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1. Introduction

1.1 Preliminaries

In this chapter we focus on what Rabiner in his popular tutorial (Rabiner, 1989) calls
“uncovering the hidden part of the model” or “Problem 2”, that is, hidden path inference.
We consider a hidden Markov model (X, Y) = {(Xt, Yt)}t∈Z, where Y = {Yt}t∈Z is an
unobservable, or hidden, homogeneous Markov chain with a finite state space S = {1, . . . , K},
transition matrix P = (pi,j)i,j∈S and, whenever relevant, the initial probabilities πs = P(Y1 =
s), s ∈ S. A reader interested in extensions to the continuous case is referred to (Cappé et al.,
2005; Chigansky & Ritov, 2010). The Markov chain will be further assumed to be of the first
order, bearing in mind that a higher order chain can always be converted to a first order one
by expanding the state space. To simplify the mathematics, we assume that the Markov chain
Y is stationary and ergodic. This assumption is needed for the asymptotic results in Section
3, but not for the finite time-horizon in Section 2. In fact, Section 2 does not even require the
assumption of homogeneity. The second component X = {Xt}t∈Z is an observable process
with Xt taking values in X that is typically a subspace of the Euclidean space, i.e. X ⊂ R

d.
The process X can be thought of as a noisy version of Y. In order for (X, Y) to be a hidden
Markov model, the following properties need to be satisfied:

1) given {Yt}, the random variables {Xt} are conditionally independent,

2) the distribution of Xt depends on {Yt} only through Yt.

The process X is sometimes called a hidden Markov process. It is well known that the ergodicity
of Y implies that of X (see, e.g. (Ephraim & Merhav, 2002; Genon-Catalot et al., 2000; Leroux,
1992)). The conditional distributions Ps = P(X1 ∈ ·|Y1 = s) are called emission distributions.
Without loss of generality, we will assume that the emission distributions Ps all have densities
fs with respect to a common reference measure µ.
We often restrict the general process defined above to time interval I, where I is either
{1, . . . , n} for some n ≥ 1 (Section 2), or I = N (Section 3). Thus {(Xt, Yt)}t≥1 is a restriction
of the doubly-infinite HMM to the positive integers and clearly, this process is ergodic as well.
Since our study is mainly motivated by statistical and machine learning, our notation reverses
the notation used in the mainstream HMM literature, e.g. (Cappé et al., 2005), where the
hidden Markov chain is denoted by X and the observed process by Y.
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Given a set A, integers m and n, m < n, and a sequence a1, a2, . . . ∈ A∞, we write an
m for the

subsequence (am, . . . , an); when m = 1, it will usually be suppressed, e.g. an
1 ∈ An will be

written as an. With a slight abuse of notation, we will denote the conditional probability
P(Yl

k = yl
k|X

n = xn) by p(yl
k|x

n). We will often use the so-called smoothing probabilities
pt(s|xn) := P(Yt = s|Xn = xn), where s ∈ S and 1 ≤ t ≤ n. We will denote the probability of
xn by p(xn) and, for any sn ∈ Sn, we will write p(sn) = P(Yn = sn) for the probability of Yn

having the outcome sn; the distinction should be clear from the context.

1.2 The segmentation problem in the framework of statistical learning

By segmentation we refer to estimation of the unobserved realization yn = (y1, . . . , yn)
of the underlying Markov chain Y, given the observations xn = (x1, . . . , xn) of Xn. In
communications literature segmentation is also known as decoding (Bahl et al., 1974; Viterbi,
1967) or state sequence detection (Hayes et al., 1982). Segmentation is often the primary interest
of the HMM-based inference, but it can also be an intermediate step of a larger problem such
as estimation of the model parameters (Lember & Koloydenko, 2008; Rabiner, 1989), which
will be discussed in Subsection 4.2. Despite its importance in the HMM-based methodology,
a systematic study of different segmentation methods and their properties has been overdue
(Lember & Koloydenko, 2010b). Here we present a unified approach to the segmentation
problem based on statistical learning, and describe the commonly used as well as recently
proposed solutions.
Formally we seek a mapping g : X n → Sn called a classifier, that maps every sequence of
observations to a state sequence or path, which is sometimes also referred to as an alignment
(Lember & Koloydenko, 2008)1. In order to assess the overall quality of g, it is natural to
first measure the quality of each individual path sn ∈ Sn via a function known as risk. Thus,
for a given xn, let us denote the risk of sn by R(sn|xn). A natural approach to solving the
segmentation problem is then to compute a state sequence with the minimum risk. In the
framework of statistical decision and pattern recognition theory (Bishop, 2006) the risk is
usually specified via a more basic entity known as a loss function L : Sn × Sn → [0, ∞], where
L(an, bn) is the loss incurred by estimating the actual state sequence an to be bn. Then for any
state sequence sn ∈ Sn the risk R(sn|xn) is the conditional expectation of the loss L(Yn, sn)
given that Xn = xn, i.e. R(sn|xn) := E[L(Yn, sn)|Xn = xn].
One popular loss function is the zero-one loss defined as

L∞(an, bn) =

{

1, if an �= bn;
0, if an = bn.

The minimizer of the risk R∞(sn|xn) based on L∞ is a sequence with maximum posterior
probability p(sn|xn), hence it is called the maximum a posteriori (MAP) path. The MAP-path is
also called the Viterbi path after the Viterbi algorithm (Forney, 1973; Rabiner, 1989; Viterbi, 1967)
used for its efficient computation.
Another popular approach is based on pointwise loss functions of the form

L1(an, bn) =
1

n

n

∑
t=1

l(at, bt), (1)

1 This usage of the term “alignment” is broader than that of the HMM-based “multiple sequence
alignment” in the bioinformatics context .
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where l(at, bt) ≥ 0 is the loss of classifying the tth symbol as bt when the truth is at.
Most commonly l(s, s′) = I{s �=s′}, where IA is the indicator function of a set A. Then the

corresponding risk function R1(s
n|xn) is simply the expected misclassification rate given the

data xn. Hence, the minimizer of this risk is a sequence with the lowest expected number
of misclassifications. We refer to such sequences as pointwise maximum a posteriori (PMAP)
alignments (Lember & Koloydenko, 2010b). The name refers to the fact that given xn, the
PMAP-alignment maximizes ∑

n
t=1 pt(st|xn) that obviously can be done pointwise. Note

that the PMAP-alignment equivalently maximizes the product ∏
n
t=1 pt(st|xn), and therefore

minimizes the pointwise log risk

R̄1(s
n|xn) := −

1

n

n

∑
t=1

log pt(st|x
n). (2)

Since the purpose is to maximize the expected number of correctly classified states, this is also
known as the optimal accuracy alignment (Holmes & Durbin, 1998). In statistics, this type of
estimation is known as marginal posterior mode (Winkler, 2003) or maximum posterior marginals
(Rue, 1995) (MPM) estimation. In computational biology, this is also known as the posterior
decoding (PD) (Brejová et al., 2008). In the wider context of biological applications of discrete
high-dimensional probability models this has also been called “consensus estimation”,
and in the absence of constraints, “centroid estimation” (Carvalho & Lawrence, 2008).
In communications applications of HMMs, largely influenced by (Bahl et al., 1974), the
terms “optimal symbol-by-symbol detection” (Hayes et al., 1982), “symbol-by-symbol MAP
estimation” (Robertson et al., 1995), and “MAP state estimation” (Brushe et al., 1998) have
been used to refer to this method.
Note that the introduced risk-based formalism does not impose any special conditions on Y.
In particular, in this and in the next Section the chain Y need not be homogeneous and the
conditional distribution of Xt given Yt can, in principle, vary with t.

2. Hybrid classifiers

2.1 The problem

The Viterbi classifier has several drawbacks. First, the obtained alignment is not optimal and
it can actually be quite poor in terms of accuracy as measured by the number of correctly
classified states. Related to this is the reluctance of this decoder to switch states as can be seen
from the following simple example taken from (Koloydenko & Lember, 2010).
Example 1. A long sequence has been simulated from an HMM with the following
parameters:

P =

⎛

⎝

0.99 0.01 0
0.3 0.3 0.4
0 0.02 0.98

⎞

⎠ , π =

⎛

⎝

0.5882
0.0196
0.3922

⎞

⎠ , πt = πt
P,

and the emission distributions

p1 = (0.3, 0.2, 0.2, 0.3), p2 = (0.1, 0.3, 0.3, 0.3), p3 = (1/6, 1/6, 1/6, 1/2).

The sequence is then decoded with several classifiers including the Viterbi and PMAP ones.
Figure 1 gives two fragments of the ground truth and decoded outputs; the complete output
can be found in (Koloydenko & Lember, 2010). The example illustrates the typical tendency of
the Viterbi classifier to get stuck in a state of sizable probability and therefore systematically

53Theory of Segmentation
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Fig. 1. Decoding performance of different classifiers.

misclassify less frequent states. In its extreme form, this behavior would predict a constant
sequence of Heads even when the Heads side of the coin is only slightly heavier than the Tails
one. In HMMs, the inaccuracy problem can be alleviated by exploiting the PMAP-classifier.
However, as can be noted from the forbidden transitions between states 1 and 3 along
the PMAP-path in Figure 1, the PMAP-decoding allows alignments of low or even zero
probability. In computational biology, for example, such paths would violate biological
constraints and hence be inadmissible. We will return to this example when considering
alternative classifiers.
As it has been shown in (Käll et al., 2005), it is possible to explicitly constrain the
PMAP-classifier to avoid inadmissible paths. The constrained PMAP-alignment is the
solution of the following optimization problem

min
sn : p(sn |xn)>0

R1(s
n|xn) ⇔ max

sn : p(sn |xn)>0

n

∑
t=1

pt(st|x
n). (3)

In our example the solution of (3) is seen in Figure 1 under the name CnstrPMAP. The
solution is indeed admissible, i.e. the forbidden zero-probability transitions are not any more
present. Observe that in the presence of path constraints, minimizing the R1-risk is not any
more equivalent to minimizing the R̄1-risk, therefore (3) is not equivalent to the optimization
problem

min
sn : p(sn |xn)>0

R̄1(s
n|xn) ⇔ max

sn : p(sn |xn)>0

n

∑
t=1

log pt(st|x
n). (4)

The solution of (4) was recently used in (Fariselli et al., 2005) under the name posterior Viterbi
decoding (PVD). On their tasks of predicting membrane proteins, PVD has shown results
superior to the Viterbi and PMAP-classifiers. In our example, the solution of (4) is seen in
Figure 1 under the name PVD. Note that it differs from the constrained PMAP but it is still
admissible.
To summarize: since the overall error rate is not the only measure of accuracy and since
PMAP may fail 100% in detecting an infrequent state, such as state 2 in our example,
constraining the PMAP-classifier is not an ultimate answer. Also, in some applications such
as gene-finding, region-based measures of accuracy are no less important than the pointwise
ones, but direct minimization of the corresponding risks generally does not lead to efficient
decoding algorithms.

