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1. Introduction 

This chapter treats performances of Maximal-Ratio Combiner (MRC) in presence of two 
general fading distributions, the κ-µ distribution and the η-µ distribution (Yacoub, 2007.). 
Namely, performances of Maximal-Ratio Combiner in fading channels have been of interest 
for a long time, which can be seen by a numerous publications concerning this topic. Most of 
these papers are concerned by Rayleigh, Nakagami-m, Hoyt (Nakagami-q), Rice (Nakagami-
n) and Weibull fading (Kim et al., 2003), (Annamalai et al., 2002), (da Costa et al., 2005), 
(Fraidenraich et al., a, 2005), and (Fraidenraich et al., b, 2005). Beside MRC, performances of 
selection combining, equal-gain combining, hybrid combining and switched combining in 
fading channels have also been studied. Most of the papers treating diversity combining 
have examined only dual-branch combining because of the inability to obtain closed-form 
expressions for evaluated parameters of diversity system. Scenarios of correlated fading in 
combiner’s branches have also been examined in numerous papers. Nevertheless, 
depending on system used and combiner’s implementation, one must take care of resources 
available at the receiver, such as: space, frequency, complexity, etc. Moreover, fading 
statistic doesn't necessary have to be the same in each branch, e.g. probability density 
function (PDF) can be the same, but with different parameters (Nakagami-m fading in i-th 
and j-th branches, with mi≠mj), or probability density functions (PDF) in different branches 
are different (Nakagami-m fading in i-th branch, and Rice fading in j-th branch). This 
chapter treats MRC outage performances in presence of κ-µ and η-µ distributed fading 
(Milišić et al., a, 2008), (Milišić et al., b, 2008), (Milišić et al., a, 2009) and (Milišić et al., b, 
2009). This types of fading have been chosen because they include, as special cases, 
Nakagami-m and Nakagami-n (Rice) fading, and their entire special cases as well (e.g. 
Rayleigh and one-sided Gaussian fading). It will be shown that the sum of κ-µ squares is a 
κ-µ square as well (but with different parameters), which is an ideal choice for MRC 
analysis. This also applies to η-µ distribution. Throughout this chapter probability of outage 
and average symbol error rate, at the L-branch Maximal-Ratio Combiner’s output, will be 
analyzed. Chapter will be organized as follows. 
In the first part of the chapter we will present κ-µ and η-µ distributions, their importance, 
physical models, derivation of the probability density function, and relationships to other 
commonly used distributions. Namely, these distributions are fully characterized in terms of 
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measurable physical parameters. The κ-µ distribution includes Rice (Nakagami-n), 
Nakagami-m, Rayleigh, and One-Sided Gaussian distributions as special cases. The η-µ 
distribution includes the Hoyt (Nakagami-q), Nakagami-m, Rayleigh, and One-Sided 
Gaussian distributions as special cases. In particular, κ-µ distribution better suites line-of-
sight scenarios, whereas η-µ distribution gives better results for non-line-of-sight scenarios. 
Second part of this chapter will treat L-branch Maximal-Ratio Combiner and it’s operational 
characteristics. We treat Maximal-Ratio Combiner because it has been shown that MRC 
receiver is the optimal multichannel receiver, regardless of fading statistics in various 
diversity branches since it results in a ML receiver. In this part of the chapter we will use the 
same framework used for derivation of κ-µ and η-µ probability density functions to derive 
probability density functions at combiner’s output for κ-µ and η-µ fading. Derived 
probability density function will be used to obtain outage probability at combiner’s output.  
In third part of the chapter analysis of symbol error rate, at combiner’s output, will be 
conduced. This analysis will be carried out for coherent and non-coherent detection. 
Although coherent detection results in smaller error probability than corresponding non-
coherent detection for the same average signal-to-noise ratio, sometimes it is suitable to 
perform non-coherent detection depending on receiver structure complexity. In this part of 
the chapter we will derive and analyze average symbol error probability for κ-µ and η-µ 
fading at combiner’s output, based upon two generic expressions for symbol error 
probability for coherent and non-coherent detection types for various modulation 
techniques.  
In fourth part we will discuss Maximal-Ratio Combiner’s performances obtained by Monte 
Carlo simulations. Theoretical expressions for outage probability and average symbol error 
rate probability for κ-µ and η-µ fading will be compared to results of the simulations. We 
will also draw some conclusions, and some suggestions for future work that needs to be 
done in this field of engineering. 

