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1. Introduction 

The retina, as one of the most accessible parts of the nervous system, has been extensively 
studied in different animal models. These studies have highlighted a remarkable 
conservation of the molecular mechanisms and gene regulatory networks involved in eye 
development and retinal differentiation. The initial phases of retinal specification see the 
activation and cooperation of a network of transcription factors (the Eye Field Transcription 
Factors, EFTFs) that allow the generation of a morphogenetic eye field in the anterior neural 
plate. The development of the Vertebrate eye then continues with a series of morphogenetic 
events, concomitant with the closure of the neural tube, that include evagination of the optic 
vesicles from the ventral forebrain and the subsequent formation of lens and retina. The 
retina comprises two juxtaposed parts: the neural retina represents the structure lining the 
inner surface of the eye and is involved in the reception and first elaboration of light stimuli. 
It presents a precise and stratified architecture based on seven different cell types: six types 
of neurons (cones, rods, amacrine cells, horizontal cells, bipolar cells and ganglion cells) and 
one type of glial cells (Müller glia). The Retinal Pigmented Epithelium is generated by the 
outer part of the neural retina and is fundamental for the correct functioning of retinal 
photoreceptors. Different molecular pathways that will be described are involved in retinal 
cell type specification. 
As most adult organs, the adult eye has an endogenous population of stem cells – the retinal 
stem cells – localized in different anatomical structures (Ciliary Marginal Zone in 
amphibians and fish; Adult Ciliary Epithelial cells in Mammals). These cells remain 
multipotent throughout the lifetime of the organism, but in Mammals, especially in humans, 
they have lost the capability of reactivating after injury, thus being unable to repair the 
damaged retina. Identifying the molecular cues necessary to reactivate in vivo mammalian 
retinal stem cells is one of the strategies under study to repair damaged retinae, the other 
being the transplantation of differentiated cells. In the last years, many efforts have been 
devoted to the possibility to drive embryonic stem cells to become retinal cells. The aim is to 
initially generate retinal progenitors and subsequently mature retinal neurons of the types 
lost in degenerative diseases, such as photoreceptors and ganglion cells. Currently, only few 
protocols show promising results: we will describe and discuss them, analyzing their 
efficiency and capability of generating different mature retinal neuronal types. We will also 
discuss to which extent in vitro differentiation protocols recapitulate the developmental 
steps of embryonic development, and whether a more reliable representation of in vivo 
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processes could ameliorate the in vitro protocols. This type of analysis aims to elucidate the 
differentiation of retinal precursors into mature retinal cells and to give important 
suggestions to reproduce these processes in vitro. One important clue derives from our 
group, as we showed the capability of Xenopus laevis stem cells (Animal Cap Embryonic 
Stem cells, or ACES) to originate a functional retina when overexpressing Noggin, a secreted 
factor normally involved in the specification of the neural tissue during embryogenesis (Lan 
et al., 2009). 
The last part of the chapter will describe the current applications and future perspectives of 
in vitro differentiated retinal cells. Retinal degenerative diseases affect many individuals and 
are the principal cause of irreversible and invalidating blindness in the western world. Cell 
replacement therapies represent one of the possible strategies to cure retinal dystrophies 
with regenerative medicine. We will describe what has been accomplished up to now in 
terms of stem cells transplantation in the retina, in animal models. Moreover, an emerging 
field of application of stem cell differentiation, especially since the generation of induced 
pluripotent stem cells, is the possibility to create patient-specific cellular models of retinal 
diseases. These will have great value for understanding the molecular mechanisms of the 
disease, screening for drug candidates that can prevent or slow down degeneration, 
understanding the variation in response of different patients. 

2. Molecular regulation of Vertebrate eye development 

The retina is an excellent model to study complex features of the nervous system, such as 
cell lineage, cell migration and connectivity. For these reasons, the eye represents one of the 
most important systems analysed during central nervous system development. 
Genetic and molecular information acquired in eye and retinal development show that 
genes controlling retinal cell-fate are remarkably conserved among vertebrate species. These 
genes encode for different types of proteins, such as signalling molecules and transcription 
factors, and contribute both to retinal precursor specification as to their final differentiation. 
In the last years, the increasing know-how in transplantation techniques and more in 
general in regenerative medicine have cast a new interest on the genes and mechanisms 
involved in retina and eye formation, with the perspective of setting up cell replacement 
strategies to cure to retinal degenerative diseases (Lamba et al., 2009a). 

2.1 Initial specification of retinal fate: the eye field 
Most of the experimental approaches targeted to understand the initial phases of 
specification of retinal precursors were conducted in Xenopus embryos, which represents an 
accessible vertebrate animal model to study the role of cell-fate determinants, lineage effects 
and cell-cell interactions during stages prior to gastrulation (Sive et al., 2000). In Xenopus, 
lineage analyses showed that each retina originates from nine specific blastomeres at the 32-
cell stage even if their contribution is not retina specific, as they participate in the formation 
of all three germ layers (Zaghloul et al., 2005). In this context, the first positional information 
is given by the expression of maternal factors such as VegT and Veg1, which are known to 
promote endo-mesodermal fates. The expression of these genes at the vegetative pole 
contributes to the localization of blastomeres competent to become retina in the animal pole 
of the Xenopus embryos (Yan & Moody, 2007). 
A retina-specific presumptive territory becomes well defined only at neurula stages. This 
region, the “eye field”, is localized in the most anterior part of the neural plate, and will 
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subsequently split into two lateral domains that evaginate (optic vesicles). The eye field is 
composed by a non-homogeneous population of cells having different potentialities, 
constituted by early Retinal Progenitors Cells (RPCs) (Agathocleous & Harris, 2009). The 
RPCs comprise two groups of cells: multipotent progenitors,  that are able to produce all 
retinal subtypes, and progenitors that produce only the retinal cells belonging to a single 
layer (Andreazzoli, 2009) (Fig.1). 
 

 

