
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



8 

Embryonic Stem Cells Overexpressing the 
Recognition Molecules L1 and Tenascin-R 

Enhance Regeneration in Mouse Models of 
Acute and Chronic Neurological Disorders 

Gunnar Hargus1,3 and Christian Bernreuther1,2  
1Center for Molecular Neurobiology Hamburg, University Medical Center  

Hamburg-Eppendorf, University of Hamburg, Martinistr. 52, 20246 Hamburg,  
2Institute of Neuropathology, University Medical Center Hamburg-Eppendorf,  

University of Hamburg, Martinistrasse 52, 20246 Hamburg, Germany 
3present address: Udall Parkinson´s Disease Research Center of Excellence and  

Center for Neuroregeneration Research, McLean Hospital / Harvard Medical School,  
115 Mill Street, Belmont, Massachusetts 02478, 

1,2Germany 
3USA 

1. Introduction 

Important issues in transplantation of stem cells into the central nervous system that need to 
be solved to achieve restoration of function are adequate differentiation, survival, migration, 
and integration of transplanted cells. Furthermore, a major obstacle to transplantation of 
embryonic stem (ES) cells into the human brain is the formation of teratomas. In this 
chapter, we provide an overview on how cell adhesion molecules and extracellular matrix 
molecules can be applied to successfully modify ES cells for cell therapy approaches in 
animal models of neurological diseases, as both groups of recognition molecules provide 
important support to cells, participate in the control of cell development, and mediate cell 
survival both in vitro and in vivo. As an example from our own work, we describe how 
mouse ES cells that had been genetically modified to overexpress the neural cell adhesion 
molecule L1 or the extracellular matrix protein tenascin-R (TNR) promote several aspects of 
ES cell-mediated regeneration in animal models of neurological diseases. As a surface 
molecule on postmitotic neurons, L1 is expressed in the developing and adult central 
nervous system and has been shown to promote neuronal survival, neurite outgrowth, 
synapse formation, and cell migration. The extracellular matrix molecule TNR, on the other 
hand, is secreted by both subsets of neurons and myelinating oligodendrocytes in the 
postnatal brain, is a constituent of perineuronal nets, which promote cellular integrity and 
synaptic excitability of neurons, and can act as an attracting guidance molecule for 
migrating endogenous newborn neurons when ectopically expressed in vivo.  
Both L1 and TNR promote neuronal differentiation of ES cells in vitro and increase survival 
of ES cell-derived neurons after transplantation in the adult rodent brain. L1-overexpressing 
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ES cell-derived cells migrate over a longer distance after transplantation into the host brain 
and spinal cord in comparison to non-transfected control cells and mediate functional 
improvement in animal models of Parkinson´s and Huntington´s disease. In contrast, TNR 
does not support the migration of engrafted ES cell-derived cells, but attracts host-derived 
migrating neuroblasts from the rostral migratory stream in an animal model of 
Huntington´s and promotes the recruitment of host-derived newborn neurons within the 
grafted area, thereby positively influencing the response of the host to engrafted ES cell-
derived cells.  
Furthermore, we discuss different aspects of ES cell-mediated regeneration. We describe how 
genetic modifications have been applied to improve the ability of ES cells to differentiate into 
specific cellular subtypes in vitro. We review how fluorescent activated cell sorting for cell 
adhesion molecules has been applied on differentiating ES cells to prevent teratoma formation 
by cell purification, a necessary safety requirement in any potential clinical application of ES 
cells. These strategies are first steps in the validation of such procedures for therapy in 
humans. In summary, we provide an overview on how ES cells can be successfully modified 
for cell therapy approaches in animal models of neurological diseases highlighting the 
importance of neural cell adhesion molecules and extracellular matrix molecules.  

1.1 Characteristics and importance of embryonic stem cells 

About three decades ago, the first ES cell lines were established from mouse blastocysts and 
the isolation of human ES cells has been accomplished thereafter (Evans and Kaufman, 1981; 
Martin, 1981; Thomson et al., 1998). Under optimal conditions, ES cells have the ability to 
divide indefinitely and, as pluripotent stem cells, can differentiate into cells of the three 
germ layers mesoderm, endoderm and ectoderm. Therefore, ES cells have been widely used 
to study developmental processes in vitro and have been applied to generate gene knockout 
animals to study gene function in vivo. Furthermore, ES cells provide a useful tool for 
biomedical research and regenerative medicine, as ES cell-derived cells of interest (e.g. 
cardiomyocytes or neurons) can be used in toxicity assays or drug screens and, importantly, 
comprise a source for cell therapy in animal models of diseases to rescue or replace 
imperilled host-derived cells.  

