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1. Introduction

Most conventional filtering algorithms address situations in which the signal to be estimated
is always present in the observations. However, in many real situations, usually the
measurement device or the transmission of such measurements can be subject to random
failures, generating observations which may consist of noise only. More specifically, there is a
positive probability (false alarm probability) that the signal to be estimated is not present in the
corresponding observation; that is, the observations may be only noise (uncertain observations).
Since it is not generally known whether the observation used for estimation contains the signal
or it is only noise, and only the probabilities of occurrence of such cases are available to the
estimation, the observation equation is designed by including a random multiplicative noise
described by a sequence of Bernoulli random variables, whose values - one or zero - indicate
the presence or absence of the signal in the observations, respectively.
The least-squares optimal estimation problem in systems with uncertain observations is
not easily treatable in general, due to the fact that the multiplicative noise perturbing the
observations causes that the joint distribution of the signal and the observations is not
gaussian (even if the signal and additive noises are gaussian processes). For this reason,
the research on the estimation problem in these systems has been focused on the search
of suboptimal estimators for the signal that can be easily derived. Nahi (1969) was the
first who described this observation model and analyzed the linear least-squares estimation
problem in linear systems with independent uncertainty. After that, numerous studies have
been developed in this context, assuming different hypotheses on the Bernoulli random
variables modelling the uncertainty when the state-space model is known and, also, when
only covariance information is available (see Nakamori et al. (2005) and references therein).
On the other hand, there are many practical applications in communication theory (phase
modulation of analog communication systems, object tracking in video sequences, robot
navigation, location tracking, navigation sensors, etc.) where the observations are not linear
function of the signal to be estimated. Although the estimation problem in discrete-time
systems from uncertain observations has been extensively studied in linear systems, the
literature on nonlinear filtering with uncertainty, which is the focus of this chapter, is fairly
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limited, with the exception of a few results such as those reported in NaNacara & Yaz (1997)
and, more recently, in Hermoso & Linares (2007) and Nakamori et al. (2009).
Nonlinear filtering is an interesting research area in which many approaches have been
developed, the most popular being the extended Kalman filter (see e.g. Simon (2006),
among others), which approximates the optimal estimator by linearizing the nonlinear system
equations around the last state estimate to generate a linear system to which the Kalman
filter equations can be applied. This technique provides approximations of the mean and
covariance of the signal which are accurate, at least, up to the first terms of their Taylor
series expansions. Assuming full knowledge of the state-space model of the signal to be
estimated, the extended Kalman filter has been widely applied by different authors. For
example, in Angrisani et al. (2006) the discrete extended Kalman filter is used to estimate the
shape factors of ultrasonic echo envelopes. Boussak (2005) addressed the speed and rotor
position estimation problem of interior permanent magnet synchronous motor drive through
an extended Kalman filter algorithm. The node localization problem in a delay-tolerant
sensor network is studied in Pathirana et al. (2005) using an estimation technique based
on the robust extended Kalman filter. Routray et al. (2002) applied an extended Kalman
filter to the frequency estimation problem of distorted signals in power systems. When the
state equations are unknown and only the covariance functions of the processes involved
in the observation equation are available, Nakamori (1999) derived filtering and fixed-point
smoothing algorithms for discrete-time systems with nonlinear observation mechanism, by
using a similar idea to the extended Kalman filter.
Although the extended Kalman filter has been successfully applied to numerous nonlinear
discrete systems, the use of truncated Taylor expansion yields some important drawbacks
involving, on the one hand, the evaluation of the Jacobian matrices and, on the other, its
instability. Among other nonlinear techniques, the unscented Kalman filtering (see e.g.
Julier & Uhlmann (2004)), which does not require the calculation of Jacobian matrices, is a
relatively new one that improves the extended one, providing approximations of the mean
which are accurate up to the second term of its Taylor expansion.
Different generalizations of the extended and the unscented Kalman filters have been
proposed in Hermoso & Linares (2007) for a class of nonlinear discrete-time systems with
additive noises, using uncertain observations; from comparison between both techniques,
superior performance of the unscented filter is also found for this class of systems.
The current chapter is concerned with the state estimation problem for nonlinear discrete-time
systems with uncertain observations, when the evolution of the state is governed by nonlinear
functions of the state and noise, and the additive noise of the observation is correlated with
that of the state. The random interruptions in the observation process are modelled by a
binary white noise taking either the value one (when the measurement is the current system
output) or the value zero (when only noise is available). A filtering algorithm is designed
using the scaled unscented transformation, which provides approximations of the first and
second-order statistics of a nonlinear transformation of a random vector. This algorithm
extends to that proposed in Hermoso & Linares (2007) in two directions. On the one hand, we
consider a more general state transition model in which the noise is not necessarily additive
and, on the other, the independence between the state and observation noises is removed,
thus addressing those situations in which the observation noise is correlated with the state.
The chapter is organized as follows: in Section 2 the system model is described; more
specifically, we introduce the nonlinear state transition model, perturbed by a white noise,
and the observation model, governed by nonlinear functions of the state affected by an
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Unscented Filtering Algorithm for Discrete-Time Systems with Uncertain Observations and State-Dependent Noise 3