Fig. 1. Eye field and eye primordia development in Xenopus embryos, retinal specification 
steps and main known factors involved in each. 
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The first processes that are involved in the generation of the eye field are due to cell 
movements and rearrangements that start during gastrulation, continue with the 
identification of the two lateral retina primordia and end with the formation of the optic 
cup. In Xenopus, cells fated to form the anterior neural plate and the eye field show early 
cellular dispersal movement. This behaviour is promoted by Ephrin-B1 (Eph-B1) and 
inhibited by Fibroblast Growth Factors (FGFs), which modulate Eph-B1 intracellular ligands 
and down-regulate its signalling cascade (Moore et al., 2004). Other important factors 
involved are the inhibition of Wnt posteriorizing signaling and the inhibition of the Bone 
Morphogenetic Proteins (BMPs) cascade (Pera et al., 2001; Moore et al., 2004; Delaune et al., 
2005). Moreover, our recent results suggest an important role of the secreted factor Noggin, 
a BMP antagonist, that is able to induce retinal fate in ectodermal explants (animal caps) of 
Xenopus embryos in a dose-dependent manner (Lan et al., 2009). 
In all vertebrate species, the eye field and RPCs can be identified by the expression of 
several transcription factors. This set of homeobox transcription factors are named Eye Field 
Transcription Factors (EFTFs) and they are Pax6, Rx1, Six3, Optx2, ET, tll, Lhx2. They act as 
a self-regulating feedback network that specifies the eye field territory, and their over-
expression is sufficient to induce ectopic eyes in Xenopus embryos (Zuber et al., 2003). The 
evidences about their relevance are shown by the fact that mutations in each of the EFTFs 
produce alterations of vertebrate eye development. For example, over-expression of Pax6 
generates ectopic eyes in frogs while its loss-of-function leads to the “small-eye” or aniridia 
phenotypes in both mouse and humans (Chow et al., 1999, Hanson & Van Heyningen, 1995). 
Rx1/Rax is involved in eye field and pineal gland specification (Casarosa et al., 1997; 
Mathers et al., 1997). Overexpression of Rx1 in Xenopus produces an enlargement of the eye 
and ectopic retinal pigmented epithelium (RPE), while Rax knock-out mice present 
anophtalmia (Mathers et al., 1997; Voronina et al., 2004). Overexpression of Six3 in mice 
generates ectopic retinal tissue and a lack of it causes the absence of optical structures (Carl 
et al., 2002). ET/Tbx3, a T-box protein involved in the block of Rx1 transcriptional activity, is 
expressed in eye and cement gland primordia (Zuber et al., 2003). Moreover, both Six3 and 
ET are involved in Sonic hedgehog (Shh) signaling activity during the formation of the two 
bilateral eye fields from the initially single one (Takabatake et al., 2002; Geng et al., 2008). 
Lhx2, a LIM-homeodomain protein, is recruited in EFTFs transcriptional complexes, but it is 
involved in later events such as optic cup and lens formation (Yun et al., 2009). Moreover, 
Lhx2 promotes retinal proliferation in vitro (Tetreault et al., 2009). In the the eye field, the 
activation of the EFTFs and in particular of Rx1, that is fundamental for eye progenitors 
specification and proliferation, represses the anterior brain marker Otx2. This transcription 
factor is required for the initial specification of the eye field, but not for later stages of retinal 
development (Andreazzoli et al., 2003; Zuber et al., 2003). 

2.2 Morphogenesis of the optic vesicle 
As the neural tube closes, the two bilateral eye fields give rise to the optic vesicles, that 
evaginate from the lateral walls of the diencephalon. The optic vesicles come into contact with 
the epidermis and induce it to thicken and form the lens placode. As the lens differentiates, it 
invaginates until it pinches off from the epidermis. The lens acts as an inducer back to the optic 
vesicle to transform it into the optic cup and back to the epidermis to transform it into the 
cornea. The connection between the optic cup and the brain will form the optic nerve, while 
the optic cup delaminates into two layers: the outer layer of optic cup evolves in retinal 
pigmented epithelium (RPE) and the inner layer differentiates in neural retina (NR). 

www.intechopen.com



Stem Cells and the Retina – Challenges for Regenerative Medicine   

 

215 

Optic cup development requires different signals deriving from surrounding tissues, such 
as: Shh, TGFß/BMP and FGF. 
Shh is a secreted molecule, that as we said is involved in the formation of the two bilateral eye 
domains. Shh also activates the transcription of several factors that mediate the transition of 
the optic vesicle to optic stalk, RPE and NR, and enhances the differential identity of the ocular 
tissues. Shh binds its intramembrane receptor Patched. The binding produces a 
conformational change in Patched that fails to block Smoothened. The activation of 
Smoothened activates a transcriptional cascade that drives Gli family protein to transcribe 
specific transcription factors. At the end of this cascade: the proximal portion of each optic 
primordium, including optic stalk and ventral retina, starts to express Pax2 and Vax family 
homeoproteins (Liu et al., 2008; Vitorino et al., 2009); the distal portion, including RPE and 
dorsal retina, express Pax6 and Rx1 (Mathers et al., 1997; Futukawa et al., 1997). Shh 
persistence in pre-RPE tissue results in the down-regulation of Pax6 and in the transcription of 
Mitf (a RPE specific marker) and, transiently, of Otx2. The synergistic activity of Mitf and Otx2 
converts pre-RPE in mature RPE (Martinez-Morales et al., 2001). In retina primordium, Pax6 
and Rx1 expression persist. In conclusion, the cross-repression between Pax2 and Pax6 seems 
to form a boundary between optic stalk/ventral retina and RPE/dorsal retina (Yang, 2004).  
TGFß/BMP factors are involved in dorso-ventral patterning of the neural tube and in 
neuronal differentiation. They also play a role in the morphogenesis of the optic vesicle. 
TGFß/BMP proteins in fact represent an important signal in later stages of eye 
development, when the optic cup evolves in the three ocular tissues (optic stalk, RPE and 
NR). In chick and mouse, BMP4 is expressed in distal optic vesicle structures and in dorsal 
retina and ventral RPE and, subsequently, in the peripheral margin of the differentiating 
retina (Sakuta et al., 2001). BMP4 expression, in chick, is able to inhibit Vax and Pax2 and to 
promote Tbx5, a gene expressed only in dorsal retina (Koshiba-Takeuchi et al., 2000), 
permitting to speculate on a competition among Vax and Pax2 (Shh effectors) in the ventral 
region, and Tbx5 (BMP4 effector) in the dorsal side to establish a correct dorso-ventral axis 
in eye structures. The important involvement of BMPs in eye development is shown by 
BMP7 null mice that frequently show an eyeless phenotype. In mouse, BMP7 is expressed in 
the surface ectoderm (pre-lens tissue) contacted by the optic vesicle. Many evidences 
suggest that the formation of the double-layered optic cup requires signals deriving from 
the pre-lens ectoderm (Dudley & Robertson., 1997; Hyer et al., 2003). Indeed, Activin, a 
TGFß factor secreted from the extraocular mesenchyme surrounding the optic vesicle, seems 
involved in RPE specification, repressing the neural retina specific markers Pax6, Six6 and 
Chx10 and promoting Mitf expression (Fuhrmann et al., 2000).  
FGF signalling presents a regionalization function in optic cup morphogenesis. This family 
of Growth Factors is prevalently involved in neural retina development. In chick, mouse 
and Xenopus embryos, FGF8b is able to convert RPE in NR, while FGF2 treatments block 
differentiation of retinal layers and do not affect RPE. These data support the idea of a role 
of different FGFs in the organization of the double-layered optic cup (Pittack et al., 1997; 
Martinez-Morales et al., 2005). 
The different factors that are involved in optic vesicle morphogenesis also contribute to the 
maturation of the three optic tissues that are formed during lamination processes (optic 
stalk, RPE and NR). The optic stalk evolves in the optic nerve when the choroidal fissure 
closes and retinal nerve fibers fill it. The RPE becomes pigmented and starts to produce 
trophic factors that are involved in NR successive lamination and maintenance and forms a 
barrier with blood vessels. NR precursors will give rise to a stratified neural retina. 
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2.3 Determination of retinal cells fates 
Each retinal layer is characterized by the presence of specific classes of retinal neurons. A 
variety of basic helix-loop-helix (bHLH) transcription factors are expressed by a subset of 
retinal progenitors cells or by their post-mitotic progeny (Ohsawa & Kageyama, 2008). One 
of the first genes to be transcribed is Math5/Ath5 involved in ganglion cell precursors 
specification (Yang et al., 2003). Subsequently, in ganglion cell precursors are activated 
Brn3b and Isl-1, that confer a final differentiating stimulus, and Math5 is down-regulated 
(Pan et al., 2008; Qiu et al., 2008).  
The specification of amacrine and horizontal cells requires the transcriptional activation of 
Foxn4 that mediates the activation of Pt1fa, transcriptional regulator of Prox1 (Li et al., 
2004). Precursors in which Prox1 expression persists, become horizontal cells (Dyers et al., 
2003). On the contrary, precursors in which are also expressed NeuroD and Math3 become 
amacrine cells. Different types of amacrine cells are generated under the activation of 
downstream factors, such as Barhl2 (glycinergic amacrine cells), BhlhB5 (GABA-ergic 
subtypes) and Isl-1 (cholinergic amacrine cells) (Elshatory et al., 2007) (Fig.2). 
 

