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Propagation Path Loss Modelling in Container 
Terminal Environment 

Slawomir J. Ambroziak, Ryszard J. Katulski,  
Jaroslaw Sadowski and Jacek Stefanski  

Gdansk University of Technology 
Poland 

1. Introduction 

Container port area should be treated as a very difficult radio waves propagation 

environment, because lots of containers made of steel are causing very strong multipath 

effect and there is time-varying container arrangement in stacks of different height. Path loss 

modelling for such area is still complex task and has not yet been considered in scientific 

research. But as the total amount of cargo carried yearly in containers by land and sea 

increases, the only effective way of controlling such huge number of containers is to build 

efficient electronic container supervision systems. Nowadays almost all the major container 

ports have some kind of radio monitoring of containers, based on available radio 

communication standards (GSM/GPRS, UMTS, TETRA, WiFi, WiMAX, ZigBee, Bluetooth, 

many different RFID systems or other solutions in unlicensed frequency band) working in 

frequency range from about 0.4GHz to 5GHz. It should be noted that ITU-R did not present 

any special recommendation for propagation path loss prediction for radio link in container 

terminal environment. Differences in spatial arrangement and structure between container 

stacks and typical urban or industry area can cause relevant path loss prediction errors in 

case of use inadequate path loss model, so the special survey of propagation phenomenon in 

container terminal area becomes crucial. 

At the outset of the chapter, radio links are characterized in terms of transmission loss and 

its components. Then authors discuss the requirements concerning measuring equipment, 

its calibration process, measurement methodology, as well as the processing and 

presentation of their results (Ambroziak, 2010). 

The main part of the chapter presents new analytical approach to path loss modelling in 

case of propagation in container port environment, based on empirical results from 

measurement campaign in Gdynia Container Terminal (Poland). Upon the results of almost 

5 thousands propagation path measurements in real container terminal environment, a 

novel analytical model was developed. Additionally, authors present mobile measuring 

equipment used to research in DCT Gdansk Container Terminal (Poland) and planned 

results of the analysis of nearly 290 thousand of propagation cases which were collected. It is 

an introduction to generalization of the propagation model for container terminal 

environments (Katulski et al., 2009). 
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2. Normative requirements 

The propagation medium is a factor that causes many difficulties in designing wireless 

networks, because of large diversity of propagation environments, which includes rural, 

urban, industrialized, marine and mountainous environments. The radio wave attenuation 

in each environment is determined by many variables phenomena and factors. It is essential 

to determine the radio wave attenuation (so-called transmission loss) to a specified 

accuracy. Knowledge of transmission loss is necessary to meet energy requirements in radio 

links designing (Katulski, 2009). 

Therefore, there is a need to create empirical propagation models for different 

environments, based on measuring research results. So far a number of such models has 

been developed, mainly for urban and indoor environments. However, the environments in 

these groups may also differ within. Because of this, the issue of radio wave propagation 

measuring research is still a current topic, especially for designing the radio networks in 

specific environments. 

At present, the Department of Radiocommunication Systems and Networks in the Gdansk 

University of Technology is carrying out the wide research on radio wave propagation. Very 

important are normative requirements - as described in literature, such as ITU-R 

Recommendations - that have to be met during research on radio wave propagation.  

In this subsection a radio link is characterized in scope of transmission loss and its 

components. Then the next to be discussed are requirements concerning measuring 

equipment, its calibration process, measurement methodology, as well as the processing and 

presentation of results.  

2.1 Description of the measuring radio link 
As known, power of signal transmitted in the radio link is significantly attenuated. The 

effect of this is the large difference between signal power at the output of transmitter and 

power of the same signal available at the input of receiver. This difference depends on many 

factors, mainly transmission loss of propagation medium, as well as the power losses in the 

transmission feeder lines, the losses due to measuring devices, the antenna losses due to the 

impedances or polarization mismatch, etc.  
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Filters, 

feeders, 

etc.

Lb = Lbf + Ladd

Ls = Pt – Pr

Measuring receiver

Filters, 

feeders, 
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Measuring 
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antenna

Gt Gr
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Pt PrPMT PMR
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Transmitting section Receiving section

 

Fig. 1. Graphical presentation of terms used in the measuring transmission loss concept  

Therefore, there is a necessity to systematize terminology and symbols used in analyzing the 

transmission loss and its components. It may be presented using a graphical depiction of 

terms used in the measuring transmission loss concept, shown in Fig. 1 (Ambroziak, 2010), 

which considered all essential factors affecting the energy level in radio link, such as: 

• total loss of a measuring radio link between transmitter output and receiver input, 
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• system loss between input of the transmitting antenna and output of the receiving 
antenna, 