1.2 Neuroectodermal differentiation of ES cells 

Since ES cells differentiate spontaneously into various cell types in vitro, while only certain 
ES cell-derived cell types are needed for cell-replacement therapy (e.g. neuroectodermal 
cells for the treatment of neurodegenerative diseases), several protocols have been 
established to direct the differentiation of ES cells into cells of a specific lineage. 
Neuroectodermal differentiation of ES cells can be induced by culturing ES cells at low 
density without the support of inactivated embryonic mouse fibroblasts (Tropepe et al., 
2001). In this protocol ES cells follow a default pathway of neural differentiation. Other 
protocols apply a co-culture system to differentiating ES cells including MS5 feeder cells that 
express the signalling molecule Wnt-1 (Perrier et al., 2004) or PA6 feeder cells, which 
provide a stromal cell-derived inducing activity (SDIA) to differentiating ES cells (Kawasaki 
et al., 2002). Furthermore, the application of recombinant proteins to the culture medium has 
been shown to significantly promote neuroectodermal or even neural subtype specification 
of differentiating ES cells. Examples include noggin, an antagonist of the transforming 
growth factor β family, which enhances neuroectodermal differentiation of ES cells (Pera et 
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al., 2004; Itsykson et al., 2005; Sonntag et al., 2007), fibroblast factor 4 (FGF-4) to promote 
serotoninergic neuronal differentiation (Barberi et al., 2003), a combination of retinoic acid 
(RA) and sonic hedgehog (Shh) to improve cholinergic motor neuron differentiation 
(Wichterle et al., 2002) or a combination of Shh and FGF-8, which has been shown to direct 
differentiation of ES cells from various species into dopaminergic neurons (Cooper et al. 
2010; Lee et al., 2000; Perrier et al., 2004; Sanchez-Pernaute et al., 2008). Finally, a lineage 
selection protocol has been established to generate a high number of FGF-2-responsive 
nestin-positive neural precursor cells from ES cells via so-called embryoid bodies by 
applying culture conditions, that favor the survival and proliferation of neural precursor 
cells but not of mesodermal and endodermal cell types (Okabe et al., 1996). Embryoid bodies 
represent aggregates of differentiating ES cells that consist of a core of ectoderm, mesoderm 
and endoderm surrounded by visceral and parietal endodermal cells (Maye et al., 2000) and 
have been applied as model system to study early cell differentiation in vitro (Rohwedel et 
al., 1994; Wobus et al., 1997; Guan et al., 1999; Hegert et al., 2002; Hargus et al., 2008b). The 
lineage selection protocol comprises 5 different stages and generates a high number of 
postmitotic neurons at the end of differentiation (Fig. 1). While this protocol has been 
optimized to enhance overall dopaminergic neuronal differentiation by the application of 
Shh and FGF-8 during stage 4 (Lee et al., 2000), we have slightly modified this protocol to 
promote GABAergic differentiation of ES cells in vitro (Bernreuther et al., 2006).  
 

 

Fig. 1. Tenascin-R (TNR+) and L1 (L1+) overexpressing mouse ES cells differentiate into βIII-
tubulin-positive neurons (red) in vitro. The images in the upper row show cells at the end of 
differentiation using a 5-stage differentiation protocol, whereas images in the lower row 
show differentiated cells after prolonged cultivation in vitro, that form so-called substrate-
adherent embryonic stem cell-derived neural aggregates (SENAs). Both ES cell lines 
constitutively express green fluorescent protein (GFP; green) for better visualization after 
transplantation into animal models of disease. Images from Hargus et al., 2008 and Cui et 
al., 2010 with permission from Stem Cells and Brain 
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Furthermore, by extending the time of culture at stage 4 for several weeks without 
passaging, we were able to derive three-dimensional neural aggregates that predominantly 
consist of postmitotic neurons and radial glial cells (Dihne et al., 2006). These substrate-
adherent embryonic stem cell-derived neural aggregates (SENAs) can readily be isolated for 
transplantation and survive well after engraftment into the adult rodent brain (Dihne et al, 
2006; Cui et al., 2010). 
ES cells can be easily modified to overexpress genes of interest, which could have beneficial 
effects on the survival of ES cells and the differentiation of ES cells into certain cell lineages. 
Therefore, besides applying optimized differentiation protocols, several groups have 
overexpressed transcription factors in mouse and human ES cells in order to promote the 
differentiation of ES cells into particular neuronal subtypes. For example, overexpression of 
the transcription factor pitx-3 (Chung et al., 2005) or the LIM homeodomain transcription 
factor lmx1a (Friling et al., 2009) in mouse ES cells caused enhanced differentiation into 
midbrain dopaminergic neurons, which are the cell population at risk in Parkinson’s 
disease. Similarly, mouse ES cells overexpressing the nuclear-receptor-related-factor-1 (nurr-
1) showed enhanced differentiation into midbrain dopaminergic neurons in vitro and 
improved functional impairment after transplantation in an animal model of Parkinson`s 
disease (Kim et al., 2002).  