 

Fig. 2. Principal bHLH transcription factors involved in neural retina cells specification.  

Otx2 is fundamental for photoreceptor fate. Otx2 acts through Crx, a cone-rod specific 
factor, involved in differentiation of photoreceptors (Reese, 2010). Crx activates the 
transcription of Rorβ, which in turn activates Nrl. Finally, Nrl activates Nr2e3. This 
transcriptional cascade switches the photoreceptor phenotype to rod fate (Corbo & Cepko, 
2005; Oh et al., 2007). 
Bipolar cells production requires the activation of Mash1 and Math3 that cooperate with the 
homeobox transcription factor Chx10. Down-regulation of only one of these genes produce 
Müller glia cells instead of bipolar cells (Tomita et al., 2000). 
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Müller glia cells are the last retinal cells produced during eye development. During the last 
division, the two daughter cells differentiate one into a bipolar cell or a rod photoreceptor 
and the other in a Müller glia cell. Notch signalling seems to repress proneural genes 
activation and contribute to the production of Müller cells (Jadhav et al., 2009). 
In retina, an evolutionarily conserved aspect in the generation of cell diversity is represented 

by symmetric vs. asymmetric cell divisions. Symmetric divisions occur when a mother cell 

generates two equivalent daughter cells and asymmetric when it divides unequally (Huttner 

& Kosodo, 2005). Data acquired in transgenic zebrafish, in which GFP expression is under 

control of the Ath5 promoter (an essential proneural inducer of ganglion cells), suggest that 

retinal cells divide either symmetrically or asymmetrically. In fact, early retinal progenitors 

have a central-peripheral division and late progenitors a circumferential division (Poggi et 

al., 2005). Symmetric and asymmetric division occurs in relation to different cell fate 

determinants, such as Numb, an asymmetrical signal in mammalian retina. During division, 

Numb segregates to the apical part of daughter cells in asymmetric apico-basal divisions 

and it is equally distributed in both daughter cell following symmetric planar divisions. 

(Cayauette & Raff, 2003). Other information on retinal fates specification derives from 

positional information. Del Bene and collaborators (Del Bene et al., 2008) showed that 

signaling molecules, such as Notch, play a crucial role in determining retinal fate during 

interkinetic nuclear migration. Interkinetic nuclear migration is a process in which the nuclei 

of retinal progenitors, that generally contact the apical and basal surfaces of the retina, 

migrate along this apico-basal axis in different phases of cell cycle. This process is different 

in each type of early retinal progenitor and seems to be involved in the specification of a 

heterogeneous final retinal population. Cells with a reduced basal migration remain apical 

and proliferative, while cells that migrate to the basal side generate daughter cells that will 

become postmitotic  (Andreazzoli, 2009). 

The specification of retinal cell fates is also closely related to the retinal clock. The first 

evidences for a retinal clock are shown in the fruit fly Drosophila Melanogaster in which a 

complex of four factors Hunchback-Kruppel-Pdm-Castor seems to be involved in neuroblast 

competence. In fact, these neuroblasts divide asymmetrically and produce ganglion mother 

cells (GMCs) that express each of the genes of the complex transiently during different 

phases of GMCs divisions. Hunchback and Kruppel are necessary and sufficient to control 

early-born neuroblasts, while Pdm and Castor are expressed with further progression of the 

cell cycle. These observations allow to conclude that a cell cycle clock is involved in the 

timing of the generation of specific cell types (Isshiki et al., 2001). Recently, a similar 

mechanism has been shown in Mammals with the identification of Ikaros, a Hunchbach 

homologue, and Castor, both expressed in the mouse retina. Ikaros is expressed in early 

progenitors and its expression is switched off during cell cycle progression and retinal fates 

acquisition, suggesting a role for Ikaros in early retinal progenitors manteinance (Blackshaw 

et al., 2004; Elliot et al., 2008).  

The length of cell cycle clock represents a crucial point to establish the transition between 
early and late progenitors. In fact, the first ones have a short cell cycle characterized by a 
great number of divisions, while the second ones have a long cell cycle, probably, due to the 
requirement of the transcription of specific factors that identify specific cell types 
(Decembrini et al., 2006). Many evidences suggest a role of Shh as regulator of cell cycle 
kinetics in retinal precursors (Decembrini et al., 2009) (Fig.3). 
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Fig. 3. Different processes involved in retinal cells fate specification. A) Interkinetic nuclear 
migration; B) Retinal clock in which Growth Factors, such as Shh, influence cell cycle 
elongation and retinal cell fates specification (Andreazzoli, 2009). 

3. Retinal stem cells 

Many evidences suggest that a population of stem cells, the retinal stem cells, persists in 
specific regions of the vertebrate retina such as the Ciliary Marginal Zone (CMZ) in 
amphibians and in Mammals, also called Circumferential Germinal Zone (CGZ) in fishes 
(Locker et al., 2009). In the last years, many other studies in fact suggest that retinal stem 
cells represent only a little group of cells with stemness properties in mature and adult 
retina. In fact, data support the idea that different mature cell types, such as Müller glia and 
retinal pigmented epithelium cells, if suitably stimulated, are able to transdifferentiate in 
other retinal specific subtypes. 