• basic transmission loss of the radio link, 

• free-space basic transmission loss, that is a basic component of transmission loss. 
The total loss of a measuring radio link (symbol: Ll [dB]) is defined as the difference between 

power PMT [dBW] supplied by the measuring transmitter and power PMR [dBW] available at 

the input of the measuring receiver in real installation, propagation and operational 

conditions (ITU-R P.341-5, 1999). The total loss may be expressed by: 

 
[ ]

[ ] [ ] [ ] 10log
[ ]

MT
l MT MR

MR

p W
L dB P dBW P dBW

p W

⎛ ⎞
= − = ⎜ ⎟

⎝ ⎠
, (1) 

where lowercase letters, i.e. pMT and pMR, are power at the output of measuring transmitter 

and power at the input of measuring receiver, respectively. They can be expressed in 

absolute values, such as [W], or in relative values, such as [dBW], in that case they are 

written as uppercase letters, PMT and PMR, respectively. Total loss includes all factors 

affecting the power of received signal, i.e. basic transmission loss of propagation medium, 

gains of antennas, loss in feeder lines, etc. Knowledge of the total loss components is 

necessary to correctly determine the value of the basic transmission loss. 

The system loss (symbol: Ls [dB]) is defined as the difference between power Pt [dBW] 

supplied at the terminals of measuring transmitting antenna and power Pr [dBW] available 

at the terminals of measuring receiving antenna (ITU-R P.341-5, 1999). By analogy with 

equation (1), it may be written as follows: 
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In addition to basic transmission loss, the system loss also includes influence of circuits 

associated with the measuring antennas, such as ground losses, dielectric losses, antenna 

loading coil losses and terminating resistor losses. But on the other hand, the system loss 

excludes losses in feeder lines, both in the transmitting section (Ltc [dB]) and in the receiving 

section (Lrc [dB]). Considering Fig. 1, it can be written as follow: 

 [ ] [ ] [ ] [ ]l s tc rcL dB L dB L dB L dB= − − . (3) 

The basic transmission loss (symbol: Lb [dB]) consists of free-space basic transmission loss 

Lbf [dB] and additional loss Ladd [dB], resulting from the real conditions of propagation 

environment, different from ideal free space. From this point of view, the basic transmission 

loss may be expressed by: 

 [ ] [ ] [ ]b bf addL dB L dB L dB= + . (4) 

The additional loss Ladd includes phenomena occurring in real propagation environments. In 
terms of measurement procedures, the most important are: 

• loss dependent on path clearance, 

• diffraction fading, 

• attenuation due to rain, other precipitation and fog, 
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• fading due to multipath. 
Equation (4) is a case of isotropic radiation, i.e. it excludes characteristics of real antennas, 
especially its directional characteristics and power efficiency, which are described by power 
gain. Taking into consideration the link power budget, in case of free-space environment, 
the basic transmission loss may be expressed by: 

 [ ] [ ] [ ] [ ] [ ]b t r t rL dB P dBW P dBW G dBi G dBi= − + + , (5) 

where Gt and Gr (in [dBi]) are the isotropic (absolute) gains of the transmitting and receiving 
antennas, respectively, in the direction of propagation. Table 1 gives the power gains for 
typical reference antennas (ITU-R P.341-5, 1999). 
 

Reference antenna g G = 10 log g [dBi] 

Isotropic in free space 1 0 

Hertzian dipole in free space 1.5 1.75 

Half-wave dipole in free space 1.65 2.15 

Hertzian dipole, or a short vertical monopole on a perfectly 
conducting ground 

3 4.8 

Quarter wave monopole on a perfectly conducting ground 3.3 5.2 

Table 1. The power gains for typical reference antennas 

As known, free space is an ideal case of propagation environment, open and without any 
propagation obstacles. It is a perfectly dielectric, homogenous and unlimited environment, 
characterized by a lack of influence of Earth surface on radio wave propagation and 
non-absorbing the energy of the electromagnetic field (Katulski, 2009). 
Assuming free-space propagation environment and distance (d [m]) between antennas of the 

measuring radio link much larger than wavelength (λ [m]) of test signal, the free-space basic 
transmission loss (symbol: Lbf [dB]) may be expressed by a well-known equation (ITU-R 
PN.525-2, 1994): 

 
4 [ ]

[ ] 20log
[ ]

bf

d m
L dB

m

⎛ ⎞⋅
= ⎜ ⎟

⎝ ⎠

π
λ

. (6) 

2.2 Standardization of measuring apparatus 
In order to ensure accurate measurement results in frequency range 9 kHz to 3 GHz and 
above (up to 40 GHz), the ITU-R recommends (in SM.378-7) the method of installation and 
calibration of measuring systems. The document also determines the accuracy, that are 
required in field-strength measurements, assuming no noise of receiver, atmospheric noise 
or external interference. Taking these assumptions into account, the expected accuracy of 
measurements should be: 