2. The κ-µ distribution and the η-µ distribution 

2.1 The κ-µ distribution 

The κ-µ distribution is a general fading distribution that can be used to better represent the 
small-scale variations of the fading signal in a Line-of-Sight (LoS) conditions.The fading 
model for the κ-µ distribution considers a signal composed of clusters of multipath waves, 
propagating in a nonhomogenous environment. Within single cluster, the phases of the 
scattered waves are random and have similar delay times, with delay-time spreads of 
different clusters being relatively large. It is assumed that the clusters of multipath waves 
have scattered waves with identical powers, and that  each cluster has a dominant 
component with arbitrary power. Given the physical model for the κ-µ distribution, the 
envelope R, and instantaneous power PR can be written in terms of the in-phase and 
quadrature components of the fading signal as: 

 ( ) ( )2 2 2

1 1

n n

R i i i i
i i

R P X p Y q
= =

= = + + +∑ ∑  (1) 

, where Xi and Yi are mutually independent Gaussian processes with 0i iX Y= =  and  
2 2 2
i iX Y σ= = . pi  and  qi are respectively the mean values of the in-phase and quadrature 

components of the multipath waves of cluster i, and n is the number of clusters of multipath. 
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Total power of the i-th cluster is ( ) ( )2 2 2
,R i i i i i iP R X p Y q= = + + + . Since PR,i equals to the sum 

of two non-central Gaussian random variables (RVs), its Moment Generating Function 

(MGF), in accordance to (Abramowitz and Stegun, 1972, eq. 29.3.81), yields in: 

 
,

2

2

2

exp
1 2

( )
1 2R i

i

P

d s

s
M s

s

σ
σ

⎛ ⎞⋅
⎜ ⎟− ⋅⎝ ⎠=
− ⋅

 (2) 

, where 2 2 2
i i id p q= + , and s is the complex frequency. Knowing that the PR,i , i=1,2,…,n, are 

independent RVs, the MGF of the ( )
RP Rf P , where ,

1

n

R R i
i

P P
=

=∑ , is found to be: 

 
( ),

2

2

2
1

exp
1 2

( ) ( )
1 2

R R i

n

P P n
i

sd

s
M s M s

s

σ

σ=

⎛ ⎞
⎜ ⎟−⎝ ⎠= =
−

∏  (3) 

, where 2 2

1

n

ii
d d

=
=∑ . The inverse of (3) is given by (Abramowitz and Stegun, 1972, eq. 

29.3.81): 

 ( )
1

2
2

12 2 2 2

1
exp

2 2R

n

RR R
P R n

d PP P d
f P I

dσ σ σ

−

−

⎛ ⎞⎛ ⎞+⎛ ⎞= ⋅ ⋅ − ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4)     

It can be seen that 2 2 22RR P n dσΩ = = = + , and ( )24 2 4 2 2 2 24 4 2RR P n d n dσ σ σ= = + + + . We 

define 
2

22

d

n
κ

σ
=  as the ratio between the total power of the dominant components and the 

total power of the scattered waves. Therefore we obtain: 

 
( )
( )

( )
( )

( )
( )

2 22 2

2 2
24 2

1

1 2
R R

R
n

P PR R

γ κ
κ

+
= = ⋅

+−−
. (5)  

From (5), note that n may be expressed in terms of physical parameters, such as mean-squared 
value of the power, the variance of the power, and the ratio of the total power of the dominant 
components and the total power of the scattered waves. Note also, that whereas these physical 
parameters are of a continuous nature, n is of a discrete nature. It is plausible to presume that if 
these parameters are to be obtained by field measurements, their ratios, as defined in (5), will 
certainly lead to figures that may depart from the exact n. Several reasons exist for this. One of 
them, and probably the most meaningful, is that although the model proposed here is general, 
it is in fact an approximate solution to the so-called random phase problem, as are all the other 
well-known fading models approximate solutions to the random phase problem. The 
limitation of the model can be made less stringent by defining µ to be: 

 
( )
( )

( )
( )

( )
( )

( )
( )

2 22

2 2 2 2
24 2

1 2 1 2

1 1
R R

R

P PR R

γκ κ
μ

κ κ

+ +
= ⋅ = ⋅

+ +−−
     (6) 
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with µ being the real extension of n. Non-integer values of the parameter µ may account for:  
- non-Gaussian nature of the in-phase and quadrature components of each cluster of the 

fading signal, 
- non-zero correlation among the clusters of multipath components, 
- non-zero correlation between in-phase and quadrature components within each cluster, 

etc.  
Non-integer values of clusters have been found in practice, and are extensively reported in 
the literature, e.g. (Asplund et al., 2002.). Using the definitions for parameters κ and µ, and 
the considerations as given above, the κ-µ power PDF can be written from (4) as: 

 
( )