additive white noise correlated with that of the state and a multiplicative noise describing
the uncertainty. In Section 3 the least-squares estimation problem from uncertain observation
is formulated and a brief review of the unscented transformation and the scaled unscented
transformation is presented. Next, in Section 4, the estimation algorithm is derived using the
unscented filtering procedure, which acts in the prediction and update steps. The filter update
is accomplished by the Kalman filter equations, which require the conditional statistics of the
observation; hence, the correlation between the state and observation noise must be taken into
account in this phase. Finally, the performance of the proposed unscented filter is illustrated in
Section 5 by a numerical simulation example, where a first order ARCH model is considered
to describe the state evolution.

Keywords

Nonlinear stochastic systems, Uncertain observations, Unscented Kalman filter.

2. Nonlinear model: system description and assumptions

In some practical situations, there exist random failures in the observation mechanism,
accidental loss of some measurements, or data inaccessibility during certain times; this causes
that the measurements may be either the current system output or only noise. This occurs,
for instance, in tracking systems where the observations may either contain actual output
contaminated with noise or be noise alone, and only the probabilities of occurrence of such
cases are available to the estimation.
Our aim is to estimate an n-dimensional discrete-time state process, {xk; k ≥ 0}, whose
evolution is perturbed by a q-dimensional white noise, {wk; k ≥ 0}, and governed by known
functions of the state and noise; that is:

xk+1 = fk(xk, wk), k ≥ 0, (1)

where fk : R
n+q → R

n is assumed to be continuously differentiable with respect to xk and wk.
Consider that the nonlinear observation, yk, is either the current system output (with
probability pk) or only noise (with probability 1 − pk), and assume that this occurs
independently at different sampling times. So, considering independent random variables
γk ∈ {0, 1}, k ≥ 1, with the understanding that γk = 1 means that the measurement at time
k is the current system output and γk = 0 means that only noise is available, and assuming
that P [γk = 1] = pk, the observation model is specified by nonlinear functions of the state
perturbed by additive white noise, {vk; k ≥ 1}, and multiplicative noise, {γk; k ≥ 1},
describing the uncertainty; that is:

yk = γkhk(xk) + vk, k ≥ 1, (2)

where hk : R
n → R

m are continuously differentiable functions.
The first and second-order moments of the processes determining the evolution of the state
and describing the observations are specified by the following hypotheses.

(H1) The initial state, x0, is a random vector with mean x0 and covariance P0.
(H2) The state and observation white noises, {wk; k ≥ 0} and {vk; k ≥ 1}, respectively, are

correlated zero-mean processes with covariance matrices

E[wkwT
k ] = Qk, k ≥ 0

E[vkvT
k ] = Rk, k ≥ 1

E[wjv
T
k ] = Skδj,k−1, k ≥ 1,
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where δ denotes the Kronecker delta function.

(H3) The multiplicative noise {γk; k ≥ 1} describes the uncertainty in the observations
and is a sequence of independent Bernoulli random variables with known probabilities
P [γk = 1] = pk. The probability 1 − pk, named false alarm probability, represents the
probability that the observed value at time k does not contain the signal.

(H4) x0,
(
{wk; k ≥ 0}, {vk; k ≥ 1}

)
and {γk; k ≥ 1} are mutually independent.