2. The role of the cell adhesion molecule L1 and the extracellular matrix 
protein TNR during neuroectodermal differentiation of ES cells in vitro 

Little is known about the effects of an overexpression of neural cell adhesion molecules or 
extracellular matrix (ECM) proteins in ES cells on their differentiation into postmitotic 
neurons and about their role in ES cell-mediated regeneration in animal models of 
neurological diseases. This is quite surprising, given that both groups of recognition 
molecules have important functions on cellular development and survival both in vitro and 
in vivo. Indeed, during embryogenesis but also during the entire postnatal life, the 
specification and integrity of cells is highly dependent on the communication of cells with 
their surrounding environment through transmembrane glycoproteins on neighboring cells 
(cell-cell interactions) or through soluble and structural components of the extracellular 
matrix (cell-matrix interactions). These properties of recognition molecules could have 
significant implications for cell replacement therapy approaches, since they may help to 
improve differentiation of ES cells in vitro and may support integration, survival and 
function of ES cell-derived cells after transplantation into animal models of disease. 
We have generated mouse ES cells that overexpress the recognition molecules L1 or TNR 
and have analyzed several effects of these molecules on ES cell-mediated regeneration in 
animal models of acute and chronic neurological disorders.  

2.1 The effects of L1 on neuroectodermal differentiation of ES cells in vitro 

L1 is a transmembrane cell surface molecule, which is expressed on postmitotic neurons in 
the central nervous system (CNS) and is found on Schwann cells in peripheral nerves 
(Lindner et al., 1983; Rathjen and Schachner, 1984; Moos et al., 1988; Kamiguchi and 
Yoshihara, 2001). L1 is essential for the development of the central nervous system, as L1 
promotes neuronal survival, neuronal migration and neurite outgrowth (Lemmon et al., 
1989; Appel et al., 1993; Brummendorf et al., 1998; Kamiguchi and Yoshihara, 2001; Kleene et 
al., 2001). A lack of L1 results in severe malformations within the CNS such as 
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hydrocephalus or hypoplasia or even aplasia of fiber tracts including the corticospinal tract 
and the corpus callosum (Jouet et al., 1994). Furthermore, L1-deficient mice have a reduced 
number of hippocampal neurons and anatomical malformations similar to those seen in 
patients have been described in these animals (Dahme et al., 1997; Demyanenko et al., 1999). 
Besides its role during development, L1 has important functions in memory acquisition and 
is known to increase axon guidance and axon myelination after traumatic injury of the CNS 
and peripheral nervous system (Martini and Schachner, 1988; Zhang et al., 2000; Becker et 
al., 2004b).  
When L1-overexpressing mouse ES cells were differentiated into neuroectodermal cells 
following the five stage differentiation protocol, the proportion of postmitotic neurons was 
significantly increased in vitro when compared to cultures consisting of differentiated mouse 
ES cells that had been transfected with an empty vector (WT ES cells; Bernreuther et al., 
2006). This pro-neuronal effect of L1 on cell differentiation, which happened at the expense 
of differentiation into astrocytic cells, is consistent with previous studies that showed 
increased neuronal differentiation of somatic neural stem cells when cultured on a surface 
coated with recombinant L1 (Dihne et al., 2003) or when genetically modified to overexpress 
L1 protein (own unpublished observations). This pro-neuronal effect could be attributed to 
homophilic interactions of L1. Furthermore, heterophilic cell-cell interactions through 
integrins, F3/contactin, NCAM, CD9, and CD24 on other neurons have been described for 
L1 as well as cell-matrix interactions (Silletti et al., 2000), which could additionally account 
for the beneficial effects of L1 on neuroectodermal differentiation of ES cells in vitro.  
Notably, other neuronal surface molecules besides L1 have been shown to promote 
neuronal differentiation in vitro, which further supports the hypothesis that an 
overexpression of neuronal cell adhesion molecules in ES cells is a suitable approach 
towards their application in vivo. ES cells overexpressing the glycoprotein M6A, which is a 
cell adhesion molecule expressed on neurons in the CNS, differentiated more efficiently into 
neurons when compared to non-modified control ES cells (Michibata et al., 2009) and the L1-
binding partner molecule NCAM significantly increased neuronal differentiation of 
embryonic neural precursor cells into mature neurons in vitro when added into medium of 
cultured cells (Shin et al., 2002). However, in contrast to L1, the beneficial effects of ES cells 
overexpressing these molecules have not been tested in animal models of disease to date.   