3.1 Fish and amphibians 
A first evidence of the existence of retinal stem cells in vertebrates derived from 
autoradiography experiments in fishes and amphibians. During the period between 1971 
and 1977, Straznicky and Gaze and successively Johns showed that the retina of Xenopus 
laevis and Carassius auratus (goldfish) is constantly growing to fit to the growth of the animal 
body. They were able to identify the region in which proliferation was taking place and  
named it Ciliary Marginal Zone (CMZ) (Straznicky & Gaze, 1971; Johns, 1977). The CMZ is a 
circumferential region located at the periphery of the retina. Stem cells are found in the most 
peripheral part of the CMZ are able to give rise to both neural retina and pigmented 
epithelium cells, being thus equivalent to cells that form the earlier eye field (Harris & 
Perron, 1998; Locker et al, 2009). As they divide, their daughter cells move toward the 
central portion of the CMZ. These cells are mitotic but not stem cells and they are called 
retinoblasts. Retinoblasts differentiate in all the cell types that form the retina (Harris & 
Perron, 1998). The most internal part of the CMZ contains cells that have generally left the 
cell cycle and are committed to became specific retinal subtypes. The final fate of these cells 
is determined by extracellular interactions with the neighboring cell types and final 
localization of undifferentiated cell. The mentioned mechanism recapitulates the processes 
that occur during retinal development, in which, after differentiation in specific retinal 
neuronal subtypes, the newly formed cells inhibit the other to choose the same fate (Waid & 
Mcloon, 1998; Harris & Perron, 1998). 
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Specification of CMZ cells, in the three different regions, is under the control of the same 

factors that specify the eye primordia during embryonic development. Six3, Pax6, Rx1 and 

the other EFTFs are also expressed in the most peripheral part of CMZ in which are 

localized retinal stem cells in fish and Xenopus (Raymond et al., 2006; Locker et al., 2009). 

Moreover, components of the Shh pathway (Gli2, Gli3, X-Smoothened), and of Notch-Delta 

signaling, (XHairy1 and XHairy2, the respective orthologs of human  Hes1 and Hes4), are 

expressed in the peripheral CMZ cells of Xenopus laevis supporting the idea of their stemness 

properties (Raymond et al., 2006; Locker et al, 2009). The central zone of Xenopus CMZ (in 

which are mitotic cells but not stem cells) expresses Xash1, a gene that drives stem cells to 

become neural and susceptible to differentiate in a specific neural subtype. In this region, 

the expression of athonal homologs (Xath5 and NeuroD) stimulates the generation of retinal 

precursors (Harris & Perron, 1998). During the progression toward the most central region, 

CMZ cells switch off the previously described genes and turn on specific retinal fate genes, 

such as Brn3, that promotes differentiation and survival of ganglion cells (Gan et al., 1996). 

In the last years, analysis in fishes and other vertebrates showed that, in response to injury, 

Müller glia cells are able to start proliferating again and subsequently transdifferentiate in 

other retinal neuronal subtypes. This evidence suggests that Müller glia cells can represent 

another source of pluripotent stem cells in the adult eye (Locker et al., 2009). Retinal 

pigmented epithelium represents another source of mature retinal cells that can 

transdifferentiate in neural retina cells. In fact, the treatment of RPE cells with specific 

growth factors, such as FGFs, is able to convert pigmented epithelium in proliferative cells 

that can acquire a neural phenotype (Martinez-Morales et al., 2005). 

3.2 Mammals 
Ten years ago, evidence of a potential population of retinal stem cells is obtained in 

Mammals, even if it is not possible to identify a proliferating CMZ as in fishes and 

amphibians (Amato et al., 2004). In Mammals, two different types of cells are present in the 

adult eye that represent potential retinal stem cells: cells of the ciliary body (ciliary margin) 

and of the iris epithelium. The cells of ciliary body derive from epithelial cells and in 

particular conditions, such as damage, are induced to display retinal stem cell properties. 

Moreover, if cultured in vitro, they are able to generate retinal neurons. Similarly, the iris 

epithelium cells, which derive from the inner layer of iris tissue, express nestin (stem cells 

marker) and possess the ability to differentiate in multiple neuronal types including retinal 

neurons (Bi et al; 2009). Analyses in Mammals reveal that ciliary body and iris stem cells 

express Pax6, Rax, Chx10 and Six3, thus supporting the idea of retinal precursors properties 

and a conserved molecular mechanism in retinal stem cells generation among vertebrates 

(Locker et al., 2009). 

The first evidences of the capacity of some mature retinal cell types to transdifferentiate in 

other types derive from studies in Mammals. In 2004, Ooto and colleagues proved the 

capacity of Muller glia cells to generate retinal neurons. Successively, an accurate analysis of 

gene expression in retinal precursors and Muller glia cells confirms an overlap between the 

profile of these two cell types and the potentiality of Muller glia cells as neural stem cells 

(Ooto et al., 2004; Bi et al., 2009). Transdifferentition of RPE cells into neural retina has been 

demonstrated in embryonic rat after the treatment with growth factors such as basic FGFs 

(Ballios & Van der Kooy, 2010). 
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4. Differentiation of stem cells into retinal cells: do in vitro protocols 
recapitulate embryonic development? 

The retina is affected by a broad range of pathologies (collectively called retinopathies) often 
sharing a heterogenic genetic background and leading to cell depletion through a 
degenerative process. Commonly, photoreceptors represent the retinal cell population 
primarily affected by the degeneration: depending upon which type of photoreceptor dies 
first, we distinguish rod-cone degenerations from cone-rod degenerations. After the loss of 
most photoreceptors, the other retinal cell types show dendrite atrophy or are involved in a 
considerable remodeling of the entire circuitry (Strettoi et al., 2003; also reviewed in Marc et 
al., 2003). As retinal pigmented epithelium is fundamental for photoreceptors activity, also 
the impairment of its function may lead to retinal degeneration. 
Among retinopathies, inherited retinal degenerations (such as Retinitis Pigmentosa) are a 
major cause of visual impairment in the juvenile-to-young adult population. As reviewed in 
Shintani et al., 2009, various approaches have been assessed for this type of retinopathies, 
but the results are often disaccording. For Retinitis Pigmentosa, it has been postulated that 
the assumption of nutritional supplements such as Vitamin A palmitate, Lutein and 
Docosohexanoic acid (DHA) can reduce the rate of the degeneration and preserve 
photoreceptors viability. Unfortunately, the effects seem to last for short periods and in 
some situations toxic side effects have been postulated. 
Gene therapy is another potential approach and it has been carried out in three ways: 

• through replacement of the mutated gene with a normal one, using vectors such as 
adenoviruses; 

• using a ribozyme therapy aimed at disrupting the production of the aberrant protein; 