3. Least-squares estimation problem from uncertain observations

The least-squares estimator of the state xk from the observations Yk = {y1, . . . , yk} is the
conditional expectation of xk given Yk,

E[xk/Yk] =
∫

xkg(xk/Yk)dxk ,

and, hence, the computation of this conditional mean requires the knowledge of g(xk/Yk), the
conditional density function of xk given Yk.
Due to the uncertainty in the observations, this conditional density function is a mixture or
weighted sum of 2k conditional density functions (corresponding to the different values of
γ1, . . . , γk) and, moreover, computation of these conditional densities is generally difficult
(even if the distributions of the processes involved in the system are known) due to the
nonlinearity of the functions fk and hk . These severe drawbacks have motivated the search
of suboptimal estimators based on approximations of the conditional mean to address the
estimation problem in systems with uncertain observations and, more generally, in nonlinear
systems.
One of the most frequently used methods to address the estimation problem in nonlinear
systems without uncertainty in the observations (i.e. system models like (1)-(2) with γk =
1, ∀k) is the well-known extended Kalman filter (Simon (2006)), based on the linearization
of the state and observation equations. However, as indicated in Julier & Uhlmann (2004),
the extended Kalman filter has serious handicaps, which should be kept in mind when it
is used; in particular, the performance of this filter can be very poor if the functions fk and
hk present intense nonlinearities. In such cases, alternative approximations improving the
estimation must be used. Among others, the unscented Kalman filter is a superior alternative to
the extended one in a great variety of application domains, including state estimation.
Among other advantages, the unscented Kalman filter overcomes the deficiencies of
linearization of the extended Kalman filter by providing an algorithm based on a direct,
explicit mechanism for transforming the mean and covariance information when a nonlinear
function is considered (Julier & Uhlmann (2004)). Unlike the linearization operation of the
extended Kalman filter, the unscented Kalman filter uses the nonlinear models directly; it
captures the posterior mean and covariance accurately up to the terms corresponding to the
third-order moments in the Taylor series expansions, for the Gaussian distribution, and at
least up to second-order for an arbitrary distribution.
Various generalizations of the extended and unscented Kalman filters were proposed in
Hermoso & Linares (2007) for a class of nonlinear discrete-time systems with uncertain
observations, when the state and observation noises are additive and the Bernoulli variables
modelling the uncertainty are independent; from comparison of both techniques, superior
performance of the unscented filter is also found in this uncertainty case.
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We propose a modification of the unscented Kalman filter for estimating the state of the
nonlinear system model with uncertain observations described in Section 2. This filter

provides an approximation to the conditional mean E
[

xk/Yk
]

based on the use of the
unscented transformation; more precisely, we will use an extension of this transformation,
called scaled unscented transformation. Both transformations are briefly described below (see
Julier & Uhlmann (2004) for details).

3.1 Unscented Transformation (UT)

This is a method for approximating the mean and covariance matrix of a random vector, Y =
g(X), from the mean and covariance of X. The idea is to choose deterministically a fixed
number of points and weights which capture the mean and covariance of X exactly; then, the
mean and covariance of g(X) are approximated by the weighted sample mean and covariance
of the transformed points.
Specifically, if X is an N-dimensional random vector with mean X̂ and covariance PX, the UT
considers 2N + 1 points and weights, {(ξi, ψi), i = 0, . . . , 2N}, called sigma points, which are
defined as follows:

ξ0 = X̂

ξi = X̂ +
(√

(N + κ)PX

)
i
, i = 1, . . . , N

ξi = X̂ −
(√

(N + κ)PX

)
i−N

, i = N + 1, . . . , 2N

ψ0 =
κ

N + κ

ψi =
1

2(N + κ)
, i = 1, . . . , 2N,

(3)

where κ is a scaling parameter which can be used to capture additional information on the
distribution of X, and (A)j denotes the j-th column of a matrix A.

Although
2N

∑
i=0

ψi = 1, the sigma points {(ξi, ψi), i = 0, . . . , 2N} do not necessarily define a

probability distribution since κ can be a negative number (the only condition is N + κ > 0);
however, its moments can be defined as in a discrete probability distribution, and it is easy to
prove that the first and second-order moments of the sigma points are equal to those of X.
To approximate the statistics of a transformation Y = g(X), each point ξ i is propagated
through the function g, and the first and second order moments of Y are approximated by
those of the transformed sigma points g(ξ i), i = 0, . . . , 2N. Therefore, the mean of Y is
approximated by the weighted average of the transformed points,

Ŷ ≈
2N

∑
i=0

ψig (ξi) ,

the covariance of Y is approximated by

PY ≈
2N

∑
i=0

ψi

(
g (ξi)− Ŷ

) (
g (ξi)− Ŷ

)T

and the cross-covariance of X and Y is approximated by

PXY ≈
2N

∑
i=0

ψi

(
ξi − X̂

) (
g (ξi)− Ŷ

)T
.
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If g is an analytic function, the approximations of the mean and covariance of g(X) are
accurate up to the second and first term of their Taylor expansion series, respectively.
However, the approximations are inaccurate if the higher-order sample moments have a great
effect on the Taylor expansions; this can occur, for example, if the dimension, N, of vector X is
very large, since the radius of the sphere containing the sigma points increases with N. This
drawback can be avoided by using the scaled unscented transformation.