2.2 Further issues and alternative solutions

Another serious drawback of the Viterbi decoding is that “there might be many similar paths
through the model with probabilities that add up to a higher probability than the single
most probable path” (Käll et al., 2005). In fact, Viterbi paths need not be representative

54 Hidden Markov Models, Theory and Applications
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of the overall posterior probability distribution (Carvalho & Lawrence, 2008) and can be
significantly atypical (Lember & Koloydenko, 2010a). Indeed, imagine having to estimate the
transition probabilities from the Viterbi path in Figure 1. This second problem of the Viterbi
segmentation has been addressed by moving from single path inference towards envelops
(Holmes & Durbin, 1998) and centroids (Carvalho & Lawrence, 2008). The most common
approach here is to aggregate individual states into a smaller number of semantic labels
(e.g. codon, intron, intergenic). In effect, this would realize the notion of path similarity
by mapping many “similar” state paths to a single label path or annotation (Brejová et al.,
2008; Fariselli et al., 2005; Käll et al., 2005; Krogh, 1997). However, this leads to the problem
of multiple paths, which in practically important HMMs renders the dynamic programming
approach of the Viterbi algorithm NP-hard (Brejová et al., 2007; Brown & Truszkowski,
2010). Unlike the Viterbi classifier, PMAP handles annotations as easily as it does state
paths, including the enforcement of the positivity constraint (Käll et al., 2005). A number of
heuristic approaches are also known to alleviate these problems, but none appears to be fully
satisfactory (Brejová et al., 2008). Note that mapping optimal state paths to the corresponding
annotations need not lead to optimal annotations and can give poor results (Brejová et al.,
2007).
Although the Viterbi and PMAP-classifiers have been by far the most popular segmentation
methods in practice, their aforementioned drawbacks have invited debates on the trade-off
between the path accuracy and probability, and alternative approaches have demonstrated
significantly higher performance in, for example, predicting various biological features.
In Subsection 2.3 below, which is based on (Lember & Koloydenko, 2010b), we show how
several relevant risks can be combined within a very general penalized risk minimization
problem with a small number of penalty terms. Tuning one of the penalty parameters allows
us to “interpolate” between the PMAP- and Viterbi classifiers in a natural way, whereas the
other terms give further interesting extensions. The minimization problem can then be solved
by a dynamic programming algorithm similar to the Viterbi algorithm. We would like to
remark that the idea of interpolation between the Viterbi and PMAP-estimators was already
hinted at in the seminal tutorial (Rabiner, 1989) and then considered in (Brushe et al., 1998). In
spite of those, no general systematic study of hybridization of the Viterbi and PMAP-classifiers
has been published before.

2.3 Generalized risk-based hybrid classifiers

Although the constrained PMAP-classifier and PVD guarantee admissible paths, as can also
be noted from Figure 1, the (posterior) probability of such paths can still be very low. Hence,
it seems natural to consider instead of (3) the following penalized optimization problem:

max
sn

[ n

∑
t=1

pt(st|x
n) + log p(sn)

]

⇔ min
sn

[

R1(s
n|xn) + R̄∞(sn)

]

, (5)

where

R̄∞(sn) := −
1

n
log p(sn)

is the prior log risk which does not depend on the data. The logic behind (5) is clear: we aim
to look for the alignment that simultaneously minimizes the R1-risk and maximizes the path
probability. A more general problem can be written in the form

min
sn

[

R1(s
n|xn) + Ch(sn)

]

, (6)

55Theory of Segmentation
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where C ≥ 0 and h is some penalty function. Taking Ch(sn) = ∞ × (1 − sign (p(sn)) reduces
problem (6) to problem (3).
Similarly, instead of (4), the following problem can be considered:

max
sn

[ n

∑
t=1

log pt(st|x
n) + log p(sn)

]

⇔ min
sn

[

R̄1(s
n|xn) + R̄∞(sn)

]

.

Again, the problem above can be generalized as

min
sn

[

R̄1(s
n|xn) + Ch(sn)

]

. (7)

Taking Ch(sn) = ∞ × (1 − sign (p(sn)), reduces problem (7) to problem (4).

2.3.1 A general family of classifiers

Motivated by the previous argument, we consider the following yet more general problem:

min
sn

[

C1R̄1(s
n|xn) + C2R̄∞(sn|xn) + C3R̄1(s

n) + C4R̄∞(sn)
]

, (8)

where C1, . . . , C4 ≥ 0, C1 + · · ·+ C4 > 0, and

R̄1(s
n|xn) = −

1

n

n

∑
t=1

log pt(st|x
n), as defined in equation (2) above,

R̄∞(sn|xn) := R̄∞(sn; xn) +
1

n
log p(xn),

R̄∞(sn; xn) := −
1

n

[

log πs1 +
n−1

∑
t=1

log pstst+1 +
n

∑
t=1

log fst (xt)
]

= −
1

n

[

log p(sn) +
n

∑
t=1

log fst (xt)
]

,

R̄1(s
n) := −

1

n

n

∑
t=1

log P(Yt = st),

R̄∞(sn) = −
1

n

[

log πs1 +
n−1

∑
t=1

log pstst+1

]

= −
1

n
log p(sn).

The newly introduced risk R̄1(s
n) is the prior pointwise log risk. Evidently, the combination

C1 = C3 = C4 = 0 gives the Viterbi alignment, the combination C2 = C3 = C4 = 0 yields the
PMAP-alignment, whereas the combinations C1 = C2 = C3 = 0 and C1 = C2 = C4 = 0 give
the maximum prior probability decoding and marginal prior mode decoding, respectively. The
case C2 = C3 = 0 subsumes (7), and the case C1 = C3 = 0 is the problem

min
sn

[

R̄∞(sn|xn) + CR̄∞(sn)
]

. (9)

Thus, a solution to (9) is a generalization of the Viterbi decoding which allows for suppressed
(C > 0) contribution of the data. It is important to note that with C2 > 0 every solution of (8)
is admissible.
Similarly to the generalized risk minimization problem in (8), a relevant generalization of (6)
emerges as follows:

min
sn

[

C1R1(s
n|xn) + C2R̄∞(sn|xn) + C3R1(s

n) + C4R̄∞(sn)
]

, (10)
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where

R1(s
n) :=

1

n

n

∑
t=1

P(Yt �= st)

is the error rate when the data are ignored.

2.3.2 Solving (8) and (10)

The problems (8) and (10) would only be of theoretical interest if there were not an effective
way to solve them. We now present a dynamical programming algorithm (similar to
the Viterbi algorithm) for solving these problems. The algorithm requires the smoothing
probabilities pt(j|xn) for t = 1, . . . , n and j ∈ S, which can be computed by the usual
forward-backward algorithm (Rabiner, 1989). For every t = 1, . . . , n and s ∈ S, let

gt(s) := C1 log pt(s|x
n) + C2 log fs(xt) + C3 log P(Yt = s).

Note that the function gt depends on all the data xn. For every j ∈ S and for every t =
1, 2, . . . , n − 1, define the scores

δ1(j) := C1 log p1(j|xn) + (C2 + C3 + C4) log πj + C2 log f j(x1), (11)

δt+1(j) := max
i

(

δt(i) + (C2 + C4) log pij

)

+ gt+1(j). (12)

Using the scores δt(j), let for every t = 1, . . . , n,

it(j) :=

{

arg maxi∈S[δt(i) + (C2 + C4) log pij], when t = 1, . . . , n − 1,

arg maxi∈S δn(i), when t = n;
(13)

ŝt(j) :=

{

i1(j), when t = 1,
(

ŝt−1(it−1(j)), j
)

, when t = 2, . . . , n.

It is now not hard to see (see Th. 3.1 in (Lember & Koloydenko, 2010b)) that recursions
(11)-(12) solve (8), meaning that any solution of (8) is in the form ŝn(in), provided the ties
in (13) are broken accordingly.
By a similar argument, problem (10) can be solved by the following recursions:

δ1(j) := C1 p1(j|xn) + (C2 + C4) log πj + C2 log f j(x1) + C3πj,

δt+1(j) := max
i

(

δt(i) + (C2 + C4) log pij

)

+ gt+1(j),

where now
gt(s) = C1 pt(s|x

n) + C2 log fs(xt) + C3P(Yt = j).

2.4 k-block PMAP-alignment

As an idea for interpolating between the PMAP- and Viterbi classifiers, Rabiner mentions
in his seminal tutorial (Rabiner, 1989) the possibility of maximizing the expected number of
correctly estimated pairs or triples of (adjacent) states rather than the expected number of
correct single states. With k being the length of the block (k = 2, 3, . . .) this entails minimizing
the conditional risk

Rk(s
n|xn) := 1 −

1

n − k + 1

n−k+1

∑
t=1

p(st+k−1
t |xn) (14)
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based on the following loss function:

Lk(y
n, sn) :=

1

n − k + 1

n−k+1

∑
t=1

I{st+k−1
t �=yt+k−1

t } .

Obviously, for k = 1 this gives the usual R1-minimizer – the PMAP-alignment – which is
known to allow inadmissible paths. It is natural to think that the minimizer of Rk(s

n|xn)
evolves towards the Viterbi alignment “monotonically” as k increases to n. Indeed, when
k = n, minimization of Rk(s

n|xn) in (14) is equivalent to minimization of R̄∞(sn|xn), which is
achieved by the Viterbi alignment. In Figure 1 the minimizer of (14) for k = 2 appears under
the name PairMAP, and, as the example shows, it still has zero probability. This is a major
drawback of using the loss Lk.
We now show that this drawback can be overcome when the sum in (14) is replaced by the
product. This is not an equivalent problem, but with the product the k-block idea works well –
the longer the block, the bigger the probability and the solution is guaranteed to be admissible
even for k = 2. Moreover, this gives another interpretation to the risk R̄1(s

n|xn)+CR̄∞(sn|xn).
Let k ∈ N. We define

Ūk(s
n|xn) :=

n−1

∏
j=1−k

p
(

s
(j+k)∧n

(j+1)∨1

∣

∣xn
)

, R̄k(s
n|xn) := −

1

n
log Ūk(s

n|xn).

Thus Ūk(s
n|xn) = Uk

1 · Uk
2 · Uk

3 , where

Uk
1 := p(s1|x

n) · · · p(sk−2
1 |xn)p(sk−1

1 |xn)

Uk
2 := p(sk

1|x
n)p(sk+1

2 |xn) · · · p(sn−1
n−k |x

n)p(sn
n−k+1|x

n)

Uk
3 := p(sn

n−k+2|x
n)p(sn

n−k+3|x
n) · · · p(sn|x

n).

Clearly, for k = 1, R̄k equals R̄1(s
n|xn) defined in (2), so it is a natural generalization of R̄1.

The meaning of the risk R̄k will be transparent from the following equality proved in (Lember
& Koloydenko, 2010b): for every sn,

R̄k(s
n|xn) = (k − 1)R̄∞(sn|xn) + R̄1(s

n|xn).

Thus, the minimizer of R̄k(s
n|xn) is a solution of (8) with C1 = 1, C2 = k − 1, C3 = C4 = 0.

Note that the solution is admissible for every k > 1. It is easy to see that increasing the block
length k increases the posterior probability as well as the R̄1-risk of the solution. Hence, this
provides a natural interpolation between the Viterbi and the PMAP-alignments. In Figure 1
the minimizer of R̄2(s

n|xn) for k = 2 is shown under the name HybridK2. The difference
between the HybridK2-alignment and the PairMAP-alignment (the minimizer of the R2-risk)
is clearly visible; in particular, the HybridK2-alignment is of positive probability. From the
figure it is also evident that the HybridK2-alignment possesses the properties of both the
Viterbi and PMAP-alignments.