2.2 The effects of TNR on neuroectodermal differentiation of ES cells in vitro 

TNR is an ECM protein and is almost exclusively expressed by oligodendrocytes and 
subpopulations of neurons in the CNS after birth. In white matter, TNR is located at nodes of 
Ranvier and internodes (ffrench-Constant et al., 1986; Bartsch et al., 1993). In grey matter, TNR 
is detectable in perineuronal nets that surround inhibitory interneurons and motorneurons 
and which provide neuroprotective cues to these cells (Angelov et al., 1998; Bruckner et al., 
2000; Dityatev et al., 2010). Several, in part opposing functions have been described for TNR 
and therefore, this molecule was also named janusin adopted from the name of the Latin god 
Janus, the god with the two faces symbolizing ambivalence (for review see Schachner et al., 
1994). For instance, TNR acts as a repellent guidance molecule in the optic nerve of zebrafish 
(Becker et al., 2003), but mediates the detachment of migrating cells from the RMS within the 
olfactory bulb in mice, establishing TNR also as an attracting guidance molecule (Saghatelyan 
et al., 2004). Furthermore, TNR promotes neurite outgrowth in vitro when presented as a 
smooth substrate (Husmann et al., 1992; Norenberg et al., 1995), but inhibits neurite 
outgrowth when presented as sharp substrate border (Becker et al., 2004a).  
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Similar to L1-overexpressing ES cells, TNR-overexpressing ES cells showed an enhanced 
neuronal differentiation into postmitotic neurons at the end of differentiation when 
compared to differentiated mouse ES cells that had been transfected with an empty vector 
(WT ES cells; Hargus et al., 2008a). It is currently not known why TNR promotes neuronal 
differentiation of ES cells in vitro but similarly to TNR, a pro-neuronal effect has also been 
described for tenascin-C, another member of the tenascin family of ECM molecules, which 
significantly increased neuronal differentiation of embryonic mesencephalic explant 
cultures when added to the cell culture medium (Marchionini et al., 2003). Interestingly, 
TNR-deficient mice have reduced numbers of inhibitory interneurons in the motor and 
sensory cortex, which illustrates a pro-neuronal effect of TNR also in vivo (own unpublished 
observations). 
Notably, extracellular matrix molecules are widely used to promote the differentiation of ES 
cells into neuroectodermal cells. For example, current differentiation protocols recommend 
the application of fibronectin and laminin to ES cell-derived neural precursor cells (Lee et 
al., 2000). Furthermore, culture of differentiating ES cells on substrate-bound poly-L-
ornithine or soluble Matrigel - a basement membrane extract consisting of collagen IV, 
heparin sulphate proteoglycans, entactin, and nidogen (Kleinman et al., 1986) - increases 
neuronal differentiation of ES cells in vitro (Goetz et al., 2006; Ma et al., 2008). It should be 
mentioned, however, that also inhibiting effects of some extracellular matrix proteins on 
neuronal differentiation of ES cells have been described. Gelatine - a mixture of collagen 
components - increases astrocytic but significantly decreases neuronal differentiation of ES 
cells in vitro (Goetz et al., 2006).  

3. Application of differentiated ES cells and fetal cells in animal models of 
neurological diseases 

Several studies have shown that the transplantation of differentiated and specialized 
neurons can lead to functional improvement in animal models of neurological diseases. For 
instance, neurons isolated from mouse or human embryonic mesencephalon have been 
widely used for transplantation in the 6-OHDA-lesion rodent animal model of Parkinson´s 
disease (Grealish et al. 2010; Brundin et al., 1986), and human fetal cells from the ventral 
mesencephalon have also been used in several clinical trials in Parkinson patients, some of 
which showed significant clinical improvement (Mendez et al., 2005; Astradsson et al., 2008; 
Mendez et al., 2008; Lindvall and Kokaia, 2009). Similarly, fetal striatal neurons have been 
successfully transplanted into animal models of Huntington´s disease to replace damaged 
GABAergic medium-sized spiny projection neurons in the host striatum (Isacson et al., 1986; 
Dunnett and Rosser, 2007), and clinical trials have shown improvement in some of the 
transplanted patients suffering from Huntington’s disease (Philpott et al., 1997; Dunnett and 
Rosser, 2004).  
However, alternative cellular sources are required because of the limited availability of fetal 
tissue. Due to their ability to generate functional neurons at high numbers in vitro, ES cells 
constitute a promising cell population for such therapeutic approaches and have been 
applied in several animal models of neurological diseases after pre-differentiation into 
desired neuronal phenotypes in vitro. Several studies have shown that transplantation of 
mouse, primate or human ES cell-derived neural precursor cells or neurons can lead to 
functional improvement in animal models of Parkinson´s disease (Bjorklund et al., 2002; 
Kim et al., 2002; Ben-Hur et al., 2004; Roy et al., 2006; Sanchez-Pernaute et al., 2008; Yang et 
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al., 2008; Cui et al., 2010). Furthermore, differentiated mouse and human ES cells have been 
successfully applied in animal models of Huntington`s disease (Bernreuther et al., 2006; 
Dihne et al., 2006; Aubry et al., 2008; Hargus et al., 2008a), stroke (Wei et al., 2005; 
Buhnemann et al., 2006; Oyamada et al., 2008), and spinal cord injury (Chen et al., 2005; 
Keirstead et al., 2005; Sharp et al., 2010) to improve different aspects of regeneration. 
Notably, the American Food and Drug Administration (FDA) has recently for the first time 
approved a clinical  trial on the transplantation of human ES cell-derived oligodendrocyte 
progenitor cells in patients with acute spinal cord injury conducted by the Geron 
Corporation. In this context, however, it should be emphasized that the transplantion ES-cell 
derived cells is associated with a specific risk of teratoma formation due to the presence of 
undifferentiated ES cells in the cell suspension for transplantation, emphasizing the 
requirement for efficient cell differentiation in vitro and for thorough cell purification before 
engraftment. We will focus on this topic at the end of this chapter. 

