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1. Introduction   

The analysis of satellite imagery of natural scenes presents many unique problems, and it 
differs from the analysis and segmentation of urban, commercial, or agricultural areas. 
Natural scenes are not structured and cannot be represented easily by regular rules or 
grammars. The appearance of natural objects can vary greatly based on the geographic area, 
the season, the current weather conditions, or the past weather conditions (Soh & Tsatsoulis, 
1999). 
Segmentation is defined as the process that partitions an image into regions that are 
homogeneous according to given criteria (Gonzalez & Woods, 2008). Image segmentation is 
typically used to locate objects and identify boundaries. A number of problems in remote 
sensing require the segmentation of natural spectral classes such as water bodies, clouds or 
forested areas (Lira, 2006). 
A wide variety of image segmentation methods may be found in the literature (Cheng et al., 
2001; Pal & Pal, 1993). The most popular techniques are those based on gray level 
thresholding, including global thresholding (e.g. Otsu’s method) or using local information 
(e.g. co-occurrence matrix). Another class of methods comprise segmentation obtained 
through the detection of edges, including those based on parallel differential operators (e.g. 
Sobel gradient) and the Canny’s method (Canny, 1986). There are also methods that are 
based on finding the regions directly on the image domain (pixel values), where the region 
growing and region split-and-merge approaches are some of the available procedures 
(Gonzalez & Woods, 2008). The segmentation using morphological watershed is another 
approach, based on the feature space (the watershed transform of the image), and it is 
particularly attractive because it combine positive attributes of the methods previous 
referred (Gonzalez & Woods, 2008). 
The coastal areas are zones of primary importance from human and ecological points of 
view. More than half of the world population lives at less than 100 km from a coast, which 
express the importance of coastal areas from the human point of view. The same occurs 
from the ecological point of view, since coastal zones are areas of strong interactions 
between the biosphere, atmosphere, and hydrosphere. An estuary is a partially enclosed 
body of water, where freshwater from rivers and streams flows into the oceans, mixing with 
the seawater. Estuaries and the lands surrounding them are places of transition from land to 
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sea, and from fresh to saltwater. Estuarine outflow plumes are important coastal processes 
whose variable nature can make it difficult to monitor using traditional ship-based surveys. 
Plumes are a mixture of fresh water and river sediment load, with some dilution caused by 
currents. The river plumes are turbid and carry a high load of suspended sediments. Since 
these suspended sediments can be associated with nutrients, pollutants and other materials, 
it is of crucial importance to remotely survey their dispersal in order to assess the 
environmental quality of the regions surrounding river mouths.  
The main idea of this chapter is to describe and evaluate different segmentation methods, in 
order to accurately extract two different estuarine/coastal features: river plumes and sand 
spits. 
Several studies typically use a threshold value for determining the plume boundaries (e.g. 
Otero & Siegel, 2004). Dzwonkowski & Yan (2005) employed a gradient approach (MODIS 
and SeaWiFS data) on account of previous observations of physical differences (e.g. salinity) 
between the estuarine outflow and the ambient water. Valente & Silva (2009) used three 
years of MODIS-Aqua normalized water-leaving radiance to study Tagus estuary turbid 
plume. In the previous examples, the turbid plume was detected only by the backscattering 
characteristics of the surface waters in the vicinity of the estuary mouth. Nezlin et al. (2005) 
used SeaWiFS images to analyze the spatial-temporal dynamics of plumes in the San Pedro 
Shelf (California) and identified the factors that influence the incidence and dispersal 
patterns of plumes. Lira et al. (1997) developed a methodology to characterize the spatial 
distribution of suspended sediments in Pánuco river plume (Gulf of Mexico) employing 
remote sensing and pattern recognition techniques. Several attempts to segment specific 
spectral classes, as open water bodies, have been reported in the literature (Lira, 2006; 
McFeeters, 1996; Daya-Sabar et al., 1995).  
A spit is a ridge or embankment of sediments attached to the land at one end, with the other 
ending in open waters, being younger than the land to which it is attached. The body of the 
spit extends from the land outward for some distance above the water. The size and shape 
of recurves depends on the space available on the inner side of a growing spit (Bird, 2008). 
The evolution of many spits has been modified by the addition of artificial structures. Sand 
spits are ecosystems of great biological interest. Therefore, environmental monitoring using 
remote sensing data and image processing algorithms is essential for assessing the local 
changes in this area. 
A water body is a region (or area) limited by a well-defined topographic boundary. A sand 
spit does not present a well-defined topographic boundary. Moreover, the boundary is not 
static in time, as the majority of the water bodies. Therefore, the extraction of a sand feature 
from a water environment (e.g. an estuary) is a complex task and the segmentation 
techniques developed should be different in several aspects that those applied and 
optimized for the river plumes extraction.  
This chapter aims to address the problem of segmentation of water bodies and sandy bodies 
in an estuarine/coastal environment, in order to accurately extract them through satellite 
data, allowing for further boundaries delineation. Different segmentation algorithms were 
applied and developed/optimized in order to correctly determine the features boundaries 
and accurately estimate the river plume size and sand spit area. Although the only 
considered attribute as output was the dimension, other attributes may be obtained from the 
segmentation result. The use of different types of satellite data (raw images and satellite 
products) is also a challenge and an important contribution of this work. 
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2. Methodology 

The selection of the segmentation approach used to extract an estuarine/coastal 
environmental body, from remote sensing images, should account for the type of feature to 
be extracted. A flowchart which illustrates the proposed approaches is provided in Fig. 1. A 
concise characterization of the study area and the satellite data used in this work is given in 
section 2.1 and corresponding subsections. The procedures applied for the extraction of river 
plumes and sand spits dimensions are briefly described in the section 2.2 and section 2.3, 
respectively.  
 

 

Fig. 1. Flowchart of the developed segmentation approaches for the extraction of river 
plumes and sand spits.  

