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1. Introduction

Accurate software simulation is an important step for testing mobile communication systems.
It allows the evaluation of the system performance without the need for physical experiments.
At an early testing stage, simulations are usually done considering transmissions over
additive white Gaussian noise (AWGN) channels, which do not account for obstacles or
motion between the transmitter (Tx) and the receiver (Rx). According to the AWGN channel
model, only the thermal noise which comes from the receiver amplifiers and from many
natural sources is considered and added to the transmitted signal. This means that the
received signal is a copy of the transmitted signal embedded in Gaussian noise, whose
intensity depends on the propagation scenario (including the amplifiers of the Tx and the
Rx) and can be controlled in simulation by tuning the Gaussian process variance.
It is easy to understand that AWGN channel models do not capture the conditions of a real
radio channel where the presence of obstacles between the Tx and the Rx causes multipath
propagation and may lead to frequency selective channels. In this situation, several replicas
of the transmitted signal get to the Rx antenna with different propagation delays. If these
delays are not negligible compared to the transmission interval Ts, the attenuation caused
by the channel in the frequency-domain is not constant and a distortion is introduced1.
Moreover, if there is motion between the Tx and the Rx, the received signal may be affected
by a time-domain multiplicative distortion called fading. This happens because, being the
Rx in motion relative to the Tx, the propagation channel characteristics vary with time and
their effect can be modeled as a time-domain distortion affecting the transmitted signal. By
combining both the effects of multipath propagation and fading on a wireless transmission,
the received signal baseband equivalent r(t) may be expressed as

r(t) =
N(t)

∑
i=1

ρi(t)ejθi(t)s(t − τi(t)) + n(t) (1)

where s(t) is the transmitted signal baseband equivalent, ρi(t) and θi(t) are the time-varying
attenuation and phase shift respectively of the i-th path and n(t) is a white Gaussian process

1 Otherwise, when the propagation delays are negligible compared to the signal interval, the channel is
said to be flat.
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modeling thermal noise and noise added by the receiver amplifiers. Although in the case of
time varying channels N(t) and τi(t) are functions of the time, for the sake of simplicity, it is
common in the literature to ignore the dependence on time of the number of significant paths
and the propagation delays, that is to set N(t) = N and τi(t) = τi. Eq. (1) can be rewritten as

r(t) =
N

∑
i=1

ρi(t)ejθi(t)s(t − τi) + n(t)

=
N

∑
i=1

hi(t)s(t − τi) + n(t)

(2)

where hi(t) � ρi(t)ejθi(t). Eq. (2) represents the received signal in the case of transmission over
a frequency-selective channel.
In the case of flat multipath channels a further simplification is possible since τi ≅ τ ≪ Ts ∀i.
Eq. (2) can be rewritten as

r(t) =
N

∑
i=1

hi(t) · s(t − τ) + n(t). (3)

Moreover, if a large number of paths is considered i.e., N ≫ 1, the central limit theorem can
be applied to the sum in (3) leading to

r(t) = h(t) · s(t − τ) + n(t) (4)

where h(t) = hR(t) + jhI(t) is a complex Gaussian random process.
By comparing equations (2) and (4), it is clear that the selectivity in the frequency-domain
requires the contribution of each path to be considered and that the fading process, being the
combination of N complex processes, each modeling the fading affecting the corresponding
propagation path, can not be approximated by a Gaussian random process.
As far as flat fading channels are concerned, a detailed description of the process h(t)
was derived by Clarke in 1968. According to the model of Clarke (Clarke, 1968), for a
mobile-to-fixed channel, the fading quadrature components are independent each with the
same autocorrelation function (ACF) given by (Pätzold, 2002)

RhR
(τ) = RhI

(τ) = Rh(τ) =
σ2

h

2
· J0(2π fDτ) (5)

where σ2
h is the fading power, J0(·) is the zero-order Bessel function of the first kind and fD is

the maximum Doppler frequency shift. Two other widely used statistics in channel modeling
for the statistical characterization of a fading process are the level crossing rate (LCR) and the
average fade duration (AFD) of the process. The LCR LR is defined as the expected number of
times per second that the envelope |h(t)| crosses the threshold R in the positive direction. For
Rayleigh fading, it is given as (Patel et al., 2005)

LR =
√

2π fDρe−ρ2
, (6)

where ρ = R/
√

E[|h(t)|2] (here, E[·] denotes expectation). The AFD TR is defined as the
expected value for the length of the time intervals in which the stochastic process h(t) is below
a given level R. For Rayleigh fading, it is given as (Patel et al., 2005)

