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Rock Fracture Image Segmentation Algorithms 

Weixing Wang 
School of Information Engineering, Chang’an University, Xi’an 

China 

1. Introduction 

Since rock fracture is a key property for different rock engineering applications, rock 

fracture measurement is often carried out in classifying the rock mass. Most geo-mechanics 

models (e.g. finite element) are of the equivalent continuum type in which fractures are 

represented not individually, but by their influence on a large element of the rock mass. 

Elastic modulus, for example, is obtained either by large-scale testing of rock containing 

many joints, or, at less expense, by applying a reduction factor to the modulus obtained 

from small-scale tests on intact rock. Other models (e.g. those based on the key block 

concept) are capable of taking into account the position and mechanical characteristics of 

individual fracture. The shear strength of a fracture can be estimated from its roughness 

together with strength and thickness of filling materials, using a variety of empirical or 

semi-empirical methods. The techniques of image processing and segmentation can be 

applied as a power tool for obtaining more detailed information and analysis of rock 

fractures.  

In this chapter, we firstly to give an overview of the current status of the rock fracture 

processing research, then, give a brief description of visual rock fracture properties and 

classify the types of rock fractures, finally, we summarize the work we have done in last year. 

1.1 Overview of image processing literature on rock fractures 
A series of the previous research work is related to the program for storage of high level 

radioactive waste. A repository represents changes of numerical, thermal, hydraulic and 

chemical conditions, which are studied by using numerical models. The models are based 

on the geological conditions of the site, especially characteristics of the fracture network and 

properties of single fracture, since these parameters control the flow through the rock mass.  

Let us now turn to image processing and measurements of rock fractures/ 1-24/ . Maria 

Johansson (1999) in her Lic. Thesis, presented three different algorithms for single rock 

fracture or crack detection. Quanhong Feng (1996) in his master thesis presented the BIP 

system for acquiring borehole images, and studied the measurement of the orientation of a 

single joint in a borehole, and other fracture properties. Masahiro Iwano (1995) in his 

doctoral thesis reviewed the research history of hydro-mechanical characteristics of a single 

rock joint, and studied a series of lab test and theatrical analysis. For the single joint 

measurement by using image technique, Eva Hakami (1995) in her doctoral thesis presented 

a method to measure aperture and roughness, and analyzed the relationship between 

aperture (and roughness) and hydro-mechanical characteristics. 
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For multiple fractures on an image, Reid and Harrison (2000) presented a semi-auto tracing 

method for rock fractures. Lemy and Hadjigeorgiou (2003) developed a auto-tracing method 

for rock fractures based on edge detection and neural network. Parviz Soroushian (2003) 

proposed an algorithm for fracture image binarization on theirlaboratory SEM images. 

Similar work have been done by John Kemeny, Randy Post, 2003, Wang, W.X. & 

Stephansson, O., 1997, Lee SW, Kim YJ. , 1995, Wang L, Pavlidis T., 1993, Harrison JP, 1993, 

G. X. Sun, D. J. Reddish and B. N. Whittaker, 1992, Hu J, Sakoda B, Pavlidis T., 1992, 

Whittaker RN, Singh RN, Sun G., 1992, Finn Ouchterlony, 1990, Tanimoto C, Murai S, 

Kiyama Joshi AK.,1989, John A. Franklin, Norberth H. Maerz and Caralyn P. Bennett, 1988. 

For the three-dimensional estimation, the previous work has been done by John Kemeny, 

Randy Post, 2003, Zou Dingxiang, Weixing Wang and Ma Bailing, 1986. Lyman (2003) has 

used neural network technique to detect fractures. 

In the well-known BIPS system, rock fractures (curves) are traced based on input points (the 

more points, the more accurate is the tracing), to fit curves on theoretical sinusoidal shape 

(distribution). It is not an image processing or matching algorithm, the color or grey 

information is not needed. 

In order to make measurements of rock fractures (or spacing, discontinuities) easy and 

sufficiently for the accurate analysis of rock mechanics and engineering geology, we 

combined all the knowledge we have, to establish a programming library for rock fracture 

measurement and analysis, and developed several rock fracture measurement algorithms on 

the rock mechanics and geology applications. Now I have setup an algorithm library, which 

includes a number of algorithms for rock fracture analysis and classification.  

1.2 Visual rock fracture properties and classification for image segmentation 
In most cases, rock surface is rough, except for the variations of colors and gray- scales, three 

dimensional surface roughness is the another property comparing to other applications. For 

image processing and analysis, fractures or cracks belong to linear curved objects; the length 

of an object is much longer than width. Inside the object, it may be empty or filled by 

different materials. The filling materials are with different colors. Since the large width and 

color variation, it is usual that there are many gaps on one object. Another property is that 

some fault object appears on an image due to rough and noised surface. Random and 

multiple fractures may form a complicated network where fractures cross each other. All the 

properties make image processing and segmentation harder than other applications. The 

following are reprehensive examples for different types of fractures or cracks.  