3.2 Scaled Unscented Transformation (SUT)

The SUT considers a set of sigma points, χi = ξ0 + α(ξi − ξ0), i = 0, . . . , 2N, where α is a
scaling parameter which can be arbitrarily small. The points χi have basically the same form
as in (3), just replacing κ by λ = α2(N + κ)− N; the associated weights, calculated in order to
capture the mean and covariance of X, are now

W0 =
ψ0

α2 + (1 − 1/α2)

Wi =
ψi

α2 , i = 1, . . . , 2N.

Besides reducing the dispersion of the sigma points considered, the SUT allows to modify
them in order to prevent nonpositive semidefinite approximated covariances (which can occur
if W0 < 0), as well as to incorporate additional information on the fourth-order moments of X;
this is achieved by modifying the weight of χ0 in the approximation of the covariance, which
improves the precision in this approximation. Thus, the sigma points and weights in the SUT
are specified as follows:

χ0 = X̂

χi = X̂ +
(√

(N + λ)PX

)
i
, i = 1, . . . , N

χi = X̂ −
(√

(N + λ)PX

)
i−N

, i = N + 1 . . . , 2N

W
(m)
0 =

λ

N + λ

W
(c)
0 = W

(m)
0 + (1 − α2 + β)

W
(m)
i = W

(c)
i =

1
2(N + λ)

, i = 1, . . . , 2N

λ = α2(N + κ)− N,

where α is the scaling parameter (usually a small value), and κ and β are used to incorporate
prior information on the distribution of X (κ = 3 − N and β = 2 provide the optimal values if
X has a Gaussian distribution).

The mean and covariance of a transformation g(X) are approximated, respectively, by the
sample mean and covariance of the transformed values, g(χi), i = 0, . . . , 2N, with weights

W
(m)
i for the mean and W

(c)
i for the covariance. The cross-covariance of X and Y = g(X) is

approximated by the sample cross-covariance of χi, i = 0, . . . , 2N and the transformed values,

g(χi), i = 0, . . . , 2N, with weights W
(c)
i .
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4. Unscented filtering algorithm

The aim is to obtain an estimator of xk, the system state at time k described in (1), based on the
observations given in (2) up to that time, Yk = {y1, . . . , yk}; for this purpose we compute an

approximation, x̂k/k, of the conditional mean E
[

xk/Yk
]
. As usual, the estimator x̂k/k will be

obtained from the estimator at the previous time, x̂k−1/k−1, through the following prediction
and update steps:

(i) Prediction: Taking into account the relationship (1), approximations x̂k/k−1 and Pxx
k,k/k−1

of E
[

xk/Yk−1
]

and Cov
[

xk/Yk−1
]
, respectively, are obtained by applying a SUT to the

nonlinear transformation xk = fk−1(xk−1, wk−1); then, this step requires us to work jointly
with the state and noise vectors xk−1 and wk−1.

(ii) Update: When the predictor x̂k/k−1 is available, it is updated with the new observation yk to
obtain an approximation of E[xk/Yk] and Cov[xk/Yk]; this is achieved using the following
expression, with a similar structure to those of the Kalman filter:

E[xk/Yk] ≈ x̂k/k = x̂k/k−1 + Cov
[

xk, yk/Yk−1
](

Cov
[
yk/Yk−1

])−1(
yk − E

[
yk/Yk−1

])
.

This expression require the conditional statistics of yk; specifically, it is necessary to

approximate the conditional mean and covariance, E
[
yk/Yk−1

]
and Cov

[
yk/Yk−1

]
, as

well as the conditional cross-covariance Cov
[

xk, yk/Yk−1
]
.

Hence, in view of (2), the correlation between xk and vk must be taken into account in this
step. More specifically, since xk = fk−1(xk−1, wk−1), the correlation between and wk−1 and
vk must be taken into account.

These reasons lead us to work jointly with the vectors xk−1, wk−1 and vk and hence, we define
the following (n + q + m)-dimensional augmented vectors:

Xk =

⎛
⎝

xk

wk

vk+1

⎞
⎠ , k ≥ 0.

The problem is then reformulated as that of finding the filter of this augmented vector, X̂k/k,
whose first n-dimensional block-component provides the filter for the original state.

The prediction and update steps are detailed in the following subsections.