2.1 Study area and satellite data 
The study area chosen in this work was the Douro River Estuary (Fig. 2). Douro is a granitic 
drowned valley river (927 km), draining to the N-W shore of Portugal. The Douro river 
basin is the largest hydrographical basin in the Iberian Peninsula (97,682 km2). Its estuary is 
located in the Western Portuguese coast, subject to the North Atlantic meteorological and 
hydrodynamic conditions.  
Two thirds of the river mouth are protected by a very dynamic sand spit (Cabedelo), 
creating a micro-ecosystem of great biological interest. Cabedelo sand spit is a very dynamic 
morphologic structure. This sand spit has an average length of 800 m, an average width of 
300 m and an area that usually range between 220 000 and 270 000 m2. The Cabedelo acts as 
a barrier, protecting the estuary banks from waves, especially during storms. In the last 
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decades, the protection function of the sand spit has been reduced, especially due to the 
retreatment to the interior of the estuary. Therefore, two breakwaters were constructed 
(between 2004 and 2007) to stabilize the river mouth.  
 

 

Fig. 2. Study area location in the Portuguese west coast (adapted from Portela (2008)) 

As previously mentioned and illustrated in Fig. 1, the considered type of satellite data 
depends on the features to be extracted. Accordingly, MERIS data and IKONOS-2 images 
are briefly addressed in the following (2.1.1 and 2.1.2, respectively). 

2.1.1 MERIS data 
In mid-2002 the European Space Agency (ESA) launched the MERIS (MEdium Resolution 
Imaging Spectrometer) hosting satellite ENVISAT. MERIS is an imaging spectrometer that 
measures the solar radiation reflected by the Earth, at a ground spatial resolution of 300 m, 
in 15 spectral bands (390 - 1040 nm), programmable in width and position, in the visible and 
near infrared. The primary mission of MERIS is the measurement of sea color in oceans and 
coastal areas. Knowledge of the sea color can be converted, for instance, into a measurement 
of total suspended matter (TSM) concentration. The algorithm of the ground segment of 
MERIS, used to retrieve the TSM concentration from spectra of radiances and reflectance of 
coastal waters, is an inverse modeling technique, carried out by an artificial neural network 
(Doerffer et al., 1999; Schiller & Doerffer, 2005). The TSM concentration is expressed as a 
concentration in g/m3 or Log10 (g/m3) with a valid range between 0.01-50.00 g/m3.  
The particulate backscatter at 442 nm is deduced from the water-leaving reflectance 
spectrum and converted from optical units (backscatter in m-1) to geophysical units 
(concentration in g/m3), using a fixed conversion factor (equation 1), derived for 
measurements on water samples using a GF/F filter. The TSM concentration for all the 
scenes is given by the following equation (1): 
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 Log10(TSM)=Scale*DV+Offset (1) 

where DV is the digital value (no physical significance) for each pixel, the scale value  is 
0.015748031437397003 and the offset value is -2.01574802398681 (European Space Agency, 
2007). The TSM concentration retrieved from one MERIS scene considered in this study is 
illustrated in Fig. 3. 
 

 

Fig. 3. TSM concentration retrieved from one of the considered MERIS scenes (08/03/2003). 

In this study, a first dataset (assigned hereafter as “Dataset A”) composed by 21 MERIS Full 
Resolution scenes (level 2 data) from March 2003 to January 2005 was considered (data 
provided by ESA), after the rejection of MERIS scenes that present: more than 10% cloud 
cover or invalid TSM quality flag; errors in the acquisition process (data corruption); or 
incoherent related river flow data. The number of scenes in each individual month is highly 
variable, from zero (e.g. August 2003) to 4 (June 2003). The most represented months in the 
considered three years (2003-2005) are May, June and September. Concerning the year 
distribution, the coverage in 2003 and 2004 was almost uniform, but in 2005 only one scene 
was available (Teodoro et al., 2008). 
In the work developed by Teodoro et al. (2009), it was suggested that the accuracy could be 
improved by increasing the dataset. Additionally, a complete seasonal study of the Douro 
river plume would be interesting, for which a one year window of MERIS data is required. 
Therefore, a project was submitted to ESA in order to acquire a one year window (one 
hydrologic year) of MERIS data. A total of 107 MERIS scenes were considered, between 
August 2008 and October 2009 (“Dataset B”). No previous selection was performed. All the 
MERIS scenes available for this period were considered. The future data exclusion criteria will 
be based in the atmospheric conditions and in problems associated to the segmentation stage, 
as described in the section 4.1.2. Due to the fact that breakwaters were constructed between 
March 2004-2007 in the study area, these two datasets (A and B) were analyzed separately. 

2.1.2 IKONOS-2 images 
As already referred, one of the main objectives of this study was to extract the boundaries 
between Douro river and Cabedelo sand spit, and consequently estimate the sand spit area. 
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Therefore, the use of high spatial resolution satellite data is required. Six IKONOS-2 images 
were used in this study, acquired between 2001 and 2007, under the scope of the ESA project 
Earth Observation Program, Category 1 (ID#5899). IKONOS-2 is able to collect black-and-
white (panchromatic) images with approximately 1-meter resolution and multispectral 
imagery with 4-meter resolution. The IKONOS-2 orbit altitude is approximately 681 km and 
inclined 98.1º to the equator, providing sun-synchronous operation.  The main IKONOS-2 
data specifications are given in Table 1. 
 

Band 
Spectral Range 

(μm) 
Spatial resolution 

(m) 
Swath width 

(km) 

Panchromatic 0.45-0.90 1 

Band 1 (blue) 0.45-0.53 

Band 2 (green) 0.52-0.61 

Band 3 (red) 0.64-0.72 

Band 4 (near infrared) 0.77-0.88 

4 
 

11.3 

Table 1. IKONOS- 2 data specifications: spectral range, spatial resolution and swath width. 

The data were full 11-bit radiometric resolution and were geo-referenced to the Universal 
Transverse Mercator (UTM) coordinate system, Zone 29 North, World Geodetic System 1984 
(WGS84). Information about the time of acquisition, cloud cover, sun angle elevation and 
nominal collection elevation, is given in Table 2.  
 

