation. However, the 
engraftment of the hESC-derived T cells in the SCID-hu model is low (1% or less). 
Comparing to myeloid cells, it has proven difficult to induce hESC-derived hematopoietic 
progenitors to further develop into mature T- and B-lymphoid lineage cells.  
To allow more access to developing cells and improving conditions that support or inhibit 

development of T cells, a Notch ligand–expressing OP9-DL1 stromal cells have been used to 

derive T cells from multiple progenitor cell populations expressing CD34 and CD45 such as 

human BM, umbilical cord blood, and mouse ESCs (RF. de Pooter , et al. 2003; CH. Martin, 

et al, 2008; TM. Schmitt, et al, 2004; RN. La Motte-Mohs, et al. 2005).  However, the same 

hESC-derived CD34+CD45+ cells that effectively produce NK cells from hESCs were unable 

to produce T cells in this in vitro system (D. Kaufman, 2009), suggesting a different 

condition may be needed for hESC-derived T cell development. 
Recently, Timmermans et al reported that a specific population of hESC-derived 

CD34+CD43low cells that were present in hematopoietic zones morphologically similar to 
blood islands (F. Timmermans, et al. 2009). By first coculture with OP9 and then with OP9-
DL1 cells, they demonstrated in vitro development of mature T cells from hESCs. In their 
system, hESC-derived T cells typically developed through a sequential pathway, initially 
committed to a CD34+CD7+ T/NK common potential stage, then to CD7+CD4+CD8- single 
positive and CD4+CD8+ double positive satges, and finally to CD3+CD1-CD27+ mature T 
cell stage. This promising study provided a new approach to use hESCs to generate T cells 
for novel immunotherapy.    

4.6 Other mature blood cells 

Derivation of dendritic cells (DCs) from hESCs have also been reported (X Zhan, et al, 2004; 

II Slukvin, et al, 2006; S Senju, et al, 2007; Z Su, et al, 2008). These hESC-derived DCs 

expressed high levels of HLA class II molecules and showed an ability to stimulate 

leukocyte reactions as an in vitro measure of immune activity. Function of antigen uptaking 

and processing, and stimulating allogeneic and antigen-specific T-cell responses have been 

demonstrated on these hESC-derived DCs.  
By culturing clonal hematopoietic cells derived from hESC in semisolid culture, we 
demonstrated the derivation of mature mast cells (MC) that held tryptase, but few chymase 
(F. Ma. et al, 2007). Recently, functionally matured mast cells (MC) have been induced from 
hESCs (M. Kovarova, et al. 2010). These hESC-derived MCs respond to antigen by releasing 
MC specific mediators, providing a useful model to analyze human MC development and 
may be possibly useful in drug screening for allergic diseases. 

5. Future prospect 

The establishment of hESCs brought forth a totally new generation of regenerative 
medicine.  The unlimited potential of hESCs ensures their ability to derive almost all the 
tissue types in our living bodies, thus constructing a base for the future clinical use. 
However, before the clinical application of using hESC-derived hematopoietic cells, there 
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are still several gaps should be overcome. Firstly, an efficient and animal source-deprived 
culture system is needed to ensure the safety from infectious diseases and species-crossing 
genetic transfections. Secondly, for applying transfusion therapy by using hESC-derived 
RBCs, more efficient in vitro culture system should be promoted to ensure a large-scale 
production of enucleated hESC-derived RBCs. Third, since the real hESC-derived 
hematopoietic stem cells that can fulfill reconstitution has still yet been defined, efforts 
should be paid to search for a way by employing novel method to characterize the 
properties of the possible hESC-derived stem cells. Finally, to guarantee efficient and safe 
clinical use, attention should also be paid to develop standardization and stability of the cell 
culture system.  The clinical need for new and better therapies by using hESC-derived 
cellular products should remain greater than any barriers and unanswered questions. 
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