TR =
eρ2 − 1√
2π fDρ

. (7)
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It is important to note that some characteristics of the fading process, like the amplitude
probability density function (PDF), can change considerably depending on the propagation
scenario. For example, when a line-of-sight path is not available it can be shown that
the complex Gaussian process h(t) in (4) has zero-mean. Consequently, the fading process
envelope PDF follows a Rayleigh distribution. Otherwise, when a line-of-sight path is
available, the Gaussian process h(t) has non-zero-mean leading to a Rician distributed
envelope. However, experience shows that often the hypotheses of the model of Clarke are
not verified and the fading severity turns out to be different from Rayleigh or Rician. In
such cases, distributions like Nakagami-m (Nakagami, 1960), Weibull (Weibull, 1951) or Hoyt
(Hoyt, 1947) match more closely with real fadings (Vehicular Technology Society Committee
on Radio Propagation, 1988).
Simulation of fading processes with Rayleigh and Rician fading envelopes has been
extensively studied e.g., the sum-of-sinusoids (SoS) method proposed in (Jakes, 1974), the
simulator based on the inverse fast Fourier Transform (IFFT) proposed in (Smith, 1975),
the filtering method presented in (Komninakis, 2003) and the simulator based on the
Karhunen-Loève (KL) expansion presented in (Petrolino et al., 2008a).
The first approach, proposed by Jakes in (Jakes, 1974) is limited to the simulation of the
Clarke’s model for which it has been developed. It is based on the representation of the
received signal as a superposition of a finite number of sinusoids having equal amplitude
and uniformly spaced angle of arrivals. Jakes’ simulator has to be considered as deterministic
(Pätzold et al., 1998), since the generated waves depend on parameters which, once chosen,
remain fixed for the duration of the simulation run. The SoS method was improved in (Pop &
Beaulieu, 2001), with the addition of random phases, with the goal of making the generated
process wide sense stationary (WSS).
The second approach, named IFFT-based method, was proposed in (Smith, 1975) and
extended in (Young & Beaulieu, 2000). With this method, in order to achieve a fading output
with the desired ACF, two real sequences of zero-mean independent Gaussian random
variables (rvs) are multiplied in the frequency-domain by the same frequency mask equal to
the square root of the power spectral density (PSD) corresponding to the desired ACF. Then,
the obtained sequences are added in quadrature and a complex IFFT is taken. Due to the
linearity of the IFFT, the output is a time-domain Gaussian sequence with the desired ACF.
The third approach is known as filtering method and resorts to digital filtering of
computer-generated independent Gaussian rvs by a filter whose magnitude frequency
response is given by the square root of the desired PSD. Due to the linearity of the filtering
operation, the filter output sequence is still Gaussian and has the desired ACF. A solution
based on the combination of an infinite impulse response (IIR) filter with a nearly ideal
interpolator is proposed in (Komninakis, 2003).
The last approach is based on the idea of expanding the complex random fading process as a
modified KL expansion. Let h(t) be a correlated zero-mean complex Gaussian random process
in 0 < t < T0 whose quadrature components are independent each showing the same ACF.
The process h(t) can be represented by the series expansion (Van Trees, 1968)

h(t) = lim
L→∞

L−1

∑
l=0

hlφl(t) (8)

where the set of functions {φl(t)}L−1
l=0 is the basis of the expansion and the {hl}L−1

l=0 are
the expansion coefficients, that is the projections of the process h(t) on the basis functions.
The representation in (8) is known as the Karhunen-Loève expansion for the process h(t)
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(Van Trees, 1968). Since h(t) is a zero-mean complex Gaussian random process and the

{φl(t)}L−1
l=0 are orthogonal, the {hl}L−1

l=0 are zero-mean, independent complex Gaussian rvs

with variances {σ2
l }L−1

l=0 . A possible expansion for the process h(t) is achieved by setting the

process h(t) correlation matrix eigenvectors and eigenvalues as the basis functions {φl(t)}L−1
l=0

and the variances {σ2
l }L−1

l=0 , respectively (Petrolino et al., 2008b). Inversely, in fading channel
simulation we need to generate a correlated random process starting from the a priori
knowledge of its ACF which is determined by the channel model being used. This can be

achieved by following the approach proposed in (Petrolino et al., 2008a), where the {φl(t)}L−1
l=0

is imposed as a complete set of exponential functions, leading to a modified KL expansion.
Due to the particular choice of the basis functions, the eigenvalues can be calculated for
l = 0, . . . , L − 1, as (Petrolino et al., 2008b, eq. (9))

σ2
l =

∫ T0/2

−T0/2
Rh(τ) cos

(
2πlτ

T0

)

dτ. (9)

This means that if we are able to calculate the integral in (9) for every l, then the process
h(t) may be synthesized by (8) using a set of L computer-generated independent zero-mean

Gaussian rvs, with variances {σ2
l }

L−1
l=0 .

At this point a N-samples version h[n] of the fading process h(t) may be obtained by sampling
the interval T0 with sampling frequency fs = N/T0

h[n] =
L−1

∑
l=0

hl · ej 2π
N ln n = 0, . . . , N − 1 (10)

where the {hl}L−1
l=0 ∼ N(0, {σ2

l }
L−1
l=0 ) are independent Gaussian rvs. The dimension of the

expansion basis is (Van Trees, 1968) L = 2BT0 where B is the unilateral bandwidth of the
process and T0 its duration. Since T0 = NTs, the KL expansion dimension reduces to L =
2BNTs = 2B

fs
N ≤ N, where the inequality follows from the sampling theorem. This means

that hl = 0 for l ≥ N, so it is possible to rewrite (10) as

h[n] =
N−1

∑
l=0

hl · ej 2π
N ln n = 0, . . . , N − 1 (11)

that is, h[n] is the IDFT of the sequence {hl}N−1
l=0 and may be computed efficiently using

the fast Fourier transform (FFT) algorithm. Note that simulators like (Young & Beaulieu,
2000), (Komninakis, 2003) and (Petrolino et al., 2008a) impose the desired ACF by linear
transformations of Gaussian processes. By the properties of this class of processes, the
Gaussian PDF is preserved. However, this is not the case with non-Gaussian processes.
As a consequence, such simulators can not be directly used to generate autocorrelated
non-Gaussian sequences like Nakagami-m, Weibull or Hoyt. Regarding Nakagami-m fading,
simulators have been proposed in (Beaulieu & Cheng, 2001) and (Filho et al., 2007), both of
which require already-correlated Rayleigh sequences which must be generated by existing
simulators. In (Beaulieu & Cheng, 2001), the correlated Nakagami sequence is obtained by
applying a double transformation to the Rayleigh sequence, while in (Filho et al., 2007), an
uncorrelated Nakagami sequence is rearranged according to the Rayleigh sequence ranking
in order to match the desired ACF.