 

 

(a) (b) (c) (d) 

Fig. 1. Four different types of rock fractures: (a) fractures are not continuous, (b) fractures 

have different gray-scales, (c) fractures form a network, and (d) very rough surface. 
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1.3 Summary of our work 
In image processing, as a normal work sequence, we first used global filters and local filters 

to remove the noise and make gray variation correction, which is called image 

preprocessing. After image preprocessing, the image quality is increased, the remaining 

work is to abstract rock fractures from background, so-called image segmentation. In image 

segmentation part, we compared and used thresholding algorithms to binarize the rock 

fracture images for a rough analysis, in addition to this, both edge based algorithms and 

region similarity algorithms are tested and studied. Since the edge based algorithm can 

detect fracture boundary location accurately, and region similarity algorithms are better to 

alleviate producing extra noise, however, which type of algorithms, is selected to use, 

depending on the image properties. In the study, we found that the combination (or fusion) 

of the two or three types of image segmentation algorithms is a best way for segment our 

rock fracture images, but we have not fully used this procedure (it is still under 

development) yet in this work period. Since our image is resin injection fracture image, the 

simplest algorithm is image binarization, therefore we tested five different auto-

thresholding algorithms which are widely used in the world. As the comparing result, we 

selected two binarization algorithms for our images; the one is Optimal binarization 

algorithm, and the other is Between class variance binarization algorithms. In edge based 

segmentation algorithm study, we tested popularly used edge detectors such as Canny edge 

detector and Robert edge detector etc. We found out that week and thin fractures cannot be 

detected y using these algorithms, since fractures are ridge objects, as an alternative, we 

developed a new edge detection algorithm for these kinds of edges. For high resolution 

images, the fractures are relatively thick: on the surface, a lot of white noise appears. To 

overcome this problem, we tried multi-scale technique for both region similarity and edge 

based algorithms. In conclusion, we tested 10 different preprocessing algorithms, five image 

binarization algorithms, and five edge detection algorithms. We developed and modified 

five different algorithms for image enhancement and segmentation. For our rock fracture 

images, we mainly used the modified image binarization algorithms. 

2. Image preprocessing 

The aim of image preprocessing is to enhance images for better visualization and 

processing. Image preprocessing techniques can be classified into global operators and local 

operators/ 25/ . Linear contrast stretch and histogram equalization are two of the most 

widely used global operators. Adaptive histogram-equalization, contrast-limited adaptive 

histogram equalization, kernel filters, morphological functions and multi-scale enhancement 

belong to the local operators. While the global methods use a transformation applied to all 

the pixels of the image, the later methods use input-output transformation that varies 

adaptively with the local characteristics of the image. The typical types of image 

preprocessing can be expressed as: 

Global operators: ( ) ( )( ), ,new originalf x y Trans f x y=  

Local operators: ( ) ( ), ( , ) , .new originalf x y f x y Filter x y Const= − +  

Image enhancement algorithms have been designed to process a given image so the results 

are better than the original image for their applications or objectives. When the objective is 

to improve perceptual aspects, desirable image preprocessing can be performed by the 

contrast and dynamic range modification. 
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In this study, to enhance the fracture image for further processing and segmentation, we 

tried the both methods. To make comprehensively understanding the testing methods, we, 

first, briefly introduce some basic idea of digital images in separated sub-sections. 

2.1 Image converting from color to gray scale 
Notation: image converting from color to gray scale: 

A grey scale image: ( ),f x y  has ( 1,2,.., 256)L i l= ≤  gray levels for each of image pixels, x, y 

are image sizes in horizontal and vertical directions respectively.  

A color image (RGB) is a combination of three images: ( ) ( ) ( ){ }, , , , ,r g bF f x y f x y f x y . 

If one converts a color image to a grey scale image, an general converting equation can be 

presented as: 

( ) ( ) ( ) ( ), , , ,r g bF f x y f x y f x y f x yα β γ⇒ = ⋅ + ⋅ + ⋅ , ( 1α β γ+ + = ) 

As an example in Fig. 2, we split a color image into R.G..B three images, the three images are 

different (the worst one may be the blue image), the differentiation is image dependent. In 

the Fig.3, the color image is split into R.G. ( 0.5 0.5 0.0 1α β γ+ + = + + = ), R.B.  

 

 

Fig. 2. A color fracture image is split into R.G..B. three images 
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( 0.5 0.0 0.5 1α β γ+ + = + + = ), and G.B ( 0.0 0.5 0.5 1α β γ+ + = + + = ) images. The each of 

the new images is a combination of two channel images, which make some new 

presentations for the original image. In the example, the yellow image may show fracture 

clearer than others. 

Except for R.G..B, a color pixel can also be divided into the three values of intensity (I), hue 

(H) and saturation (S), which is another way to represent a color image. An example is 

shown in Fig. 4. For fractures, the best image may be the combination of light intensity (I) 

and color hue (H). 