• for frequency band 9kHz to 30MHz: ± 2dB, 

• for frequency band 30MHz to 3GHz: ± 3dB. 
If recommended values are not obtainable (for various reasons, such as limitation of the 
measuring receiver, interference, instability of the test signal, etc.), nevertheless the accuracy 
specified above should be taken into consideration (ITU-R SM.378-7, 2007). 
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Depending on the electrical parameters, which the receiving antenna and the measuring 

receiver were calibrated for, the measuring receiver may measure the following 

quantities: 

• signal power at the receiver input, resulting from the power flux density of 
electromagnetic wave at the point of reception (the point of the receiving antenna 
placement), 

• voltage at the receiver input, resulting from the electric field intensity at the point of 
reception, 

• current at the receiver input, resulting from the magnetic field intensity at the point of 
reception. 

And so, for the receiving antenna which was calibrated for power flux density of 
electromagnetic wave, at the receiver input the power PMR is available and measured 
(Fig. 1). This power is the basis for determining of basic transmission loss Lb, according to 
equation (8). Similar equations may be written for the case of the receiving antennas, 
calibrated for electric or magnetic component of electromagnetic field. 
Type of receiving antenna may affect the type of measuring receiver – the electrical signal, 

measured by the measuring receiver should correspond with electrical signal (which the 

antenna was calibrated for) available at output terminals of the receiving antenna. For 

example, for short monopole antenna of a specified length, the receiver should measure 

voltage of test signal, and for the inverted cone type vertical antenna the receiver should 

measure power of test signal. 

Recommendation SM.378-7 contains examples of antennas for different frequency ranges. 

For frequencies below 30MHz it is recommended to use vertical or loop antennas. In case of 

the vertical antenna, the monopole antenna shorter than one-quarter of a wavelength may 

be used with a RF ground system, built of radial conductors at least twice the length of the 

antenna and spaced 30º or less. Instead of radial conductors, an equivalent RF ground screen 

may be used. There is also a possibility to use an inverted cone type vertical antenna with 

similar construction of RF ground system. It allows to obtain a greater power gain of 

measuring antenna than the quarter wave monopole antenna.  

For frequency range 30MHz to 1GHz it is recommended to use a short monopole antennas, 

half-wave dipoles or high-gain directional antennas, but it is essential to ensure the same 

polarization of receiving antenna as the transmitting antenna. For field-strength 

measurements at frequencies above 1GHz it is recommended to use directional antennas 

with matched polarization. 

It should be noted that the height of antenna installation has a significant influence on the 

measurement results, especially when the height is electrically small (Barclay, 2003). And so, 

if antennas are installed in close proximity to the ground, the electromagnetic waves take 

the form of surface waves, which takes effect to the wave depolarization, consequently there 

is wave attenuation resulting to the polarization mismatch in the radio links. In addition, the 

radio wave attenuation increases due to losses related to the penetration of radio waves into 

the propagation ground (Katulski, 2009). To minimize influence of the Earth surface on test 

signal, transmitting antenna has to be installed at a height that enables space waves 

propagation (Barclay, 2003). Therefore, the ITU-R recommends that for frequency range 

30MHz to 1GHz, the installation of the transmitting antenna should be at least 10 meters 

high (ITU-R SM.378-7, 2007). The recommended height of the receiving antenna is 1.5 up to 

3 meters (ITU-R SM.1708, 2005). 
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The measuring receiver primarily should have stable parameters (inter alia: gain, frequency, 

bandwidth), that have an influence on the accuracy of test signal measurement (its voltage, 

current or power). Local oscillators should have low phase noise, the operating dynamic 

range should be greater than 60dB and the bandwidth should be wide enough to allow 

reception of essential parts of the test signal spectrum. Type of detector depends on the 

bandwidth and the modulation mode of test signal. The required bandwidth and detector 

functions for various signal types are compiled in Table 2 (ITU-R SM.1708, 2005). 

 

Example of signal types Minimal bandwidth (kHz) Detector function 

AM DSB 9 or 10 Linear average 

AM SSB 2.4 Peak 

FM broadcast signal 170 or greater 
Linear average 

(or log) 

TV carrier  200 or greater Peak 

GSM signal 300 

DAB signal 1 500 

DVB-T signal 
Systems:  
6 MHz 
7 MHz 
8 MHz 

 
 

6 000 
7 000 
8 000 

TETRA signal 30 

UMTS signal 3 840 

r.m.s. 