• through RNA interference, for the same aim as the ribozyme. 
However, the long-term safety of the procedure and the concrete effectiveness must both be 
assessed. 
The common pharmaceutical strategies exert their positive effect in the presence of fully 
functional tissues, but they often fail where the target is mostly compromised. Like the 
previous approaches, the pharmaceutical one is actually unable to enhance cell viability, but 
it tries to slow down the course of the degeneration. The treatment with basic Fibroblast 
Growth Factor (bFGF) and Ciliary Neurotrophic Factors (CNTFs) seems to ameliorate the 
condition of rat models of Retinitis pigmentosa, by reducing the loss of photoreceptors. 
Retina pigmented epithelial (RPE) cells genetically modified to produce CNTFs can be 
encapsulated and implanted in the affected eye. This therapy is in phase I of clinical trial 
and it has been shown increasing the visual acuity of the patients. Antiapoptotic drugs used 
for Parkinson’s Disease are currently under investigation: it is the case of Zelapar™ (Valeant 
Pharmaceuticals, Swindon, Wiltshire, United Kingdom).   
The overall situation suggests that an efficient solution is still lacking, although it seems that 
embryonic stem cells and the newly described induced pluripotent stem cells (iPS), once 
correctly differentiated, may become an useful (yet challenging) tool to approach diseases 
having a degenerative substrate - a strategy generally referred to as cell-based substitutive 
therapy (see section 4 for the application in the retina). Embryonic stem cells may be 
differentiated either towards neural retina cells or towards retinal pigmented epithelium 
cells. A certain number of protocols have been described for the differentiation of mouse 
(Zhao et al., 2002; Hirano et al., 2003; Ikeda et al., 2005; Sugie et al., 2005; Osakada et al., 
2008; Osakada et al., 2009a), human (Banin et al., 2006; Lamba et al., 2006; Osakada et al., 
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2008; Aoki et al., 2009; Meyer et al., 2009; Osakada et al., 2009a; Osakada et al., 2009b; Nistor 
et al., 2010) and primate (Osakada et al., 2008) embryonic stem cells into retinal cells, and 
some of these have been demonstrated to work also on mouse (Hirami et al., 2009; 
Parameswaran et al., 2010) and human (Hirami et al., 2009; Meyer et al., 2009; Lamba et al., 
2010) induced pluripotent stem cells (iPS cells). In a similar way, protocols of differentiation 
into retinal pigmented epithelium cells have been described for mouse (Kawasaki et al., 
2002), human (Klimanskaya et al., 2004; Osakada et al., 2008; Idelson et al., 2009; Meyer et 
al., 2009; Osakada et al., 2009a) and primate (Yue et al., 2006; Osakada et al., 2008) 
embryonic stem cells, as well as for human (Buchholz et al., 2009) induced pluripotent stem 
cells.  
Generally, it is believed that in vitro differentiating cells requires the simulation of the 
molecular environment to which the cell type of interest is exposed during embryogenesis. 
This simulation should lead the cultured cells to recapitulate the morphogenetic 
modifications also observed in vivo during the embryonic development. Regarding the 
retina, this means that the cells must be instructed to express in the right succession the 
combination of genes responsible for the specification of the structures we have seen 
previously (see Molecular regulation of Vertebrate eye development): 

• eye field 

• optic vesicles 

• retinal progenitor cells 

• immature photoreceptors 

• photoreceptors 
while activating neural genes and repressing the expression of genes related to a pluripotent 
condition. All the protocols aim to reproduce these conditions, as this represents the most 
reliable thread to follow. 

4.1 Current in vitro protocols 
Mouse embryonic stem cells are maintained and propagated in culture with different types 

of media depending on the cell line, but two key elements are always present: Leukemia 

Inhibitory Factor (LIF) and serum. Leukemia inhibitory factor can be either provided by a 

layer of mitotically-inactivated mouse embryonic fibroblasts (MEF), on which stem cells are 

cultured, or added in the medium if fibroblasts are not provided. Bone morphogenetic factor 

4 (BMP-4) contained in Fetal Bovine Serum acts synergistically with LIF to inhibit 

differentiation and promote proliferation (Ying et al., 2003). Regarding human embryonic 

stem cells, the pathway activated by LIF seems to have no effect on the maintainance of 

pluripotency (Daheron et al., 2004; Humphrey et al., 2004). Instead, a role for basic 

Fibroblast Growth Factor and Activin-A has been described (Amit et al., 2000; Beattie et al., 

2005; Dvorak et al., 2005; Vallier et al., 2005; Levenstein et al., 2006). The first published 

protocols about retinal differentiation in vitro describe a procedure to obtain retinal 

progenitors and photoreceptors from mouse embryonic stem cells by means of co-culture 

systems (Zhao et al., 2002; Hirano et al., 2003; Ikeda et al., 2005; Sugie et al., 2005). 

Zhao and colleagues promote the formation of embryoid bodies from mouse stem cells by 
removal of LIF (Zhao et al., 2002). These embryoid bodies are three-dimensional structures 
consisting of few hundreds cells and they are often used to begin the differentiation 
simulating an embryonic-like environment (Doetschman et al., 1985). The formation of 
neural progenitors cells is obtained exposing embryoid bodies to Retinoic Acid (RA) or 
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plating them in the presence of a medium containing Insulin, Transferrin, Selenium, 
Fibronectin (ITSFn) and basic Fibroblast Growth Factor. In either ways, cells are then 
dissociated and expanded with basic Fibroblast Growth Factor. At this point, they are in 
active proliferation and they have acquired neural features, as demonstrated by the 
incorporation of Bromodeoxiuridine (BrdU) and the expression of Nestin, which is a marker 
of neuroectodermal stem cells (Lendahl et al., 1990). Moreover, the neural progenitors 
obtained in either way are mostly positive for Pax6 and Notch1, which are respectively 
involved in eye development and spatial-temporal organization of retinal neurons. When 
cultured with postnatal day 1 rat retinal cells, these neural progenitors start expressing 
genes involved in the specification of photoreceptors, such as Rx, Crx, Nrl and NeuroD. 
Prolonged time of co-culture leads to the expression of Rhodopsin in 6% of the overall 
population of cells but this evidence does not correlate with the acquisition of typical 
photoreceptor morphology. 
A similar experiment has been conducted using chick retina harvested on embryonic day 6 
for co-culture (Sugie et al., 2005). Mouse embryonic stem cells are first induced to acquire a 
neural phenotype using two possible protocols (Bain et al., 1995; Okabe et al., 1996), then 
they are cultured for 10 days on chick retinal tissue in the presence of the medium described 
previously (Zhao et al., 2002). In these conditions, 21.5% of total cells results positive for 
Rhodopsin when one protocol of neuralization has been used (Okabe et al., 1996) and 10% is 
positive following the other neuralization protocol (Bain et al., 1995). Crx, 
Interphotoreceptor Binding Protein (IRBP) and Recoverin (markers of both cones and rods) 
expression is detected by PCR during co-culture starting from day 4, 7 and 10 respectively. 
Structures resembling eyes and containing photoreceptors positive for Rhodopsin and 
Recoverin are obtained also co-culturing mouse embryonic stem cells with the stromal cell 
line PA6 in the presence of basic Fibroblast Growth Factor, Dexamethasone and Cholera 
Toxin (Hirano et al., 2003). However, it seems that only a small fraction of cells produces 
these eye-like structures, thus a much smaller percentage of cells is thought to become 
photoreceptors. Almost the same result is observed when applying this protocol to human 
embryonic stem cells (Aoki et al., 2009). 
Co-culture with retinal pigmented epithelium is also used to induce the formation of neural 
retina cells (Chiou et al., 2005). Human bone marrow stem cells can be induced towards a 
neural phenotype by treating them with Insulin, Progesterone, Putrescein, Selenium 
Chloride, Transferrin, Epidermal Growth Factor and basic Fibroblast Growth Factor. After 2 
weeks they form spheroid aggregates and express Nestin (75.8% of total cells). When these 
spheroid structures are co-cultured with mitotically inactivated human pigmented cells, 
they give rise to neural cells expressing Opsin (29.6% of bone marrow stem – derived cells). 
Sasai’s group starting from 2005 has pursued a different strategy (Watanabe et al., 2005; 
Ikeda et al., 2005). Mouse embryonic stem cells are kept in suspension for 9 days in a 
medium containing KnockOut™ Serum Replacement (KSR, Euroclone) in order to form 
serum-free embryoid body-like aggregates (SFEB). Once treated with the anti-Wnt reagent 
Dickkopf-1 (Dkk-1) and the anti-Nodal reagent Lefty-A, these floating aggregates are plated 
and produce a good percentage (35%) of telencephalic precursors expressing the 
transcription factor Bf1 (Watanabe et al., 2005). Moreover, most of the floating bodies 
express Six3, which is the first eye field transcription factor expressed during the 
embryogenesis (Ikeda et al., 2005). These observations led the authors to think that the 
serum-free, floating culture of embryoid body-like aggregates could be used to obtain 
retinal neurons. Thus, in order to enhance the transcription of both Rx and Pax6, whose co-
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expression identifies retinal progenitor cells, Fetal Calf Serum and Activin-A are added to 
the suspension culture. Once plated, 15% of total cells express Rx and 6.4% results positive 
for both Rx and Pax6 (Ikeda et al., 2005). Eventually, the co-culture with dissociated E17.5 
mouse retinal cells leads 36% of differentiated cells to express Recoverin and Rhodopsin, but 
only when embryonic stem-derived cells and true photoreceptors are in close proximity. 
When the procedure to obtain retinal progenitors is applied on mouse Rx-GFP knock-in cell 
line, cells expressing Rx can be isolated from the aggregates and subsequently sorted to 
produce an almost pure culture (Osakada et al., 2008; Osakada et al., 2009a). The treatment 