4. Transplantation of differentiated L1-overexpressing
 
and TNR-

overexpressing ES cells in animal models of acute and chronic neurological 
disorders 

Several challenges are associated with transplantation of ES cell-derived neurons, which 
determine functional outcomes of a cell replacement therapy. Such critical aspects include 
an efficient differentiation of ES cells into desired neuronal phenotypes in vitro as described 
above, sufficient survival of donor cells after transplantation, and efficient integration of 
transplanted neurons within the host tissue in order to mediate functional graft-host 
communication. Several studies have described poor survival of ES cell-derived neurons 
and limited graft-host interactions after transplantation into the adult rodent striatum 
(Schulz et al., 2004; Yurek and Fletcher-Turner, 2004; Sonntag et al., 2007) and that survival 
of cells depends on time of injection after injury (Johann et al., 2007; Darsalia et al., 2010).  
By overexpressing the recognition molecule L1 in ES cells, we found that in vitro-generated 
L1-overexpressing SENAs showed two-fold improved survival after transplantation into 
MPTP-treated Parkinsonian mice when compared to engrafted WT SENAs (Cui et al. 2010). 
Furthermore, the L1-overexpressing SENAs contained an approximately two-fold increased 

number of dopaminergic neurons, and engrafted L1-overexpressing cells migrated 2.5× 
longer distances within the host striatum than wt cells. Also, transplanted L1-
overexpressing SENAs rescued a higher number of endogenous imperilled midbrain 
dopaminergic neurons and improved functional recovery when compared to engrafted 
differentiated WT SENAs (Cui et al. 2010). In two other studies, we applied the 5-stage 
differentiation protocol to L1-overexpressing and WT ES cells, which were transplanted into 
the quinolinic-acid mouse model of Huntington´s disease (Bernreuther et al., 2006) and into 
an animal model of acute spinal cord injury (Chen et al., 2005). In the former study, the L1-
overexpressing grafts contained a higher number of surviving GABAergic neurons and L1-

overexpressing cells migrated 3× longer distances within the host striatum when compared 
to WT cells. Importantly, L1-overexpressing ES cell-derived cells showed functional effects 
on apomorphine-induced rotational asymmetry in these quinolinic acid-lesioned animals in 
contrast to engrafted WT control cells (Bernreuther et al., 2006). In line with these findings, 
differentiated L1-overexpressing ES cells showed robust survival and migrated up to 700 
μm in an animal model of acute spinal cord injury, while only few differentiated WT ES cells 
survived the first few weeks after transplantation into the spinal cord (Chen et al., 2005). 
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Similar to L1-overexpressing ES cell grafts, transplants consisting of TNR-overexpressing ES 

cells, differentiated according to the 5-stage differentiation protocol, contained a two- to 

three-fold higher number of surviving GABAergic neurons in the quinolinic acid-lesioned 

mouse striatum when compared to WT ES cells (Hargus et al., 2008a). However, in contrast 

to engrafted L1-overexpressing cells, TNR-overexpressing ES cells showed slightly 

decreased migration into the host striatum when compared to WT ES cells, but attracted 

host-derived neuroblasts from the subventricular zone (SVZ) and the rostral migratory 

stream (RMS) leading to the recruitment of host-derived newborn neurons within the 

grafted area (Hargus et al., 2008a).  

4.1 The influence of L1 and TNR on survival of transplanted cells 

Most cells die shortly after transplantation into the adult brain and spinal cord probably due 

to hypoxia, reduced supply of trophic factors and immune responses. It has been proposed 

that also limited cell-cell and cell-matrix interactions account for cell death after 

transplantation into the CNS (Marchionini et al., 2003). Indeed, cell apoptosis can be 

induced by lack of structural support from surrounding neighboring cells and from the 

extracellular environment (Raff, 1992; Meredith et al., 1993; Frisch and Francis, 1994). This 

kind of apoptosis has been shown as early as during the trituration of neural stem cells in 

vitro prior to transplantation (Schierle et al., 1999). Therefore, stable expression of surface or 

matrix molecules in engrafted cells might help to increase cell-cell contacts and cellular 

survival. Candidate molecules include NCAM and L1, since both recognition molecules 

have neuroprotective effects on dopaminergic neurons in vitro (Hulley et al., 1998; Ditlevsen 

et al., 2007), and mechanisms for L1-mediated neuroprotection have been described, which 

include inhibition of caspase-3 and increased phosphorylation of extracellular signal-related 

kinases 1/2, Akt and Bad (Loers et al., 2005). Increased L1-mediated cell-cell interactions in 

grafts could explain why L1-overexpressing cells contained a reduced number of caspase-

positive apoptotic cells and an increased number of surviving dopaminergic neurons after 

engraftment into Parkinsonian mice (Cui et al. 2010), and why L1-overexpressing ES cells 

survived after transplantation into the injured spinal cord while only few WT ES cell-

derived cells were detectable (Chen et al., 2005). Therefore, the microenvironment around 

grafted cells seems to further influence those mechanisms of cell survival, which are 

mediated by cell surface molecules.    