Narrow-band FM radio 
Channel spacing: 
  12.5kHz 
  20kHz 
  25kHz 

 
 

7.5 
12 
12 

Linear average 
(or log) 

Table 2. The required bandwidth and detector functions for various signal types 

Properly configured spectrum analyzer may be used as the measuring receiver, whose work 

may also be automated. The measuring receiver, with remainder of the receiving section, 

may be mounted on a vehicle or a hand-cart, that enables mobile measurements in the area 

of propagation research. 

Each of measuring devices and circuits (feeder lines, filters, etc.), that affect total loss of a 

measuring radio link, are usually calibrated in accordance with certain standards as one of 

the stages of their production. Nevertheless it is recommended to calibrate transmitting and 

receiving section as a single entities (ITU-R SM.378-7, 2007). The above allows to take into 

account the influence of all elements of the measuring radio link, including attenuation due 

to the ground, masts, etc.  

The calibration procedures, presented below, deal with the case of basic transmission loss 

calculation based on power measurement. Calibration of the transmitting section concerns 
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set-up of power PMT value, in order to obtain required value of Pt at the input terminals of 

transmitting antenna. Calibration process of the receiving section deals with calculation of 

the difference (in logarithmic scale) between power of test signal available at the output 

terminals of receiving antenna and the power of test signal at the input of the measuring 

receiver. After taking into account the power gain of receiving antenna, it is possible to 

calculate a correction factor (Fc [dB]) as follows (see Fig. 1): 

 [ ] [ ] [ ] [ ] [ ] [ ]c rc r r MR rF dB L dB G dBi P dBW P dBW G dBi= − = − − . (7) 

Considering equation (5) and Fig. 1, which implies that Pr = PMR + Lrc, after simple 

transformation, the basic transmission loss may be calculated using following equation: 

 [ ] [ ] [ ] [ ] [ ]b t t MR cL dB P dBW G dBi P dBW F dB= + − − . (8) 

The equation (8) is very important in measuring research and calculation of the basic 

transmission loss on the basis of power PMR measurements at input of the measuring 

receiver. To calculate basic transmission loss it is necessary to know the following values: 

• the power gain Gt of the transmitting antenna,  

• the power Pt on input of the transmitting antenna – set during calibration process of the 
transmitting section, 

• the correction factor Fc – calculated during calibration process of the receiving section. 
Measuring apparatus should be recalibrated at least once a year or every time after change 

any of its parts (ITU-R SM.378-7, 2007). 

2.3 Standardization of measuring procedures 
There may be many various reasons for measuring research on radio wave propagation, 

inter alia: to create empirical propagation models or to estimate coverage of radio networks. 

This information may be useful in increasing efficiency of radio resources management or 

for controlling proper use of this resources by particular entities, and so on. Considering the 

above-cited, ITU-R recommends to unify methodology of measuring procedures and 

presentation of its results.  

The measurement results should include information about slow and fast changes of the 

power flux density of electromagnetic field (slow and fast fading, respectively). So it is 

recommended to choose the measurement points in an appropriate manner. Measurements 

points should be spaced every 0.8λ along a route of radio waves propagation. It is 

recommended that the results should be averaged every 40λ (Lee, 1993).  

Measurements may also be done automatically when the measuring receiver is mobile, but 

speed V [km/h] of the receiver is not arbitrary. It depends on the frequency f [MHz] of test 

signal and minimum time tr [s] given by the receiver specifications to revisit a single 

frequency. It may be expressed by following equation (ITU-R SM.1708, 2005): 

 
864

[ / ]
[ ] [ ]r

V km h
f MHz t s

≤
⋅

. (9) 

In order to find relations between the basic transmission loss and the distance from the 

transmitting antenna, the result of each measurement should be correlated to the place of its 

execution. For this reason, the positioning system should be used for reading current 
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position of measuring receiver. It is recommended to use one of three systems specified in 

the ITU-R Recommendation SM.1708. 

The GPS is a preferred positioning system, although its accuracy is limited in tunnels, 
narrow streets or valleys. Accuracy in position determining should be a few meters, which 
in most cases can be provided by GPS.  
If unable to determine the position using GPS system, it is recommended to use dead 
reckoning system. Position is determined basing on information about starting point, 
direction of movement and distance covered by the receiver. It is also possible to use the 
complex navigation system, which is the combination of the above-mentioned systems. 
Due to the large instability of propagation environment, the result of single measurement is 
not reliable or repeatable. Therefore, the measurement results should be classified in terms 
of probability of exceeding a particular value by the power of received signal. This 
probability may be in range of 1-99%, but typical values for this parameter are as follows: 
1%, 10%, 50%, 90% and 99%. During research on radio wave propagation, the median value 
is recommended (ITU-R SM.1708, 2005), i.e. the value from an ordered subset of 
measurement results, which is exceeded by 50% of the other values from this subset.  