When a color image is to be converted to a gray scale image, the new image pixel value can 

also be calculated based on the R.G..B values or I.H.S. values in different ways. Fig. 5 shows 

that the above color image is converted to a gray scale image by using minimum or 

maximum R.G..B.values, which means that for each of the image pixels, checking its R.G..B. 

values, and choosing the minimum or maximum value of the three values, as input for the 

new image. In our application image, it is obviously that the minimum converting is better. 

 

 

 

 
 

 

Fig. 3. A color fracture image is split into RG..RB.GB. three images. 
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Fig. 4. A color fracture image is split into HI, I and SI three images 

 

 

   

Fig. 5. The color fracture image is converted into a gray image. (a) Converted by using 

minimum R.G..B.values, and (b) Converted by using maximum R.G..B.values. 
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Anyhow, a color image includes a lot of information, some information is useful, and some 

cannot be used, which depends on the requirements for image processing and analysis. All 

the image converting methods belong to global operators. In our study, since we only 

consider the gray scale image segmentation, we have not used the color information yet, we 

normally directly convert a color image by using Minimum or Middle operators, in a few 

cases, and we also used the combination of GB image to obtain a gray scale image. To fully 

use the available color information, we may need more tests and studies. 

2.2 Comparison of image preprocessing operators 
No matter a color image or a gray scale image, a number of image preprocessing operators 

can be used for image enhancement. For a gray scale image, an operator acts on one image, 

and for a color image, an operator acts on three images (R.G.B.) respectively. Based on our 

rock fracture characteristics, we tested several widely used operators on the images. Based 

on our utilities, we classify all the tested operators into two types: the one is for image noise 

removal, and the other is for rock fracture sharpening on images.  

In Fig. 6, we compared five different operators for a color rock fracture image. In Fig. 6(b), 

the operator is a 3x3 kernel with a Median filter operation (local operator) on the image, on 

the new image, the noise points and lines are removed, but the image is blurred; (c) 

Morphological operation (local operator): simple opening and closing, the operation result is 

similar to the median filter, it maybe more better for removing noise lines or curves; (d) 

Linear stretch (global operator): stretching the range of gray scales, it make intensity 

contrast more better.; (e) Sharpening (local operator): make fracture more shaper, but noise 

arising; and (f) Exponent transformation (global operator): decrease the gray values of the 

non-fracture regions. 

For our images, we often used the operators of Exponent transformation, Linear stretch and 

Median filters. Since this is a testing stage, we have no an automatic procedure for 

enhancement of the rock fracture images currently, we may need to develop that in the next 

step of work. The auto-procedure development will be based on the further processing-

image segmentation (fracture delineation or tracing) requirements. 

3. Fracture delineation or tracing 

After image preprocessing, the next is image segmentation-fracture tracing. The image 

segmentation is an old and topic subject of image analysis and pattern recognition. The 

current tendency is to combine different image segmentation algorithms for special 

application domain/ . Our domain is rock fractures or fracture network. 

3.1 Image thretholding 
The scope of the present part is thresholding algorithms applied to a specific DOMAIN, that 

of rock fractures, in rock engineering. Fractures can be natural or man-made, where the 

former is of substantial interest in rock engineering applications. We stresses that the study 

deals with thresholding applied to a special domain rather than thresholding in general, 

because (a) the general problem is rather unspecified, (b) there is a greater chance of 

evaluating thresholding algorithms, if limiting the domain of possible images, and (c) there 

is the application of interest to us. 
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                                       (a)                                                                            (b) 

   

                                       (c)                                                                            (d) 

   

                                       (e)                                                                            (f) 

 

Fig. 6. Comparison of image preprocessing operators: (a) Original image; (b) Median filter; 

(c) Morphological operation; (d) Linear stretch; (e) Sharpening; and (f) Exponent 

transformation. 
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The content of this part is (1) to compare the selected four of widely used global 

thresholding algorithms for four typical fracture images; (2) based on the comparison, to see 

how they work for rock fracture images, and (3) how to choose a global thresholding 

algorithm to segment the rock fracture images with a small variable background (the 

background is not completely uniform). 

3.1.1 Thresholding algorithms selection and implementation 
Thresholding is one of the old, simple, popular and most important approaches to image 

segmentation. From literature review, the thresholding algorithms can be classified 

thresholding algorithms into two groups / 26-33/ . One is based on the characteristic feature 

(e.g. gray level) histogram. Another is based on gradient (or Laplacian) of an image. The 

main global thresholding algorithms they summarized include: Optimal thresholding 

(OPT), Between class variance (BCV), Entropy, Moment preserving, Bi-modes (the threshold 

is a valley point between main two peaks) - we called it as BIM, Edge based thresholding 

(DIFF), dynamic edge based thresholding (DYN. Lee and Chung 1989 / 28/ , evaluated five 

of the global thresholding algorithms, the five algorithms are OPT, BCV, Entropy, Moment 

preserving and Quadtree. They gave a conclusion that Entropy and Quadtree are sensitive 

to image characteristics such as contrast and histogram distribution. 