Since ECM proteins provide structural support to cells and may help to trap and store 

growth factors, several groups have analyzed the effect of co-delivery of cells and matrix 

proteins on the survival and function of these cells in the brain but also outside the CNS. 

When rat cardiomyoblasts were engrafted in collagen matrices into a rat model of 

myocardial infarction, larger grafts and an improved ventricular heart function were 

observed in these animals (Kutschka et al., 2006). Similarly, human ES-cell derived 

cardiomyocytes survived better in infarcted rat hearts when co-delivered with a factor-

enriched Matrigel matrix (Laflamme et al., 2007). The addition of the ECM protein tenascin-

C to a single cell suspension of fetal mesencephalic neurons before transplantation 

significantly increased the survival of graft-derived dopaminergic neurons, when engrafted 

at low density in a rat model of Parkinson´s disease (Marchionini et al., 2003). This study 

also showed that the cell density of engrafted cells is a critical parameter for the impact of 

co-delivered ECM molecules on the survival of implanted cells, as tenascin-C did not 
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influence cell survival in grafts with high cell density. Using a similar high-cell-density 

approach, we could show that grafts consisting of differentiated TNR-overexpressing ES 

cells contained increased numbers of surviving GABAergic neurons in a mouse model of 

Huntington´s disease (Hargus et al., 2008a) when compared to WT ES cells. However, this 

effect is most likely a result of the positive effect of TNR on the in vitro-differentiation of ES 

cells into postmitotic neurons rather than a result of increased cell survival (as similarly seen 

for L1+ grafts in the same animal model), since the graft sizes were not altered by the 

presence of TNR. It will be very interesting to determine how different densities of TNR-

overexpressing ES cells for transplantation influence cell survival and function in this and 

other animal models of neurological diseases. 

4.2 The role of the recognition molecules L1 and TNR on cell migration in animal 
models of neurological disorders 

Successful outcomes of a cell therapy in neurological diseases depend on sufficient 
interaction of engrafted neurons with host-derived cells. Such interaction could lead to 
functional integration of graft-derived neurons into endogenous neuronal circuitries, 
mediate important structural and trophic support to imperilled host-derived neurons and 
result in the mobilization of endogenous host-derived neural progenitor cells, which in turn 
might support graft-mediated regeneration within the host brain.   
Enhanced migration of implanted cells into the host tissue could be beneficial for the 

integration of engrafted cells, since this process favors a higher degree of functional 

connectivity to host circuitries (Dunnett and Rosser, 2007). It is well known that engrafted 

differentiated ES cells show only poor migration in the recipient brain in contrast to 

implanted fetal neural progenitor cells (Englund et al., 2002; Dunnett and Rosser, 2007). By 

transplanting differentiated ES cells as SENAs instead of single cells, we could show that the 

migration of engrafted ES cells into the rodent striatum was significantly enhanced possibly 

due to the altered microenvironment provided by different cell-cell and cell-matrix 

interactions (Dihne et al., 2006). Furthermore, an overexpression of L1 in engrafted ES cell-

derived cells resulted in significantly enhanced migration into the host striatum in both, 

MPTP- and quinolinic acid-lesioned Parkinsonian and Huntington mice (Bernreuther et al., 

2006; Cui et al., 2010). In addition, differentiated L1-overexpressing ES cells migrated 

rostrally and caudally from the lesion site when transplanted in an animal model of acute 

spinal cord injury, while WT ES cells remained at the injection site (Chen et al., 2005). 

Importantly, the engrafted L1-overexpressing cells showed close proximity to re-growing 

corticospinal tract axons, which were guided into and also beyond the lesion site in the 

injured spinal cord. Similar beneficial effects of L1 on axonal outgrowth of corticospinal 

neurons have been decribed after infusion of soluble Fc-tagged L1 into the lesioned spinal 

cord, which resulted in behavioral recovery in most of the L1-Fc-treated animals 

(Roonprapunt et al., 2003).  

Overexpression of polysialic acid (PSA), a carbohydrate polymer attached to the neural cell 
adhesion molecule NCAM, which was achieved by transduction of ES cell-derived cells 
with retroviruses encoding the polysialyltransferase STX, modified the susceptibility of 
differentiated ES cells to cytokines after transplantation into the rodent brain thereby 
influencing migration (Glaser et al., 2007). Since these PSA-expressing ES cells were 
transplanted into the striatum of healthy unlesioned rats, it is not known how these cells 
influence function in animal models of neurological diseases. However, such transplantation 
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studies could be very promising given that PSA glycomimetica promote functional recovery 
in mice after peripheral nerve injury (Mehanna et al., 2009) and spinal cord compression 
(Mehanna et al. 2010).  
ECM molecules can act as attractant or repellent guidance molecules and both functions 

have been described for TNR in vitro and in vivo (Schachner et al., 1994; Jones and Jones, 