3. Infinite segmentation

In the previous section, several alignments for segmenting the observations xn = (x1, . . . , xn)
were defined. The next question one can ask is the following: what are the long-run properties
of these different classifiers? This question is not easy to answer, since in general there is
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no obvious notion of infinite (asymptotic) alignment. Indeed, if (g1, . . . , gn) = g(x1, . . . , xn)
is an alignment, then adding one more observation xn+1 can in principle change the whole
alignment so that gt(xn) �= gt(xn+1) for every t, where gt(xn) stands for the tth element of
g(xn). On the other hand, it is intuitively expected that such a situation is rather atypical and
that a few, say k, first elements of g will be fixed almost surely as n goes to infinity. If this is the
case, then an infinite classifier can be defined as follows.
Def. For every n ∈ N, let gn : X n → Sn be a classifier. We say that the sequence {gn} of
classifiers can be extended to infinity, if there exists a function g : X∞ → S∞ such that for
almost every realization x∞ ∈ X∞ the following holds: for every k ∈ N there exists m ≥ k
(depending on x∞) such that for every n ≥ m the first k elements of gn(xn) are the same as the
first k elements of g(x∞), i.e. gn(xn)i = g(x∞)i, i = 1, . . . , k. The function g will be referred
to as an infinite classifier. If an infinite classifier exists, then applying it to the observations
x∞ gives us an infinite alignment g(x∞), and applying it to the process X∞ gives us a random
S-valued process g(X∞) that is called the alignment process. ⋄
Hence, to study the asymptotic properties of various classifiers, the existence of an infinite
alignment is the first problem to be addressed. It is also desirable that various SLLN-type
results hold for the alignment process. This is guaranteed if the alignment process is
regenerative or ergodic. Despite the unified risk-based representation of the different
classifiers presented here, proving the existence of the infinite alignment for them requires
different mathematical tools.

3.1 Infinite Viterbi alignment and Viterbi process

Justified or not, the Viterbi classifier is the most popular one in practice. In (Lember &
Koloydenko, 2008; 2010a), under rather general assumptions on the HMM, a constructive
proof of the existence of the infinite Viterbi classifier was given. We shall now explain the
basic ideas behind the construction.

3.1.1 The idea of piecewise alignments

The proof is based on the existence of the so-called barriers. We believe that the following
oversimplified but insightful example will help the reader to understand this concept.
Suppose there is a state, say 1, and a set of observations A ⊂ X such that P1(A) > 0
while Pl(A) = 0 for l = 2, . . . , K. Thus, at time u any observation xu ∈ A is almost surely
generated under Yu = 1, and we say that xu indicates its state. Consider n to be the terminal
time and note that any positive probability path, including the MAP/Viterbi ones, has to go
through state 1 at time u. This allows us to split the Viterbi alignment v(xn) into vu

1 and
vn

u+1, an alignment from time 1 through time u, and a conditional alignment from time u + 1
through time n, respectively. Moreover, it is clear that the first piece vu

1 maximizes p(su|xu
1 )

over all paths from time 1 through time u, vu = 1, and the second piece vn
u+1 maximizes

P(Yn
u+1 = sn−u|Xn

u+1 = xn
u+1, Yu = 1). Clearly, any additional observations xm

n+1 do not
change the fact that xu indicates its state. Hence, for any extension of xn the first part of the
alignment is always vu

1 . Thus, any observation that indicates its state also fixes the beginning
of the alignment for every n > u. Suppose now that xt, u < t < n, is another observation that
indicates its state, say, also 1. By the same argument, the piece vn

u+1 can be split into pieces

vt
u+1 and vn

t+1, where vt
u+1 maximizes P(Yt

u+1 = st−u|Xt
u+1 = xt

u+1, Yu = 1) and terminates
in 1, i.e. vt = 1. Again, increasing n does not change the fact that xt indicates its state, so that
vt

u is independent of all the observations before u and after t. Therefore, the Viterbi alignment
up to t can be constructed independently of the observations xn

t+1 by concatenating the pieces
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vu
1 and vt

u+1. Since our HMM is now a stationary process that has a positive probability to
generate state-indicating observations, there will be infinitely many such observations almost
surely. Since the Viterbi alignment between two such observations xu and xt can be be found
as the maximizer of p(·|xt

u), the infinite alignment can be constructed by concatenating the
corresponding pieces. We say that the alignment can be constructed piecewise.

3.1.2 Nodes

The example above is rather exceptional and we next define nodes to generalize the idea of
state-indicating observations. Recall that the Viterbi algorithm is a special case of the general
dynamic programming algorithm introduced in Subsection 2.3 with C2 = 1 and C1 = C3 =
C4 = 0. In particular, the basic recursion for obtaining the scores (11) and (12) for the Viterbi
algorithm is as follows: for every j ∈ S and t = 1, . . . , n − 1,

δ1(j) = log πj + log f j(x1),

δt+1(j) = max
i

(

δt(i) + log pij

)

+ log f j(xt+1).

The Viterbi alignment v(xn) is given by vn(in), where for every j ∈ S, the paths vt(j), t =
1, . . . , n, are obtained recursively:

vt(j) =

{

i1(j), when t = 1,
(

vt−1(it−1(j)), j
)

, when t = 2, . . . , n;

with it(j) being (recall (13))

it(j) =

{

arg maxi∈S[δt(i) + log pij], when t = 1, . . . , n − 1,

arg maxi∈S δn(i), when t = n.

Def. Given the first u observations, the observation xu is said to be an l-node (of order zero) if

δu(l) + log pl j ≥ δu(i) + log pij, ∀i, j ∈ S. (15)

We also say that xu is a node if it is an l-node for some l ∈ S. We say that xu is a strong node if
the inequalities in (15) are strict for every i, j ∈ S, i �= l. ⋄
In other words, xu is an l-node if for appropriate tie-breaking iu(j) = l for every j ∈ S (see
also Figure 2). This obviously implies that (under the same tie-breaking) the first u elements
of the Viterbi alignment are fixed independently of the observations xn

u+1. If the node is
strong, then all the Viterbi alignments must coalesce at u. Thus, the concept of strong nodes
circumvents the inconveniences caused by non-uniqueness: no matter how the ties are broken,
every alignment is forced into l at u, and any tie-breaking rule would suffice for the purpose
of obtaining the fixed alignments. However tempting, strong nodes unlike the general ones
are quite restrictive. Indeed, suppose that the observation xu indicates its state, say 1. Then
f1(xu) > 0 and fi(xu) = 0 for i �= 1. Hence δu(1) > −∞ and δu(i) = −∞ for every i ∈ S,
i �= 1. Thus (15) holds and xu is a 1-node. In other words, every observation that indicates
its state is a node. If in addition p1j > 0 for every j ∈ S, then for every i, j ∈ S, i �= 1, the
right-hand side of (15) is −∞, whereas the left-hand side is finite, making xu a strong node. If,
however, there is j such that p1j = 0, which can easily happen if K > 2, then for such j both
sides are −∞ and xu is not strong anymore.
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Fig. 2. An example of the Viterbi algorithm in action. The solid line corresponds to the final alignment
v(xn). The dashed links are of the form (t, it(j))− (t + 1, j) and are not part of the final alignment. E.g.,
(1, 3)− (2, 2) is because 3 = i1(2) and 2 = i2(3). The observation xu is a 2-node since we have 2 = iu(j)
for every j ∈ S.

3.1.3 Higher order nodes

We next extend the notion of nodes to account for the fact that a general ergodic P can have
a zero in every row, in which case nodes of order zero need not exist. Indeed, suppose xu is
such that δu(i) > −∞ for every i. In this case, (15) implies pl j > 0 for every j ∈ S, i.e. the lth

row of P must be positive, and (15) is equivalent to

δu(l) ≥ max
i

[max
j

(log pij − log pl j) + δu(i)].

First, we introduce p
(r)
ij (u), the maximum probability over the paths connecting states i and j

at times u and u + r + 1, respectively. For each u ≥ 1 and r ≥ 1, let

p
(r)
ij (u) := max

qr∈Sr
piq1

fq1 (xu+1)pq1q2 fq2 (xu+2)pq2q3 . . . pqr−1qr fqr (xu+r)pqr j.

Note that for r ≥ 1, p
(r)
ij (u) depends on the observations xu+r

u+1. By defining

i
(r)
t (j) := arg maxi∈S[δt(i) + log p

(r)
ij ],

we get that for every t = 1, . . . , n and j ∈ S it holds that the (t − r − 1)th element of vt(j)

equals i
(r)
t−r−1(j), i.e.

vt
t−r−1(j) = i

(r)
t−r−1(j). (16)

Def. Given the first u + r observations, the observation xu is said to be an l-node of order r if

δu(l) + log p
(r)
l j (u) ≥ δu(i) + log p

(r)
ij (u), ∀i, j ∈ S. (17)

The observation xu is said to be an rth order node if it is an rth-order l-node for some l ∈ S.
The node is said to be strong if the inequalities in (17) are strict for every i, j ∈ S, i �= l. ⋄
Note that any rth-order node is also a node of order r′ for any integer r ≤ r′ < n, and thus by
the order of a node we will mean the minimal such r. Note also that for K = 2, a node of any
order is a node of order zero. Hence, positive order nodes emerge for K ≥ 3 only.
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Fig. 3. Suppose u < n, and xu is a 2nd order 2-node, and xu−1 is a 3rd order 3-node. Therefore,
any alignment v(xn) has v(xn)u = 2.

This definition implies that xu is an l-node of order r if and only if (under suitable tie breaking)

i
(r)
u (j) = l for every j ∈ S. By (16), this means that vu+r+1

u (j) = l for every j ∈ S, implying
that the first u elements of the Viterbi alignment are fixed independently of the observations
xn

u+r+1 (see Figure 3). This means that the role of higher order nodes is similar to the role

of nodes. Suppose now that the realization x∞ contains infinitely many rth order l-nodes
u1 < u2 < . . .. Then, as explained in Subsection 3.1.1, the infinite Viterbi alignment v(x∞) can
be constructed piecewise, i.e. the observations xu1+r fix the piece vu1 , then the observations
xu2+r

u1+1 fix the piece vu2

u1+1, and so on. In the absence of ties, the resulting piecewise infinite
alignment is unique. In the presence of ties we require that the ties be broken consistently,
and always so that the alignment goes through l at times ui. Then the resulting infinite Viterbi
alignment is called proper (see (Lember & Koloydenko, 2008) for details).

3.1.4 Barriers

Recall that nodes of order r at time u are defined relative to the entire realization xu+r. Thus,
whether xu is a node or not depends, in principle, on all observations up to xu+r. On the
other hand, the observation that indicates its state is a node independently of the observations
before or after it. This property is generalized by the concept of barrier. Informally speaking,
a barrier is a block of observations that is guaranteed to contain a (probably higher order)
node independently of the observations before and after this block. The formal definition is
as follows.
Def. Given l ∈ S, a block of observations zM ∈ X M is called a (strong) l-barrier of order r ≥ 0
and length M ≥ 1 if for any realization xn, M ≤ n ≤ ∞, such that xt

t−M+1 = zM for some t,
M ≤ t ≤ n, the observation xt−r is a (strong) l-node of order r. ⋄
According to this definition, any observation that indicates its state is a barrier of length one.
Usually a set A ⊂ X can be found such that any observation from A indicates its state. More
typically, however, there is a set B ⊂ X M such that any sequence from B is a barrier. Hence
barriers can be detected by a sliding window of length M. More importantly, when such a
subset B is constructed, then by ergodicity of X almost every realization x∞ contains infinitely
many barriers provided that the set B has a positive probability to occur. As already explained,
having infinitely many barriers guarantees infinitely many (usually higher order) nodes, and
based on these nodes, the infinite Viterbi alignment can be constructed piecewise.
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Thus, everything boils down to the construction of the barrier set B. We are able to do
this under some mild assumptions on the HMM. Next we state and discuss briefly these
assumptions.
Recall that fs, s ∈ S, are the densities of Ps := P(X1 ∈ ·|Y1 = s) with respect to some reference
measure µ. For each s ∈ S, let Gs := {x ∈ X : fs(x) > 0}.
Def. We call a non-empty subset C ⊂ S a cluster if the following conditions are satisfied:

min
j∈C

Pj(∩s∈CGs) > 0 and either C = S or max
j �∈C

Pj(∩s∈CGs) = 0. ⋄

Therefore, a cluster is a maximal subset of states such that GC = ∩s∈CGs, the intersection of
the supports of the corresponding emission distributions, is “detectable”. There always exists
at least one cluster; distinct clusters need not be disjoint, and a cluster can consist of a single
state. In this latter case such a state is not hidden, since it is exposed by any observation it
emits. If K = 2, then S is the only cluster possible, because otherwise the underlying Markov
chain would cease to be hidden. Our first assumption is the following.
A1 (cluster-assumption): There exists a cluster C ⊂ S such that the sub-stochastic matrix
R = (pij)i,j∈C is primitive, i.e. there is a positive integer r such that the rth power of R is
strictly positive.
The cluster assumption A1 is often met in practice. It is clearly satisfied if all elements of the
matrix P are positive. Since any irreducible aperiodic matrix is primitive, the assumption A1
is also satisfied in this case if the densities fs satisfy the following condition: for every x ∈ X ,
mins∈S fs(x) > 0, i.e. for all s ∈ S, Gs = X . Thus, A1 is more general than the strong mixing
condition (Assumption 4.2.21 in (Cappé et al., 2005)) and also weaker than Assumption 4.3.29
in (Cappé et al., 2005). Note that A1 implies aperiodicity of Y, but not vice versa.
Our second assumption is the following.
A2: For each state l ∈ S,