In order to evaluate these global algorithms (abbreviated OPT, BCV, BIM, DYN, and DIFF), 

how available they are for rock fracture images, the algorithms have been implemented into 

a PC computer. As a sever to readers comprehensively understanding the comparison 

between the algorithms, a brief description of these algorithms are listed as the follows. 

Notation: an image ( ),f x y has gradient magnitude image ( ) ( )2, ,g x y f x y= ∇ , and the 

histograms ( )hisf i and ( )hisg i  are corresponding to ( ),f x y  and ( ),g x y respectively. 

(1) OPT [30]: Suppose that an image contains two values combined with additive Gaussian 

noise. In addition of knowing the area percentage of objects, the mean values and their 

standard deviations are also known, the thresholding value can be obtained through an 

optimizing way. The implemented algorithm is iterative (optimal) threshold selection, 

which can be found in [30]. 

The details can be summarized as: 

Pre-set a threshold T, separate an image into objects and background, then use Eq.(1) to 

obtain a threshold. Repeat the steps until T 1t+ =T t , T t  is the threshold. 

( )( ),
,

i j Backgoundt
B

f i j
u

TNBP

∈
=
∑

,  t
Ou =

( )( ),
,

i j Object
f i j

TNOP

∈∑
  

where , TNBP is the total number of background pixels, and TNOP is the total number of 

object pixels. 

1

2

t t
t B Ou u

T + +
=  

In our case: 1 0.4 0.6t t t
B OT u u+ = + . 

(2) BCV[31]:  The method supposes that the probability for each gray-level is pi,  mean value 

1

m

i
i

ipμ
=

=∑ . The image is divided into two parts (i.e. background and objects foreground), 
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one has gray-levels from 1 to k, probability ( )0
1

k

i
i

p kω ω
=

= =∑ , mean gray value 

( ) ( )0
1

k

i
i

ip k kμ μ ω
=

= =∑ , the another from k+1 to m, probability ( )1
1

1
m

i
i k

p kω ω
= +

= = −∑ , mean 

gray value ( )( ) ( )( )1
1

1
m

i
i k

ip k kμ μ μ ω
= +

= = − −∑ , and 0 0 1 1ω μ ω μ μ+ = . Try to find maximum 

variance which is a function of variable k: 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2

2 222
0 0 1 1 0 1 1 0

1

k k
k

k k

μω μ
σ ω μ μ ω μ μ ω ω μ μ

ω ω
⎡ − ⎤⎣ ⎦= − + − = − =

⎡ − ⎤⎣ ⎦
 (1) 

obtain corresponding k as thresholding value. 

(3) DIFF[33]: Define that S is the set of pixels having gray level i, find maximum value  

 ( )
( ),

,
x y S

d g x y
∈

= ∑  (2) 

and obtain the corresponding i is the threshold. 

(4) DYN: It is the similar to the above algorithm, the difference is that the threshold value is 

not constant on the whole image; it varies from place to place. In this algorithm 

implementation, we used Canny edge detector first, then, divide the image into a number 

windows, the thresholds are obtained on the information of windows. 

(5) BIM [26-27, 30]: After calculating the histogram of gray-level image, the lowest valley 

point between two major peaks is found as the thresholding value. The program 

implemented is: firstly smooth the histogram by using Guassian smoothing function 

(1,2,3,2,1), then detect the two main peaks by using gradient at each point of gray level 

histogram, finally search the valley point between two main peaks. The valley point can be 

detected as  

 ( ) ( )k
lG hisf k hisf k m= − − , ( ) ( )k

rG hisf k hisf k m= − +   

 ( 0, 0)k k k k k
l r l rG G G G G= + 〉 〉 , ( )kT MAX G=  (3) 

where, k=1,..., 256, threshold is corresponding to T. m is chosen by an operator, in the 

follows, we use m = 40. 

3.1.2 Comparison between different global thresholding algorithms 
In order to evaluate the performance of these five thresholding algorithms for rock fracture 

images, the test images were chosen based on (a) the images are the represents of fracture 

applications, and (2) fractures and background can be roughly distinguished by human 

vision (e.g. background is darker than fractures). Test images are of the size 320 by 240 

uniformly quantified to 24 bits. Four typical images are shown in Fig. 7 and their histograms 

are shown in Fig.8 respectively. The image in Fig. 7a was taken from a slice, with two long 

fractures; its histogram is of a shape of a normal distribution. In Fig. 7b, the image is a 

microscope image with one fracture in details, and there are no two obvious peaks in the 
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histogram. In Fig. 7c, the image is a slice image, the background is rough; the many fractures 

form a network. The images in Fig. 7d is a round surface image, there is much noise on the 

image, and the fracture network is complicated. Figs. 8a-d show the histograms of the 

corresponding images in Figs. 7a-d. Most of the histograms seem to be ones of two modes, 

with two main peaks, but their shapes are very different. 