2000). Differentiated TNR-overexpressing ES cells migrated shorter distances in vitro and 

after transplantation into the striatum of quinolinic acid-lesioned mice in vivo when 

compared to WT cells (Hargus et al., 2008a). However, despite reduced migration of 

engrafted cells, TNR-overexpressing ES cells showed a tendency towards increased 

coverage with host-derived synaptic boutons (Hargus et al., 2008a), reflecting increased 

synaptic input from host-derived neurons towards engrafted cells. This finding goes in line 

with the reduced density and abnormal structure of symmetrical synapses in TNR-deficient 

mice (Nikonenko et al., 2003; Apostolova et al., 2006). The generally low degree of synaptic 

coverage of engrafted ES cell-derived neurons (less than 6% of all engrafted cells for both 

TNR-overexpressing and WT cells), could explain, however, why engrafted rats did not 

show reduction in apomorphine-induced rotational asymmetry (Hargus et al., 2008a).  

4.3 The role of the recognition molecules L1 and TNR on endogenous neurogenesis 
and neuroprotection in animal models of neurological disorders 

The TNR protein secreted by implanted TNR-overexpressing cells had interesting positive 
effects on graft-host interactions, as host-derived doublecortin-positive neuroblasts were 
attracted by engrafted TNR-overexpressing ES cell-derived cells and migrated from the SVZ 
and the RMS towards and into the grafted area. This effect was sustained for at least 2 
months after transplantation (Hargus et al., 2008a). This attractant effect of ectopically 
presented TNR on endogenous migrating neuroblasts from the SVZ, that migrate toward 
the olfactory bulb but no other brain regions under physiological conditions (Luskin, 1993; 
Lois and Alvarez-Buylla, 1994), has been previously described after transplantation of non-
neuronal TNR-overexpressing fibroblast-like cells into the adult forebrain in close proximity 
to the RMS (Saghatelyan et al., 2004) and is in line with the observations that TNR serves as 
a detachment signal for migrating cells in the adult olfactory bulb (Saghatelyan et al., 2004) 
and developing cerebellar cortex (Husmann et al., 1992). Furthermore and in line with our 
observations on enhanced TNR-mediated neuronal differentiation of ES cells in vitro, we 
found that TNR-overexpressing ES cell-derived cells promoted the generation of newborn 
host-derived neurons in the grafted area, and the degree of this recruitment of endogenous 
neurons was three-fold higher than in grafts consisting of WT ES cell-derived cells (Hargus 
et al., 2008a).  
It remains open to which extent a recruitment of migrating or in situ-generated host-derived 

neural precursor cells or newborn neurons supports regeneration in the adult lesioned 

brain. However, a recruitment of endogenous neural progenitor cells from the SVZ into 

lesioned areas has been described in several animal models after ischemic (Arvidsson et al., 

2002; Nakatomi et al., 2002; Parent et al., 2002), physical (Magavi et al., 2000) or excitotoxic 

(Tattersfield et al., 2004) brain lesions, and differentiation of these recruited precursor cells 

into neurons with adequate phenotypes has been shown in many of these studies (Magavi et 

al., 2000; Arvidsson et al., 2002; Nakatomi et al.; Parent et al., 2002).        

In this context it should be noted, that other beneficial molecules including glial cell line-

derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) could 
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also be considered for overexpression in ES cells to improve regeneration in animal models 

of neurological diseases. Indeed, intraventricular application of BDNF enhanced 

neurogenesis in the SVZ (Zigova et al., 1998) and induced migration of neural progenitor 

cells from the SVZ into adjacent non-neurogenic areas in the adult brain (Benraiss et al., 

2001; Pencea et al., 2001). Furthermore, both BDNF and GDNF are used in established 

protocols for the differentiation of human ES cells into dopaminergic neurons in vitro 

(Perrier et al., 2004; Sonntag et al., 2007; Cooper et al., 2010) and have neuroprotective effects 

on endogenous neurons in animal models of neurodegenerative diseases (Grondin and 

Gash, 1998; Zuccato and Cattaneo, 2009). Interestingly, BDNF (Cassens et al. 2010) and 

GDNF (Nielsen et al., 2009) have been shown to be functionally connected to neural cell 

adhesion molecules and thus, beneficial effects of overexpression of these neurotrophins 

might be mediated by neural cell adhesion molecules and therefore, overexpression of cell 

adhesion molecules instead of neurotrophins might prevent potential adverse effects of 

neurotrophin overexpression such as induction of neuropathic pain (Geng et al., 2010). 