4.1 Unscented algorithm: prediction step

The starting points of the proposed algorithm are the filter and the covariance matrix at the
initial state X0 which, from the model hypotheses, are given by:

X̂0/0 = E[X0] =

⎛
⎝

x0
0
0

⎞
⎠ , PXX

0,0/0 = Cov[X0] =

⎛
⎝

P0 0 0
0 Q0 S1
0 ST

1 R1

⎞
⎠ .

For each k > 1, we start with approximations X̂k−1/k−1 and PXX
k−1,k−1/k−1 of the conditional

mean and covariance of Xk−1 given Yk−1 which, from the independence between (wk−1, vk)
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and Yk−1, the conditional independence between xk−1 and (wk−1, vk) and hypothesis (H2),
are given by:

X̂k−1/k−1 =

⎛
⎝

x̂k−1/k−1
0
0

⎞
⎠ , PXX

k−1,k−1/k−1 =

⎛
⎝

Pxx
k−1,k−1/k−1 0 0

0 Qk−1 Sk

0 ST
k Rk

⎞
⎠ .

The aim is to find approximations X̂k/k−1 and PXX
k,k/k−1 for the conditional mean and

covariance of Xk given Yk−1 which, reasoning similarly, are

X̂k/k−1 =

⎛
⎝

x̂k/k−1
0
0

⎞
⎠ , PXX

k,k/k−1 =

⎛
⎝

Pxx
k,k/k−1 0 0

0 Qk Sk+1
0 ST

k+1 Rk+1

⎞
⎠ . (4)

Hence, we only need the conditional statistics x̂k/k−1 and Pxx
k,k/k−1 of xk = fk−1(xk−1, wk−1),

which are approximated from X̂k−1/k−1, and PXX
k−1,k−1/k−1 using the SUT, as follows:

• We consider a set of sigma-points
{

χi,k−1/k−1 =
(

χxT
i,k−1/k−1 | χwT

i,k−1/k−1| χvT
i,k/k−1

)T
, i = 0, . . . , 2N

}
(N = n + q + m),

whose mean and covariance are exactly X̂k−1/k−1 and PXX
k−1,k−1/k−1:

χ0,k−1/k−1 = X̂k−1/k−1

χi,k−1/k−1 = X̂k−1/k−1 +
(√

(N + λ)PXX
k−1,k−1/k−1

)
i
, i = 1, . . . , N

χi,k−1/k−1 = X̂k−1/k−1 −
(√

(N + λ)PXX
k−1,k−1/k−1

)
i−N

, i = N + 1, . . . , 2N

(5)

and their associated weights, W
(m)
i for the mean and W

(c)
i for the covariance:

W
(m)
0 =

λ

N + λ

W
(c)
0 =

λ

N + λ
+ (1 − α2 + β)

W
(m)
i = W

(c)
i =

1
2(N + λ)

, i = 1, . . . , 2N

λ = α2(N + κ)− N

where α is a scaling parameter determining the spread of the sigma-points around
X̂k−1/k−1, and κ and β are tuning parameters.

• Then, by defining f a
k−1(Xk−1) = fk−1(xk−1, wk−1) = xk, the mean and covariance of xk

given Yk−1 are approximated by the corresponding sample statistics of the transformed

sigma-points, f a
k−1(χi,k−1/k−1) = fk−1

(
χx

i,k−1/k−1, χw
i,k−1/k−1

)
:

146 Numerical Analysis – Theory and Application

www.intechopen.com



Unscented Filtering Algorithm for Discrete-Time Systems with Uncertain Observations and State-Dependent Noise 9

x̂k/k−1 =
2N

∑
i=0

W
(m)
i f a

k−1(χi,k−1/k−1)

Pxx
k,k/k−1 =

2N

∑
i=0

W
(c)
i

(
f a
k−1(χi,k−1/k−1)− x̂k/k−1

)(
f a
k−1(χi,k−1/k−1)− x̂k/k−1

)T
.

(6)

The conditional mean and covariance of Xk given Yk−1 are then approximated by (4) with
x̂k/k−1 and Pxx

k,k/k−1 given in (6).

4.2 Unscented algorithm: update step

The approximations X̂k/k−1 and PXX
k,k/k−1 given in (4) and (6) are now updated with the new

observation, yk, by using the Kalman filter equations

X̂k/k = X̂k/k−1 + Cov
[

Xk, yk/Yk−1
] (

Cov
[
yk/Yk−1

])−1 (
yk − E

[
yk/Yk−1

])

PXX
k,k/k = PXX

k,k/k−1 − Cov
[

Xk, yk/Yk−1
] (

Cov
[
yk/Yk−1

])−1
Cov

[
yk, Xk/Yk−1

]
.