One of the most difficult problems in comparing and evaluating the performance of 

thresholding algorithm is choosing a meaningful object performance criterion. The problem 

is that a criterion suitable for one application may not be suitable for a different application 

of thresholding techniques. However, the most important concern is the accuracy in 

segmentation of fracture images. In evaluation of the performance, the probability of error 

(or maximum shape) and uniformity, which are often observed by human vision, could be 

set as criteria. 

In this study, it is not supposed to threshold each of the test images perfectly, the evaluation 

is based on comparing to human vision. The test results could be used for the fracture 

analysis in this work stage.  

 

 

  

                                          (a)                                                                            (b) 

   

                                          (c)                                                                            (d) 

 

Fig. 7. Four typical rock fracture images. 
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As tested many times, OPT and BVC operations will give a similar result on any of our rock 

fracture images, therefore, in the figures 9-12, we just give OPT, BIM, DIFF and DYN 

operation results on each image in Fig. 7 for comparison. The testing results show (Fig. 9-

Fig. 12) that OPT works on all the four images, BIM works on the image of a two modes 

(peaks) histogram, DYN may work for the images with complicated fracture network, and 

DIFF is sensitive to the information variation of rock fracture images.  

Based on this testing result, we used OPT or BVC for all the rock fractures. The figure 13 

demonstrates other four typical image thresholding results by using BVC thresholding 

algorithm. It is satisfied for our rock fracture images binarization, by using BVC or OPT.  

 

 

 
 

      

                                    (a)                                                                             (b) 

 

 

            

                                     (c)                                                                             (d) 

 

 

Fig. 8. Histograms for the images in Fig. 7 respectively. 
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Fig. 9. Four threholding algorithms on the image in Fig. 7a: BIM and DYN are failed. 
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Fig. 10. Four threholding algorithms on the image in Fig. 7b: DIFF is failed, and DYN gives a 

larger fracture area than human vision detection. 
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Fig. 11. Four threholding algorithms on the image in Fig. 7c: All the operations are seemed 

to be fair except for the scale ruler affection. 
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Fig. 12. Four threholding algorithms on the image in Fig. 7d: DIFF fails completely. 
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                                    (a)                                                                                  (b) 

 

 

   

                                    (c)                                                                                  (d) 

 

 

   

                                    (e)                                                                                  (f) 
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                                    (a)                                                                                  (b) 

Fig. 13. BVC algorithm on the four typical rock fracture images. 

3.1.3 In conclusion 
For a rock fracture image with a rather uniform background, and the range of the grey levels 

of fractures being not too large, the algorithms OPT and BCV are good choices for 

performing global thresholding.  

In this study, a simple BIM algorithm is given, the test results show that it works for some 

kinds of images (the histogram consists of two main peaks); the algorithm design depends 

strongly on the types of histograms of fracture images. 

For the fracture images, it is not suggested to use the thresholding algorithms based on 

gradient magnitude. The textured surfaces of the fractures will strongly affect the 

thresholding results although the background of images is rather uniform. 

In general speaking, thresholding algorithms can be classified into manual, semi-automatic 

and automatic thresholdings. The automatic thresholding algorithms can be sub-classified 

into (1) the grey level histogram based and (2) based on the histogram of gradient 

magnitude. In the application of fracture recognition, if the images can be binarized 

satisfactorily by human vision, OPT and BCV are suggested to use for automatically 

thresholding. For the complex fracture images, adaptive thresholding algorithms maybe 

applied, in which, OPT and BCV are also suggested to use as a basis if needed. 

To more accurately binarize the rock fracture images, adaptive thresholding, edge based or 

region based algorithms maybe needed to study. As a literature review, in recent years, 

many researchers recognized that it is difficult to use a single image segmentation algorithm 

to segment images in most of applications; the new focus topic is the fusion of different 

image segmentation techniques or algorithms. To do this kind of tests, we have developed 

some algorithms based on edge detection and region based (Fig. 14), the developed 

algorithms are useful for fracture tracing in some cases, the fusion procedure maybe next 

step development. In the next section, we will introduce our edge based segmentation idea. 

3.2 Edge based segmentation algorithm 
We here use gray-scale information (a color band) to trace the fracture curves. To develop 

the algorithm, several aspects must, generally speaking, be considered: (a) gray flatness or 

smoothness; (b) curvature variation; (c) magnitude strength; (d) computational searching 

costs; and (e) distance linking etc.  
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Fig. 14. Example of region based algorithm. Fracture tracing possibility for BIP images: Blue 

One is segmented based on image shrink, similarity (12, 80), and green one is segmented 

based on smoothing and similarity (7, 80). These are examples, for real segmentation, it need 

to modify the segmented fracture curves, e.g. to use triangle signal information, curve 

smoothing, small region merge and gap links. All these are post-processing, if the primary 

segmentation results can be like in the images, remaining tasks will be fixed anyway. 