1
12

2
11 1

2 2

1(1 ) (1 )
( ) exp 2

exp( )
R

R R
P R R

P P
f P P I

μ
μ

μμ μ

μ κμ κ κ κμ
κ μκ

+
−

−− +

⎡ ⎤⎡ + ⎤+ +
= ⋅ ⋅ − ⋅ ⎢ ⎥⎢ ⎥Ω Ω⎢ ⎥⎣ ⎦ ⎣ ⎦⋅ ⋅Ω

.  (7) 

Therefore, the κ-µ envelope PDF can be obtained from (7) as: 

 
( )

1
22

11 1

2 2

12 (1 ) (1 )
( ) exp 2

exp( )
R

RR
f R I R

μ
μ

μμ μ

μ κμ κ κ κμ
κ μκ

+

−− +

⎡ ⎤ ⎡ ⎤⋅ + ⋅⋅ + ⋅ ⋅ +
= ⋅ − ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥

Ω Ω⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⋅ ⋅Ω
  (8) 

Instantaneous and average signal-to-noise ratio (SNR) are given by: 
2

0 0

RP R

N N
γ = = , 

0 0

RP

N N
γ Ω
= = , and therefore the κ-µ SNR PDF can be obtained from (8) as: 

 

( )
( )

1 1

2 2

111

22

1(1 ) (1 )
( ) exp 2

exp( )

f I

μ μ

γ μμμ

μ κ γμ κ γ κ κ γγ μ
γ γ

κ μκ γ

+ −

−+−

⎡ ⎤⎡ ⋅ + ⋅ ⎤⋅ + ⋅ ⋅ + ⋅
= ⋅ − ⋅ ⋅⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⋅ ⋅
 (9)  

N0 represents single-sided power spectral density of additive white Gaussian nosie. From (9) 
we can derive Cumulative Distribution Function (CDF) of instantaneous SNR as: 

 
0

2( 1)
( ) ( ) 1 2 ,F f t dt Q

γ

γ γ μ
κ μγγ κμ

⎡ ⎤+
= = − ⎢ ⎥

Ω⎢ ⎥⎣ ⎦
∫   (10) 

, where Q stands for generalized Marcum-Q function defined in (Marcum, 1947.) as: 
2 2

11

1
( , ) exp ( )

2
b

x a
Q a b x I ax dx

a
ν

ν νν

∞

−−

⎛ ⎞+
= ⋅ − ⋅ ⋅⎜ ⎟

⎝ ⎠
∫ . Now we can obtain closed-form expression 

for the n-th order moment of RV γ as: 

 ( )1 1

( )
; ;

( )exp( ) (1 )

n

n n
F n

μ γγ μ μ κμ
μ κμ κ μ

⎛ ⎞Γ +
= ⋅ ⋅ +⎜ ⎟⎜ ⎟Γ +⎝ ⎠

 (11) 

, where ( )Γ i  stands for gamma function (Abramowitz and Stegun, 1972, eq. 6.1.1), and 

( )1 1 ; ;F i i i  represents confluent hypergeometric function (Abramowitz and Stegun, 1972, eq. 

13.1.2). 
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Fig. 1. PDF of SNR for κ=1 and various values of µ 

 

 

Fig. 2. PDF of SNR for µ=1 and various values of κ 
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2.2 The η-µ distribution 

The η-µ distribution is a general fading distribution that can be used to better represent the 

small-scale variations of the fading signal in a No-Line-of-Sight (NLoS) conditions. The 

fading model for the η-µ distribution considers a signal composed of clusters of multipath 

waves, propagating in a nonhomogenous environment. Within single cluster, the phases of 

the scattered waves are random and have similar delay times, with delay-time spreads of 

different clusters being relatively large. The in-phase and quadrature components of the 

fading signal within each cluster are assumed to be independent from each other, and to 

have different powers. Envelope R, and instantaneous power PR can be written in terms of 

the in-phase and quadrature components of the fading signal as: 

 ( )2 2 2

1

n

R i i
i

R P X Y
=

= = +∑  (12) 

, where Xi  and  Yi are mutually independent Gaussian processes with 0i iX Y= = , 2 2
i XX σ= , 

2 2
i YY σ= , and n is the number of clusters of multipath. Total power of the i-th cluster is 

2 2 2
,R i i i iP R X Y= = + . Since PR,i equals to the sum of two central Gaussian RVs with non-

identical variances, its MGF yields in: 

 
( )

( ) ( )

,

1 2

2 2

1 2 1 2

1
( )

1 1

R i

X

P

X X

h

M s

h H
s

η σ

η σ η σ

−

− −

+
==

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

    (13) 