Date 
(yyyy/mm/dd) 

Acquisition 
time (GMT) 

Cloud cover 
(%) 

Sun angle 
Elevation (º) 

Nominal 
collection 

elevation (º) 

2001/12/24 11:44 0 24.54 69.58 

2004/06/03 11:43 0 68.66 72.90 

2004/07/31 11:55 6 64.61 61.97 

2005/06/03 11:39 0 68.36 84.51 

2005/09/18 11:36 0 49.01 71.7 

2007/06/06 11:39 0 68.42 78.56 

Table 2. Information related to the 6 IKONOS-2 images: date and time of acquisition, cloud 
cover, sun angle elevation and nominal collection elevation. 

According to Helder et al., (2003), it appears to be a relationship between satellite elevation 
angle and geometric accuracy. It was found that higher elevation angles tend to result in 
lower root mean square error (RMSE). The relationship suggests that satellite elevation 
angles above 75° tend to maximize the geometric accuracy of the IKONOS-2 product. 
Terrain correction, even for a relatively ‘flat’ site (as the sand spit), improved RMSE values 
at lower satellite elevation angles (Helder et al., 2003). Since the nominal collection elevation 
values are mostly near or above 75º, there was no need to perform any terrain correction. 

2.2 River plumes 
As referred before, the MERIS product used in this research provides a suspended 
sediments concentration image, which allows for the extraction of objects corresponding to 
river plumes. A saturation of the TSM concentration values (50 g/m3) is verified for most of 
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the MERIS scenes, in the coastal waters (Case 2 waters). Figure 3 provides a selected 
window from MERIS data where the Douro river plume is visible. The proposed 
segmentation approach for the extraction of river plumes is based on an initial filtering, 
followed by one of the two addressed segmentation methods: region-based and watershed. 
The methodology will be briefly described in the following, and further details may be 
found in (Teodoro et al., 2009). 

2.2.1 Initial filtering and segmentation 
An initial filtering step is required in order to avoid noise and to smooth the image (and 
consequently the plume), which is based on a median filter with a 10x10 pixel window. The 
next and crucial step of the methodology is the segmentation stage. Two different 
segmentation methods were applied: watershed segmentation using gradients and region-
based (region growing) segmentation. 

2.2.1.1 Region-based segmentation 

Region-based methods assume that neighboring pixels within the same region should have 
similar values, e.g. intensity, color and texture (Tremeau & Bolel, 1997; Hojjatoleslami & 
Kittler, 1998). Region growing is a procedure that groups pixels or subregions into larger 
regions based on predefined criteria for growth. The basic approach is to start with a set of 
“seed“ points, and these regions grow by appending to each seed those neighboring pixels 
that have predefined properties similiar to the seed (specific ranges of intensity or color). 
The selection of similarity criteria depends not only on the problem under consideration, but 
also on the type of image data available (e.g. color, texture). The stopping criteria for this 
procedure is when no more pixels satisfy the criteria for inclusion in that region. Additional 
criteria that increase the power of region growing algorithm  utilize the concept of size and 
the shape of the region being grown (Gonzalez & Woods, 2008). 

2.2.1.2 Watershed-based segmentation 

The major idea of watershed segmentation is based on the concept of topographic 
representation of image intensity. The gradient magnitude of an image is considered as a 
topographic surface for the watershed transformation. Watershed segmentation also 
embodies other principal image segmentation methods including discontinuity detection, 
thresholding and region processing (Gonzalez & Woods, 2008). Because of these factors, 
watershed segmentation displays more effectiveness and stableness than other 
segmentation algorithms. As already referred, the basic concept of watershed is based on 
visualizing a gray level image into its topographic representation, which includes three 
basic notions: minima, catchment basins and watershed lines. The objective of watershed 
segmentation is to find all of the watershed lines (the highest gray level). The most intuitive 
way to explain watershed segmentation is the Immersion Approach (Chen et al., 2004).  An 
efficient algorithm to implement this approach proposed by Vincent & Soille (1991) involves 
two steps: the first one is called “sorting step” and the other is called “flooding step”. 
Watershed segmentation produces good results for gray level images with different minima 
and catchment basins. For binary images, however, there are only two gray levels 0 and 1 
standing for black and white. If two black blobs are connected together in a binary image, 
only one minimum and catchment basin will be formed in the topographic surface. The 
direct application of the watershed segmentation algorithm generally leads to over-
segmentation of an image due to noise and other local irregularities of the gradient. 
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Therefore, it is recommended to smooth the image before starting the watershed 
segmentation, which is performed through the initial filtering step previously described. 

2.2.2 Comparison of the region-based and watershed-based methods 
The considered segmentation methods differ in the sense that region-based segmentation is 
based on the image domain (pixel values), whereas watershed segmentation is based on the 
feature space (the watershed transform of the image). An example of a segmentation result 
using these two approaches for the same MERIS scene is given in Fig. 4.  
 

 

Fig. 4. Plume identification using image segmentation: watershed using gradients obtained 
through Sobel operator (left); region-based segmentation using a seed value of 225 and a 
threshold of 30 (right). 

Although the segmentation results obtained from the application of these two approaches is 
different, they should be (linearly) related in some manner, since the segmentation is related 
to the same object. Fig. 5 illustrates a linear dependence between these two approaches, 
 

 

Fig. 5. Scatterplot of the region- and watershed-based segmentation values presented in 
Table 3. The solid regression line is defined as y=9241.77+1.00x (r=0.57 with p-value=0.007), 
and is associated to the 21 points. The dashed regression line is defined as y=8930.85+0.83x 
(r=0.71 with p-value=0.001), and is associated to the remaining 19 points obtained after 
excluding the two higher values of region-based segmentation (images of 18-06-2003 and 14-
05-2003). 
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supported by a positive and significant correlation of 0.71 between them, where the slope of 
the regression line is 0.83. This reinforces that, although the shape of the plume is different 
when using these two segmentation approaches, they produce similar plume sizes related 
by a scale ratio (0.83 in this example). 
This procedure of extracting the river plume object through image segmentation techniques 

has important practical applications. For instance, the reduction of the river sediment 

supply may be one of the main causes of the erosion process that has been affecting the 

Portuguese Northwest coast. The relationship between the river plume size and Cabedelo 

sand spit area is another challenge of this analysis. 