On the surface of rock mass, the objects of fracture often appear as step edges or ridge edges. 

The aim of image processing and image segmentation is to auto-tracing rock fractures, 

which is one of the most difficult tasks in image processing and image segmentation, due to 

the complicated properties on the rock surface. 

Segmentation algorithms for monochrome images are generally based on one of two basic 

properties of gray-level values: discontinuity and similarity. In the first category, the 

approach is to partition an image based on abrupt changes in gray level.  

An edge, in the image analysis literature, is a jump in intensity. The cross section of a so-

called ideal edge has the shape of a ramp: infinite slope and flat portions on either side of 

the discontinuity. In smoother versions of the ideal edges, the first derivative (in appropriate 

direction) assumes a local maximum at a so-called edge point or edge pixel. A well-known 

edge detector of this type is the Canny edge detector, locating local maxima in gradient 

magnitude (=steepest slope). However, in our case we are more interested in another class 

of detectors, for example, those known as ridge detectors in the image analysis literature. A 

ridge can be simply thought of as a double edge (a bar edge). Between the step parts there is 

a narrow plateau or peak. 

Sometimes, ridge detectors are expressed as follows: a bright (dark) ridge point is defined a 

point for which the intensity assumes a local maximum in the main principal curvature 

direction. 

3.2.1 Ridge detection 
The reported valley-edge detection algorithm in Wang and Bergholm (2003)/ 34/ , may be 

used as a ridge detector. A valley-edge detector tries to detect the lowest valley point in a 
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certain direction. If it is, the pixel is used as the valley-edge candidate, and its direction and 

location are marked, for further processing to form a valley-edge, by thinning and tracing 

procedures. 

In Fig. 15a-b, when examining a pixel p, check the four different directions shown in the 

figure, to determine whether p is the valley-edge point or not. As an example, a small kernel 

valley-edge detection function runs as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The diagram for valley-edge detection algorithm, Wang and Bergholm (2003). 

In the 0o direction:   

If ( ) ( ), 1,f x y f x y< − , then ( ) ( )0
1 1, ,F f x y f x y= − − , 

If ( ) ( ), 1,f x y f x y< + , then ( ) ( )0
2 1, ,F f x y f x y= + − , 

If ( ) ( ) ( ) ( )1, 2, 1 2, 2, 1f x y f x y f x y f x yα β γ− < − − + − + − + , then 

( ) ( ) ( ) ( )0
3 2, 1 2, 2, 1 1,F f x y f x y f x y f x yα β γ= − − + − + − + − − , 

If ( ) ( ) ( ) ( )1, 2, 1 2, 2, 1f x y f x y f x y f x yα β γ+ < + − + + + + + , then 

( ) ( ) ( ) ( )0
4 2, 1 2, 2, 1 1,F f x y f x y f x y f x yα β γ= + − + + + + + − + ;  

And similar expressions in the 450, 900 and 1350 directions. 

In the directionθ, calculate the following sum:   

  1 1 2 2 3 3 4 4T w F w F w F w Fϑ ϑ ϑ ϑ
ϑ = + + +  

θ=00, 450, 900 and 1350  ; wi(i=1,2,3,4) are weights, e.g. w1 = w2 = 1.2, w3 = w4 = 0.8. 

Tmax =max(TO, T45, T90, T135 ).  If Tmax is greater than a threshold T, the detected point will be 

marked as a valley-edge candidate.  

The distance L (in the above formula, L = (i+1)-i = (j+1)-j=1)) is pre-determined based on 

image resolution and quality, and smoothing is done prior to valley-edge detection.  

The details of the algorithm can be found in Wang et al. (2003)/ 34/ , here we merely stress 

that for each direction two values are calculated, and two values are obtained, f1 and f2 

(=two 2nd differences at two scales). A weighted sum of these (in e.g. the 135 degree 

direction) is: 

After valley-edge detection, a post-processing subroutine must be added. In the post-

processing subroutine, several functions are used, such as thinning, bridging of small gaps, 

and removal of short curves or lines (refer to Figs. 16-17). 
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Fig. 16. Example 1 of fracture tracing by the new algorithm. The top-left image is original 

image, the top-right image is inverted and enhanced image, the bottom-left image is a 

magnitude image by Robert edge detector, and the bottom-right image is the result image. 
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Fig. 17. Example 2 of fracture tracing by the new algorithm. The left image is original image, 

the middle image is a magnitude image, and the right image is the result image. 

3.2.2 Multiple scales 
Multi-scale representations are more or less related to scale-space theory, notably the 

theories of pyramids, wavelets and multi-grid methods. We will not describe and discuss the 

theory, the detailed information can be found in / 35-37/ . For the complicated rock fracture 

images, the methodology is very useful as we tested. 