14 Vehicular Technologies: Increasing Connectivity

www.intechopen.com



An important class of systems which have gained success in the last years are multiple-input
multiple-output (MIMO) systems. Consequently, MIMO fading channel simulators are
increasingly required by MIMO designers for system performance evaluation and assessment.
In MIMO systems, multi-element antenna arrays are used at both sides of a radio link and
the communication occurs over Nmin parallel channels, where Nmin is the minimum of the
number of Tx or Rx antennas (Gesbert et al., 2000). Due to finite antenna separation, a spatial
correlation between the channels always exists and greatly affects the link capacity of MIMO
systems (Wang, 2006). The MIMO channel spatial correlation can be described by a MN×MN
correlation matrix. This matrix can be obtained in several ways depending on the reference
model under consideration. In this chapter we will use the Kronecker Based Stochastic Model
(KBSM) (Wang, 2006). According to the KBSM model, the spatial correlation matrix SMI MO is
obtained as

SMI MO = SBS ⊗ SMS (12)

where SBS is the M×M spatial correlation matrix at the BS, SMS is the N×N spatial correlation
matrix at the MS and ⊗ stands for the Kronecker product. For the referred reasons, a MIMO
fading channel simulator must contemplate the possibility of generating random processes
cross-correlated according to a spatial correlation structure determined by the used model.
In general, the fading channel simulation can be divided in three tasks:

1. Choice of the most convenient fading channel model.

2. Generation of uncorrelated rvs with the desired PDF. This point will be discussed in
Sections 2 and 3.

3. Imposition of the desired ACF to the generated sequence without affecting the initial PDF.
This point will be analyzed in Section 4.

This chapter is organized as follows. Section 2 presents a technique for the generation
of uncorrelated arbitrary jointly distributed phase and envelope processes. The proposed
method is based on the two-dimensional extension of the Metropolis-Hastings (MH)
algorithm (Hastings, 1970; Metropolis et al., 1953). Starting from jointly Gaussian random
variate pairs, this method achieves the desired PDF by an acceptance-rejection (AR) algorithm
whose probability of acceptance is set in a convenient way.
In Section 3, the two-dimensional MH algorithm is applied to the generation of Nakagami-m
and Hoyt envelope fading processes.
Section 4 presents a method for inducing the desired correlation structure on wireless channel
simulation processes. It will be shown that it can be used for simulating both the spatial
correlation between the propagation channels for MIMO systems and the time-ACF in case of
single-input single-output (SISO) systems. The procedure is based on the method proposed by
Iman & Conover (IC) in 1982 (Iman & Conover, 1982). This method is able to induce a desired
correlation matrix on an input matrix whose columns are random vectors with independent
arbitrary marginal distributions (Petrolino & Tavares, 2010a), (Petrolino & Tavares, 2010b).
The IC method is distribution-free, which means that it preserves the marginal PDF of the
input sequences while inducing the desired correlation. This important feature enables the
generation of sequences with arbitrarily distributed PDFs and arbitrary correlation matrix.
Section 5 presents simulation results obtained by applying the IC method to the simulation
of MIMO and SISO channels. In the MIMO case the simulated spatial correlation matrices are
compared with the targets, while in the SISO case the comparison is made between the target
and the simulated time ACFs. In both cases, perfect preservation of the initial PDF is achieved.
Finally, Section 6 concludes the chapter.
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2. The Metropolis-Hastings algorithm

In this Section, we present a computational efficient and accurate method for simulating every
type of fading (e.g. Nakagami-m, Weibull, Hoyt, etc.) starting from PDFs (e.g. Gaussian or
Uniform distribution) which can be easily generated by known and efficient methods. This
method is based on the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953)
with an AR sampling proposed by Tierney in (Tierney, 1994).
Consider now the problem of simulating a fading channel characterized by arbitrary jointly
distributed envelope and phase. For this purpose, let h(t) = x(t) + jy(t) be a complex fading

process and let h(t) = ρ(t)ejθ(t) be its representation in polar coordinates.
Two possible ways exist for generating h(t): the first is the direct generation of the envelope
and phase processes ρ(t) and θ(t) respectively, the second is generating the IQ component
processes x(t) and y(t). The first solution is attractive in the sense that the characterization
of fading channels is usually done in terms of envelope and phase PDFs. However, in
telecommunications, system testing is usually carried out by considering the transmission
of the signal IQ components over the fading channel under consideration.
Recalling that the IQ components joint PDF fXY(x, y) and the phase-envelope joint PDF
fR,θ(ρ, θ) are related by

fXY(x, y) =
fR,Θ(ρ, θ)

|J| (13)

where |J| is the Jacobian of the transformation

x = ρ cos θ, y = ρ sin θ (14)

we conclude that if we are able to generate pairs of rvs (xi, yi) following the joint PDF fXY(x, y)
in (13), then the phase-amplitude joint PDF will be the desired fR,Θ(ρ, θ). The main issue in
simulating fading processes is that usually, the distribution fXY(x, y) does not belong to any
family of well-known PDFs and can not be directly generated. Here, we propose a method
which allows the efficient generation of rvs with arbitrary distribution.