, where 
2

2
X

Y

ση
σ

=  is the scattered-wave power ratio between the in-phase and quadrature 

components of each cluster of multipath,
12

4
h

η η−+ +
= ,

1

4
H

η η− −
= . Following the same 

procedure as in the case of κ-µ distribution, the MGF of the ( )
RP Rf P , where ,

1

n

R R i
i

P P
=

=∑ , is 

found to be: 
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1 2

2 2
1

1 2 1 2
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1 1
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n
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P P
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M s M s

h H
s

η σ

η σ η σ

−

=

− −
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⎢ ⎥
⎢ ⎥+⎢ ⎥= = ⎢ ⎥

⎛ ⎞ ⎛ ⎞⎢ ⎥
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∏     (14) 

The inverse of (14) is given by (Abramowitz and Stegun, 1972, eq. 29.3.60): 

 ( )
( )

( )

( )( ) ( ) ( )

1 1
2 2 2

111 1 2 1 2
1 2 222

exp
1 12 1

2

R

n n n

R R R
P R nnn

X X
X

Pn h h P H P
f P I

n
H n

π
η σ η σ

η σ

+ −

−+− − −
−

⎛ ⎞ ⎛ ⎞⋅ ⋅⎜ ⎟ ⎜ ⎟= ⋅ ⋅ − ⋅
⎜ ⎟ ⎜ ⎟⎛ ⎞ + +Γ ⎝ ⎠ ⎝ ⎠+⎜ ⎟

⎝ ⎠

 (15) 
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, where ( )nI i  stands for n-th order modified Bessel function of the first kind. It can be seen 

that ( ) ( )2 1 2 21 1R X YR P n nη σ η σ−Ω = = = + = + , and ( ) ( )4 2 2 2 2 42 1 1R YR P n nη η σ⎡ ⎤= = + + + ⋅⎣ ⎦ .  
Thus,  

 
( )
( )

( )
( )

( )
( )

2 22 2

2 2 224 2

1

2 1

R

R R

R P n

P PR R

η
η

+
= = ⋅

+−−
   (16) 

From (16), note that n/2 may be expressed in terms of physical parameters, such as mean-
squared value of the power, the variance of the power, and the ratio of the total power of the 
dominant components and the total power of the scattered waves. Note also, that whereas 
these physical parameters are of a continuous nature, n/2 is of a discrete nature (integer 
multiple of 1/2 ). It is plausible to presume that if these parameters are to be obtained by 
field measurements, their ratios, as defined in (16), will certainly lead to figures that may 
depart from the exact n/2. Several reasons exist for this. One of them, and probably the most 
meaningful, is that although the model proposed here is general, it is in fact an approximate 
solution to the so-called random phase problem, as are all the other well-known fading 
models approximate solutions to the random phase problem. The limitation of the model 
can be made less stringent by defining µ to be: 

 
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )( )

2 2 22 2 2 2

2 2 2 2 22 24 2

1 1
1

1 1 2

R R

R R R R

R P P H

hP P P PR R

η η
μ

η η

+ + ⎛ ⎞⎛ ⎞= ⋅ = ⋅ = ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠+ +− ⎝ ⎠⋅ −−
  (17) 

, with μ  being the real extension of
2

n
. Values of μ  that differ from 

2

n
 may account for: 

- non-Gaussian nature of the in-phase and quadrature components of each cluster of the 
fading signal, 

- non-zero correlation among the clusters of multipath components, 
- non-zero correlation between in-phase and quadrature components within each cluster, 

etc.  
So, the same analysis conduced for κ-µ applies to η-µ as well. Using the definitions for 
parameters η and µ, and the considerations as given above, the η-µ power PDF can be 
written from (15) as: 

 
( )

0.5
0.5

0.50.5 0.5

2 2 2
( ) exp

R

R R
P R R

h h P H P
f P P I

H

μ μ
μ

μμ μ

π μ μ μ
μ

+
−

−− +

⋅ ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞= ⋅ ⋅× − ⋅⎜ ⎟ ⎜ ⎟Γ ⋅ ⋅Ω Ω Ω⎝ ⎠ ⎝ ⎠
 (18) 

Therefore, the η-µ envelope PDF can be obtained from (18) as: 

 
( )

0,5 2 2 2

0,50,5 0,5

4 2 2
( ) expR

R h R H R
f R I
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μ μ
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μ

+
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= ⋅ − ⋅⎢ ⎥ ⎢ ⎥Γ ⋅ ⋅Ω Ω Ω⎣ ⎦ ⎣ ⎦

  (19) 

Instantaneous and average SNR are given by: 
2

0 0

RP R

N N
γ = = , 

0 0

RP

N N
γ Ω
= = , and therefore the 

η-µ SNR PDF can be obtained from (18) as: 
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( ) ( )