2.3 Sand spits 
Two segmentation approaches are addressed for the extraction of sand spits from high 

spatial resolution images, which are different from those previously described for river 

plumes extraction. The first is a new proposed methodology and is based on global 

thresholding refined through detected edges, whereas the second approach consists in a 

multiresolution segmentation (object-based). The segmentation approaches are applicable to 

a single band image, for which the NIR or panchromatic bands of the IKONOS-2 images are 

the most adequate. The NIR is the spectral band which provides better contrast between 

water and land, whereas the panchromatic band has the advantage of providing a better 

spatial resolution, and consequently a more accurate delineation of the sand spit. Several 

aspects regarding the application of these techniques should be taken into account, which 

are addressed in detail in the following. 

2.3.1 Global thesholding refined through detected edges 
The proposed approach for the extraction of sand spits is a new methodology, which 

presents considerable potential for later automation in the future. It consists on histogram 

global thresholding of the original image through the Otsu method (Otsu, 1979), followed 

by a refinement through detected edges. Different approaches for edge detection were 

tested and are addressed in the following.  

2.3.1.1 Global thresholding 

The histograms of IKONOS-2 images, representing a sand spit and a small neighborhood, 

are typically associated to a mode on a histogram with bimodal distribution (an example is 

illustrated in Fig. 6a and Fig. 6b). The Otsu’s method is a nonparametric and unsupervised 

method of automatic threshold selection for image segmentation, having particular 

importance under the scope of bimodal histograms (Otsu, 1979).  It assumes that only the 

gray-level histogram of the image is available, without other a priori knowledge, allowing 

for an unsupervised segmentation of an image. It is based on dichotomizing the pixels of the 

image, transforming the original image to a binary image. The determination of the optimal 

threshold k* is performed through an approach based on probabilities computation. It is 

followed by the computation of discriminant criterion measures (or measures of class 

separability), generally consisting on finding the gray level k* for which a discriminant 

function η(k) corresponds to its maximum. It is equivalent to maximize the separability of 

the resultant classes in the binary image. This method is widely known, and further details 

may be found in (Otsu, 1979). An example of global thresholding is illustrated in Fig. 7a, 

regarding the image in Fig. 6a.  
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(a) (b) 

 

(c) (d) 

 
 
 
 
 
 
 

Fig. 6. (a) Panchromatic band of the IKONOS-2 image from 2005/06/03; (b) Histogram of 
the image in (a), with k*= 58 and η(k*)= 0.735; (c) Panchromatic band of the IKONOS-2 
image from 2004/06/03; (d) Histogram of the image in (c), with k*= 77 and η(k*)= 0.605. 
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(a) (b) 

 

(c) 

Fig. 7. (a) Global thresholding of the image in Fig. 6a through the Otsu’s method; (b) Edges 
of the image in Fig. 6a obtained through the Canny edge detector; (c) Final extraction of the 
sand spit in Fig. 6a, through the refinement of the global thresholding in (a) through the 
edges represented in (b). 

2.3.1.2 Edges detection and segmentation refinement 

The previous step of global thresholding allows for an initial segmentation of the image. 
However, the sand spit is frequently still linked to other regions of the image, or to spurious 
pixels. Therefore, there is the need to perform a refinement on the result of the global 
thresholding, separating the sand spit from other parts of the image. A refinement of the 
sand spit delineation is proposed, performed through the application of a binary image 
obtained from detected edges. Several edge detection methods may be found in the 
literature, where the Sobel and Canny methods are among the most known (Gonzalez & 
Woods, 2008). The Sobel is mainly based on computing the partial derivatives ∂f/∂x and ∂f/∂y 
of the image, through the application of filter masks, returning edges at those points where 
the gradient of the image is maximum. The Canny edge detector is a more complex 
algorithm, and is based on three basic objectives: low error rate; edge points should be well 
localized; and single edge point response. Further details of this algorithm may be found in 
Canny (1986). Based on our experiments, the Canny edge detector, with a standard-
deviation of the Gaussian filter equal to 0.5, presented better performance. Therefore, the 
edges used for further segmentation refinement are obtained in this manner. The edges 
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computed by the Canny edge detector are then used on a clipping operation of the 
segmentation previously obtained on global thresholding. In the case that more than one 
region is produced, and accepting the initial assumption that the considered scene only 
covers the sand spit and a small neighborhood, the object with largest area is assumed to 
correspond to the sand spit. As a final segmentation step, the segmentation is improved 
through a morphological operation, consisting on filling the holes of the segmented object. 
An application example of the Canny edge detector is provided in Fig. 7b, and the final 
result is illustrated in Fig. 7c. 

2.3.1.3 Evaluation of the global thresholding quality 

The global thresholding becomes a simple and useful approach for extracting sand spits, in 
the case that the histogram of the image presents a bimodal shape. The adequacy of the 
image to global thresholding using the Otsu’s method may be evaluated through the 
effectiveness metric η(k) proposed in (Otsu, 1979), where k is the gray level. The measure 
η(k) is always smooth and unimodal, assumes values between 0 and 1, and the optimal gray 
level k* for thresholding the image corresponds to the maximum of η(k). The segmentation 
will be more meaningful as long as η(k*) is near from 1. In Fig. 6 two panchromatic bands of 
different IKONOS-2 images are illustrated, together with their corresponding histograms 
and values of η(k*). 
An example of 15 combinations of the sand spit area estimation error and their corresponding 
values of η(k*) is illustrated in Fig. 8. This example also provides an example of a possible 
criterion to be defined (dashed lines representing an acceptance region), which allows for 
automatically reject those segmentations which may lead to errors higher than 10%. Further 
research on this topic may allow for defining objective criteria, in order to evaluate whether an 
IKONOS-2 image is or not adequate for global thresholding, prior to its application. 
 