Pl

(

{

x ∈ X : fl(x)p∗l > max
s,s �=l

fs(x)p∗s
}

)

> 0, where p∗l = max
j

pjl , ∀l ∈ S. (18)

The assumption A2 is more technical in nature. In (Koloydenko & Lember, 2008) it was shown
that for a two-state HMM, (18) always holds for one state, and this is sufficient for the infinite
Viterbi alignment to exist. Hence, for the case K = 2, A2 can be relaxed. Other possibilities for
relaxing A2 are discussed in (Lember & Koloydenko, 2008; 2010a). To summarize: we believe
that the cluster assumption A1 is essential for HMMs, while the assumption A2, although
natural and satisfied for many models, can be relaxed. For more general discussion about
these assumptions, see (Koloydenko & Lember, 2008; Lember, 2011; Lember & Koloydenko,
2008; 2010a). The following Lemma is the core of our proof of the existence of the infinite
Viterbi alignment.

Lemma 3.1. Assume A1 and A2. Then for some integers M and r, M > r ≥ 0, there exist a set
B = B1 × · · · × BM ⊂ X M, an M-tuple of states yM ∈ SM and a state l ∈ S, such that every
zM ∈ B is an l-barrier of order r, yM−r = l and P

(

XM ∈ B, YM = yM
)

> 0.

Lemma 3.1 is proved in (Lember & Koloydenko, 2010a), and implies that P(XM ∈ B) >

0. Hence almost every realization of X contains infinitely many barriers, which makes the
piecewise construction possible.
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3.1.5 Viterbi process and its regenerativity.

If A1 and A2 hold, then by Lemma 3.1 and the piecewise construction there exists an infinite
Viterbi classifier v : X∞ → S∞. By applying v to HMM we obtain the alignment process
V = v(X). We shall call the process V = {Vt}∞

t=1 the Viterbi process. The existence of the Viterbi
process follows from the existence of infinitely many barriers. Now recall that Lemma 3.1
states more than merely the existence of infinitely many barriers. Namely, the Lemma actually
also states that almost every realization of a two-dimensional process (X, Y) contains infinitely
many barriers from B synchronized with yM. In other words, almost every realization of
(X, Y) contains infinitely many pairs (zM, yM) such that zM ∈ B. Let τi be the random time
of the rth order l-node in the ith such pair. Thus Xτ1 , Xτ2 , . . . are rth order l-nodes. By the
assumptions on yM we also know that for every i,

Yτi+r
τi+r−M+1 = yM and Yτi = l.

Hence the two-dimensional process (X, Y) is clearly regenerative with respect to the random
times {τi}

∞
i=1. Moreover, the proper piecewise construction ensures that the Viterbi process

V is also regenerative with respect to {τi}, see (Lember & Koloydenko, 2008). The random
variables τ1, τ2 − τ1, τ3 − τ2, . . . are independent and τ2 − τ1, τ3 − τ2, . . . are i.i.d. Thus, defining
Si := τi+1, i = 0, 1, . . ., we obtain that the three-dimensional process Z = (X, Y, V) is
regenerative with respect to the delayed renewal process {St}∞

t=0. Let Ṽn := vn(Xn), where
vn is a finite Viterbi alignment. The discussion above can be summarized as the following
theorem (see (Kuljus & Lember, 2010) for details).

Theorem 3.1. Let (X, Y) = {(Xt, Yt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then there

exists an infinite Viterbi alignment v : X∞ → S∞. Moreover, the finite Viterbi alignments vn : X n →
Sn can be chosen so that the following conditions are satisfied:

R1 the process Z := (X, Y, V), where V := {Vt}∞
t=1 is the alignment process, is a positive recurrent

aperiodic regenerative process with respect to some renewal process {St}∞
t=0;

R2 there exists a nonnegative integer m < ∞ such that for every j ≥ 0, Ṽn
t = Vt for all n ≥ Sj + m

and t ≤ Sj.

We actually know that m relates to r, the order of the barriers in Lemma 3.1, as m = r +
1. Aperiodicity of Z follows from aperiodicity of Y, the latter being a consequence of A1.
Obviously, the choice of vn becomes an issue only if the finite Viterbi alignment is not unique.
In what follows, we always assume that the finite Viterbi alignments vn : X n → Sn are chosen
according to Theorem 3.1. With such choices, the process Z̃n := {(Ṽn

t , Xt, Yt)}n
t=1 satisfies by

R2 the following property: Z̃n
t = Zt for every t = 1, . . . , Sk(n), where k(n) = max{k ≥ 0 :

Sk + m ≤ n}.
Regenerativity of Z makes it possible to obtain without any remarkable effort the SLLN for
Z̃n. To be more precise, let gp be a measurable function for some p ∈ N and let n ≥ p, and
consider the following random variables

Ũn
i := gp(Z̃n

i−p+1, . . . , Z̃n
i ), i = p, . . . , n.

Note that if i ≤ Sk(n), then Ũn
i = Ui := gp(Zi−p+1, . . . , Zi). Let

Mk := max
Sk<i≤Sk+1

|Ũi
Sk+1 + · · ·+ Ũi

i |.
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The random variables Mp, Mp+1, . . . are identically distributed, but for p > 1 not necessarily
independent. The following Theorem in a sense generalizes Th. VI.3.1 in (Asmussen, 2003),
and is an important tool for the applications in Subsection 4.1. The process Z∗ appearing in
the theorem is a stationary version of Z. For the proof and details see (Kuljus & Lember, 2010).

Theorem 3.2. Let gp be such that EMp < ∞ and E|gp(Z∗
1 , . . . , Z∗

p)| < ∞. Then we have

1

n − p + 1

n

∑
i=p

Ũn
i →

n→∞
EUp = Egp(Z∗

1 , . . . , Z∗
p) a.s. and in L1.

3.1.6 Doubly-infinite HMMs

Recall that {(Xt, Yt)}t≥1 is a restriction of the doubly-infinite HMM {Xt, Yt}t∈Z to the positive
integers. A great advantage of the barrier-based approach is that it allows us to construct
a piecewise infinite Viterbi alignment also for the doubly-infinite HMM. Thus, there exists
a doubly-infinite Viterbi alignment v : XZ → SZ that is an extension of finite Viterbi
alignments. For the formal definition of a doubly-infinite alignment see (Kuljus & Lember,
2010). An important feature of the doubly-infinite Viterbi alignment is that the decoding
process v is stationary, i.e. shifting the realization x∞

−∞ by one time-unit (Bernoulli shift)
entails the same shift of the decoded sequence v(x∞

−∞). Hence, applying v to an ergodic
doubly-infinite process X gives us an ergodic doubly-infinite Viterbi process v(X). The
following theorem (Th. 2.2 in (Kuljus & Lember, 2010)) is a doubly-infinite counterpart of
Theorem 3.1.

Theorem 3.3. Let (X, Y) = {(Xt, Yt)}t∈Z be a doubly-infinite ergodic HMM satisfying A1 and A2.
Then there exists an infinite Viterbi alignment v : XZ → SZ . Moreover, the finite Viterbi alignments
vz2

z1
can be chosen so that the following conditions are satisfied:

RD1 the process (X, Y, V), where V := {Vt}t∈Z is the alignment process, is a positively recurrent
aperiodic regenerative process with respect to some renewal process {St}t∈Z;

RD2 there exists a nonnegative integer m < ∞ such that for every j ≥ 0, Ṽn
t = Vt for all n ≥ Sj + m

and S0 ≤ t ≤ Sj;

RD3 the mapping v is stationary, i.e. v(θ(X)) = θv(X), where θ is the usual shift operator, i.e.
θ(. . . , x−1, x0, x1, . . .) = (. . . , x0, x1, x2, . . .).

Note the difference between R2 and RD2. Also, as explained above, property RD3 is
important because it guarantees that the doubly-infinite alignment process V = {Vt}t∈Z as
well as Z = {(Xt, Yt, Vt)}t∈Z is ergodic. Hence, by Birkhoff’s ergodic theorem it holds that for
any integrable function f ,

1

n

n

∑
t=1

f (. . . , Zt−1, Zt, Zt+1, . . .) →
n→∞

E[ f (. . . , Z−1, Z0, Z1, . . .)] a.s. and in L1. (19)

The convergence (19) is an important tool in proving limit theorems. Let Z∗ denote the
restriction of {(Xt, Yt, Vt)}∞

t=−∞ to the positive integers, i.e. Z∗ = {(Xt, Yt, Vt)}∞
t=1. By RD2,

Z∗ is a stationary version of Z as in R1. Thus (X0, Y0, V0)
D
= (X∗

1 , Y∗
1 , V∗

1 ) := Z∗
1 . Note that the

singly-infinite Viterbi process V in R1 is not defined at time zero so that the random variable
V0 always refers to the doubly-infinite, and hence stationary, case.
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3.1.7 Two-state HMM

The two-state HMM is special in many ways. First, since the underlying Markov
chain is aperiodic and irreducible, all entries of P

2 are positive. This implies that the
cluster-assumption A1 is always satisfied. Clearly the models of interest have only one cluster
consisting of both states. Positiveness of the transition probabilities also suggests that there
is no real need to consider either higher order nodes (and therefore higher order barriers) or
nodes that are not strong. That all makes the analysis for the case K = 2 significantly simpler.
The two-state case was first considered in (Caliebe, 2006; Caliebe & Rösler, 2002), where the
existence of infinite Viterbi alignments and regenerativity of the Viterbi process were proved
under several additional assumptions. The proof is based on the central limit theorem and
cannot be extended beyond the two-state case (see (Koloydenko & Lember, 2008; Lember &
Koloydenko, 2008) for a detailed discussion). The barrier-based construction for two-state
HMMs was considered in detail in (Koloydenko & Lember, 2008). The main result of this
paper states that for K = 2 also the assumption A2 can be removed. The only assumption
that remains is the natural assumption that the emission measures P1 and P2 are different.
The main theorem of (Koloydenko & Lember, 2008) states that under this assumption almost
every realization of X has infinitely many strong barriers. This result significantly generalizes
those in (Caliebe & Rösler, 2002).