0.5 0.5

0.50.5
0.5

2 2 2
( ) exp

h h H
f I

H
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γ μμμ
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  (20) 

From (20) we can derive CDF of instantaneous SNR as: 
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2
( ) ( ) 1 ,

H h
F f t dt

h
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γ γ μ
μ γγ
γ

⎡ ⎤⋅
= = −Θ ⎢ ⎥
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∫     (21) 

 

 

Fig. 3. PDF of SNR for µ=0,5 and various values of η 

Since previous integral doesen't have closed-form solution, function Θ has been defined as:  

 ( ) ( ) ( )
1,5 2

2 2 2
0,50,5

2 1
, exp( )

( )
b

a
a b t t I at dt

a

νν
ν

ν νν

π

ν

− ∞

−−

⋅ ⋅ −
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⋅ Γ ∫   (22) 

Now we can obtain closed-form expression for the n-th order moment of RV γ as: 

 
2

2 1

(2 )
0,5 , ; 0,5 ;

(2 ) 2 2

n

n

n

n n H
F n

h hμ

μ γγ μ μ μ
μ μ+
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 (23) 

www.intechopen.com



Outage Performance and Symbol Error Rate Analysis  
of L-Branch Maximal-Ratio Combiner for κ-μ and η-μ Fading 

 

341 

, where ( )2 1 , ; ;F i i i i  represents Gauss hypergeometric function (Abramowitz and Stegun, 

1972, eq. 15.1.1). The κ-µ and the η-µ distributions are indeed general fading distributions, 
which can be seen by a following special cases: 
- µ=0,5 and κ=0, the κ-µ distribution becomes One-sided Gaussian distribution; 
- µ=0,5 and η=0 (or η→∞), the η-µ distribution becomes One-sided Gaussian distribution; 
- µ=1 and κ=0, the κ-µ distribution becomes Rayleigh distribution; 
- µ=0,5 and η=1, the η-µ distribution becomes Rayleigh distribution; 
- µ=1 and κ=K, the κ-µ distribution becomes Rice distribution, where K represents Rice K 

parameter; 
- µ=0,5 and η=q2, the η-µ distribution becomes Hoyt (Nakagami-q) distribution, where q 

represents Hoyt q parameter; 
- µ=m and κ=0, the κ-µ distribution becomes Nakagami-m distribution, where m 

represents Nakagami m parameter; 
- µ=m and η=0 (or η→∞), or µ=m/2 and η=1, the η-µ distribution becomes Nakagami-m 

distribution, where m represents Nakagami m parameter. 
 

 

Fig. 4. PDF of SNR for η=0,5 and various values of µ 

3. Maximal-ratio combining 

There are four principal types of combining techniques (Simon & Alouini, 2005.) that 

depend essentially on the complexity restrictions put on the communication system and 
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amount of channel state information (CSI) available at the receiver. As shown in (Simon & 

Alouini, 2005.), in the absence of interference, Maximal-Ratio Combining is the optimal 

combining scheme, regardless of fading statistics, but most complex since MRC requires 

knowledge of all channel fading parameters (amplitudes, phases and time delays). Since 

knowledge of channel fading amplitudes is needed for MRC, this scheme can be used in 

conjunction with unequal energy signals, such as M-QAM or any other amplitude/phase 

modulations. In this paper we will treat L-branch MRC receiver. As shown in (Simon & 

Alouini, 2005.) MRC receiver is the optimal multichannel receiver, regardless of fading 

statistics in various diversity branches since it results in a ML receiver. For equiprobable 

transmitted symbols, the total SNR per symbol at the output of the MRC is given by (Stuber, 

1996.): 
1

L

j
j

γ γ
=

=∑ , where jγ  is instantaneous SNR in j-th branch of L-branch MRC receiver. 

3.1 Maximal-ratio combining in presence of κ-µ distributed fading 

We will first analyze statistics of received power and SNR at MRC output in presence of κ-µ 

distributed fading, and then we will obtain expression for outage probability at MRC 

output. Repeating the same procedure as in the previous section, previous relation can be 

written as: 

 , , ,
1 1 1 10 0

1 1L L L n

j R j R j i
j j j i

P P
N N

γ γ
= = = =

= = ⋅ = ⋅∑ ∑ ∑∑   (24) 

, where , ,R j iP represents total received power of the i-th cluster manifested in the j-th branch 

of the MRC receiver. Using (1) one can obtain: 

 ( ) ( )2 2
, , , ,

1 1
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R i j i j i j i j
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= =

= + + +∑∑ .  (25) 

Repeating the same procedure as in the previous section, one can obtain MGF of the RV PR:                   
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, where 2 2

1

L

j
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d d
=

=∑ . Inverse of (26) yields in PDF of the RV PR: 
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From PDF of received signal power at MRC output, we can obtain PDF of instantaneous 
SNR at MRC output: 
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 (28) 

Note that sum of L squares of the κ-µ distributed RVs is a square of κ-µ distributed RV, but 
with different parameters, which means SNR at the output of the MRC receiver subdue to 
the κ-µ distribution with parameters:  

, , MRCMRC MRCL Lμ μ κ κ γ γ= ⋅ = = ⋅ . 