with the γ-secretase inhibitor DAPT from day 10 of differentiation induces the expression of 
Crx in 22.4% of total cells, although the percentage decreases significantly when a different 
cell line is used. The consecutive addition of acidic Fibroblast Growth Factor, basic 
Fibroblast Growth Factor, Taurine, Sonic Hedgehog (SHH) and Retinoic Acid then leads to 
the co-expression of Recoverin and Rhodopsin in 17.2% of total cells, but it has no effect on 
the production of Red/Green opsin+ and Blue opsin+ cones. Also in this case, the yield 
differs consistently depending on the cell line. 
Monkey embryonic stem cells can be directed to retinal differentiation following almost the 
same procedure. Similarly, human embryonic stem cells can be used to obtain floating 
aggregates to be treated for 20 days with Dickkopf-1, Lefty-A. Y-27632, a Rho kinase 
inhibitor introduced to improve viability, is added to the medium. 15.8% of colonies 
originating from the aggregates results positive for both Rx and Pax6. As they are further 
treated with Retinoic Acid, Taurine and N2 supplement starting from day 90, 19.6% of total 
cells become Crx+. These eventually produce Rhodopsin+/Recoverin+ rods (8.5% of total 
cells), Red/Green opsin+ cones (8.9%) and Blue opsin+ cones (9.4%). To a different extent, 
the procedure has effect also on other human embryonic stem cell lines. 
More recently, this protocol has been applied also on mouse and human induced 
pluripotent stem cells with some adjustments (Hirami et al., 2009). On day 120 of 
differentiation, nearly 3.5% of total cells (human iPS cells) expresses Recoverin and 50% of 
them is also positive for Rhodopsin. 
In a therapeutic perspective, the differentiation of human stem cells obtained with 
compounds produced by animal cells or E. coli could lead to infection or immune rejection. 
For this reason, Osakada and colleagues have also described a second protocol having the 
same pipeline as before, but substituting factors such as Dickkopf-1 and Lefty-A with 
chemical compounds sharing equivalent effects: respectively, Casein Kinase I Inhibitor 
(CKI-7) and SB-431542 (Osakada et al., 2009b). Again, Y-27632 is used to improve cell 
viability. After 10 days from the replating of aggregates, 25.4% of colonies are Rx+, 79.2% 
are Pax6+. Moreover, 22.8% of total cells is Mitf+: 10 days later, 18.1% of total cells are 
pigmented and display a squamous, hexagonal morphology. These cells eventually form 
tight junctions (ZO-1+) after a whole 100 days of culture. As for photoreceptor induction, 
the treatment with Taurine and Retinoic Acid by day 140 produces Rhodopsin+ cells (nearly 
6.5% of total cells) that don’t acquire the morphology of mature rods. This population 
contains also cells positive for Recoverin, Phosphodiesterase 6b and 6c (respectively specific 
for rods and cones) and other markers correlated with phototransduction, indicating that 
these cells may respond to light stimuli. 
A recent modification of Osakada’s protocol (Osakada et al., 2008; Osakada et al., 2009a) has 
been applied on human embryonic stem cells to produce a three - dimensional tissue structure 
(Nistor et al., 2010). Differentiation is promoted in adhesion with B27 supplement, Insulin–
Selenite–Transferrin (IST), triiodothyronine (T3), Taurine, Hyaluronic Acid (HA), Dickkopf-1, 
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LeftyA and Fibroblast Growth Factor. At day 7 cells are trypsinized and replated to promote 
aggregates formation. For the following 7 days, cells are cultured in a medium with B27 
supplement, IST, T3, Taurine, HA, FGF and Retinoic Acid, which is added from day 10 to 13. 
At day 42, patches of retinal pigmented epithelium are isolated and replated to promote their 
expansion in a medium with B27 supplement, IST, T3, Taurine, HA, and Fetal Bovine Serum. 
Then, at day 50-60, neural cultures are replated onto the seeded RPE cells. With this procedure 
the production of a three – dimensional tissue is promoted, where it is possible to find cells 
expressing retinal markers such as Rx, Pax6, NeuroD, Mitf, Crx and Nrl. However, it is not 
clear what percentage of cells acquire each retinal phenotype. 
Banin and colleagues obtain photoreceptors starting from human embryonic stem cells 
(Banin et al., 2006). The differentiation into neural precursors is enhanced by culture on 
feeders for 8 days in a medium containing Fetal Calf Serum and Noggin, which is a 
renowned neuralizing factor (Smith & Harland, 1992), and in the same medium without 
Noggin for an additional 5 days. Then, small patches of cells are explanted and replated in a 
serum – free medium containing B27 supplement, Epidermal Growth Factor and basic 
Fibroblast Growth Factor. Under these conditions, there is the development of floating 
aggregates that can be subcultured for 4 weeks (Reubinoff et al., 2001). At this point, nearly 
98% of cells within the aggregates is positive for Nestin. Moreover, they express the 
common eye field and photoreceptors markers. Once plated, these aggregates give rise to a 
population of neurons that keep on expressing the above-mentioned markers but fail to 
produce the related proteins. This problem is partially overcome when the neural precursors 
are engrafted into rat retinas. Although the mature morphology is never acquired, nearly 
1.5% of engrafted cells are positive for Rhodopsin protein. 
An alternative approach is the one described by Lamba and colleagues (Lamba et al., 2006). 
Starting with human embryonic stem cells, the formation of embryoid bodies is promoted in 
a medium containing KnockOut™ Serum Replacement, B27 supplement, Dickkopf-1, 
Insulin-like Growth Factor 1 (IGF-1), whose overexpression in Xenopus embryos leads to the 
formation of ectopic eyes (Pera et al., 2001), and Noggin. Embryoid bodies are then collected 
and plated in a medium containing B27 supplement, N2 supplement, Dickkopf-1, Insulin-
like Growth Factor 1, Noggin and basic Fibroblast Growth Factor. At the end of this 
procedure, nearly 12% of total cells expresses Crx, 5.75% expresses Nrl but only small 
percentages (less than 0.01%) of total cells express mature photoreceptors-specific markers, 
such as S-opsin and Rhodopsin. Similarly to Ikeda and colleagues, Lamba’s group manages 
to co-culture their retinal progenitors with adult mice retinal explants. Interestingly, 
photoreceptor differentiation of these progenitors is seen only when retinal explants derive 
from mice models of photoreceptor degeneration. 
The same protocol with some modifications has been recently applied on human induced 
pluripotent stem cells (Lamba et al., 2010). In this case, instead of promoting the formation 
of embryoid bodies, iPS cells are directly cultured with Noggin, Dickkopf-1 and Insulin-like 
Growth Factor 1 at lower concentrations. After 3 days, their concentration is the same as in 
Lamba et al., 2006 and the cells are kept in this medium for 3 weeks. Terminal differentiation 
is enhanced in a N2 - B27 containing medium for some months. After 2 months of induction, 
compatibly with the results of the previous protocol, nearly 12% of total cells expresses Crx. 
Late markers such as Recoverin, Rhodopsin and S-opsin are expressed in less than 1% of 
cells. However, better effects may be obtained when an IRBP – GFP cell line is used and 
Fluorescence Activated Cell Sorting (FACS) is performed to isolate a pure population of 
IRBP+/Crx+ cells.  
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Meyer and colleagues have recently described one more method, which is applied on both 