For this purpose, we need to approximate the conditional mean, E
[
yk/Yk−1

]
, and covariance,

Cov
[
yk/Yk−1

]
, of yk given Yk−1, as well as the conditional cross-covariance of Xk and yk given

Yk−1, Cov
[

Xk, yk/Yk−1
]
.

In systems with uncertain observations, the conditional distribution of γkhk(xk) given Yk−1

has a mixture type whose components are the conditional distributions corresponding to γk =

1 and γk = 0, with mixture parameters P
[
γk = 1/Yk−1

]
and P

[
γk = 0/Yk−1

]
, respectively.

Since P
[
γk = 1/Yk−1

]
= pk (which follows from (H3) and (H4)), the approximations of the

conditional statistics of γkhk(xk) are directly obtained using this mixture type, and, taking
into account (2), the statistics of yk given Yk−1 are expressed in terms of those corresponding
to zk = hk(xk) and vk as follows:

E[yk/Yk−1] = pkE[zk/Yk−1]

Cov[yk/Yk−1] = pkCov[zk/Yk−1] + pk(1 − pk)E[zk/Yk−1]E[zT
k /Yk−1]

+pkCov[zk, vk/Yk−1] + pkCov[vk, zk/Yk−1] + Rk

Cov[Xk, yk/Yk−1] = pkCov[Xk, zk/Yk−1] + Cov[Xk, vk/Yk−1].

(7)

Moreover, since zk and vk are conditionally independent of wk and vk+1, the conditional
cross-covariances Cov[Xk, zk/Yk−1] and Cov[Xk, vk/Yk−1] require only the conditional
cross-covariances of xk with zk and vk, respectively; that is:

Cov[Xk, yk/Yk−1] =

⎛
⎝

pkCov[xk, zk/Yk−1] + Cov[xk, vk/Yk−1]
0
0

⎞
⎠ (8)
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Then, we proceed to approximate the conditional statistics appearing in (7) and (8), which
correspond to the vectors zk, xk and vk.

• The first two vectors, zk and xk, are both functions of xk and, consequently, their
conditional statistics can be approximated from x̂k/k−1 and Pxx

k,k/k−1 by considering a set

of sigma-points,
{

χx
i,k/k−1, i = 0, . . . , 2n

}
, whose mean and covariance are exactly x̂k/k−1

and Pxx
k,k/k−1:

χx
0,k/k−1 = x̂k/k−1

χx
i,k/k−1 = x̂k/k−1 +

(√
(n + λ)Pxx

k,k/k−1

)

i
, i = 1, . . . , n

χi,k−1/k−1 = x̂k/k−1 −
(√

(n + λ)Pxx
k,k/k−1

)

i−n
, i = n + 1, . . . , 2n

(9)

and their associated weights, ̟
(m)
i for the mean and ̟

(c)
i for the covariance:

̟
(m)
0 =

λ

n + λ

̟
(c)
0 =

λ

n + λ
+ (1 − α2 + β)

̟
(m)
i = ̟

(c)
i =

1
2(n + λ)

, i = 1, . . . , 2n

λ = α2(n + κ)− n.

Then the statistics of zk = hk(xk) are approximated by those of the transformed
sigma-points, hk(χ

x
i,k/k−1):

E[zk/Yk−1] ≈ ẑk/k−1 =
2n

∑
i=0

̟
(m)
i hk(χ

x
i,k/k−1)

Cov[zk/Yk−1]≈Pzz
k,k/k−1=

2n

∑
i=0

̟
(c)
i

(
hk(χ

x
i,k/k−1)−ẑk/k−1

)(
hk(χ

x
i,k/k−1)−ẑk/k−1

)T

Cov[xk, zk/Yk−1]≈Pxz
k,k/k−1=

2n

∑
i=0

̟
(c)
i

(
χx

i,k/k−1−x̂k/k−1

)(
hk(χ

x
i,k/k−1)−ẑk/k−1

)T
.