In practice, for each i-th subset of measurement data, it is necessary to calculate the median 

of test signal power i
MRP  at the receiver input. Each subset of data is created on the basis of n 

measurement results, collected along the route at 40λ spacing in accordance with the 

following equation: 

 

1
,

2
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2 2
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2

i
n

MR
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 (10) 

where ,1 ,2 ,3 , 1 ,...i i i i i
MR MR MR MR n MR nP P P P P−≤ ≤ ≤ ≤ ≤  is the subset of measurement results in 

non-descending order, and n is the number of measurement results taken on the i-th 

(i = 1,2,3 ...) section of the radio waves propagation route.  
Calculation of median values of the test signal power may be done in real time during the 
measuring research, but only calculated median values are recorded. It is also possible to 
record all the results and calculate median values after measuring research. Results obtained 
using both methods may be used to basic transmission loss modeling or estimating coverage 
of radio networks in the area under research. 
There are three, recommended by ITU-R (SM.1708), methods of the measurement results 

presentation. The first one and the easiest is a table containing results of all measurements 

before calculating the median values. The advantage of this method is an access to 

information about local fading of test signal. However, there is a large number of data to 

analyze. In addition, it is hard to interpret a single result.  

The second possibility is graphical representation of the pre-processed median values – as a 

function of distance – in the Cartesian coordinates. This way of data presentation helps to 

illustrate changes of the basic transmission loss in dependence on the distance from 

transmitting antenna. 

The third one is a digital map of the area under research with marked colored points, that 

are representing a range of measured values of test signal power at input of the measuring 

receiver, assuming a known value of the equivalent isotropic radiated power (EIRP), which 
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is equal to the signal power Pt [dBW] supplied to the terminals of transmitting antenna plus 

power gain Gt [dBi] of this antenna. Map scale is dependent on the area where research is 

carried out. The advantage of this results presentation method is a simultaneous view on the 

value of received signal power and localization of each measurement. It is also possible to 

interpolate the results of measurements in order to estimate the radio coverage in the area.  

It should be noted, that on the basis of power measurements at the receiver input and using 
equation (8) it is easy to calculate the basic transmission loss in given propagation 
environment. 

3. A novel empirical path loss model for container terminal 

This subsection presents new analytical approach to path loss modeling in case of 

propagation in container port environment, based on empirical results from measurement 

campaign in Gdynia Container Terminal (Poland). Precise classification of propagation 

environment and selection of parameters which influence the propagation mechanism in 

essential way, allowed to define adequate multivariate error function for multidimensional 

regression analysis. As a result of this research, new analytical relation between propagation 

path parameters and path loss in container terminal scenario is proposed. 

3.1 Measuring equipment 
Block diagram of primary equipment set used in propagation measurements in container 

terminal scenario is presented in Fig. 2 (Katulski et al., 2008). 
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Fig. 2. Block diagram of primary measuring equipment set 

Propagation path loss measuring equipment concept was based on fixed reference signal 

transmitter and mobile receiver equipment placed in many different positions in the area of 

container terminal. Harmonic signal without modulation, with frequency in range 0.5GHz 

to 4GHz, was emitted by transmitting antenna situated in various places in port. Power 

RF amplifier input was protected by precise 10dB attenuator. The receiving section was 

made of handheld signal spectrum analyzer working as a sensitive received signal power 

meter, GPS receiver and notebook with special software. All the receiver section 

components were battery powered. Log-periodic directional wideband antennas of the same 

type were used in both transmitter and receiver side. These antennas were calibrated by 

producer and have precise parameters in whole frequency range of interest. 

Firstly the measurement plan assumed four reference signal frequencies: 1, 2, 3 and 4GHz, 
but during the measurement campaign additional frequency of 0.5GHz was also put into 
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investigation. Because the power amplifier used in transmitting section works properly only 
in frequency range 800MHz to 4.2GHz, schematic diagram of transmitting section in case of 
measurement at frequency 500MHz was slightly modified: additional attenuator and power 
amplifier had to be removed and the output of signal generator (with power level set to 
maximum value equal +9.6dBm) was directly connected to transmitting antenna via 10m 
long feeder. 

3.2 Calibration procedure 
In order to precisely compute the propagation path loss from power level of signal detected 
by handheld spectrum analyzer, radio link power budget equation have to include 
parameters of all the components from Fig. 2.  
Because in the container terminal scenario, path loss of over 100dB should be expected, 
relatively high power test signal should be connected to the transmitting antenna. For the 
frequencies of 1GHz and above, constant power level +30dBm at the input of transmitting 
antenna was chosen. As the antenna’s power gain at all the frequencies of interest is known 
(measured by manufacturer) and transmitter power level is being kept constant, equivalent 
isotropic radiated power (EIRP) can be simply computed for every frequency. 
To ensure that accuracy of measurements doesn’t vary with frequency, the transmitting and 
receiving section was calibrated in the Gdansk University of Technology laboratory. Firstly, 
the attenuation of transmitting section feeders at all the frequencies of interest was 
measured using vector network analyzer. The results are compared in Table 3. 
 