Similar neuroprotective effects on endogenous host-derived neurons are mediated by the 

transplantation of neural stem cells into rodent animal models of Parkinson´s disease 

(Ourednik et al., 2002; Yasuhara et al., 2006) or spinal cord injury (Teng et al., 2002), 

probably due to neuroprotective factors secreted by engrafted cells. Interestingly, an 

overexpression of L1 in neural stem cells improved their distribution within the host 

midbrain and rescued about 1.5 x more host-derived imperilled dopaminergic neurons after 

transplantation into MPTP-lesioned transgenic L1-overexpressing Parkinsonian mice, when 

compared with engrafted WT neural stem cells (Ourednik et al., 2009). This finding 

demonstrates that a recognition molecule can positively influence survival of endogenous 

neurons and led us to analyze the effects of overexpression of L1 in engrafted differentiated 

ES cells on host-derived dopaminergic neurons in the MPTP-lesion mouse model of 

Parkinson´s disease (Cui et al. 2010). L1-overexpressing SENAs transplanted in close 

proximity to the substantia nigra increased the number of host-derived dopaminergic 

neurons and enhanced striatal dopamine levels after intrastriatal transplantation, 

demonstrating neuroprotective effects of L1-overexpressing SENAs, which were not found 

after transplantation of WT SENAs.  

5. Methods to purify ES cell-derived cells for transplantation into animal 
models of neurological diseases 

Before differentiated ES cells can be considered for any clinical application, a purification of 

ES cell-derived cells is required in order to enrich the cellular phenotypes of interest and to 

remove residual undifferentiated cells.  

Although ES cells can be efficiently differentiated into a variety of desired cell types in vitro, 

current differentiation protocols do not generate a homogenous population of cells. As 

described above, a directed differentiation of ES cells into neuroectodermal cells can 

significantly enhance the number of functional neurons with specific neurotransmitter 

profiles in vitro but other neural phenotypes and even cells of other germ layer origins 

commonly contaminate the final cell population. This finding has an important impact on 

ES cell-based replacement therapies, since unwanted cellular phenotypes could significantly 

reduce the efficiency of such approaches. For instance, fetal mesencephalic tissue 
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transplanted into Parkinsonian animals or Parkinson patients can cause side effects such as 

graft-induced dyskinesia, which has been discussed to be a result of the heterogeneity of 

engrafted cells and the presence of donor-derived serotoninergic neurons in grafts (Carlsson 

et al., 2007; Allan et al., 2010). Most importantly, undifferentiated ES cells can lead to the 

formation of teratomas consisting of cells of all three germ layers after transplantation.  

Cell separation methods include immunopanning, magnetic-associated cell sorting (MACS) 
or fluorescence-activated cell sorting (FACS), which have been applied on differentiated  
ES cells.  
Immunopanning of cells is achieved by plating cells on a surface coated with an antibody 

directed against specific epitopes of interest. By applying this method involving L1 

antibody-coated surfaces, mouse ES cell-derived neurons have been isolated at high purity, 

which formed excitatory and inhibitory synapses and were electrically excitable after re-

plating (Jungling et al., 2003). Similarly, ES cell-derived neural precursor cells have been 

efficiently purified after immunopanning for PSA-NCAM (Schmandt et al., 2005).  

MACS purification for cell surface molecules has been applied on both, mouse (David et al., 

2005) and human (Pruszak et al., 2007) ES cell-derived cells and an enrichment for labelled 

cells was described in these studies. However, the purity of MACS-sorted cells was lower 

compared to FACS-sorting procedures on the same cell population (Pruszak et al., 2007). 

Furthermore, a significant enrichment of neural cells was achieved by FACS-sorting 

differentiated ES cell cultures for single neural cell adhesion molecules such as NCAM 

(CD56) or CD146 (Pruszak et al., 2007), or for a combination of cell surface antigens 

including CD15, CD24 and CD29 (Pruszak et al., 2009). To determine safety and efficiency of 

a FACS-sorting procedure for a neural cell adhesion molecule, NCAM-FACS-purified 

human pluripotent stem cell-derived neural cells were transplanted in an animal model of 

Parkinson´s disease (Hargus et al. 2010). The FACS-purified cells survived and showed 

functional effects on rotational asymmetry in these animals, while formation of teratomas 

was not observed. The same study demonstrated that human pluripotent stem cell-derived 

neurons express the recognition molecule L1 at high levels (Hargus et al., 2010). Therefore, 

L1 could also be a suitable candidate molecule for FACS purification experiments with the 

advantage that postmitotic neurons could also be separated from immature L1-negative but 

NCAM-positive neural precursor cells and astrocytic cells for transplantation.  

6. Conclusion 

In this chapter, we provided examples that an overexpression of recognition molecules in ES 

cells can influence different aspects of stem cell-mediated regeneration in animal models of 

acute and chronic neurological disorders including cellular differentiation, migration, 

recruitment of endogenous neural cells, neuroprotection, and replacement of imperilled 

host-derived neurons. These findings encourage further investigation of supporting 

functions of recognition molecules for stem cell-based therapeutic approaches in human 

diseases. Furthermore, several studies on cell separation of ES cell-derived neurons 

preventing the formation of teratomas show important progress towards an application of 

ES cell-derived cells in patients with neurological disorders, and encourage further 

refinements of these separation techniques for a potential standardized ES cell-based cell 

therapy. 
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