Suppose we want to generate a set of N pairs (x
(i)
1 , x

(i)
2 )|i=1,...,N following an arbitrary target

joint density f (·) whose analytical expression is known, and that we have pairs (y1, y2) from
a candidate-generating joint density h(·) that can be simulated by some known, inexpensive

method. After setting an arbitrary initial pair (x
(0)
1 , x

(0)
2 ) for initializing the algorithm, the

MH method can be summarized as follows (Chib & Greenberg, 1995):

• Repeat the following steps for i = 0, . . . , N − 1

• Generate (y1, y2) from h(·) and u from a uniform distribution u ∼ U (0, 1)

• IF u ≤ α

Set (x
(i+1)
1 , x

(i+1)
2 ) = (y1, y2)

• ELSE

Set (x
(i+1)
1 , x

(i+1)
2 ) = (x

(i)
1 , x

(i)
2 )

where α = α[(x
(n)
1 , x

(n)
2 ), (y1, y2)] is the (conditional) probability of accepting the candidate

pair (y1, y2) given that the current pair is (x
(n)
1 , x

(n)
2 ). This probability is usually called

probability of move (Chib & Greenberg, 1995), because it represents the probability of the process
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moving to a new state. When the MH algorithm was proposed, this probability was set to
(Tierney, 1994)

α = min

{

f (y1, y2)

f (x
(i)
1 , x

(i)
2 )

, 1

}

(15)

which means that the higher is the target PDF at the candidate pair, the higher is the
probability to accept it. Here we use a modified version of the MH algorithm.
This modification has been discussed in (Tierney, 1994) and it is based on the idea of
introducing an acceptance-rejection step for generating candidates for a MH algorithm.
Pairs (y1, y2) are generated from Kh(·) until a pair satisfying u < f (y1, y2), where u ∼
U{0, Kh(y1, y2)}, in obtained. The constant K is set such that f (x1, x2) ≤ Kh(x1, x2) for all
(x1, x2) and controls the acceptance rate. According to this method, only those pairs for which
the target density f (·) is high are accepted as candidates for the MH algorithm. Moreover, the
probability of move α is set as follows. Let

C = {(a, b) : f (a, b) < Kh(a, b)} (16)

be the set where Kh(a, b) dominates f (a, b). Four possible cases occur and the probability α is
set as follows (Chib & Greenberg, 1995):

• Case (a): (x
(n)
1 , x

(n)
2 ) ∈ C and (y1, y2) ∈ C.

In this case Kh(·) dominates f (·) for both the current and the candidate pair. This means
that with higher probability both pairs belong to Kh(·) rather than to the target PDF f (·).
In this case the algorithm always accepts the new pair i.e., α = 1;

• Case (b): (x
(n)
1 , x

(n)
2 ) ∈ C and (y1, y2) /∈ C.

In this case the current pair belongs with higher probability to Kh(·) rather than to f (·).
Moreover, for the candidate pair, f (·) is higher than Kh(·). This means that the probability
of belonging to the target density is higher for the candidate pair than for the current pair.
Also in this case the algorithm always accepts the new one i.e., α = 1;

• Case (c): (x
(n)
1 , x

(n)
2 ) /∈ C and (y1, y2) ∈ C.

The probability of belonging to f (·) is higher for the current pair than for the candidate
pair. This means that the transition to other states must be controlled. In this case the
methods sets

α =
Kh(x

(n)
1 , x

(n)
2 )

f (x
(n)
1 , x

(n)
2 )

.

Note that the higher the value of the target density f (·) at the current pair, the lower the
probability to accept the candidate pair;

• Case (d): (x
(n)
1 , x

(n)
2 ) /∈ C and (y1, y2) /∈ C.

Both the current and the candidate pair belong with higher probability to the target PDF
f (·) rather than to the candidate Kh(·). Also in this case the probability of move depends
on the target and the candidate densities. It is easy to understand that it must be set such
it is in general higher than in the previous case. The method in this case sets

α = min

{

f (y1, y2) · h(x
(n)
1 , x

(n)
2 )

f (x
(n)
1 , x

(n)
2 ) · h(y1, y2)

, 1

}

.

Note that the higher the product f (x
(n)
1 , x

(n)
2 ) · h(y1, y2), the lower the probability of move.
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Compared with the standard MH algorithm, this version of the algorithm provides a PDF
with a better match with the target distribution. This is achieved by observing that the
initial distribution support can be divided in two kind of zones, one producing good values
with higher probability than the other. It is important to note that, contrary to the standard
MH algorithm, this method will occasionally reject candidates if the process is at a pair

(x
(n)
1 , x

(n)
2 ) /∈ C (Tierney, 1994). By keeping the same pair for a certain number of consecutive

steps, Metropolis-based methods introduce in general correlation along the sampled series.
This can be harmful if uncorrelated processes are required. Our goal in this paper is to
generate uncorrelated fading processes with desired envelope and phase PDFs. In this way,
distribution-free algorithms can be applied to the generated pairs for imposing the desired
correlation if second order statistics specification is required. We got round this difficulty by
applying a random shuffling to the generated sequence at the end of the algorithm.