Now, it is easy to obtain CDF of SNR at MRC output:  
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∫      (29) 

For fixed SNR threshold γth, outage probability at MRC output is given by: 
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∫   (30)  

 

 

Fig. 5. Outage probability for dual-branch MRC (L=2), fixed κ, and various µ 
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Fig. 6. Outage probability for dual-branch MRC (L=2), fixed µ, and various κ  

 

 

Fig. 7. Outage probability for fixed µ and κ, L=1, 2, 3 and 4 
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3.2 Maximal-ratio combining in presence of η-µ distributed fading 

Now we analyze statistics of received power and SNR at MRC output in presence of η-µ 

distributed fading, and  after that, we will obtain expression for outage probability at MRC 

output. Using (12) one can obtain: 

 ( )2 2
, ,

1 1

L n

R i j i j
j i

P X Y
= =

= +∑∑   (31) 

Repeating the same procedure as in the previous section one can obtain MGF of the RV PR: 
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∏  (32) 

Inverse of Equation (32) yields to PDF of the RV PR: 
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 (33) 

From PDF of received signal power at MRC output, we can obtain PDF of instantaneous 

SNR at MRC output: 
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  (34) 

Note that sum of L squares of the η-µ distributed RVs is a square of η-µ distributed RV, but 

with different parameters, which means SNR at the output of the MRC receiver subdue to 

the η-µ distribution with parameters:  

, , MRCMRC MRCL Lμ μ η η γ γ= ⋅ = = ⋅ . 

Now, CDF of instantaneous SNR at MRC output is given by:  
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∫     (35) 

, where Θ is defined in (22). For fixed SNR threshold γth, outage probability at MRC output 

is given by: 
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www.intechopen.com



 Vehicular Technologies: Increasing Connectivity 

 

346 

 

Fig. 8. Outage probability for dual-branch MRC (L=2), fixed η, and various µ 

 

 

Fig. 9. Outage probability for dual-branch MRC (L=2), fixed µ, and various η 
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Fig. 10. Outage probability for fixed µ and η, L=1, 2, 3 and 4 

4. Symbol error probability analysis 

When we analyze symbol error probability (SEP), we must focus upon single modulation 

format because different modulations result in different SEPs. We must also consider type of 

detection (coherent or non-coherent). Namely, decision-block of coherent receiver performs 

decision based upon information gained in both In-phase and quadrature components, 

while decision-block of non-coherent receiver performs decision based only upon envelope 

of the received signal. Although coherent detection results in smaller SEP than 

corresponding non-coherent detection for the same SNR, sometimes it is suitable to perform 

non-coherent detection depending on receiver structure complexity. 

Non-coherent detection 

To obtain average SEP for non-coherent detection, we will use generic expression for 

instantaneous SEP: ( )expSEP a b γ= ⋅ − ⋅ , where γ represents instantaneous received SNR, 

and non-negative parameters a and b depend on used modulation format.  
Average SEP can be obtained by averaging expression for SEP with respect to γ: 

 ( )
0 0

( ) exp ( )ASEP SEP f d a b f dγ γγ γ γ γ γ
+∞ +∞

= ⋅ ⋅ = ⋅ − ⋅ ⋅ ⋅∫ ∫   (38) 

www.intechopen.com



 Vehicular Technologies: Increasing Connectivity 

 

348 

b
a 

0.5 1 

0.5 BFSK DBPSK 

1 / / 

1

2

M −
 MFSK / 

Table 1. Values of a and b for some non-coherent modulations 

Coherent detection 

To obtain average SEP for coherent detection, we will use generic expression for 

instantaneous SEP: ( )SEP a Q b γ= ⋅ ⋅ , where ( )Q i function is defined as: 

( )
21

exp
22 x

t
Q x dt

π

+∞ ⎛ ⎞−
= ⋅⎜ ⎟

⎝ ⎠
∫  

, and non-negative parameters a and b depend on used modulation format. 
 