 

Fig. 8. Effectiveness metric η(k*) of Otsu’s method as a function of the error obtained in the 
sand spit area estimation, considering the four bands of the 6 IKONOS-2 images described 
in Table 2, which led to sand spit area estimates with an error below 20% (n=15). The dashed 
lines represent a possible validation threshold based on η(k*) values higher than 0.68, 
regarding the achievement of errors below 10%. 
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2.3.2 Multiresolution segmentation 
The second approach was based in the multiresolution segmentation method (followed by 
image-based classification in eCognition® software). The multiresolution segmentation 
groups areas of similar pixel values into objects. Consequently homogeneous areas result in 
larger objects, heterogeneous areas in smaller ones. In multiresolution segmentation, the 
homogeneity criterion is used to determine which heterogeneity attributes of image objects 
are to be minimized as a result of a segmentation run. Three criteria are used to describe 
image object heterogeneities:  color,  smoothness and compactness (Baatz et al., 2001). The 
smoothness and the compactness criteria are additionally summarized to the shape 
criterion. The composition of the entire homogeneity criterion based on the specific criteria 
can easily be defined by assigning weights to each of the specific criteria. The 
multiresolution segmentation algorithm consecutively merges pixels or existing image 
objects. Thus it is a bottom-up segmentation algorithm based on a pairwise region merging 
technique. Multiresolution segmentation is an optimization procedure which, for a given 
number of image objects, minimizes the average heterogeneity and maximizes their 
respective homogeneity. Scale parameter determines the average image object size and is an 
important parameter of this algorithm. The scale parameter is used to determine the upper 
limit for a permitted change of heterogeneity throughout the segmentation process (Rahman 
& Saha, 2008). By applying different scale parameter and color/shape combinations, the 
user is able to create a hierarchical network of image objects (Baatz et al., 2001). After 
segmentation, all image objects are automatically linked to a network in which each image 
object knows its neighbors, thus affording important context information for the 
classification step. In the second step the image segments are classified by generating class 
hierarchy, which is based on fuzzy logic (Rahman & Saha, 2008). 

3. Results and discussion 

The previously mentioned image segmentation techniques were applied to extract the 
Douro river plume and Cabedelo sand spit, both located in the Douro river, city of Porto, 
Portugal. 

3.1 Douro river plume 
With respect to the extraction of the Douro river plume, as previously mentioned in 2.1.1, two 
datasets presenting different characteristics were considered. Between March 2004-2007, two 
breakwaters were constructed in the Douro river estuary. Therefore, since this is associated to 
considerable changes in the river estuary dynamics, these two datasets were firstly analysed 
separately in 3.1.1 and 3.1.2. The comparison of the results obtained with the datasets A and B 
is given in 3.1.3. The relationship between the river plume size and the water volume, through 
models previously established in (Teodoro et al., 2009), is explored in 3.1.4. 

3.1.1 Dataset A 
As previously described in 2.1.1, the dataset A is composed by twenty-one MERIS scenes of 
the study area, covering 20 months from 2003 to 2005. The methodology used in the 
determination of the Douro river plume (DRP) size was implemented in Matlab® (Gonzalez 
et al., 2004). The watershed segmentation was applied using the Sobel filter in the gradient 
computation before the watershed transform (Gonzalez & Woods, 2008). The region 
growing segmentation was applied considering as region seeds (S) pixels with DN value of 
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225, and a threshold (T) of 30. These parameters were obtained on the basis of an iterative 
process (Teodoro et al., 2009). 
After the two segmentation methods described were applied to the MERIS scenes, the small 
meaningless regions are further excluded, as well as those regions which correspond to 
rivers and water bodies, leading to the final segmentation result of the river plume. The 
number of pixels of the remaining regions were summed, resulting in the plume size 
(Teodoro et al., 2009). An example of a segmented image using both methods is presented in 
Fig. 4. The values of the plume size obtained through watershed and region-based image 
segmentation for the 21 MERIS processed scenes, are presented in Table 3. 
 

Plume size Plume size 
Date 

(dd-mm-yyyy) Watershed
Region-
based 

Date 
(dd-mm-yyyy) Watershed

Region -
based 

08-03-2003 16 040 25 040 20-01-2004 8 604 13 012 
14-05-2003 13 753 36 493 11-02-2004 5 197 15 461 
26-05-2003 9 419 14 324 09-04-2004 7 238 23 144 
05-06-2003 1 971 7 965 12-04-2004 2 423 15 361 
18-06-2003 6 708 33 519 17-05-2004 9 510 17 321 

04-07-2003 11 537 13 126 14-08-2004 5 192 7 090 
10-07-2003 8 515 14 617 15-09-2004 4 641 16 677 
12-09-2003 11 069 21 017 27-09-2004 18 141 24 893 
18-09-2003 8 190 13 271 05-11-2004 8 386 15 595 
07-10-2003 1 486 11 734 20-01-2005 8 330 16 168 
10-12-2003 4 655 9 115  

Table 3. The Douro river plume size values (in number of pixels), obtained through 
watershed and region-based image segmentation methods, applied to dataset A. 

The DRP size obtained through the region-based segmentation (image domain method) led 
to better results, since its nature allows for a more realistic delineation of the plume (Fig. 4). 
Since watershed only identifies sharper transitions on the image (it is a feature domain 
method), the plume is not entirely delineated. The considered segmentation methods 
retrieved significantly different values, as can be seen in Table 3. For instance, the plume 
estimation for 07-10-2003 image was 1 486 pixels for the watershed approach and 11 734 
pixels for region-based approach. Although the values obtained through these two 
approaches are linearly related (as previously analyzed in 2.2.2), the differences found 
between the two segmentation methods are further explored in 3.1.3 and 3.1.4.  