3. Simulation of uncorrelated arbitrary jointly distributed phase and envelope

processes with the MH algorithm

In this Section we will show some results obtained by applying the previously described MH
algorithm to two different propagation scenarios. We simulated the IQ components of fading
channels characterized by arbitrarily distributed envelope and phase processes. As required
by the algorithm we deduced analytical expressions of the target IQ components joint PDF
f (·) from results available in the literature. In both the following examples the candidate
pairs (y1, y2) follow the bivariate joint Gaussian PDF. They are independent Gaussian rvs
with zero-mean and the same variance σ2, so that their joint PDF reduces to the product of
their Gaussian marginal PDFs and is given by

h(y1, y2) =
1

2πσ2
exp

(

− y2
1 + y2

2

2σ2

)

. (17)

The constant K introduced in equation (16) has been adjusted by experimentation to achieve
an acceptance rate of about 50%.
A rv representing a realization of a fading process at a fixed instant of time is

C = X + jY (18)

where X and Y are rvs representing the fading process IQ components and

R =
√

X2 + Y2 Θ = tan−1(Y/X) (19)

are the envelope and the phase of C respectively. From (14), since the Jacobian is |J| = ρ, we
have that

fXY(x, y) =
fR,Θ(ρ, θ)

ρ
. (20)

3.1 Nakagami-m fading

For Nakagami-m fading, the envelope PDF is given by the well-known formula (Nakagami,
1960)

fR(ρ) =
2mmρ2m−1

ΩmΓ(m)
exp

(

−mρ2

Ω

)

, ρ ≥ 0 m >
1

2
(21)
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where Ω = E[R2] is the mean power, m = Ω2/V[R2] is the Nakagami fading parameter (V[·]
denotes variance) and Γ(·) is the Gamma function.
For independent I and Q components, the corresponding phase PDF has been obtained in
(Yacoub et al., 2005) and is given by

fΘ(θ) =
Γ(m)| sin(2θ)|m−1

2mΓ2(m/2)
, −π ≤ θ < π. (22)

Considering the envelope and the phase as independent rvs, we have

fR,Θ(ρ, θ) = fR(ρ) × fΘ(θ). (23)

The substitution of (23) into (20) leads to

fXY(x, y) =
mm| sin(2θ)|m−1ρ2m−2

2m−1ΩmΓ2(m/2)
exp

(

−mρ2

Ω

)

(24)

where ρ =
√

x2 + y2 and θ = tan−1(y/x). We applied the proposed method for the generation
of 220 pairs of rvs following (24) starting from independent jointly Gaussian rvs with zero
mean and variance σ2 = Ω/2m. The target and the simulated joint PDF are plotted in Fig. 1(a)
and 1(b) respectively. In Fig. 2(a) and 2(b) the simulated envelope and phase PDFs are plotted

−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

xy

f X
Y
(x

,y
)

(a) Theory

−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

xy

f X
Y
(x

,y
)

(b) Simulation

Fig. 1. Theoretical (a) and simulated (b) IQ components joint PDF for Nakagami-m fading
with m = 2 and Ω = 1.

respectively against the theoretical references. In both cases the agreement with the theory is
very good. We now show how the application of a Metropolis-based method may introduce
a (possibly not desired) correlation in the generated sequence and how this problem may be
solved by random shuffling the sampled pairs. The correlation is due to the fact that until
accepting a new candidate pair, the MH algorithm keeps the last pair as a good pair for
sampling the target density f (·). However, the comparison of figures 3(a) and 3(b) shows
that the (low) correlation introduced by the algorithm is completely canceled by the random
shuffling.
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Fig. 2. Simulated Nakagami-m envelope PDF (a) and phase PDF (b) plotted against theory for
220 generated pairs, m = 2 and Ω = 1.
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Fig. 3. Autocorrelation of the generated process in-phase component before (a) and after (b)
the random shuffling.

3.2 Hoyt fading

For Hoyt fading, the envelope PDF is given by (Hoyt, 1947)

fR(ρ) =
2ρ

Ω
√

1 − b2
exp

(

− ρ2

Ω(1 − b2)

)

× I0

(
bρ2

Ω(1 − b2)

)

, ρ ≥ 0 (25)

where Ω = E[R2], b ∈ [−1, 1] is the Hoyt fading parameter and I0(·) is the modified Bessel
function of the first kind and zero-th order. The corresponding phase PDF is (Hoyt, 1947)

fΘ(θ) =

√
1 − b2

2π(1 − b cos(2θ))
, −π ≤ θ < π. (26)
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Considering also in this case independent envelope and phase processes and applying relation
(20), we obtain the IQ components target joint PDF

fXY(x, y) =
1

Ωπ(1 − b cos(2θ))
exp

(

− ρ2

Ω(1 − b2)

)

× I0

(
bρ2

Ω(1 − b2)

)

(27)

where ρ =
√

x2 + y2 and θ = tan−1(y/x). We applied the proposed method for the generation
of 220 pairs of rvs following (27) starting from independent jointly Gaussian rvs with zero
mean and variance σ2 = Ω(1 − b2)/2. The target and the simulated joint PDF are plotted in
Fig. 4(a) and 4(b) respectively.
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Fig. 4. Theoretical (a) and simulated (b) IQ components joint PDF for Hoyt fading with
b=0.25 and Ω = 1.