Frequency [GHz] 1 2 3 4 

Feeder loss between generator and 
additional attenuator [dB] 

0.25 0.59 1.25 0.70 

Feeder loss between amplifier and 
antenna [dB] 

3.27 4.89 6.15 7.10 

Table 3. Attenuation of transmitter section feeders 

Although the power amplifier has smooth gain adjustment, authors decided to set the 
amplification to fixed value of 38dB (amplifier setting, real amplification value was not 
measured) and determine the signal generator output power that is necessary to achieve 
signal power at the input of transmitting antenna equal +30dBm. In laboratory conditions, 
spectrum analyzer from receiver section together with precise attenuator 20dB was used 
instead of antenna as a power meter (Fig. 3).  
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generator
RF Amplifier
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Feeder 

N-N 1m

Attenuator

10dB

5S1G4

Feeder 

N-N 10m

MS2721BAttenuator
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Fig. 3. Transmitting section calibration set schematic diagram 

Evaluated generator output power values, which provided signal level of +10dBm at the 
input of spectrum analyzer (+30dBm at the input of transmitting antenna), are presented in 
Table 4. As the receiver antenna gain in whole band of interest was precisely measured by 
producer, the only part of receiver section from primary block diagram (Fig. 2) with 
unknown parameters is the feeder between antenna and handheld spectrum analyzer. 
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Frequency [GHz] 1 2 3 4 

Signal generator output power 
[dBm] 

4.5 7.4 7.2 7.8 

Table 4. Output power level of signal generator for particular measurement frequencies 

The MS2721B spectrum analyzer is able to measure and present received signal power level 
directly in [dBm]. Using the same device during calibration phase and in final measurement 
campaign should compensate eventual received signal power measurement errors. The 
receiving section feeder attenuation values are presented in Table 5. 
 

Frequency [GHz] 1 2 3 4 

Feeder loss between antenna and 
spectrum analyzer [dB] 

3.24 4.86 6.25 7.7 

Table 5. Attenuation of receiver section feeder 

Obviously, similar but not the same calibration procedure was repeated at frequency 
0.5GHz after measurement campaign to obtain the power level at the input of transmitting 
antenna and attenuation of feeders for this specified frequency. 
Because the receiving antenna has directional spatial characteristic, path loss measurement 
procedure required pointing the antenna in direction of transmitter in case of line of sight 
(LOS) condition or in direction of maximum received signal power in case of non-line of 
sight (NLOS) for every position of receiving section. To simplify the search of maximum 
signal direction, both transmit and receive antennas were fastened to movable masts with 
tripods, which allow to change azimuth of reception while height of antenna above terrain 
remained unchanged.  
As the maximum transmitter output power was set to +30dBm and the transmitting antenna 
gain did not exceed 8dBi, the value of EIRP was far below 15W limit. According to Polish 
law, electromagnetic radiation sources with EIRP less than 15W are objects that do not affect 
environment or human, so nobody from the measurement team was exposed to harmful 
electromagnetic radiation. 
To improve measurement speed and accuracy, data from spectrum analyzer (received signal 
power) and GPS receiver (geographic coordinates and time of each measurement) data were 
collected by notebook. Special software running on computer with Linux operating system 
allowed to define the time between successive measurements, frequency and bandwidth of 
received signal, type of applied power detector, additional averaging of results etc. It is also 
possible to record signal spectrum in each measurement point. 

3.3 Path loss measurements in the Gdynia Container Terminal 
With the help from administration of the Gdynia Container Terminal, complex survey of 
propagation aspect in container port was made in term from June to September 2007. 
Almost 5000 data sets were collected during measurement campaigns, which means about 
thousand measurement points for each analyzed frequency. The analyses were made in 
different weather conditions – sunny, cloudy and rainy days with temperature from 5°C to 
20°C.  
Exemplary results of propagation path loss measurements in area of container terminal are 
shown on map in Fig. 4, where blue rectangles symbolize stacks of containers, dots 
symbolize location of successive measurement points and colour of each dot indicates basic 
transmission loss in [dB]. 
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Fig. 4. Propagation path loss measurement results at 2GHz in the Gdynia Container 
Terminal 

 

 