If most fractures in an image are very thin, the fine-detail information in the image is very 

important for fracture tracing, and the algorithm must avoid destroying the information. On 

the contrary, if fractures are thick, it is necessary to remove the detailed information on the 

rock surface, because it may produce a lot of fault fractures. In general, it is an image 

processing tool that the multiple scale technique makes image structures at coarse scales 

corresponding to simplifications of corresponding structures at fine scales. 

By using the knowledge of multiple scales, we combine the valley edge detection results of 

different scale images, and have a promising fracture tracing result which is difficult to be 

obtained by using other methods. A gray scale fracture image of 734x596 pixels is presented 

in Fig. 18(a); its fracture tracing result is in Fig. 18(b). In Fig. 18(a), the noise edges randomly 

distributed on the whole image surface, and thick fracture cannot be detected properly by 

 

  

                                       (a)                                                                               (b) 

Fig. 18. One example of rock fracture images: (a) Original image of resolution 734x596; and 

(b) Fracture tracing result. 
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using just valley edge detection. The fracture mapping result is processed based on the 

combination of multiple scales and our valley edge detection methods. The question is how 

to scale the image into different scale levels here, in the following; we will give a brief 

description of the question. 

The image scale is reduced. Let 1,...,x n= , 1,...,y m= , and ( ),f x y  is the original image. 

Then 

( ),k kf x y , 1,..., / 2k
kx n= , 1,..., / 2k

ky m= , k = 1, 2, 3, 4,… 

where, k K≤ , 2Km≥ , 2Kn ≥   

 

     

             (a)                           (b)                             (c)                            (d)                             (e) 

Fig. 19. Shrink image three times on the image in Fig. 18(a): (a) Maximum filter; (b) Odd 

lines; (c) Average filter; (d) Middle filter; and (e) Minimum filter. 

To obtain valuable scaled ( ),k kf x y , we tried several image shrink methods (e.g. used 

Gaussian, average, medium, adaptive, maximum and minimum etc. filters). The figure 6 is 

one of the examples to show the differences among the rock fracture image shrink methods. 

In figure 19, since fractures in Fig. 18(a) have low gray values, Maximum filter (in original 

image, choose maximum gray value pixel, of four neighboring pixels, as a new pixel in the 

shrink image) eras thin fractures, on the contrast, Minimum filter make fractures sharpen, 

but the noise are sharp too. In our case, we use Minimum filter to shrink image for three 

times, then smooth the scaled image by a Gaussian filter. 

One of typical examples is shown in Fig. 20. The original image has a rough surface with 

thick fractures, if the developed ridge detection and fracture tracing algorithms are directly 

used without image scale operations, the detection result will include a lot of fault fractures. 

When we shrink the original image one time, the detection result will be better. The best 

detection result is in Fig. 20(d), where, we shrink the image for three times before ridge 

detection and fracture tracing. 

3.2.3 In conclusion 
For this study, we have developed a number of algorithms for image processing and 

segmentation, especially for rock fracture images. The presented fracture detection algorithm 

is the robust for ridge edge detection and fracture tracing, but for the rough surface with thick 

cracks or fractures, using multi-scale technology can allevate producing noise fractures. The 

next step of work is to use nural network and statistics / 38-41/  to calssify images into different 

classes, then use pyramid methods to divide original image into several scale levels, to use the 

detection algorithm with different parameters to detect fractures. 

3.3 Fractional differential algorithms 
It is a new research topic that fractional differential theory is used into image processing. We 

a new type of algdeveloped new algorithms to improve the fractional differential Tiansi  
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                                         (a)                                                                          (b) 

 

  

(c) (d) 

 

Fig. 20. Valley edge detection result: (a) Image of resolution 734x596; (b) Image of resolution 

367x298; (c) Image of resolution 183x149; and (d) Image of resolution 91x74. 

 

operator, which can significantly enhance the edge information. The studied algorithms are 

based on the enhancement ability of fractional differential to rock fracture image details, and 

they can be used to analyze the mechanism of fractional differential. The general procedure of 

the algorithms is as follows: Firstly, Tiansi template is divided into eight sub-templates with 

different directions around the detecting pixel, and then eight weight sum values for the eight 

sub-templates are obtained. Furthermore, those eight weights are classified into different 

groups. In this way, the three improved algorithms with different enhancing ranges are 

obtained. Finally, the experiments of edge enhancement show that the improve algorithms can 

enhance edge information more effectively and can show much more detailed information 
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than traditional edge detection operators especially for the image segmentation of complicated 

rock fracture images. The detailed information can be found in reference [42]. 

3.4 Rock fracture detection based on quaternion convolution by scale multiplication 
In order to suppress the noise, the dot product is computed at adjacent scales. At the same 

time, we apply gray-level difference to obtain the monochromatic edges. To merge the 

merits of the quaternion convolution and the gray-level difference, the two results are used 

at the same time. Finally, the thinned edges can be obtained by using modulus maximum 

suppression. Experimental results show that the algorithm is efficient and robust for rock 

fracture edge detection. 