In Fig. 5(a) and 5(b) the simulated envelope and phase PDFs are plotted respectively against
the theoretical references. Also in this case the agreement with the theory is very good.

4. The Iman-Conover method

Let us consider a n×P matrix Xin, with each column of Xin containing n uncorrelated
arbitrarily distributed realizations of rvs. Simply stated, the Iman-Conover method is a
procedure to induce a desired correlation between the columns of Xin by rearranging the
samples in each column. Let S be the P×P symmetric positive definite target correlation
matrix. By assumption, S allows a Cholesky decomposition

S = C
T

C (28)

where C
T is the transpose of some P×P upper triangular matrix C. Let K be a n×P matrix with

independent, zero-mean and unitary standard deviation columns. Its linear correlation matrix
Rlin(K) is given by

Rlin(K) =
1

n
K

T
K = I (29)

where I is the P×P identity matrix. As suggested by the authors in (Iman & Conover, 1982),
the so-called "scores matrix" K may be constructed as follows: let u = [u1 . . . un]T denote the
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Fig. 5. Simulated Hoyt envelope PDF (a) and phase PDF (b) plotted against theory for 220

generated pairs, b = 0.25 and Ω = 1.

column vector with elements ui = Φ−1( i
n+1 ), where Φ−1(· ) is the inverse function of the

standard normal distribution function, then K is formed as the concatenation of P vectors

K =
1

σu

[u v1 . . . vP−1] (30)

where σu is the standard deviation of u and the vi are random permutations of u. The
columns of K have zero-mean and unitary standard deviation by construction and the random
permutation makes them independent. Consider now the matrix

T = KC (31)

and note that, according to equations (28) and (29), T has a linear correlation matrix equal to
the target correlation matrix S:

Rlin(T) = n−1
T

T
T = C

T n−1
K

T
K

︸ ︷︷ ︸

I

C = S. (32)

The basis of the IC method is as follows: generate the matrix T as explained above and then
produce a new matrix X which is a rearranged version of Xin so that its samples have the
same ranking position of the corresponding samples of T. With reference to Fig. 6, note that
the matrix T depends on the correlation matrix we want to induce and on the "scores matrix"
K which is deterministic. So, it does not have to be evaluated during simulation runs, i.e.,
it may be computed offline. The only operation which must be executed in real time is the
generation and the rearrangement of X, which is not computationally expensive.
A scheme explaining how the rank matching between matrices T and X is carried out column
by column is shown in Fig. 7.
At this point two observations are necessary:

• The rank correlation matrix of the rearranged data Rrank(X) will match exactly Rrank(T)
and though T is constructed so that Rlin(T) = S, the rank correlation matrix Rrank(T)
is also close to S. This happens because when there are no prominent outliers, as is the
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Fig. 6. Block diagram of the IC method.

Fig. 7. Rank matching.

case of T whose column elements are normally distributed, linear and rank correlation
coefficients are very close to each other and so Rrank(T) ≈ Rlin(T) = S. Moreover, for
WSS processes we may expect Rlin(X) ≈ Rrank(X) (Lehmann & D’Abrera, 1975) and, since
Rrank(X) = Rrank(T) ≈ Rlin(T) = S, then Rlin(X) ≈ S.

• Row-wise, the permutation resulting from the rearrangement of X appears random and
thus the n samples in any given column remain uncorrelated.

The rearrangement of the input matrix X is carried out according to a ranking matrix which is
directly derived from the desired correlation matrix and this operation does not affect the input
marginal distributions. This means that it is possible to induce arbitrary (rank) correlations
between vectors with arbitrary distributions, a fundamental task in fading channel simulation.
In the sequel we analyze the effects of the finite sample size error and its compensation.
As introduced above, the linear correlation matrix of T = KC is, by construction, equal to S.
However, due to finite sample size, a small error can be introduced in the simulation by the
non-perfect independence of the columns of K. This error can be corrected with an adjustment
proposed by the authors of this method in (Iman & Conover, 1982). Consider that E = Rlin(K)
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is the correlation matrix of K and that it allows a Cholesky decomposition E = F
T

F. We have
verified that for K constructed as in (30), E is generally very close to positive-definite. In some
cases however, a regularization step may be required, by adding a small δ > 0 to each element
in the main diagonal of E. This does not sacrifice accuracy because δ is very small. Following
the rationale above, if the matrix T is now constructed such that T = KF

−1
C, then it has

covariance matrix

1

n
T

T
T = C

T
F
−T

K
T

K
︸ ︷︷ ︸

E=FTF

F
−1

C = C
T

F
−T

F
T

︸ ︷︷ ︸

I

FF
−1

︸ ︷︷ ︸

I

C = C
T

C = S (33)

as desired. In (33), the notation F
−T stands for the inverse of the transpose of F. With this

adjustment, a possible error introduced by the non-perfect independence of the columns of K

is completely canceled.
With the goal of quantifying the gain obtained with this adjustment it is possible to calculate
the MSE between the output linear correlation matrix Rlin(X) and the target S with and

without the error compensation. We define the matrix D � Rlin(X) − S and the MSE as

MSE =
1

MN

M

∑
i=1

N

∑
j=1

d2
ij (34)

where dij is the element of D with row index i and column index j.