3.2 Exponential forgetting and infinite PMAP-alignment

The existence of an infinite PMAP-classifier follows from the convergence of the so-called
smoothing probabilities as detailed below: for every s ∈ S, t, z ∈ Z such that t ≥ z, we have

P(Yt = s|Xz, . . . , Xn) →
n→∞

P(Yt = s|Xz, Xz+1 . . .) =: P(Yt = s|X∞
z ) a.s. (20)

The convergence (20) in its turn follows from Levy’s martingale convergence Theorem. When
the model is such that for every t there exists s′ satisfying

P(Yt = s′|X∞) > P(Yt = s|X∞), ∀s �= s′ a.s., (21)

then the existence of infinite PMAP-alignment follows from (20) with z = 1, because then

arg max
s

P(Yt = s|Xn) = arg max
s

P(Yt = s|X∞) eventually, a.s.

Condition (21) guarantees that arg maxs P(Yt = s|X∞) is almost surely unique. The drawback
of the easy construction of the infinite PMAP-alignment (given (21) holds) is that the ergodic
properties of the PMAP-process still need to be established. In particular, an analogue
of Theorem 3.2 has not yet been established, although we conjecture that under some
assumptions it holds.
At the same time, employing Levy’s martingale convergence Theorem again, we have

lim
z→−∞

P(Yt = s|X∞
z ) = P(Yt = s| · · · , X−1, X0, X1, . . .) =: P(Yt = s|X∞

−∞) a.s.

In (Lember, 2011), the rates of the above convergences are studied. In particular, the following
exponential forgetting Theorem (Th. 2.1 in (Lember, 2011)) is proved. In this Theorem, for every
z1, z2 such that −∞ ≤ z1 < z2 ≤ ∞, P(Yt ∈ ·|Xz2

z1
) denotes the K-dimensional vector of

probabilities and ‖ · ‖ stands for the total variation distance.
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Theorem 3.4. Assume A1. Then there exists a finite random variable C and ρ ∈ (0, 1) such that for
every z, t, n satisfying z ≤ t ≤ n,

‖P(Yt ∈ ·|Xn
z )− P(Yt ∈ ·|X∞

−∞)‖ ≤ C(ρt−z + ρn−t) a.s. (22)

The proof of Theorem 3.4 is based on an approach developed in (Cappé et al., 2005). The
approach is based on the fact that given xn, the conditional distribution of the underlying
chain Y is still Markov (albeit generally inhomogeneous). Using this, the difference between
the smoothing probabilities can be bounded by the Dobrushin coefficient of the product of
the (data-dependent) transition matrices. Condition A1 allows us to bound the Dobrushin
coefficient also in the case when the strong mixing condition fails. This is why Theorem 3.4
is more general than the previous similar results where the transition matrix was assumed
to have only positive entries or the emission densities fi were assumed to be all positive
(Cappé et al., 2005; Gerencser & Molnar-Saska, 2002; Gland & Mevel, 2000). It is important to
note that although the technique used in proving the exponential forgetting inequality differs
completely from the one used in proving the infinite Viterbi alignment, the same assumption
A1 appears in both the situations. This gives us a reason to believe that A1 is indeed essential
for HMMs.

4. Applications of infinite segmentation

4.1 Asymptotic risks

Recall (Subsection 1.2) that the quantity R(g, xn) := R(g(xn)|xn) measures the quality of
classifier g when it is applied to observations xn. We are interested in the random variable
R(g, Xn). In particular, we ask whether there exists a constant R such that R(g, Xn) →

n→∞
R

almost surely. This constant, when it exists, will be called asymptotic risk and for a given
risk function, its asymptotic risk depends only on the model and the classifier. Therefore,
asymptotic risks can be used to characterize the long-run properties of different classifiers for
a given HMM. They provide a tool for comparing how well different segmentation methods
work for a particular model. In the following, we present some risk convergence results that
were originally proved in (Kuljus & Lember, 2010; Lember, 2011). We also give the main
ideas behind the proofs. It should be noted that although the risk-based approach allows
us to consider several segmentation methods in a unified framework, we are not aware of
any unified method for proving the convergence of the corresponding risks. Therefore, every
specific risk as well as any particular classifier requires individual treatment. In the following,
we will denote the Viterbi alignment by v and the PMAP-alignment by u.

4.1.1 The R1-risk

The R1-risk is based on the pointwise loss function L1 that was defined in (1). When measuring
the goodness of segmentation with the R1-risk, the quantity of actual interest is the so-called
empirical or true risk

R1(g, Yn, Xn) :=
1

n

n

∑
t=1

l(Yt, gt(Xn)),

where gt(Xn) is the tth element of the n-dimensional vector g(Xn). Since Yn is hidden, the
empirical risk R1(g, Yn, Xn) cannot be found. If g is the Viterbi classifier, then

R1(v, Yn, Xn) =
1

n

n

∑
t=1

l(Yt, Ṽn
t ),
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and from Theorem 3.2 it follows that

R1(v, Yn, Xn) →
n→∞

El(Y0, V0) =: R1 a.s. and in L1 . (23)

The risk R1(v, Xn) is the conditional expectation of the empirical risk, i.e.

R1(v, Xn) = E[R1(v, Yn, Xn)|Xn].

In (Kuljus & Lember, 2010) it is shown that (23) implies also convergence of the conditional
expectations. Let us summarize this as the following Theorem (Th. 5 in (Kuljus & Lember,
2010)).

Theorem 4.1. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then there exists a

constant R1 ≥ 0 such that

lim
n→∞

R1(v, Yn, Xn) = lim
n→∞

R1(v, Xn) = R1 a.s. and in L1.

From the convergence in L1 (or by the bounded convergence Theorem) it obviously follows
that the expected risk of the Viterbi alignment converges to R1 as well: ER1(v, Xn) → R1.
Assuming that the asymptotic risk R1 has been found (by simulations, for example), one could
now be interested in a large deviation type upper bound on P(R1(v, Yn, Xn) − R1 > ǫ). In
(Ghosh et al., 2009) it has been shown that under the same assumptions as in the present
paper, the following large deviation principle holds:

lim
n→∞

1

n
log P(R1(v, Yn, Xn) > ǫ + R1) = −I(R1 + ǫ),

where I is a rate function and ǫ is small enough. The authors of (Ghosh et al., 2009) do not state
the exact bound on the probability P(R1(v, Yn, Xn) − R1 > ǫ), but it could be derived from
their proof of the above result. We would like to draw the reader’s attention to how this theme
is different from supervised learning. In supervised learning (pattern recognition) the model
is often unknown, but the variables Yn are observable, thus the empirical risk R1(g, Yn, Xn) for
any classifier could be calculated. The main object of interest then is the unknown asymptotic
risk and the large deviation inequalities are used to estimate the unknown asymptotic risk by
the known empirical risk. In our setting the data Yn are hidden, but the model, and therefore
the asymptotic risk, is known, thus it can be used to estimate the unknown empirical risk.
Consider now the R1-risk for the PMAP-classifier u, that is the minimizer of this
risk. Birkhoff’s ergodic theorem together with the exponential smoothing inequality (22)
immediately imply the existence of a constant R∗

1 such that R1(u, Xn) → R∗
1 almost surely.

Indeed, from (19) it follows that

1

n

n

∑
t=1

min
s

(

∑
a∈S

l(a, s)P(Yt = a|X∞
−∞)

)

→
n→∞

E min
s

(

∑
a∈S

l(a, s)P(Y0 = a|X∞
−∞)

)

=: R∗
1 a.s.

The forgetting bound (22) yields

∣

∣

∣
R1(u, Xn)−

1

n

n

∑
t=1

min
s∈S

(

∑
a∈S

l(a, s)P(Yt = a|X∞
−∞

)∣

∣

∣ ≤
C

n

n

∑
t=1

(ρt−1 + ρn−t) a.s., (24)

see (Lember, 2011) for details. The right-hand side of (24) converges to zero almost surely as
n grows. Thus, the following Theorem holds (Th. 3.1 in (Lember, 2011)).
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Theorem 4.2. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1. Then there exists a constant R∗

1
such that R1(u, Xn) →

n→∞
R∗

1 a.s. and in L1.

The asymptotic risk R∗
1 measures in the long run the average loss incurred by classifying

one symbol. Since the PMAP-classifier is optimal for the R1-risk, then clearly R∗
1 ≤ R1 and

their difference indicates how well the Viterbi segmentation performs in the sense of R1-risk
in comparison to the best classifier in the sense of R1-risk. For example, if the pointwise loss
function l is symmetric, then the optimal classifier in the sense of misclassification error makes
on average about R∗

1n classification mistakes and no other classifier does better.

4.1.2 The R̄1-risk

Recall (2) which defines the R̄1-risk to be

R̄1(s
n|xn) = −

1

n

n

∑
t=1

log pt(st|x
n).

To show the convergence of R̄1(v, Xn), we use Theorem 3.3. According to RD3, the
doubly-infinite alignment process v is stationary. Consider the function f : XZ → (−∞, 0],
where

f (x∞
−∞) := log p0

(

v0(x∞
−∞

)

|x∞
−∞) = log P(Y0 = V0|X

∞
−∞ = x∞

−∞).

It is not hard to see that f
(

θ(t)(x∞
−∞)

)

= log P(Yt = Vt|X∞
−∞ = x∞

−∞). Thus, by (19),

−
1

n

n

∑
t=1

log P(Yt = Vt|X
∞
−∞) →

n→∞
−E

(

log P(Y0 = V0|X
∞
−∞)

)

=: R̄1 a.s. and in L1,

provided the expectation is finite. This convergence suggests that by suitable approximation
the following convergence also holds:

lim
n→∞

R̄1(v, Xn) = lim
n→∞

−
1

n

n

∑
t=1

log P(Yt = Ṽn
t |X

n) = R̄1 a.s. (25)

The difficulties with proving the convergence of R̄1(v, Xn) are caused mainly by the fact that
the exponential forgetting inequality in (22) does not necessarily hold for the logarithms. This
inequality would hold if the probability P(Y0 = V0|X

∞
−∞) were bounded below, i.e. if

P(Y0 = V0|X
∞
−∞) > ǫ a.s. (26)

held for some ǫ > 0. Then by (22) it would hold that almost surely P(Yt = Vt|X∞) >
ǫ
2

eventually, and the inequality | log a − log b| ≤ 1
min{a,b}

|a − b| together with (22) would imply

−
1

n

n

∑
t=1

log P(Yt = Vt|X
n) →

n→∞
R̄1 a.s.

Then, by an argument similar to the one in the proof of Theorem 3.2, the convergence (25)
would follow. Unfortunately, (26) need not necessarily hold. In (Kuljus & Lember, 2010) the
condition (26) is replaced by the following weaker condition: there exists α > 0 such that

E
( 1

P(Y0 = V0|X∞
−∞)

)α
< ∞ . (27)
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It can be shown (Prop. 4.1 and Lemma 3 in (Kuljus & Lember, 2010)) that under A1 the
inequality (27) holds. The condition in (27) turns out to be sufficient to prove the convergence
of R̄1(v, Xn). The discussion above can be summarized in the following theorem (Th. 4.1 in
(Kuljus & Lember, 2010)).

Theorem 4.3. Let {(Yt, Xt)}∞
t=1 be an ergodic HMM satisfying A1 and A2. Then

lim
n→∞

R̄1(v, Xn) = R̄1 a.s. and in L1 .

From the preceding argument it is clear that the convergence of the R̄1-risk is rather easy to
prove when instead of the Viterbi alignment the PMAP-alignment is used. Indeed, by (19),

−
1

n

n

∑
t=1

max
s∈S

log P(Yt = s|X∞
−∞) →

n→∞
E[max

s∈S
log P(Y0 = s|X∞

−∞)] =: R̄∗
1 a.s. and in L1.