3.1.2 Dataset B: one hydrologic year 
With the aim of a complete seasonal study of the DRP morphology, one hydrologic year 
(between August 2008 and October 2009) composed by 107 MERIS scenes (dataset B) were 
acquired through an ESA funded project. The previous segmentation methods applied to 
dataset A were firstly applied for the MERIS scenes. In a deeper analysis, it was verified that 
some MERIS scenes were not adequate for the segmentation purposes. The main reason is 
related to the presence of clouds or other atmospherics effects that could interfere with the 
plume extraction. The identification of the images presenting some of these problems was 
manually performed, resulting in 82 images. According to the work of Teodoro et al., (2009), 
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the region-based approach is preferable against the watershed segmentation, as the later 
provides a less accurate delineation of the plume. Therefore, the focus of the segmentation 
methods applied to dataset B relied on the region growing segmentation. 
In the previous analysis, the TSM values in the range 0–50 g/m3 were rescaled to 8-bit (0-
255). However, the region seed (S) and threshold (T) considered in the analysis of dataset A 
were not adequate for dataset B, due to slight changes on the content of the MERIS scenes. 
Therefore, in this approach, it was decided to use the TSM concentration values, which 
required an adaptation of the region seed (S) and threshold (T) considered in the previous 
work.  
The adopted methodology consisted in the development and implementation of an 
algorithm to automatically select the region seed (S) and the threshold (T) values for each 
image. In this algorithm two options may be used to select the region seed (S) and the 
threshold (T) values. The first option consisted in assuming S as the centroid value and T as 
S/2, whereas the second option is based on assuming S as the mean value of the plume 
region and T as half the maximum. The second option led to better results, since its nature 
allows for a more realistic and accurate delineation of the plume (Fig. 9). The average, 
maximum, minimum and standard deviation values (in number of pixels) of the plume size, 
obtained through region-based image segmentation method (options 1 and 2) applied to 
dataset B, are presented in Table 4. 
 

 

Fig. 9. Example of the segmentation with the developed region growing method (second 
option). 

 

 
Region-based 

Option 1 
Region-based 

Option 2 

Average 391 183
Maximum 997 715
Minimum 27 3

Stdv 250 123

Table 4. Average, maximum, minimum and standard deviation (Stdv) values obtained 
through the option 1 and option 2 region-based segmentation methods for one hydrologic 
year of MERIS scenes. 

The two segmentation options applied led to different results in terms of the size of the 
plume. The estimation of the plume size through option 1 led to highest values when 
compared to the option 2, for all the processed MERIS images. 
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3.1.3 Comparison of segmentation results obtained from datasets A and B 
Despite the slight changes on the selection of the region-growing parameters S and T, it was 

observed that the river plume size values obtained for dataset B (Table 4) were considerable 

lower than the values estimated for dataset A scenes (Table 3). This fact can be justified by 

the construction of two breakwaters between 2004 and 2007, in order to stabilize the Douro 

river mouth, and with the reduction of water flows and consequently the reduction of the 

amount of sediments injected into the sea (plume). This may lead in the future to an increase 

of the sand spit, and deserve further research on this topic. 

3.1.4 Relation of river plume size with the water volume 
The plume size had been modeled by several authors through satellite data by comparing 

the quantitative relations between rainstorm and plume size (Nezlin et al., 2005). Others had 

analyzed the effect of local wind and water discharge on the river plume (Choi & Wilkin, 

2007). In this stage of the work, a simple linear regression model of the river plume (RP) on 

the water volume (Eq. 2) was firstly considered:  

 RP (ti) = a0 + a1*V(ti)+ε (2) 

where ε is the error associated to the proposed model, ti is the present time of the considered 

image, a0  and a1 are the linear regression coefficients and V is the water volume. The water 

volume corresponds to the discharged water flow for the last downstream hydroelectric 

power plant of the Douro river (Crestuma) for each MERIS scene acquisition date. Given the 

lower river discharges in the summer, a refined analysis was performed considering 

separately the summer period (comprising 8 and 24 scenes regarding datasets A and B, 

respectively) associated to lower river discharges, and the rest of the year (the remaining 13 

and 58 scenes for datasets A and B, respectively). 

With respect to the time period of dataset A, a significant seasonal effect was verified on the 
relation between the RP and the water volume. Therefore, considering the model presented 
in Eq. 2 and excluding the summer period, a significant and positive correlation of 0.664 
(p−value=0.013) was found between the RP obtained from watershed segmentation and 
water volume. For region-based segmentation, the correlation coefficient was 0.524 
(p−value=0.066) for the same period. No significant correlations (α=5%) were found 
regarding the summer period. The lack of significant correlation in the summer period may 
be justified by the lower and time inconstant discharges at Crestuma dam, as illustrated in 
Fig. 10. The accuracy of this model was quantified by the mean percentage variation (MPV) 
of each estimated value (ei, obtained through the model in (2)) to the correspondent 
computed value (ci, obtained from segmentation), as presented in Eq. (3):  

 
1

1
100%

N i i

i
i

e c
MVP

N c=

−
= ×∑  (3) 

The MPV for watershed was 67.4% and for region-based segmentation was 28.5%. This 

suggests that the plume size obtained from the region-based segmentation may be more 

appropriate than the watershed-based segmentation, when modeling the size of the plume 

as being linearly related to the water volume. 