human stem cells and human induced pluripotent stem cells (Meyer et al., 2009). Stem cells 

are grown in suspension to allow for the formation of aggregates that are eventually 

transferred in a medium containing N2 supplement and Heparin. In the following days, the 

aggregates are harvested and plated onto Laminin – coated dishes, where they soon form 

neural rosettes. On day 16 of differentiation, the medium is converted in a B27 supplement – 

containing one. Rosettes are then explanted and put in suspension in order to produce 

floating neurospheres. At this point, there is a consistent expression of markers belonging to 

a general neural lineage (Sox1, Sox2) but also of markers of the eye field (Rx, Pax6, Lhx2, 

Six3, Six6), whose co-expression has been assessed in some cases. Western blot and qPCR 

analysis confirm the endogenous production of both Noggin and Dkk-1 in this culture and 

the use of antagonists suppresses the expression of Pax6 and Rx. Since this procedure allows 

for the production of eye field cells, the authors proceed to describe how to reach the 

acquisition of optic vesicle and optic cup cell phenotypes. By day 40 of neurosphere 

suspension, Mitf and Chx10 are co-expressed. Importantly, nearly 26% of total cells are 

positive for Chx10 and more than 99% of them express also Pax6. Taken together, this 

information indicate that the culture contains early retinal progenitors cells. 

By day 80 of differentiation in suspension, nearly 12% of total cells expresses Crx and among 
them 46.4% of cells is positive for more mature photoreceptor markers (Recoverin, cone 
Opsin). These results are shared with the ones obtained by differentiating human iPS cell 
line IMR90-4, even if changing cell line drastically affects Pax6 expression levels during the 
procedure. 
Recently, a new protocol has been described specifically for mouse induced pluripotent 
stem cells (Parameswaran et al., 2010) (Fig.4). 
 

 

Fig. 4. Representation of the protocol of differentiation of mouse induced pluripotent stem 
cells into photoreceptors, described by Parameswaran et al., 2010. 

A neural phenotype is obtained promoting embryoid bodies formation and culturing them 
in the presence of N2 supplement, B27 supplement, ITSFn and Noggin, following a 
previously described protocol (Okabe et al., 1996). Subsequently, the resulting colonies are 
trypsinized and expanded in the same medium added with bFGF for 25 days (day 40 of 
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differentiation). At this point, nearly 22.2% of total cells co-expresses Rx and Pax6. The 
differentiation is induced with N2 supplement and a medium conditioned by postnatal day-
1 rat retinal cells. In 10 days, nearly 23% of total cells starts expressing Crx, while 15% 
expresses Nrl, 9% expresses Rhodopsin and 11.3% expresses S-Opsin. 
Regarding the differentiation of stem cells into retinal pigmented epithelium cells, some of 
the protocols are shared with the ones described for neural retina cells induction. 
Kawasaki and colleagues describe the production of neural cells from mouse embryonic 
stem cells using stromal cell – derived inducing activity (Kawasaki et al., 2000). In the same 
way, the co-culture of primate embryonic stem cells with the mouse stromal cell line PA6 
allows for the induction of large patches of pigmented cells in nearly 8% of the colonies 
(Kawasaki et al., 2002). Further analyses confirm the presence of pigment granules and 
apical microvilli, both typical of RPE cells, and their capability to digest latex-beads as proof 
of the phagocytic function (Haruta et al., 2004). Pigmented cells may be obtained also by 
letting human embryonic stem cells spontaneously propagate and differentiate for 6-8 
weeks as monolayer, in the absence of exogenous factors (Klimanskaya et al., 2004). Once 
they have reached confluence, patches of retinal pigmented epithelium appear and express 
typical RPE markers, such as Cellular Retinaldehyde-Binding Protein (CRALBP), Bestrophin 
and Pigmented Epithelium – Derived Factor (PEDF). 
Culturing mouse embryonic stem cells on the stromal cell line PA6 in the presence of basic 
Fibroblast Growth Factor, Dexamethasone and Cholera Toxin, as previously mentioned 
(Hirano et al., 2003), leads to formation of eye – like structures. After 10 days, nearly 70% of 
colonies in culture comprises masses of cells displaying the first pigment granules (Aoki et 
al., 2006): depending on when these cells are collected and replated onto PA6 layer, it is 
possible to obtain other eye – like structures, RPE patches or single pigmented cells. 
Retinal pigmented epithelium cells derived from embryonic stem cells can be used to induce 

the formation of neural retina cells. Primate embryonic stem cells can be differentiated into 

Pax6+ RPE cells by means of co-culture with Sertoli cells for 2 weeks (Yue et al., 2006). When 

primate embryonic stem cells are cultured for 3 days on these patches and Retinoic Acid is 

added to the medium, 25% of primate ES – derived cells are found expressing Rhodopsin in 

rosette – like structures (Yue et al., 2010). However Recoverin+ cells are only a few and they 

do not seem to be consistently affected by RA treatment (0.6% of total cells). 

Following the protocol described by Osakada and colleagues, retinal pigmented epithelium 

cells can be obtained from monkey (Osakada et al., 2008) and human (Osakada et al., 2008; 

Osakada et al., 2009a) embryonic stem cells, positive for ZO-1 (40.1% and 34.7% of total cells 

respectively).  