Fig. 5. Spatial interpolation of measurement results from Fig. 4 
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The next figure (Fig. 5) was created using spatial interpolation. This interpolation should be 
understood as a prediction of expected basic transmission loss in places where 
measurements were not possible. There are many different methods of spatial data 
interpolation. In this example inverse distance weighting (IDW) interpolation was used, 
which is based on weighted averaging of value from nearby measurement points. This 
method assumes, that the greatest impact on value in point of interpolation have these 
points of real measurements which are the closest, so the weight used in averaging process 
should be the inverse of distance between interpolation point and measurement point. 
The value in the interpolation point is calculated by equation: 
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where:  
 Z – value in interpolation point, 
 di – distance between i-th measurement point and interpolation point, 
 Zi – value in i-th measurement point, 
 p – exponent (in our case p=2), 
 n – number of nearby measurement points used to interpolate values between points 

(in our case n=12). 
The value of exponent p determines how the measurement points impact the interpolated 
value: the bigger value of p, the smaller impact to the interpolated value has the 
measurement points located farther from interpolation point. Therefore as the value of p is 
bigger, local variations of measured values are more visible in the results of interpolation. 
The IDW method, briefly described above, was chosen because of spatial nature of collected 
data: measurement points were located closely (distance between neighboring point varies 
from one to several meters) so the IDW method allowed to distinguish local variation in 
path loss value. All the spatial analysis and interpolations were made using ArcView 9.2 
geographic information system (GIS) software. 

3.4 A novel multivariate empirical path loss model 
Upon the results of almost 5 thousands propagation path measurements in real container 
terminal environment, a novel analytical model was developed using multidimensional 
linear regression analysis with multiple independent variables. For the sake of this analysis 
a multivariate error function was defined (Katulski & Kiedrowski, 2005). The following 
parameters, which should affect the value of propagation path loss in port area, were chosen 
as independent variables in error function: 

• frequency f, 

• propagation path length d, 

• path type qualification: line of sight or non line of sight condition, 

• difference between transmitter antenna height hT above terrain level and average height 

hav of container stack, but two possible cases should be investigated separately: hT ≥ hav 
and hav > hT. 

Because the container terminal, in which all the measurements were made, was permanently 
used for container transportation, safety restrictions forced authors to limit the height hR of 
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receiver antenna to fixed value equal 2m. Due to fixed value of receiver antenna height, 
proposed propagation models do not include this height as a variable parameter. 
As a result of defined error function analysis, regression coefficients for respective 

propagation cases were computed. Based on this, analytical formulas of propagation path 

loss in container terminal area can be presented (Katulski et al., 2008). 

Propagation path loss in [dB] in line of sight scenario: 

a) in case, when hT ≥ hav (LOS1): 

 1 55.2 20log 5.8log 22.1log( )LOS T avL f d h h= + + − − , (12) 

b) otherwise, when hav > hT (LOS2): 

 2 41.9 20log 25.9log 4.2 log( )LOS av TL f d h h= + + + − . (13) 

Propagation path loss in non line of sight scenario: 

a) in case, when hT ≥ hav (NLOS1): 

 1 32.6 20log 7.9log 0.8log( )NLOS T avL f d h h= + + + − , (14) 

b) otherwise, when hav > hT (NLOS2): 

 2 38.6 20log 13log 5.9log( )NLOS av TL f d h h= + + + − . (15) 

The frequency f in equations (12) – (15) should be in [MHz], propagation distance d in [km], 
height of transmit antenna and average height of container stack in [m]. 
Mean error (ME) and mean square error (MSE) are commonly being used to verify accuracy 

of path loss models. These errors are defined by expression (16) and (17) respectively 

(Katulski & Kiedrowski, 2006): 
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where Lmeas,i is the value of measured path loss in i-th position of receiver equipment 

(i=1,...,N), Lreg,i is the path loss value computed using equations (12) to (15) for i-th position, 

and N is the total number of considered results. Mean error value reflect the expected 

average difference between path loss values obtained using proposed model and real path 

loss measurement results, while mean square error is the ratio of dispersion of measured 

path loss values and describes how good the propagation model matches experimental 

data. 

Mean errors and mean square errors for all the considered propagation path variants 

separately (different height of transmitter antenna, line of sight condition) and summary for 

all measurement results together, are presented in Table 6.  

The propagation path loss calculated using proposed analytical model fits very well to the 

results from measurement campaign for all propagation path variants, which is confirmed 

by very low values of mean errors and acceptably low values of mean square errors. 
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LOS NLOS 

LOS1 LOS2 NLOS1 NLOS2 
SUMMARY

ME MSE ME MSE ME MSE ME MSE ME MSE

0.00 8.51 0.01 6.02 0.00 6.73 0.00 6.28 0.00 6.82 

ME=0.01, MSE=7.22 ME=0.00, MSE=6.49   

Table 6. Mean errors and mean square errors for proposed propagation model 

4. Future research in the DCT Gdansk Container Terminal 

In order to generalize the path loss model for container terminal environments there was a 

necessity to carry out a wider research in other type of container terminal. It has been made 

in the DCT Gdansk Container Terminal (Poland). New multipurpose mobile equipment for 

propagation measurements allowed to carry out the research in accordance with described 

normative requirements. 