(10)

• The vector vk, however, cannot be expressed in terms of Xk = (xT
k | wT

k | vT
k+1)

T, but it
is a function of Xk−1; so its conditional statistics must be approximated from those of

Xk−1. Thus, expressing zk = hk

(
f a
k−1(Xk−1)

)
= hk ( fk−1(xk−1, wk−1)) and using the

sigma-points

χi,k−1/k−1 =
(

χxT
i,k−1/k−1 | χwT

i,k−1/k−1| χvT
i,k/k−1

)T
, i = 0, . . . , 2N
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associated to X̂k−1/k−1 and PXX
k−1,k−1/k−1, the following approximations are used:

Cov[zk, vk/Yk−1] ≈ Pzv
k,k/k−1 =

2N

∑
i=0

W
(c)
i hk

(
fk−1(χ

x
i,k−1/k−1, χw

i,k−1/k−1)
)

χvT
i,k/k−1

Cov[xk, vk/Yk−1] ≈ Pxv
k,k/k−1 =

2N

∑
i=0

W
(c)
i fk−1(χ

x
i,k−1/k−1, χw

i,k−1/k−1)χ
vT
i,k/k−1.

(11)

Finally, these statistics are substituted in (7) and (8) to obtain approximations ŷk/k−1, P
yy
k,k/k−1

and P
Xy
k,k/k−1 of the conditional statistics of yk,

ŷk/k−1 = pk ẑk/k−1

P
yy
k,k/k−1 = pkPzz

k,k/k−1 + pk(1 − pk)ẑk/k−1ẑT
k/k−1 + pkPzv

k,k/k−1 + pkPvz
k,k/k−1 + Rk,

P
Xy
k,k/k−1 =

⎛
⎝

pkPxz
k,k/k−1 + Pxv

k,k/k−1
0
0

⎞
⎠ .

(12)

These approximations are used in the following equations providing the filter of Xk and the
corresponding filtering error covariance matrix:

X̂k/k = X̂k/k−1 + P
Xy
k,k/k−1

(
P

yy
k,k/k−1

)−1
(yk − ŷk/k−1) , k ≥ 1

PXX
k,k/k = PXX

k,k/k−1 − P
Xy
k,k/k−1

(
P

yy
k,k/k−1

)−1
P

yX
k,k/k−1, k ≥ 1,

(13)

with initial conditions

X̂0/0 =

⎛
⎝

x0
0
0

⎞
⎠ , PXX

0,0/0 =

⎛
⎝

P0 0 0
0 Q0 S1
0 ST

1 R1

⎞
⎠ . (14)

Computational summary
In summary, given X̂k−1/k−1 and PXX

k−1,k−1/k−1, the above results suggest the following
recursive computational procedure to obtain the proposed unscented filter:

(I) Compute the sigma-points given in (5), whose mean and covariance are X̂k−1/k−1 and
PXX

k−1,k−1/k−1, respectively, and, with them:

(Ia) Compute x̂k/k−1 and Pxx
k,k/k−1 by (6).

(Ib) Compute Pzv
k,k/k−1 and Pxv

k,k/k−1 by (11).

(II) Compute the sigma-points given in (9), whose mean and covariance are x̂k/k−1 and
Pxx

k,k/k−1, respectively, and, with them, compute ẑk/k−1, Pzz
k,k/k−1, and Pxz

k,k/k−1 by (10).

(III) From (Ia), compute X̂k/k−1 and PXX
k,k/k−1 by (4).

(IV) From (Ib) and (II), compute ŷk/k−1, P
yy
k,k/k−1 and P

Xy
k,k/k−1 by (12).

(V) From (III) and (IV), compute X̂k/k and PXX
k,k/k by (13).
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The initial conditions of the proposed algorithm, X̂0/0 and PXX
0,0/0, are given in (14).

Finally, by extracting the first n-dimensional block-components of X̂k/k and PXX
k,k/k, the filter of

the original state vector, xk, and the filtering error covariance matrix are obtained, respectively.
Remark 1: Although the derivation of the algorithm does not requires that the functions fk and
hk are continuously differentiable, these hypotheses guarantee that the approximations of the
conditional mean and covariances are accurate, at least, up to the first and second terms of
their Taylor series expansions, respectively.
Remark 2: The proposed algorithm reduces to that in Hermoso & Linares (2007) when the
functions fk are linear in the noise, and the state and observation noises are uncorrelated.
Moreover, the unscented filter agrees with the optimal linear one when the functions fk and
hk are linear.