Since maxs∈S P(Yt = s|Xn) ≥ K−1, for the PMAP-alignment the condition (26) is trivially
satisfied. From the exponential forgetting inequality (22) it then follows (Cor. 4.2 in (Kuljus &
Lember, 2010)) that

R̄1(u, Xn) = −
1

n

n

∑
t=1

max
s∈S

log P(Yt = s|Xn) →
n→∞

R̄∗
1 a.s. and in L1 .

Again, since the R̄1-risk is minimized by the PMAP-classifier, it holds that R̄∗
1 ≤ R̄1.

4.1.3 The R̄∞-risk

Recall (Subsection 2.3.1) that the R̄∞-risk is defined as the negative log-posterior probability
given observations xn, i.e. R̄∞(sn|xn) = − 1

n log p(sn|xn). Let p(xn) denote the likelihood of
xn. Then

p(Ṽn|Xn) = P(Yn = Ṽn|Xn) =
p(Xn|Ṽn)P(Yn = Ṽn)

p(Xn)
,

therefore

R̄∞(v, Xn) = −
1

n

(

log p(Xn|Ṽn) + log P(Yn = Ṽn)− log p(Xn)
)

.

By Theorem 3.2, the following convergences hold (see (Kuljus & Lember, 2010) for details):

1

n
log p(Xn|Ṽn) →

n→∞
∑
s∈S

E
(

log fs(X0)Is(V0)
)

a.s.,
1

n
log P(Yn = Ṽn) →

n→∞
E(log pV0V1

) a.s.

The last convergence − 1
n log p(Xn) → HX , where HX is the entropy rate of X, follows from

the Shannon-McMillan-Breiman Theorem. The ideas above are formalized in the following
Theorem (Th. 5.1 in (Kuljus & Lember, 2010)).

Theorem 4.4. Let for every s ∈ S the function log fs be Ps-integrable. Then there exists a constant
R̄∞ such that

R̄∞(v, Xn) →
n→∞

R̄∞ a.s. and in L1.
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By the same argument, there exists another constant R̄Y
∞ such that

−
1

n
log P(Yn|Xn) →

n→∞
R̄Y

∞ a.s. and in L1.

Since E[log P(Yn|Xn)] = −H(Yn|Xn), where H(Yn|Xn) stands for the conditional entropy of
Yn given Xn, the limit R̄Y

∞ could be interpreted as the conditional entropy rate of Y given X,
it is not the entropy rate of Y. Clearly, R̄∞ ≤ R̄Y

∞, and the difference of these two numbers
shows how much the Viterbi alignment inflates the posterior probability.

4.2 Adjusted Viterbi training

So far we have assumed that the model is known, i.e. both the transition matrix as well as
the emission distributions Ps are given. Often the model is given up to parametrization and
then parameter estimation becomes of interest. Hence, in this subsection we assume that all
emission densities are of the form fs(x; θs), where θs ∈ Θs is the emission parameter to be
estimated. In practice, e.g. in speech recognition, the transition matrix is often assumed to
be known and the emission parameters are the only parameters to be estimated, sometimes
however the transition matrix P = (pij) is to be estimated as well. Thus, in general, the
set of unknown parameters is ψ = (P, θ), where θ = (θ1, θ2, . . . , θK). (We ignore π, the
initial distribution, since in the stationary regime π is determined by P, whereas otherwise
its estimation would require multiple samples xn.)
The classical algorithm for finding the maximum likelihood estimators of HMM-parameters
is the so-called EM-training (see, e.g. (Cappé et al., 2005; Ephraim & Merhav, 2002;
Rabiner, 1989)). Although theoretically justified, the EM-training might be very slow and
computationally expensive. Therefore, in practice, the EM-training is sometimes replaced by
the much quicker Viterbi training (VT), where the expectation over all alignments (E-step) is
replaced by the maximum a posteriori alignment. In other words, in the kth iteration the

Viterbi alignment is performed using ψ(k), the current estimate of the parameters. According
to this alignment, the observations xn are divided into K subsamples, where the sth subsample
consists of those observations that are aligned with the state s. In each subsample the
maximum likelihood estimator µ̂s of θs is found. The estimate of the transition probability
p̂ij is the proportion of states i followed by the state j in the Viterbi alignment. The formal
algorithm of VT estimation is as follows.
Viterbi training (VT)

1. Choose initial values for the parameters ψ(k) = (P(k), θ(k)), k = 0.

2. Given the current parameters ψ(k), obtain the Viterbi alignment v(k) = v(xn; ψ(k)).

3. Update the regime parameters P
(k+1) :=

(

p̂n
ij

)

, i, j ∈ S, as given below:

p̂n
ij :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n−1

∑
m=1

I{i}(v
(k)
m )I{j}(v

(k)
m+1)

n−1

∑
m=1

I{i}(v
(k)
m )

, if
n−1
∑

m=1
I{i}(v

(k)
m ) > 0 ,

P
(k)
ij , otherwise.

4. Assign xm, m = 1, 2, . . . , n, to the class v
(k)
m . Equivalently, define empirical measures

P̂n
s (A; ψ(k), xn) :=

∑
n
m=1 IA×{s}(xm, v

(k)
m )

∑
n
m=1 I{s}(v

(k)
m )

, A ∈ B, s ∈ S.
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5. For each class s ∈ S, obtain the ML estimator µ̂n
s (ψ

(k), xn) of θs, given by:

µ̂n
s (ψ

(k), xn) := arg max
θ′s∈Θs

∫

log fs(x; θ′s)P̂n
s (dx; ψ(k), xn),

and for all s ∈ S let θ
(k+1)
s :=

⎧

⎨

⎩

µ̂n
s (ψ

(k), xn), if
n
∑

m=1
I{s}(v

(k)
m ) > 0 ,

θ
(k)
s , otherwise.

For better interpretation of VT, suppose that at some step k, ψ(k) = ψ, thus v(k) is obtained
using the true parameters. Let yn be the actual hidden realization of Yn. The training

pretends that the alignment v(k) is perfect, i.e. v(k) = yn. If the alignment were perfect, the
empirical measures P̂n

s , s ∈ S, would be obtained from the i.i.d. samples generated from
the true emission measures Ps and the ML estimators µ̂n

s would be natural estimators to
use. Under these assumptions P̂n

s ⇒ Ps almost surely, and provided that { fs(·; θs) : θs ∈
Θs} is a Ps-Glivenko-Cantelli class and Θs is equipped with a suitable metric, we would
have limn→∞ µ̂n

s = θs almost surely. Hence, if n is sufficiently large, then P̂n
s ≈ Ps and

θ
(k+1)
s = µ̂n

s ≈ θs = θ
(k)
s for every s ∈ S. Similarly, if the alignment were perfect, then

limn→∞ p̂n
ij = P(Y2 = j|Y1 = i) = pij almost surely. Thus, for the perfect alignment

ψ(k+1) = (P(k+1), θ(k+1)) ≈ (P(k), θ(k)) = ψ(k) = ψ ,

i.e. ψ would be approximately a fixed point of the training algorithm.
Certainly the Viterbi alignment in general is not perfect even when it is computed with the true
parameters. The empirical measures P̂n

s can be rather far from those based on the i.i.d. samples
from the true emission measures Ps even when the Viterbi alignment is performed with
the true parameters. Hence we have no reason to expect that limn→∞ µ̂n

s (ψ, Xn) = θs and
limn→∞ p̂n

ij(ψ, Xn) = pij almost surely. Moreover, we do not even know whether the sequences

of empirical measures P̂n
s (ψ, Xn) or the ML estimators µ̂n

s (ψ, Xn) and p̂n
ij(ψ, Xn) converge

almost surely at all. Here again Theorem 3.2 answers the question. From Theorem 3.2 it
follows that for any measurable set A, P̂n

s (A) → P(X0 ∈ A|V0 = s) =: Qs(A) a.s., where
P̂n

s = P̂n
s (ψ, Xn). This implies that the empirical measures P̂n

s converge weakly to the measures
Qs almost surely, i.e. for every s ∈ S,

P̂n
s ⇒ Qs a.s. (28)

Convergence (28) is the main statement of Theorem 4.1 in (Lember & Koloydenko, 2008). In
(Koloydenko et al., 2007) it has been shown that if fs(x; θs) satisfy some general conditions
and if Θs are closed subsets of R

d, then convergence (28) implies convergence of µ̂n
s (ψ, Xn),

i.e.

µ̂n
s (ψ, Xn) →

n→∞
µs a.s., where µs(ψ) := arg max

θ′s∈Θs

∫

log fs(x; θ′s)Qs(dx). (29)

Since in general Qs �= Ps(θs), clearly µs need not equal θs = arg max
θ′s

∫

log fs(x; θ′s)Ps(dx).

Similarly, Theorem 3.2 also implies that

p̂n
ij(ψ; Xn) →

n→∞
P(V1 = j|V0 = i) =: qij a.s. (30)
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Again, in general pij �= qij. In order to reduce the biases θs −µs and pij − qij, we have proposed
the adjusted Viterbi training. We know that convergences (29) and (30) hold for any parameter
ψ given that A1 and A2 hold. Since the limits µs and qij depend on the true parameters, we
can consider the mappings

ψ �→ µs(ψ), ψ �→ qij(ψ), s, i, j = 1, . . . , K. (31)

These mappings do not depend on the observations xn, hence the following corrections are
well-defined:

∆s(ψ):=θs − µs(ψ), Rij(ψ):=pij − qij(ψ), s, i, j = 1, . . . , K. (32)

Based on (32), the adjusted Viterbi training can be defined as follows.
Adjusted Viterbi training (VA)

1. Choose initial values for the parameters ψ(k) = (P(k), θ(k)), k = 0.

2. Given the current parameters ψ(k), obtain the Viterbi alignment v(k) = v(xn; ψ(k)).

3. Update the regime parameters P
(k+1) :=

(

p
(k+1)
ij

)

as follows:

p
(k+1)
ij := p̂n

ij + Rij(ψ
(k)),

where p̂n
ij is defined as in VT.

4. Based on v(k), define empirical measures P̂n
s , s ∈ S, as in VT.

5. Update the emission parameters as follows:

θ
(k+1)
s := ∆s(ψ

(k)) +

{

µ̂n
s (ψ

(k), xn), if ∑
n
m=1 I{s}(v

(k)
m ) > 0,

θ
(k)
s , otherwise.

Here µ̂n
s (ψ

(k), xn) is as in VT.

Provided n is sufficiently large, VA has approximately the true parameters ψ as its fixed point

as desired. Indeed, suppose ψ(k) = ψ. From (29) we obtain that for every s ∈ S,

µ̂n
s (ψ

(k), xn) = µ̂n
s (ψ, xn) ≈ µs(ψ) = µs(ψ

(k)).

Similarly, (30) gives that for all i, j ∈ S,

p̂n
ij(ψ

(k), xn) = p̂n
ij(ψ, xn) ≈ qij(ψ) = qij(ψ

(k)).

Thus, for every s, i, j ∈ S,

θ
(k+1)
s = µ̂n

s (ψ, xn) + ∆s(ψ) ≈ µs(ψ) + ∆s(ψ) = θs = θ
(k)
s ,

p
(k+1)
ij = p̂n

ij(ψ, xn) + Rij(ψ) ≈ qij(ψ) + Rij(ψ) = pij = p
(k)
ij .