Measurement equipment consists of two parts: immobile transmitting section (Fig. 6) and 

mobile receiving section (Fig. 7). These block diagrams exclude descriptions of devices types 

and feeders lengths. 

 

 

Signal 

generator
RF Amplifier

Transmitting 

antenna

Attenuator

 

Fig. 6. Simplified block diagram of the immobile transmitting section  

The transmitting section of the equipment for propagation measurements consists of signal 

generator connected to transmitting antenna through the RF amplifier and the attenuator. 

The generator is a source of the test signal, that is going to be investigated. The attenuator 

protects the amplifier from damage caused by high level signals. The signal generator and 

the amplifier are a source of test signal with power of PMT (see Fig. 1), which is supplied to 

input terminals of transmitting antenna. The transmitting antenna is a monopole vertical 

antenna with electrical length of one-quarter of a wavelength. It has been developed and 

implemented in a manner, that allows to change its linear length, so it may be used for 

research on various frequencies. During the research antenna was installed on various 

heights, but always higher than 10 meters above a ground level (ITU-R SM.378-7, 2007), to 

minimize the influence of the Earth surface on the test signal attenuation. 

In order to prepare the transmitting section for tests, the calibrating spectrum analyzer 

should be connected in place of the transmitting antenna in the same way as presented in 

Fig. 3. The desirable value Pt of test signal should be set by changing settings of the 

generator and RF amplifier and taking into account attenuation of the attenuator. It should 

be noted that the calibrated equipment should not be changed during the tests. 

In mobile receiving section (Fig. 7), the spectrum analyzer is used as the measuring receiver. 

It is also equipped with a GPS receiver, which allows to determine the test vehicle position 

and assign it to appropriate measurement result. The receiving antenna is the same type as 
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the transmitting antenna. During the research the receiving antenna was installed at a height 

of 2 meters above ground level. The receiving section is carried by test vehicle (in our case a 

hand-cart). It is moving along a route of radio wave propagation with velocity not exceeding 

the value resulting from equation (9). 

The rotary encoder is used to determine the distance from starting point and to determine 

the point where the measurement should be triggered. This encoder is connected to the test 

wheel and the encoder controller. For every distance of 0.8λ, the encoder controller sends an 

impulse to the industrial computer, which triggers next measurement of signal power PMR at 

the receiver input. The industrial computer is responsible for the spectrum analyzer 

configuring, measurements triggering and recording its results. The LCD display shows the 

following data: current measurement result, distance from starting point, current velocity of 

test vehicle. Whole receiving section is powered by battery with sufficient capacity. 

 

Spectrum 

analyzer

Receiving 

antenna

Industrial 

computer

GPS antenna

LCD display
Encoder 

controller

Rotary encoderSafety lighting Battery

Test wheel

Test vehicle

 

Fig. 7. Simplified block diagram of the mobile receiving section (Ambroziak, 2010) 

 

 

Fig. 8. Measurement team during research in the DCT Gdansk Container Terminal 

It is very important to ensure safety of measurement team during research in container 

environment. The DCT Port internal safety procedures required that all the objects moving 

between container stacks has to be clearly visible in all conditions. For this reason, the 
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receiving section is equipped with pulsing safety lighting to make the test vehicle more 

visible. This lighting is mounted in the highest point of the test vehicle, at the antenna mast. 

Fig. 8 presents measurement team from the Department of Radiocommunication Systems 
and Networks (Gdansk University of Technology) during measuring research on radio 
wave propagation in the DCT Gdansk Container Terminal (Poland).  

5. Conclusion 

The chapter presents the normative requirements concerning the methodology of 
measurement research on radio wave propagation and the measuring apparatus. This 
requirements are in accordance with current ITU-R Recommendations. On the basis of these 
recommendations there were carried out the propagation research in the container terminals 
in Gdynia and Gdansk. Radio propagation analysis in container terminal scenario, 
presented in this chapter, was the first such measurement in Poland and unique in the 
worldwide area of radio communication research. 
Upon the analysis of path loss measurement data collected in the Gdynia Container 
Terminal, the novel container port area propagation model was proposed. This model has 
been verified in real propagation conditions in wide frequency range from 0.5GHz to 4GHz 
and can be used to predict propagation path loss in case of designing radio communication 
systems for container ports or even other related propagation environments. 
During the research in the DCT Gdansk Container Terminal the data about nearly 290 
thousand of propagation cases was collected. These cases concern the propagation routes 
with various lengths, various frequencies and various heights of transmitting antenna. The 
results of these research will be used for verification, extending and generalize new-
elaborated propagation model for container terminals. 
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