The second proposed model consists in the incorporation of several variables (last available 
plume, water volume, tide height, and wind speed), presumed to be related to the plume 
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Fig. 10. Water volume (m3/s) regarding the datasets A and B, considering all dates together 
(“All”), all year excluding the summer period (“All-Summer”) and the Summer period 
(“Summer”). 

size. More details about this model may be found in Teodoro et al., (2009). Ignoring the 
seasonal effects the MPV for watershed was 65.4% and for region-based segmentation was 
34.9%. The results of the two models proposed attest the best performance of the region-
based segmentation method in the extraction of the Douro river plume size (Teodoro et al., 
2009). 
A better temporal resolution could increase significantly the performance of the two 
proposed models, considering and ignoring the seasonal effects. Therefore, the same 
procedure was applied to the dataset B (one hydrologic year of MERIS scenes). It was 
verified a significant seasonal effect on the relation between the RP and the water volume. 
Considering the model presented in Eq. 2 and excluding the summer period, a moderate 
and positive correlation of 0.45 (p−value=0.019) was found between the RP obtained from 
region-based segmentation (option 2) and water volume. No significant correlations (α=5%) 
were found regarding the summer period. Considering all the data, the best result were 
found for region-based segmentation (option 2) with a positive correlation of 0.37 
(p−value=0.003). A more robust model incorporating other variables, as last available 
plume, water volume, tide height, and wind speed, will be established in order to improve 
the results. Moreover, a detection of outlying estimations will be performed. An outlier is a 
value in a dataset which appears to be inconsistent with the remainder of that set of data. 
The plume derived from MERIS data represents river Douro plume only when the river 
flow exceeds a certain threshold. During low discharge, the remotely sensed plume results 
from other factors, namely, the flow of small rivers, the flow from a big wastewater 
treatment plant discharge near the river mouth and sediment resuspension resulting from 
waves, tides, and currents. The threshold between the river flow producing plume and the 
flow when the plume cannot be estimated from MERIS scenes is about 300 or 500 m3/s 
(Teodoro et al., 2009). As illustrated in Fig. 10, the water volumes for the time period of 
dataset are mostly below 300 m3/s. Therefore, this explains why lower correlation 
coefficient values were found for dataset B. Nevertheless, the segmentation approach 
applied in this work seems to be a valid method to estimate the plume size. The second 
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option of the proposed region-based method (option 2) appears to be the more accurate 
alternative. 

3.2 Cabedelo sand spit 
The segmentation approaches previously mentioned in section 2.3 were applied to 6 
IKONOS-2 images (Table 2), and the results are provided in 3.2.1 and 3.2.2. Some 
experiments considering local filtering methods are addressed in 3.2.3. The evaluation of the 
performance of global thresholding and multiresolution approaches are given in 3.2.4.  

3.2.1 Global thresholding refined by detected edges 
As previously mentioned in 2.3, the first segmentation approach mainly consists on 
histogram thresholding of the original IKONOS-2 image through the Otsu method, followed 
by a boundary refinement through detected edges. The area estimated for the sand spit 
through this approach is given in Table 5, regarding the 6 IKONOS-2 images mentioned in 
Table 2. With respect to the image from 03-06-2004, as already illustrated in Fig. 6, the 
panchromatic band is not the most suitable band to perform the segmentation. Therefore, 
the NIR band was used for this image. The disadvantage of using the NIR band instead of 
the panchromatic band is its lower spatial resolution, which leads to less accurate results, as 
will be further addressed in 3.2.4. 
 

Area (m2) Date 
(dd-mm-yyyy) 2.3.1 2.3.2 Manual reference DGPS reference 

24-12-2001 188 123 198 000 191 056 n.a. 

03-06-2004* 260 448 282 000 275 761 265 200 

31-07-2004 258 973 250 000 260 095 259 864 

03-06-2005 207 214 212 000 212 819 222 636 

18-09-2005 229 186 223 000 228 092 228 688 

06-06-2007 256 747 261 000 267 208 225 237 

* The NIR band was considered instead of the panchromatic band. 

Table 5. Sand spit area (m2) estimated through the segmentation approaches described in 
2.3.1 and 2.3.2, applied to the panchromatic bands of the IKONOS-2 images. The last two 
columns correspond to the reference areas manually obtained (on a GIS environment) and 
by DGPS field surveys. Further details regarding the reference areas may be found in 3.2.4.  

Although the Otsu’s method presents a good performance in several cases at the initial stage 
of global thresholding, it sometimes presents questionable thresholds. In the example 
provided in Fig. 6, it appears that the most adequate threshold should be slightly shifted. 
Therefore, other segmentation approaches based on the delineation of the modes in the 
histogram will deserve further research in the future. 

3.2.2 Multiresolution segmentation 
In the multiresolution segmentation method, the parameters used for the IKONOS-2 images 
were (10, 0.5, 0.5, 0.5, 0.5) for (scale, color, shape, smoothness, compactness), respectively. As 
already mentioned in 2.3.2, after segmentation, all image objects are classified by generating 
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class hierarchy, based on fuzzy logic (Wang, 1990). The accuracy assessment of the 
classification process was performed analyzing the confusion matrix (overall accuracy- OA) 
and Kappa statistics (Smits et al., 1999; Stehman, 1996). The Kappa gives a measure that 
indicates if the confusion matrix is significantly different from a random result. The 
performance of the classification of the object-based method was evaluated through the 
error matrix based on the TTA Mask (Training or Test Areas). The OA varied between 96% 
(24-12-2001) and 100% (03-06-2005). The Kappa statistics varies between 0.92 and 1.0, for the 
same image dates. These values demonstrate the good performance of the segmentation and 
classification methods applied. An example of a sand spit extraction through this approach 
is illustrated in Fig. 11. The sand spit areas obtained through this segmentation method 
(described in 2.3) are provided in Table 5. 
 

 

Fig. 11. An original IKONOS-2 image of June 2005 (left) and the sand spit extraction with 
multiresolution segmentation method - object based classification (right). 