4.1 Using the Iman-Conover method for the simulation of MIMO and SISO channels

Let us consider the MIMO propagation scenario depicted in Fig. 8, with M transmitting
antennas at the Base Station (BS) and N receiving antennas at the Mobile Station (MS).
Considering all possible combinations, the MIMO channel can be subdivided into MN
subchannels. Moreover, due to multipath propagation, each subchannel is composed by L
uncorrelated paths. In general these paths are complex-valued. For simplicity we will consider
that these paths are real-valued (in-phase component only) but the generalization of the
method for complex paths is straightforward. The IC method can be used for MIMO channels
simulation by simply storing the MIMO channel samples in a n×MNL matrix Xin, where MNL
is the number of subchannels considering multipath and n is the number of samples generated
for each subchannel. The target (desired) spatial correlation coefficients of the MIMO channel
are stored in a MNL×MNL symmetric positive definite matrix SMI MO (Petrolino & Tavares,
2010a). After this, the application of the IC method to matrix Xin, will produce a new matrix
X. The columns of X contain the subchannels realizations which are spatially correlated
according to the desired correlation coefficients in SMI MO and whose PDFs are preserved.
We have also used the IC method for the simulation of SISO channels. This idea comes from
the following observation. As the final result of the IC method we have a rearranged version
of the input matrix Xin, so that its columns are correlated as desired. This means that if we
extract any row from this matrix, the samples therein are correlated according to the ACF
contained in the P ×P target correlation matrix SSISO (Petrolino & Tavares, 2010b). Note also
that for stationary processes, SSISO is Toeplitz so all rows will exhibit the same ACF.
If we consider P as the number of correlated samples to be generated with the IC method
and n as the number of uncorrelated fading realizations (often required when Monte Carlo
simulations are necessary), after the application of the IC method we obtain a n ×P matrix
X whose correlation matrix is equal to the target SSISO. Its n rows are uncorrelated and each
contains a P-samples fading sequence with the desired ACF. These n columns can be extracted
and used for Monte Carlo simulation of SISO channels.
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5. Simulation of MIMO and SISO channels with the IC method

In this Section we present results obtained by applying the IC method to the simulation of
different MIMO and SISO channels 2. The MH candidate pairs are jointly Gaussian distributed
with zero mean and a variance which is set depending on the target density. The constant K
introduced in equation (16) has been adjusted by experimentation to achieve an acceptance
rate of about 50%.

5.1 Simulation of a 2×1 MIMO channel affected by Rayleigh fading

Let us first consider a scenario with M = 2 antennas at the BS and N = 1 antennas at the MS.
For both subchannels, multipath propagation exists but, for simplicity, the presence of only
2 paths per subchannel (L = 2) is considered. This means that the channel matrix X is n×4,
where n is the number of generated samples. Equi-spaced antenna elements are considered at
both ends with half a wavelength element spacing. We consider the case of no local scatterers
close to the BS as usually happens in typical urban environments and the power azimuth
spectrum (PAS) following a Laplacian distribution with a mean azimuth spread (AS) of 10◦ .
Given these conditions, an analytical expression for the spatial correlation at the BS is given
in (Pedersen et al., 1998, eq.12), which leads to

SBS =

[
1 0.874

0.874 1

]

. (35)

Since N = 1, the correlation matrix collapses into an autocorrelation coefficient at the MS, i.e.,

SMS = 1. (36)

2 In the following examples, the initial uncorrelated Nakagami-m, Weibull and Hoyt rvs have been
generated using the MH algorithm described in Sections 2 and 3.
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Remembering that SMI MO = SBS ⊗ SMS, we have an initial correlation matrix

SMI MO =

[
1 0.874

0.874 1

]

. (37)

Equation (37) represents the spatial correlation existing between the subchannel paths at any
time delay. If we remember that in this example we are considering L = 2 paths for each
subchannel, recalling that non-zero correlation coefficients exist only between paths which
are referred to the same path delay, we obtain the final zero-padded spatial correlation matrix
SMI MO as

SMI MO =

⎡

⎢
⎢
⎣

1 0.874 0 0
0.874 1 0 0

0 0 1 0.874
0 0 0.874 1

⎤

⎥
⎥
⎦

. (38)

As is done in most studies (Gesbert et al., 2000), the subchannel samples are considered as
realizations of uncorrelated Gaussian rvs. In the following examples a sample length of n =
100000 samples has been chosen. Since very low values of the MSE in (34) are achieved for
large n, simulations have been run without implementing the error compensation discussed
in the previous Section. The simulated spatial correlation matrix ŜMI MO is

ŜMI MO =

⎡

⎢
⎢
⎣

1.0000 0.8740 −0.0000 −0.0001
0.8740 1.0000 −0.0000 −0.0001
−0.0000 −0.0000 1.0000 0.8740
−0.0001 −0.0001 0.8740 1.0000

⎤

⎥
⎥
⎦

. (39)

The comparison between (38) and (39) demonstrates the accuracy of the proposed method.
The element-wise absolute difference between ŜMI MO and SMI MO is of the order of 10−4.