Meyer and colleagues describe using their protocol to obtain also RPE cells. If neural 

rosettes are kept in adhesion, by day 40 of differentiation patches of polygonal, pigmented 

cells positive for Mitf (25% of total cells) and ZO-1 are observed (Meyer et al., 2009). 

Interesting experiments of retinal differentiation have been recently performed on Xenopus 
laevis using the animal cap essay (Yamada & Takata, 1961; reviewed in Ariizumi et al., 2009). 
Our group has demonstrated that Noggin overexpression is sufficient to induce the 
formation of a complete eye in this model, but only at high doses (Lan et al., 2009). Embryos 
at 2 – cells stage are microinjected with Noggin and GFP synthetic mRNAs: the animal caps 
are subsequently explanted at blastula stage and cultivated until stage 39 – when, during 
embryogenesis, the eye is almost completely formed. At this point, the cells within the 
aggregates express typical retinal markers (such as Opsin for photoreceptors, Vsx1 for 
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bipolar cells and Hermes for ganglion cells) and display a structure reminiscent of a wild 
type retina (Fig.5).  
 

 

Fig. 5. Immunohistochemistry (E-H) and in situ hybridization (I-J) of animal caps treated 
with Noggin at low doses (2.5 pg) and high doses (20 pg). GFP fluorescence prove the 
correct procedure of microinjection. p: pigment (from Lan et al., 2009). 

Moreover, an embryo precociously deprived of a single eye field can develop a complete eye 
when a treated animal cap is transplanted in the same position. Electrophysiological 
recordings demonstrate that the new eye elicits a correct response to light stimuli. Even 
more posterior transplants lead to the formation of an almost complete eye, but its 
cytoarchitecture seems to be more compromised (Fig.6). 
 

 

Fig. 6. Transplants of animal caps treated with GFP (A, D), GFP + Noggin at low doses (B, E) 
and GFP + Noggin at high doses (C, F). Anterior (A-C) and posterior (D-F) transplants are 
shown (from Lan et al., 2009). 
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Similar experiments have been carried out culturing Xenopus animal caps in the presence of 
mouse recombinant Noggin protein (Viczian et al., 2009). The results are equivalent to the 
ones we have described: Noggin enhances the formation of a complete eye, similarly to 
what the overexpression of the eye field transcription factors exert in the same model (Zuber 
et al., 2003). 

4.2 Future strategies 
The future of cell - based substitutive therapy seems to rely on direct reprogramming: 
instead of reprogramming somatic cells to a pluripotent state – and then using previously 
established protocols to induce differentiation toward specific fates – somatic cells can be 
directly reprogrammed into a neural phenotype (Vierbuchen et al., 2010). Mouse embryonic 
fibroblasts and tail – tip fibroblasts can be converted into mature neurons (19.5% of total 
cells) by a lentiviral transfection of Ascl1, Brn2 and Myt1l. Few experiments had been 
previously described in this direction, all focused on chick RPE cells reprogramming into 
retinal neurons (Ma et al., 2009; Li et al., 2010). However, at the moment there is no evidence 
of direct reprogramming of mouse or human fibroblasts into retinal progenitors or mature 
photoreceptors. Thus, a feasible strategy could aim to induce this type of differentiation, in 
order to avoid using embryonic stem cells and long manipulations. In a second moment, it 
will be necessary to perform the same procedure without using lentiviral delivery. This 
would bring research one step closer to actual therapy. 

5. In vitro differentiated retinal cells as a tool for regenerative medicine and 
drug discovery 

Retinal diseases are characterized by a permanent loss of retinal neurons that is 
accompanied by a gradual irreversible loss of visual capacity. 
With the progression of the technologies and the adventure of stem cells era, many efforts 
are focused on the possibility to differentiate specific cell types in vitro and to transplant 
them in the injured organs including retina. During the initial phases of retinal 
degeneration, photoreceptors or RPE cells die, but the inner microarchitetture of the retina is 
not yet altered, suggesting the possibility to introduce in vitro differentiated retinal cells to 
replace the lost cells. 
In parallel with regenerative medicine, another important application of in vitro 
differentiated retinal cells is represented by drug discovery.  In fact, a large portion of 
current therapies for retinal diseases takes in consideration treatments with bioactive 
molecules (endobiotics or xenobiotics), that prevent or retard the pathology insurgence. The 
possibility to have an inexhaustible source of retinal cells in vitro could be a way to develop 
a strategy to screen a large numbers of new molecules and possible drugs in short periods of 
time. 

5.1 Cell replacement strategies for retinal repair 
Cell replacement therapies are innovative therapeutic strategies that allow the restoration of 
visual responses to the degenerate adult neural retina and represent an exciting area of 
regenerative medicine. So far, it has been shown that transplanted postmitotic photoreceptor 
precursors are able to functionally integrate into the adult mouse neural retina. Recent 
reviews discuss the differentiation of photoreceptor cells from both adult and embryonic-
derived stem cells, their potential for retinal cell transplantation and possible strategies used 

www.intechopen.com



Stem Cells and the Retina – Challenges for Regenerative Medicine   

 

229 

to overcome barriers present in the degenerate neural retina and improve retinal cell 
integration (Lamba et al., 2009b; West et al., 2009). 

5.2 Future possibilities for drug discovery 
The availability of libraries of chemical compounds is today a critical tool in drug discovery. 
There is now the possibility to perform High – Throughput - Screenings (HTS) using small 
molecule libraries, to search for new molecules able to reduce cell death and/or to enhance 
survival of degenerating photoreceptors. Photoreceptor cell death is the major hallmark of 
most inherited retinal dystrophies. Although the genetic causes are not always identified, 
and the mechanisms leading to photoreceptor degeneration poorly defined, some common 
features of the cell death have been identified (Marigo, 2007; Wright et al., 2010). It is thus 
possible to use as a readout of the HTS a TUNEL assay, that allows to efficiently isolate 
those molecules able to reduce cell death. The selected (and subsequently validated) 
molecules could be new interesting pharmaceutical leads, that could then be further 
analyzed and exploited. In this way, it is possible to identify new uses of drugs that are 
already pharmacologically and toxicologically well characterized. This can accelerate and 
speed up animal and clinical trials, permitting to obtain a new pharmacologically active 
drugs in a relatively short time (Osakada & Takahashi, 2009). 

6. Conclusions 

In the past years the molecular mechanisms underlying retinal development and 
differentiation have been at least partially elucidated, probably enabling the retina to 
become the best characterized region of the CNS and at the same time to be an attractive 
system for regenerative medicine. Moreover, the functional contribution of transplanted and 
integrated cells can be assessed by the analysis of visually guided behavior, thus making it 
possible to study in this system neuronal regeneration and replacement in the CNS. Over 
the next few years some of the hurdles to overcome to make cell replacement a clinical 
reality concern the efficiency of both in vitro retinal differentiation protocols, and functional 
integration of the transplanted cells. Non mammalian vertebrates will remain to be 
interesting systems to study retinal differentiation and regeneration mechanisms, that will 
allow to draw important conclusions, to be used also in mammalian retinal biology. 
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