Hence, ψ(k+1) = (P(k+1), θ(k+1)) ≈ (P(k), θ(k)) = ψ(k). The simulations in (Koloydenko et al.,
2007; Lember & Koloydenko, 2007), presented in part in Example 2 below, show that the
asymptotic fixed point property does make a difference. Namely, unlike the VT estimates,
the VA ones are nearly as accurate (and can even be more accurate than) as the ones obtained
by the EM-training. At the same time, VA is comparable to VT in terms of the computational
cost, and therefore may be preferred to EM.
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4.2.1 Example 2

The following simulation study is adapted from (Koloydenko et al., 2007). We consider a
two-state HMM with the transition matrix

P =

(

1 − ǫ ǫ
ǫ 1 − ǫ

)

, ǫ ∈ (0, 0.5],

and with the emission distributions P1 = N (θ1, 1) and P2 = N (θ2, 1). Thus, there are two
emission parameters θ1 and θ2 and one regime parameter ǫ in this model. Assume without
loss of generality that θ1 < θ2 and let a = 0.5(θ2 − θ1). With ǫ = 0.5 this model reduces to the
i.i.d. (mixture) model. The correction function ∆(a, ǫ) was estimated off-line by simulations
and achieves its maximum at ǫ = 0.5, i.e. in the i.i.d. case. Using the obtained ∆-function, we
apply the adjusted Viterbi training and compare it with the VT- and EM-algorithms. Tables
1-2 present simulation results obtained from samples of size 106 and focus on estimation of

the emission parameters. The iterations were initialized by setting θ
(0)
1 and θ

(0)
2 to the first and

third quartiles of x1, x2, . . . , xn, respectively, and stopped as soon as the L∞-distance between
successive estimates fell below 0.01. From Tables 1-2 it can be seen that the Viterbi training
is quickest to converge, but its estimates are evidently biased. Accuracy of the adjusted
Viterbi training is comparable to that of the EM-algorithm, while VA converges somewhat
more rapidly than EM. Each step of EM requires significantly more intensive computations,
so that one should expect the overall run-time of VA to be notably shorter than that of EM.
Using the same stopping rule as before, we also test the three algorithms for the fixed point
property. From Tables 3-4 it is evident that both EM and VA do approximately satisfy this
property, whereas VT moves the true parameters to a notably different location.

EM VT VA
Step 0 (-0.689,0.687) (-0.689,0.687) (-0.689,0.687)
Step 1 (-0.477,0.475) (-0.537,0.536) (-0.460,0.459)
Step 2 (-0.385,0.384) (-0.474,0.474) (-0.359,0.358)
Step 3 (-0.335,0.333) (-0.445,0.445) (-0.305,0.307)
Step 4 (-0.303,0.301) (-0.429,0.430) (-0.273,0.274)
Step 5 (-0.281,0.279) (-0.420,0.422) (-0.252,0.254)
Step 6 (-0.265,0.264) (-0.239,0.241)
Step 7 (-0.253,0.252) (-0.229,0.232)
Step 8 (-0.244,0.243)

L1 error 0.087 0.442 0.061
L2 error 0.061 0.312 0.043
L∞ error 0.044 0.222 0.032

Table 1. Estimating θ1 and θ2, when ǫ = 0.2, a = 0.2, θ1 = −0.2 and θ2 = 0.2.

EM VT VA
Step 0 (-1.050,1.053) (-1.050,1.053) (-1.050,1.053)
Step 1 (-1.013,1.015) (-1.166,1.169) (-1.014,1.016)
Step 2 (-1.003,1.005) (-1.165,1.169) (-1.004,1.006)

L1 error 0.008 0.334 0.010
L2 error 0.006 0.236 0.007
L∞ error 0.005 0.169 0.006

Table 2. Estimating θ1 and θ2, when ǫ = 0.5, a = 1, θ1 = −1 and θ2 = 1.
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EM VT VA
Step 0 (-0.200,0.200) (-0.200,0.200) (-0.200,0.200)
Step 1 (-0.198,0.202) (-0.252,0.254) (-0.198,0.200)
Step 2 (-0.298,0.302)
Step 3 (-0.333,0.339)
Step 4 (-0.357,0.367)
Step 5 (-0.373,0.386)
Step 6 (-0.383,0.399)
Step 7 (-0.387,0.408)

L1 error 0.003 0.396 0.002
L2 error 0.002 0.280 0.002
L∞ error 0.002 0.208 0.002

Table 3. Comparison of algorithms for ǫ = 0.2 and a = 0.2, and θ
(0)
1 = θ1 and θ

(0)
2 = θ2.

EM VT VA
Step 0 (-1.000,1.000) (-1.000,1.000) (-1.000,1.000)
Step 1 (-0.998,1.000) (-1.165,1.167) (-0.998,1.000)
Step 2 (-1.165,1.167)

L1 error 0.002 0.332 0.002
L2 error 0.002 0.235 0.002
L∞ error 0.002 0.167 0.002

Table 4. Comparison of algorithms for ǫ = 0.5 and a = 1, and θ
(0)
1 = θ1 and θ

(0)
2 = θ2.

4.3 Generalizations, other training ideas and implementation

4.3.1 Segmentation-based training

As we have seen above, the drawback of VT stems from the fact that the Viterbi process
differs systematically from the underlying chain, so that the empirical measures obtained by
the Viterbi segmentation can differ significantly from the true emission distributions Ps even
when the parameters used to obtain the Viterbi alignment were correct and n were arbitrarily
large. Hence, using the Viterbi alignment for segmentation in the training procedure is not
theoretically justified.
Since the PMAP-alignment minimizes the error rate, using the PMAP-segmentation in the
training procedure could be the lesser of the two evils. The empirical measures obtained by
the PMAP-alignment would, of course, also differ from the emission measures even when the
parameters are correct and n is arbitrarily large, and in particular the transition probability
estimators can easily be biased. However, since the PMAP-alignment has more correctly
estimated states in the long run, the emission estimators µ̂n obtained by the PMAP-alignment
are expected to be closer to the ML estimators that would have been obtained if the underlying
state sequence were known. A tandem training that would synergize the Viterbi and PMAP
alignments may also be worth considering.
In general, one can speak about segmentation-based training, where the observations are divided
into K subsamples (empirical measures) according to a segmentation procedure with current
parameter estimates. Every subsample is considered to be an i.i.d. sample from Ps and
the corresponding MLE is found. The transition probabilities are directly obtained from
the segmentation. Once again, the PMAP-training should give more precise estimates of
the emission parameters than the Viterbi training, but the PMAP-alignment might produce
forbidden transitions (Section 1.2). Thus, even when a transition probability is set to zero
initially, or turns zero at some iteration, it would not necessarily remain zero at later iterations
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of the PMAP training. This is different from VT which cannot turn a zero transition probability
positive. This more liberal behavior of the PMAP-training can easily be constrained “by
hand”, which would be appropriate when, for example, the forbidden transitions are known
a priori. More generally, the k-block alignment defined in Subsection 2.4 could be considered
in the training procedure which would automatically preserve zero transition probabilities.
Preservation of zero transition probabilities is not necessarily a goal in itself as it can prevent
the algorithm from detecting rare transitions. However, using the k-block alignment for
segmentation based training is worth considering as further optimization may be achieved
by varying k.
Recall that the adjusted Viterbi training is largely based on Theorem 3.2, since this is the main
theoretical result behind the existence of the adjustments in (32). Although not yet proved, we
believe that a counterpart of Theorem 3.2 holds for many alignments other than Viterbi. Now,
if the training is based on an alignment for which the above result does hold, the adjusted
version of the training can then be defined along the lines of the Viterbi training.

4.3.2 Independent training

The order of the observations xn = (x1, . . . , xn) provides information about the transition
probabilities. When we reorder the observations, we loose all information about the
transitions, but the information about the emission distributions remains. Often the emission
parameters are the primary interest of the training procedure, the transition matrix could for
example be known or considered to be a nuisance parameter. Then it makes sense to estimate
the emission parameters by treating the observations x1, . . . , xn as an i.i.d. sample from a
mixture density ∑s πs fs(·; θs), assuming π to be the invariant distribution of P. This approach
is introduced in (Koloydenko et al., 2007; Lember & Koloydenko, 2008) under the name of
independent training. Besides the EM-training the Viterbi training can also be used for data that
is regarded as independent, and in this case it is equivalent to the PMAP-training. As shown in
(Koloydenko et al., 2007) (see Subsection 4.2.1), the bias ∆s is relatively large for the i.i.d. case,
which makes the replacement of VT by VA particularly attractive in this case. The advantage
of the VA-based independent training over VA is that training is usually significantly easier in
the i.i.d. case. In particular, the adjustment terms ∆s are more likely to be found theoretically.
Also, the i.i.d. case is usually computationally much cheaper. Another appealing procedure
that could be applied for independent training is VA2 that will be described next. For a
more detailed discussion about independent training, see (Koloydenko et al., 2007; Lember
& Koloydenko, 2008). For VA in the i.i.d. case, see (Lember & Koloydenko, 2007).

4.3.3 VA2

For the case of i.i.d. data from a mixture density ∑s πs fs(·; θs), a slightly modified version of
VA was proposed in (Lember & Koloydenko, 2007). To explain the main idea, assume that the
weights πs are known so that the emission parameters θ = (θ1, . . . , θK) are the only parameters
to be estimated. VA2 is based on the observation that for the i.i.d. case the segmentation of the
data into subsamples is induced by a partition of the sample space. Indeed, given the current

estimates θ(k), the observation xt belongs to the subsample corresponding to state 1 if and only

if xt ∈ S1 := {x : π1 f1(x; θ
(k)
1 ) ≥ πs fs(x; θ

(k)
s ), ∀s ∈ S}. The sets S1, . . . ,SK form a partition of

X (upto the ties) that depends only on θ(k). It is intuitively clear, especially in the case of K = 2,

that many different parameters θ could induce the same partition. In particular, θ(k) could

induce the partition corresponding to the true parameter θ∗ even when θ(k) �= θ∗. In that case,

the ML estimates µ̂s would be the same for both θ(k) and θ∗. However, since the correction
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term ∆(θ(k)) does depend on θ(k), it follows that the adjusted estimate θ(k+1) need not be close
to θ∗. The adjustment in VA2 tries to overcome the mentioned deficiency. In particular, the

parameters θ(k) are taken into account via their induced partition only. Given the partition
and the ML estimates µ̂s, the new adjustment seeks θ that would asymptotically induce the

given partition and the given estimates. Now, if the partition corresponded to θ∗, then θ(k+1)

obtained in such a way would be close to θ∗. For details, see (Lember & Koloydenko, 2007).

4.3.4 Implementation

The difficulties in implementing VA are caused by the fact that apart from the i.i.d. case,
finding the adjustment functions ∆(ψ) theoretically is very hard. However, since the
adjustments do not depend on the data, they can be found by simulations independently
of the data. It is important to point out that even if such simulations require significant effort,
they are done off-line and can be reused with the same model.
Another, computationally less demanding approach, is the so called stochastically adjusted
Viterbi training (SVA). Instead of estimating the correction at every point as in the previous
approach, SVA estimates the correction by simulations at every iteration and therefore only at
the points visited by the algorithm. Clearly, if the number of iterations is relatively small, this
method should require less overall computing. On the other hand, if a model is to be used
repeatedly, estimating the correction function off-line as in the previous example might still
be preferable.
Several implementation ideas for the i.i.d. case, i.e. for estimating mixture parameters, are
discussed in (Lember & Koloydenko, 2007). The implementation of VA2 depends on the
model. Instead of calculating the correction function ∆, for VA2 a certain inverse function
should be found. This might be difficult to do even for simple models, but when it is done, it
can be reused again and again.