5. Numerical simulation results

In this section, a numerical simulation example is presented to illustrate the application
of the proposed unscented filter. The application deals with a first order autoregressive
conditional heteroscedastic model (ARCH (1)); these models, introduced by Engle in 1982
and widely known in volatility modelling in finance (Peiris & Thavaneswaran (2007)), have
been considered in Tanizaki (2000) as an example to compare the performance of various
nonlinear filters when the observed variables consist of a sum of the ARCH (1) process and an
independent error term.
Here, according to the theoretic study, we assume that the measurements can be only the
error term with a known probability, and that the noise process is correlated with the ARCH
(1) process.
Let us consider that the evolution of the state is described by the following discrete-time
multiplicative transition equation

xk+1 =
√

a + bx2
kwk, k ≥ 0,

where the initial state x0 is a Gaussian variable with zero mean and unity variance, the noise
{wk; k ≥ 0} is a zero-mean Gaussian process with variance Qk = 1 and a = 1 − b is taken to
normalize the unconditional variance of xk to be one.
Uncertain observations of the state with additive noise are considered for the estimation:

yk = γkxk + vk, k ≥ 1,

where {vk; k ≥ 1} is a zero-mean white process with variance Rk = 1, and the multiplicative
noise, {γk; k ≥ 1}, is a sequence of independent Bernoulli variables with constant known
probability P [γk = 1] = p.
The state and additive observation noises {wk; k ≥ 0} and {vk; k ≥ 1} are assumed to be joint
Gaussian processes with known and constant cross-covariance Sk = S, ∀k.
We have implemented a MATLAB program that simulates the state xk for b = 0.5, and the
uncertain measurements, yk, for k = 1, . . . , 50, for different values of S and p, and provides
the unscented filtering estimates of xk.
The root mean square error (RMSE) criterion was used to quantify the performance of the

estimates. Considering 1000 independent simulations and denoting by {x
(s)
k , k = 1, . . . , 50}
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the s-th set of the artificially simulated states and by x̂
(s)
k/k the filtering estimate at time k in the

s-th simulation run, the RMSE of the filter at time k is calculated by

RMSEk =

(
1

1000

1000

∑
s=1

(
x
(s)
k − x̂

(s)
k/k

)2
)1/2

.

Let us first examine the performance of the algorithm for different values of S; since
analogous results are obtained for opposite correlations S and −S, only nonnegative values
are considered in the simulations shown here.
Figure 1 displays the RMSEk when the uncertainty probability is p = 0.5 and different values
of S are considered; specifically, S = 0, 0.3, 0.5, 0.7 and S = 0.9; this figure shows, as expected,
that the higher the value of S (which means that the correlation between the state and the
observations increases) the smaller that of RMSEk and, consequently, the performance of the
estimators is better. Analogous results are obtained for other different values of p and S.

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time k

RMSE
k
 for p=0.5 and S=0

RMSE
k
 for p=0.5 and S=0.3

RMSE
k
 for p=0.5 and S=0.5

RMSE
k
 for p=0.5 and S=0.7

RMSE
k
 for p=0.5 and S=0.9

Fig. 1. RMSEk for the unscented filtering estimates when p = 0.5 and S = 0, 0.3, 0.5, 0.7, 0.9.

Moreover, in order to compare the performance of the estimators as a function of the
uncertainty probability p, the means of RMSEk corresponding to the 50 iterations were
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calculated for the different values of S considered in Figure 1 and p = 0.1, 0.2, . . . , 0.9. The
results are shown in Figure 2, from which it is apparent that the means decrease when p
increases (that is, when the probability that the observations contain the state is greater) and
consequently, as expected, the performance of the estimators deteriorates as the probability p
falls. From this figure, it is also inferred that, for each fixed value of p, the means decrease as
S increases, which extends the result in Figure 1 to different values of p.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability p

Mean of RMSE
k
 when S=0

Mean of RMSE
k
 when S=0.3

Mean of RMSE
k
 when S=0.5

Mean of RMSE
k
 when S=0.7

Mean of RMSE
k
 when S=0.9

Fig. 2. Mean of RMSEk for the unscented filtering estimates when S = 0, 0.3, 0.5, 0.7, 0.9,
versus p.

6. Conclusion

In this chapter, a recursive unscented filtering algorithm for state estimation in a class of
nonlinear discrete-time stochastic systems with uncertain observations is obtained. The
uncertainty is modelled by a binary white noise taking the value one (when the measurement
is the current system output) or zero (when only noise is observed), and the additive noise of
the observation is correlated with that of the state.
We propose a filtering algorithm based on the scaled unscented transformation, which
provides approximations of the first and second-order statistics of a nonlinear transformation
of a random vector.
This algorithm extends to that in Hermoso & Linares (2007) in two directions. On the one
hand, we consider a more general state model in which the noise is not necessarily additive
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and, on the other, the independence between the state and observation noises is removed,
thus covering those situations in which the observation noise is correlated with the state. The
algorithm performance is illustrated with a simulation example in which a first-order ARCH
model is considered to describe the state evolution.
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