b
 
a 

1 2 
22sin

M

π⎛ ⎞
⎜ ⎟
⎝ ⎠

3

1M −

1 BFSK BPSK / / 

2 QPSK DBPSK MPSK / 

1
4

M

M

−
 / / / 

Rect. 
QAM 

Table 2. Values of a and b for some coherent modulations 

Average SEP can be obtained by averaging expression for SEP with respect to γ: 

 ( )
0 0

( ) ( )ASEP SEP f d a Q b f dγ γγ γ γ γ γ
+∞ +∞

= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅∫ ∫   (39) 

Nevertheless, it is sometimes impossible to find closed-form solution for (11). Because of 
that, we will present exact MGF-based solution, and solutions based on lower and upper 
bound of the Q function. To obtain MGF-based solution, first we have to rewrite Q function 
in more suitable form as in (Simon & Alouini, 2005.): 

( )
22

2
0

1
exp
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x
Q x d

π

θ
π θ

⎛ ⎞−
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⎝ ⎠
∫  

Introducing alternate form of Q function in to the ASEP expression, we obtain MGF-based 
solution: 
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∫ ∫ ∫  (40) 

Now we seek solutions based on upper and lower bound of Q function. Q function can be 

bounded as: 
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Upper bound for ASEP can be obtained by introducing upper bound of the Q function in 

(39): 
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Lower bound for ASEP can be obtained by introducing lower bound of the Q function in 
(39): 
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 (43)  

4.1 Symbol error probability analysis for maximal-ratio combiner in presence of κ-µ 
distributed fading 

To obtain ASEP at MRC output for κ-µ fading for non-coherent detection, we introduce (28) 

in (38): 
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∫
 

Using (Prudnikov et al., 1992, eq. 5, page 318) we obtain closed-form expression for ASEP 

for non-coherent detection:  
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   (44) 

Now we have to obtain ASEP at MRC output for κ-µ fading for coherent detection. To do so, 

first we have to manipulate (26) to obtain MGF for RV γ at MRC output: 
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Introducing (45) in (40) we obtain: 
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Now we seek upper bound for ASEP for coherent detection by introducing (28) in (42): 
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Using (Prudnikov et al., 1992, eq. 5, page 318) we obtain closed-form expression for upper 
bound for average SEP for coherent detection: 
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, where ( )1 1 ; ;F i i i  is Kummer confluent hypergeometric function defined in (Wolfram, 

http://functions.wolfram.com/07.20.02.0001.01). Lower bound for ASEP can be obtained by 

introducing (28) in (43), and using the same solution as in the previous case: 
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  (48)  

 

 

Fig. 11. Average symbol error probability for non-coherent BFSK, L=1, 2, 3 and 4 
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Fig. 12. Average symbol error probability for coherent BPSK, L=1, 2, 3 and 4 

4.2 Symbol error probability analysis for maximal-ratio combiner in presence of η-µ 
distributed fading 

To obtain ASEP at MRC output for η-µ fading for non-coherent detection, we introduce (34) 

in (38): 
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∫
 

Integration of previous expression will be carried out via Meijer-G functions, defined in 

(Wolfram, http://functions.wolfram.com/HypergeometricFunctions/MeijerG/). First we 

have to transform exponential and Bessel functions in Meijer-G functions in accordance to 

(Wolfram, http://functions.wolfram.com/07.34.03.0228.01) and (Wolfram, 

http://functions.wolfram.com/03.02.26.0009.01). Integration is performed with (Wolfram, 

http://functions.wolfram.com/07.34.21.0011.01). After some algebraic manipulations, and 

simplifications in accordance to (Wolfram, http://functions.wolfram.com/07.34.03.0734.01) 
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and (Wolfram, http://functions.wolfram.com/07.23.03.0079.01), we obtain closed-form 

expression for average SEP for non-coherent detection: 
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Fig. 13. Average symbol error probability for coherent BFSK, L=1, 2, 3 and 4 

Now we have to obtain ASEP at MRC output for η-µ fading for coherent detection. First we 

manipulate (32) to obtain MGF for RV γ at MRC output: 
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Introducing (50) in (40) we obtain: 
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Now we seek upper bound for ASEP for coherent detection by introducing (34) in (42): 
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Lower bound for ASEP can be obtained by introducing (34) in (43): 
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  (53) 

5. Simulations and discussion of the results 

For the purposes of simulations, in this section first we discuss ways for generation of κ-µ 

and η-µ RVs. Since we have ( )fγ γ , and since we can’t obtain inverse 1( )fγ γ− , we have to 

apply Accept-Reject method. So, our goal is to generate random numbers from a continuous 

κ-µ and η-µ distributions with probability distribution functions given by (9) and (20), 

respectively.  Although this method begins with uniform random number generator (RNG), 

it requires additional RNG. Namely, we first generate a random number from a continuous 
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distribution with probability distribution function ( )gγ γ , satisfying ( ) ( )f C gγ γγ γ≤ ⋅ , for some 

constant C and for all γ. A continuous Accept-Reject RNG proceeds as follows: 

1. we choose ( )gγ γ ; 

2. we find a constant C such that ( ) / ( )f g Cγ γγ γ ≤  for all γ; 

3. we generate a uniform random number U; 

4. we generate a random number V from ( )gγ γ ; 

5. if ( ) / ( )C U f V g Vγ γ⋅ ≤ , we accept V; 

6. else, we reject V and return to step 3. 