In this study, we firstly presented the rock fracture image acquisition method. Since the 

width and color of the fracture vary much, it is usual that there are many gaps on one crack 

or fracture. This study use quaternion convolution for rock fracture edge detection. When 

the pixels are chromatic, the quaternion convolution is more efficient than other methods. At 

the same time, we use the gray-level image to obtain the monochromatic edge points. Then 

thinned edges can be obtained by using modulus maximum suppression. Experiment 

results show that the method is both efficient and robust. The detailed information is in 

reference [43]. 

3.5 Rock fracture edge detection based on Wavelet Analysis 
Wavelet analysis is internationally recognized up to minute tool for analyzing time 

frequency. This study discusses the technique of image processing based on wavelet 

transform. 

There are many methods to obtain the rock fracture images. The inner fractures image can 

be obtain using ultraviolet and the external fractures image can be obtain using visible light. 

The methods are efficient and low cost. 

To detect the ultraviolet image fractures, we presented an algorithm based on multiscale 

wavelet transform. After obtain the gray scale images, the image can be split to three types 

of area: the black, the white and the transitional area. The edge detection can be enhanced 

and the noise can be reduced by scale multiplication. The method is useful not only for rock 

fractures detection but for other images edge detection. 

The color images are acquired using visible light and the fractures are more complicated. 

This paper presents the fracture detection algorithm based on quaternion convolution. After 

the color image is convoluted using different scale quaternion operators, the dot product is 

applied. At last, the edge map is obtained using modulus maxima suppressed. 

Because of the color image is noisy and the ultraviolet image is clear edge, the better idea is 

fuse the two types of images. After the color image is transformed to IHS color space, the 

edge information is fused in different areas. The fused image is more using for image 

processing. The interested readers can refer to [44]. 

3.6 Rock fracture tracing based on image processing and SVM 
This study presented a new methodology for automated rock fracture trace detection, 

description and classification based on automated image processing techniques and support 

vector machine (SVM). The developed procedure uses a series of photographs of a rock face 

which were taken by sophisticated CCD cameras. All digital image are be processing by the 
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developed algorithm, and fracture traces extracted from the processed image are then 

identified and categorized by SVM. The proposed procedure has been tested by detecting 

fracture and classifying the fracture traces. Results show that the approach is useful and 

robust... 

The aim of this study is to present a novel, automated and robust methods for rock fracture 

tracing. Image processing technology is used to get high quality of image segments for 

recognition. Support vector machine is introduced into the rock fracture classification for the 

first time in this field. Although the methods didn’t achieve the expect performances, there 

are a lot of advantages compared with the current technology. 

SVM is very promising to tackle complicated problems in rock fracture trace recognition 

and it could be enlarged to more complex structures in future research. As a reliable 

technique to identify fracture traces in practice, this method should be tested in more 

real measurement cases. And for further work, a SVM image segment and recognition 

system can be constructed. The detailed description for this study can be found in 

reference [45]. 

4. Conclusions and suggestions  

1. For this study, we have developed and collected a number of algorithms for rock 

fracture image processing and segmentation.  

2. A number image preprocessing algorithms have been discussed and compared. 

3. Several auto-thresholding algorithms have been studied and compared, and the BCV or 

OPT algorithms are considered satisfactory for the rock fracture images in this testing 

stage roughly analysis of rock fracture network properties). 

4. Except for the thresholding algorithms, a region based segmentation algorithm is also 

tested for BIPS images. 

5. The developed edge detection algorithms are robust for ridge edge detection and 

fracture tracing. It has been tested for the images of single fracture and fracture 

network, it is promising, and it may need more tests further. 

6. For difficult images (where cracks and fractures are difficult to distinguish due to either 

minerals or shadows etc.) and images with wide fracture apertures, using multi-scale 

technology can alleviate producing noise fractures.  

7. The next step of work needs to create an auto preprocessing procedure to all the rock 

fracture images first, then, to modify the developed threhsolding, region based and 

edge based image segmentation algorithms, make them to fit for our rock fracture 

images respectively. 

8. Finally to use neural network, fuzzy logic, wavelet/ 38-41/  and artificial intelligence 

technologies to classify images into different classes, then use pyramid methods to 

divide original image into several scale levels, to use the fusion of the different 

detection algorithms to setup a fracture image segmentation procedure, and to auto-

detect rock fractures. 

Anyhow, the different rock fracture images need different image segmentation 

algorithms. Since rock fracture images are so different that they cannot be segmented by 

only one image segmentation algorithm. In this chapter, eight different image 

segmentation algorithms are studied and developed for rock fracture images, one of the 
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algorithms is suitable for one or several types of rock fracture images, but not for all the 

types of images. In the future work, the algorithms will be further studied and tested, 

then, one image segmentation system will be constructed by several image segmentation 

algorithms that are selected based on a neural network system, for a processing image of 

rock fractures.  
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