3.2.3 Local filtering methods 
Other segmentation methods based on local filtering could have been used, such as entropy 
filtering, range filtering or standard deviation filtering. However, these methods decrease 
the contrast between the sand spit and the remaining parts of the image, leading to some 
linkage of the sand spit to other regions of the image. The segmentation of the images 
produced by entropy, standard deviation and range filtering was also tested, applying the 
Otsu’s method to the filtered images. However, these filtering procedures lead to a lack of 
accuracy in the sand spit delineation, since it smoothes the transition from sand spit to 
water, and consequently introducing a connection between the sand spit and water in 
posterior segmentation. Taking this into account, an edge sensitive version of the low-pass 
Wiener filtering was also tested, aiming to achieve a more uniform sand spit for later 
segmentation. However, this also presented considerably lower performance than the 
proposed global thresholding, followed by refinement through detected edges. 
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3.2.4 Evaluation of the methods performance 
In order to evaluate the performance of the two segmentation methods, used in the 
estimation of the sand spit area, two sets of reference values were used (Table 5). The first 
was based on a manual digitalization on a GIS environment of the sand spit on the 
IKONOS-2 image, followed by the computation of the resultant area. The second approach 
was based on regular trimesteral surveys conducted since 2002 through Diferencial Global 
Positioning System (DGPS) processing techniques (Baptista et al., 2008). According to 
Baptista et al., (2008), the ground point positioning of the sand spit boundary was done 
through a system comprising two kinematic antennas installed on an articulate arm fixed to 
a four-wheel motor quad. Because the positioning precision of the kinematic DGPS 
processing techniques around 0.02 and 0.04 m in planimmetric and altimetric measurements 
respectively, the overall precision of the determined ground point coordinates were near 
these values with this DGPS system (Baptista et al.,  2008). The values were later processed 
in a GIS environment and linearly interpolated for different tide levels (z=0, z=1 and z=2 m). 
These values were used to estimate the correspondent sand spit area, for each analyzed 
IKONOS-2 image. It is important to refer that the DGPS values do not correspond to the 
IKONOS-2 acquisition date, but to the closest date (the maximum diference is about 45 
days). The reference results obtained through this second approach are given in Table 5. 
Although a field survey would be the most accurate reference to evaluate the performance 
of the segmentation methods, the time difference between the field survey and the IKONOS-
2 acquisition date for some images was considerably high. This justifies some differences 
observed in Table 5 between the manual and DGPS reference values. 
The average and standard-deviation of the errors (in %), regarding the two segmentation 

methods described in 2.3.1 and 2.3.2, considering the manual and DGPS reference values are 

provided in Table 6. It can be observed that the proposed unsupervised segmentation 

method, based on global thresholding refined through detected edges, presented slightly 

better results than the multiresolution segmentation, with a clear advantage of a 

considerable faster performance, beyond requiring a small human intervention. 

 

Manual reference DGPS reference 
 

Average Stdv Average Stdv 

2.3.1 2.4 2.0 4.2 5.0 

2.3.2 2.5 1.2 6.7 5.3 

Table 6. Average and standard-deviation (Stdv) of the errors (in %), regarding the two 
segmentation methods described in 2.3.1 and 2.3.2, considering the manual and DGPS 
reference values (further details in 3.2.4). 

In the analysis of the effectiveness metric of the Otsu’s method, as a function of the error in 

the sand spit area estimation, a sketch of a possible threshold of acceptance was illustrated 

in Fig. 8. However, in the presence of larger datasets, it may become possible to define 

objective criteria of the appropriateness in using the proposed segmentation methodology. 

Such criteria may correspond to simple linear discriminants, or to other more complex 

nonlinear classification approaches, combining information of more than one spectral band. 
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4. Conclusions 

A water body and a sand spit do not present a similar topographic boundary. Therefore, the 
extraction of a river plume and the extraction of a sand feature from a water environment 
are different in terms of the segmentation techniques employed. With this work, we have 
showed that the same segmentation techniques could not be applied directly in both cases.  
The reduction of the river sediment supply may be one of the main causes of the erosion 
process that has been affecting the Portuguese Northwest coast. The Douro river is one of 
the major sources of beach sediments of the Portuguese Northwest coast. Therefore, the 
estimation of the river plume size from satellite images is an aspect of crucial importance, 
since there is no alternative for performing in situ measurements. The applied segmentation 
methods allowed for estimating the plume size. The plume size obtained through the 
region-based segmentation led to better results, since its nature allows for a more realistic 
delineation of the plume. 
The reduction of the plume size is probably related to reduction of water flows and 
consequently the decreasing of river sediment supply. Associated to the breakwaters 
construction are the changes in the Cadedelo sand spit dynamics. From a regional point of 
view, this research allows for obtaining data in a simple way, currently nonexistent for the 
Cabedelo sand spit. Furthermore, it provides significant contributions to evaluate the 
behaviour of Douro river mouth breakwaters, related with coastal defence and sand spit 
stabilization, offering an effective and accurate methodology for monitoring the sand spit 
size. Moreover, it is a valid alternative for the delineation of sand spits, which allows for 
avoiding expensive DGPS field campaigns. 
The use of different satellite data (MERIS products calibrated for TSM concentration and 
IKONOS raw data) was also a challenge. The considered satellite data showed to be 
adequate for the established purposes. The medium spatial resolution of MERIS data is 
enough to estimate the river plume size. Moreover, the high temporal resolution of MERIS 
data seems to be essential in monitoring the river plume, subject to rapid changes due to 
extreme situations (e.g. precipitation, floods). The high spatial resolution of IKONOS-2 data 
also seems to be a crucial factor in the sand spit area estimation. 
The proposed unsupervised segmentation strategy for the extraction of the sand spit, 
presented slightly better performance than the multiresolution segmentation. Moreover, it 
presents the advantage of being a fast procedure and with a high potential for a fully 
automation. This would allow for a more consistent analysis of the sand spit behavior and 
evolution across the time. This approach has also the advantage of avoiding in situ surveys, 
and allows for assessment of historical records through archived satellite data. Other 
attributes beyond the area may be easily computed from the result of the sand spit 
segmentation, allowing for more complex analysis of the sand spit dynamics. 
The estuarine environment, particularly the size and temporal and spatial variations of river 
plumes and sand spits, is an issue of great importance. Furthermore, very few studies have 
addressed this issue in the past as there are obvious difficulties in establishing an efficient and 
accurate methodology to extract the features boundaries. This work aspires to cover this gap. 
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