4.4 Segmentation with partially revealed observations

Consider the situation where some hidden states can be revealed on request, albeit possibly
at a very high cost. The purpose of uncovering a number of states is to improve the alignment
by reducing the number of incorrectly estimated states. With the additional information
a constrained alignment can be obtained, which in general will lower the empirical risk
considerably. The decision on how many and which states to reveal is a trade-off between
the cost of learning an unknown state and the reduction in the alignment risk.
One way to approach the problem of which states to reveal is to study the conditional
misclassification probabilities at every time point t = 1, . . . , n, given the observations
X1, . . . , Xn. One can order the calculated conditional probability P(Yt �= gt(Xn)|Xn =
xn), t = 1, . . . , n, and ask for the actual states of the points with the largest probability.
This approach involves finding the alignment and computing the conditional probabilities
for every single realization. In order to use this approach, one needs to know the
conditional probability of incorrect segmentation given a certain observation, or a segment
of observations, in advance. Let us denote the conditional misclassification probability given
an observation x by P(incorrect|x).

4.4.1 Definition of misclassification probability for Viterbi alignment

In this section l(at, bt) stands for the symmetric pointwise loss: l(at, bt) = 1 if at �= bt and
0 otherwise. Thus the R1-risk measures the expected number of misclassified observations.
Recall that (X0, Y0, V0) belongs to the stationary version of (Xt, Yt, Vt). Define for every
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measurable A,
Pcorrect(A) := P(X0 ∈ A|Y0 = V0) ,

Pincorrect(A) := P(X0 ∈ A|Y0 �= V0) .

The probability measure P(in)correct can be interpreted as the asymptotic distribution of an
observation given the Viterbi alignment at that point is (in)correct. Because of stationarity of
X the distribution of every observation is given by

P(A) = P(X0 ∈ A) = P(X0 ∈ A|Y0 = V0)P(Y0 = V0) + P(X0 ∈ A|Y0 �= V0)P(Y0 �= V0)

= Pcorrect(A)(1 − R1) + Pincorrect(A)R1,

where R1 is the asymptotic risk as defined in Subsection 4.1.1. Thus, the probability
P(incorrect|·) can be defined as follows:

P(incorrect|A) := P(Y0 �= V0|X0 ∈ A) =
Pincorrect(A)R1

Pcorrect(A)(1 − R1) + Pincorrect(A)R1
.

The probability distribution of any observation of X can be written as a weighted sum of
emission distributions Ps: PX = ∑s∈S πsPs. Because the emission distributions Ps have
densities fs with respect to some measure µ, from the equality P(A) = Pcorrect(A)(1 − R1) +

Pincorrect(A)R1 it follows that P(in)correct have densities with respect to µ, we denote them by

f (in)correct. The conditional probability that the Viterbi alignment makes a mistake given that
the observation is x, can now be defined as

P(incorrect|x) := P(Y0 �= V0|x) =
f incorrect(x)R1

f correct(x)(1 − R1) + f incorrect(x)R1
. (33)

Observe that P(incorrect|x) depends only on the model. This implies that once the alignment
error probability for a given x is estimated, we can use this value whenever working with
the same model. It is also important to emphasize that P(incorrect|x) is a function of both
f correct and f incorrect, thus it takes into account both the proportions of correctly and incorrectly
classified states that emit x. For example, if f incorrect(xt) and f incorrect(xu) are both large
but f correct(xt) is much smaller than f correct(xu), then it makes more sense to seek more
information on Y at time t.
One way to estimate P(incorrect|x) is from simulations by using empirical measures. If
we would know the true underlying states Y1, . . . , Yn for a given sequence of observations
X1, . . . , Xn, we could after performing the Viterbi segmentation calculate the number of
correctly and incorrectly classified states. We could also tally (in)correctly classified states
with emissions in A. Thus, we can consider empirical measures Pcorrect

n and Pincorrect
n defined

as follows:

Pcorrect
n (A) :=

∑
n
t=1 IA×{0}(Xt, l(Yt, vt(Xn)))

∑
n
t=1 I{0}(l(Yt, vt(Xn)))

=
∑

n
t=1 IA(Xt)I{Yt=Ṽn

t }

∑
n
t=1 I{Yt=Ṽn

t }
,

Pincorrect
n (A) :=

∑
n
t=1 IA×{1}(Xt, l(Yt, vt(Xn)))

∑
n
t=1 I{1}(l(Yt, vt(Xn)))

=
∑

n
t=1 IA(Xt)I{Yt �=Ṽn

t }

∑
n
t=1 I{Yt �=Ṽn

t }
.
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Similarly, we can define the empirical measure Pn(incorrect|·) that calculates the proportion
of classification errors given the observation belongs to A ∈ B:

Pn(incorrect|A) :=
∑

n
t=1 IA×{1}(Xt, l(Yt, Ṽn

t ))

∑
n
t=1 IA(Xt)

=
∑

n
t=1 IA(Xt)I{Yt �=Ṽn

t }

∑
n
t=1 IA(Xt)

.

In practice, the empirical measures defined above are unknown. It follows directly from

Theorem 3.2 that the empirical measures P
(in)correct
n and Pn(incorrect|·) converge almost surely

to P(in)correct and P(incorrect|·) respectively, i.e. for every A ∈ B,

P
(in)correct
n (A) → P(in)correct(A) , Pn(incorrect|A) → P(incorrect|A) a.s.

These convergences allow us to estimate the densities f (in)correct, R1, and hence also
P(incorrect|x), when it is difficult to find any of these quantities analytically.
Example 3. This example demonstrates estimation of f correct, f incorrect and P(incorrect|x)
by simulations. A two-state HMM with emission distributions N (3, 22) and N (10, 32) and
transition matrix

P =

(

0.3 0.7
0.7 0.3

)

was considered. The estimates of the densities f correct, f incorrect and P(incorrect|x) for a sample
of size n = 100000 are presented in Figure 4 graphs (a), (b) and (c), respectively. The R-package
‘HiddenMarkov’ (Harte, 2010) was used for these simulations.
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Fig. 4. Estimates of f correct, f incorrect and P(incorrect|x).

In (Raag, 2009), the decrease in the number of Viterbi alignment errors when a number of
true states are uncovered, is compared for the following three cases: states are revealed
randomly, the states with largest conditional point risk are uncovered, the states with the
largest misclassification error are revealed. The simulation studies in (Raag, 2009) investigate
for example, how the number of mistakes of the constrained alignments depends on the
transition probabilities or dependence between the states, and how the decrease in the number
of errors is affected by the number of states in the model.

4.4.2 Generalization

Thus far, we have defined the misclassification probability conditionally given a single
observation on X. Stationarity makes this probability time invariant. Now we are going to
generalize this definition and take into account also information from the neighbors of X. We
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will consider a (2k + 1)-tuple of observations Xt−k, . . . , Xt, . . . , Xt+k, k > 0. In the following,
the tuples Xk

−k, Yk
−k, Vk

−k are from the doubly-infinite and hence stationary process Z.

Let A1 × . . . × A2k+1 ∈ B2k+1. By analogy with the single observation case, for (2k + 1)-tuples
of observations we can define the following measures:

Pincorrect(A1 × . . . × A2k+1) = P(X−k ∈ A1, . . . , Xk ∈ A2k+1|Y0 �= V0)

Pcorrect(A1 × . . . × A2k+1) = P(X−k ∈ A1, . . . , Xk ∈ A2k+1|Y0 = V0)

P(incorrect|A1 × . . . × A2k+1) = P(Y0 �= V0|X−k ∈ A1, . . . , Xk ∈ A2k+1)

Clearly, the decomposition

P(X−k ∈ A1, . . . , Xk ∈ A2k+1) = Pincorrect(A1 × . . . × A2k+1)R1

+Pcorrect(A1 × . . . × A2k+1)(1 − R1) (34)

holds. Since the random variables Xi have densities with respect to µ, it follows that the vector
Xk
−k has the density with respect to the product measure µ2k+1. From (34) it now follows that

the measures P(in)correct have densities f (in)correct with respect to µ2k+1 as well so that (33)
generalizes as follows:

P(incorrect|x2k+1) := P(Y0 �= V0|X
k
−k = x2k+1) =

f incorrect(x2k+1)R1

f correct(x2k+1)(1 − R1) + f incorrect(x2k+1)R1
.

The probability P(incorrect|x2k+1) is the asymptotic conditional misclassification probability
given the neighbors. It is interesting to note that for some neighborhood this probability can
be bigger than 0.5, see Figure 5. Obviously, as in the single observation case, the probability
P(incorrect|x2k+1) could be estimated by simulation. For this, one can define the empirical
measures

Pcorrect
n (A1 × . . . × A2k+1) =

∑
n−k
t=k+1 I{A1×...×A2k+1}×{0}(Xt−k, . . . , Xt+k, l(Yt, Ṽn

t ))

∑
n−k
t=k+1 I{0}(l(Yt, Ṽn

t ))
,

Pincorrect
n (A1 × . . . × A2k+1) =

∑
n−k
t=k+1 I{A1×...×A2k+1}×{1}(Xt−k, . . . , Xt+k, l(Yt, Ṽn

t ))

∑
n−k
t=k+1 I{1}(l(Yt, Ṽn

t ))
,

Pn(incorrect|A1 × . . . × A2k+1) =
∑

n−k
t=k+1 I{A1×...×A2k+1}×{1}(Xt−k, . . . , Xt+k, l(Yt, Ṽn

t ))

∑
n−k
t=k+1 I{A1×...×A2k+1}(Xt−k, . . . , Xt+k)

.

From Theorem 3.2 it follows again that the empirical measures converge to the corresponding
theoretical ones at every Borel set almost surely (hence the measures converge weakly almost

surely). Therefore, the densities f (in)correct as well as the probabilities P(incorrect|x2k+1) could
be estimated.
Example 4. This example illustrates how the misclassification error P(incorrect|x2k+1), k = 1,
depends on the transition probabilities. We consider a two-state HMM, where the process
X can take on the values 1, 2, 3, 4. The transition probability matrix and the emission
distributions are as follows:

P =

(

1 − ǫ ǫ
ǫ 1 − ǫ

)

, P1 = (1/2, 1/8, 1/8, 1/4), P2 = (1/5, 1/5, 1/10, 1/2).
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For each value of ǫ a chain of n = 10000 observations was simulated and the misclassification
probabilities P(incorrect|111) and P(incorrect|141) were estimated. To estimate the standard
deviations of the estimators, the simulations were replicated 100 times. In Figure 5, the
estimated probabilities are plotted together with their +/− one standard deviation bands.

Fig. 5. Estimates of P(incorrect|111) and P(incorrect|141).

Example 5. In the previous example, P(incorrect|141) ≈ 0.6 for ǫ = 0.41, see Figure 5. Now we
consider the HMM of Example 4 for ǫ = 0.41 and study how P(incorrect|141) is affected when
we intervene in the Viterbi segmentation process with an increasing intensity. Let m denote
the number of occurrences of the word 141 in the simulated process. Then, for example, the
intensity 0.2 means that we would intervene in classification the process at 0.2m sites. The
following four types of interventions were studied:

1) at uniformly distributed random times t, Ṽn
t was replaced by the opposite state;

2) at uniformly distributed random times t, Ṽn
t was replaced by the true state Yt;

3) at the times of occurrence of 141, Ṽn
t was replaced by the opposite state;

4) at the times of occurrence of 141, Ṽn
t was replaced by the true state Yt.

For each thereby constrained Viterbi segmentation, the error rate – the proportion of
misclassified states of the constrained alignment – was computed. The results are plotted
in Figure 6. The most interesting is of course to see, how the number of Viterbi alignment
errors decreases depending on how many true states are revealed.

5. Acknowledgment

J. Lember is supported by Estonian Science Foundation grant 7553.

81Theory of Segmentation

www.intechopen.com



32 Will-be-set-by-IN-TECH

Fig. 6. Misclassification probability as a function of intervention rate.
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