 

 

Fig. 14. Average symbol error probability for coherent BPSK, L=1, 2, 3 and 4 

For efficiency of generation of random numbers V, we choose ( )gγ γ  as a exponential 

distribution. We find constant C so a condition ( ) ( )f C gγ γγ γ≤ ⋅  is satisfied. There is 

another, more efficient method for generation of κ-µ and η-µ RVs. For κ-µ and η-µ 

distributions, in accordance to (1) and (12) respectively, if 0,5 qμ = ⋅ , where q is an integer 

number, then it is possible to obtain κ-µ and η-µ distributed random numbers as a sum of 

squares of q Gaussian random numbers generated from a generator with adequate 

parameters. We designed simulator of κ-µ and η-µ based on outlines given above. We 
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used this simulator to generate samples of κ-µ and η-µ distributed instantaneous SNR. 

These samples are used to obtain outage probability as shown in Figs. 5-7 for κ-µ fading, 

and Figs. 8-10 for η-µ. As we can see from Figs. 7 and 10, there is not much need to 

increase number of combiner’s branches beyond 4, because average SNR gained this way 

decreases for the same outage probability. On Figs. 11 and 13 ASEP for non-coherent 

BFSK has been depicted. Full lines represent theoretical ASEP curves given by (44) and 

(49), respectively. Markers on these figures represent values obtained by simulation. As 

we can see, theoretical and simulation results concur very well. Figs. 12 and 14 depict 

ASEP for coherent BPSK. On Fig. 12 we presented only simulation results (given by 

markers), and ASEP based on Q function upper-bound given by (47) (full lines). Here we 

can see some deviations between simulation results and theoretical expression. On Fig. 14 

we presented 16 curves. Full lines represent curve of ASEP obtained by MGF (51); dashed 

curve represent ASEP based on Q function upper-bound given by (52); dot-dashed curve 

represent ASEP based on Q function lower-bound given by (53); markers represent curve 

obtained by simulation. We can see that simulation result concur with ASEP obtained by 

MGF (which was to be expected), while these two curves lay under upper-bound ASEP, 

and above lower-bound ASEP. Also, we can see that curves obtained by (52) and (53) are 

almost concurring with exact ASEP obtained by MGF.     

6. Conclusion 

Throughout this chapter we presented two general fading distributions, the κ-µ distribution 

and the η-µ distribution. Since we have placed accent on MRC in this chapter, we 

investigated properties of these distributions (we derived probability density functions for 

envelope, received power and instantaneous SNR; cumulative distribution function, n-th 

order moment and moment generating functions for instantaneous SNR), and derived 

relationships concerning distribution of SNR at MRC output (outage probability). Then we 

have analyzed average symbol error probability at MRC output in presence of κ-µ and η-µ 

distributed fading (we derived average symbol error probability for coherent and non-

coherent detection; upper and lower bound of average symbol error probability for 

coherent). The results obtained clearly stated the obvious: 

• for larger κ outage probability and symbol error probability were smaller for fixed µ, 

and fixed average SNR; 

•  for larger µ outage probability and symbol error probability were smaller for fixed, κ 

and fixed average SNR; 

• for larger µ outage probability and symbol error probability were smaller for fixed, η 

and fixed average SNR; 

• for η and 1/η  we obtain the same results; 

• for a greater number of MRC branches, outage probability and symbol error rate were 

smaller for fixed κ and µ, and for fixed η and µ. 

Also, we gave some outlines for design of κ-µ and η-µ RNG.  

Still, there is a lot of investigation in this field of engineering. Namely, scenarios for κ-µ and 

η-µ can be generalized in manner to assume that all clusters of multipath have dominant 

components with arbitrary powers and scattered components with different powers. Also, 
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we can introduce nonlinearity in this fading model in the way Weibull did. Also, one should 

consider correlation among clusters of multipath. For suggested models, one should analyze 

combining performances: switched combining, equal-gain combining, maximal-ratio 

combining, general-switched combining, etc. 
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