5.2 Simulation of a 2×3 MIMO channel affected by Rayleigh, Weibull and Nakagami-m fading

We now present a set of results to show that the IC method is distribution-free, which means
that the subchannels marginal PDFs are preserved. For this reason we simulate a single-path
(L = 1) 2× 3 MIMO system and consider that the subchannel envelopes arriving at the first Rx
antenna are Rayleigh, those getting the second antenna are Weibull distributed with a fading
severity parameter β = 1.5 (fading more severe than Rayleigh) and finally those arriving at
the third one are Nakagami-m distributed with m = 3 (fading less severe than Rayleigh). In
the first two cases the phases are considered uniform in [0, 2π), while in the case of Nakagami
envelope, the corresponding phase distribution (Yacoub et al., 2005, eq. 3) is also considered.
For the sake of simplicity, from now on only the real part of the processes are considered. Being
the real and imaginary parts of the considered processes equally distributed, the extension of
this example to the imaginary components is straightforward. The Rayleigh envelope and
uniform phase leads to a Gaussian distributed in-phase component3 fXr

(xr) for subchannels
H1,1 and H2,1. The in-phase component PDF fXw

(xw) of subchannels H1,2 and H2,2 has been
obtained by transformation of the envelope and phase rvs into their corresponding in-phase
and quadrature (IQ) components rvs. It is given by

fXw
(xw) =

∫ ∞

−∞
fXwYw

(xw, yw)dyw (40)

3 In the following, the subscripts r, w and n refer to the fading distribution (Rayleigh, Weibull and
Nakagami-m) in the respective subchannels.
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where

fXwYw
(xw , yw) =

β

2πΩw
(x2

w + y2
w)

β−2
2 exp

(

− (x2
w + y2

w)
β
2

Ωw

)

(41)

is the IQ components joint PDF obtained considering a Weibull distributed envelope and
uniform phase in [0, 2π] and where Ωw is the average fading power. Finally, the in-phase
PDF fXn

(xn) for subchannels H1,3 and H2,3 is obtained by integrating the IQ joint PDF
corresponding to the Nakagami-m fading. It has been deduced by transformation of the
envelope and phase rvs, whose PDFs are known (Yacoub et al., 2005), into their corresponding
IQ components rvs. It is given by

fXnYn
(xn, yn) =

mm| sin(2θ)|m−1ρ2m−2

2m−1Ωm
n Γ2(m/2)

exp

(

−mρ2

Ωn

)

(42)

where ρ =
√

x2
n + y2

n, θ = tan−1(yn/xn), Γ(·) is the Gamma function and Ωn is the average

fading power. At the BS, the same conditions of the previous examples are considered, except
for the antenna separation which in this case is chosen to be one wavelength. Given these
conditions, the spatial correlation matrix at the BS is

SBS =

[
1 0.626

0.626 1

]

. (43)

Note that, due to the larger antenna separation, the spatial correlation between the antennas
at the BS is lower than in the previous examples, where a separation of half a wavelength
has been considered. Also at the MS, low correlation coefficients between the antennas are
considered. This choice is made with the goal of making this scenario (with three different
distributions) more realistic. Hence, we assume

SMS =

⎡

⎣

1 0.20 0.10
0.20 1 0.20
0.10 0.20 1

⎤

⎦ . (44)

It follows that
SMI MO =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2000 0.1000 0.6268 0.1254 0.0627
0.2000 10.2000 0.1254 0.6268 0.1254
0.1000 0.2000 1 0.0627 0.1254 0.6268
0.6268 0.1254 0.0627 1 0.2000 0.1000
0.1254 0.6268 0.1254 0.2000 1 0.2000
0.0627 0.1254 0.6268 0.1000 0.2000 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(45)

The simulated correlation matrix is

ŜMI MO =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.0000 0.1974 0.0995 0.6268 0.1238 0.0623
0.1974 1.0000 0.1961 0.1240 0.6144 0.1229
0.0995 0.1961 1.0000 0.0623 0.1227 0.6209
0.6268 0.1240 0.0623 1.0000 0.1973 0.0994
0.1238 0.6144 0.1227 0.1973 1.0000 0.1956
0.0623 0.1229 0.6209 0.0994 0.1956 1.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(46)

27Simulation of SISO and MIMO Multipath Fading Channels

www.intechopen.com



Also in this case the simulated spatial correlation matrix provides an excellent agreement with
the target correlation as is seen from the comparison between (45) and (46). Figs. 9, 10 and
11 demonstrate that the application of the proposed method does not affect the subchannels
PDF. After the simulation run the agreement between the theoretical marginal distribution
(evaluated analytically) and the generated samples histogram is excellent.
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Fig. 9. PDF of the in-phase component for subchannels H1,1 and H2,1 affected by Rayleigh
fading after the application of the method, plotted against the theoretical reference.
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Fig. 10. PDF of the in-phase component for subchannels H1,2 and H2,2 affected by Weibull
(β = 1.5) fading after the application of the method, plotted against the theoretical reference.

5.3 SISO fading channel simulation with the IC method

The use of non-Rayleigh envelope fading PDFs has been gaining considerable success and
acceptance in the last years. Experience has indeed shown that the Rayleigh distribution
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Fig. 11. PDF of the in-phase component for subchannels H1,3 and H2,3 affected by
Nakagami-m (m = 3) fading after the application of the method, plotted against the
theoretical reference.

shows a good matching with real fadings only in particular cases of fading severity. More
general distributions (e.g., the Nakagami-m and Weibull) allow a convenient channel severity
to be set simply by tuning one parameter and are advisable for modeling a larger class of
fading envelopes. As reported in the Introduction, in the case of Rayleigh fading, according to
the model of Clarke, the fading process h(t) is modeled as a complex Gaussian process with
independent real and imaginary parts hR(t) and hI(t) respectively. In the case of isotropic
scattering and omni-directional receiving antennas, the normalized ACF of the quadrature
components is given by (5). An expression for the normalized ACF of the Rayleigh envelope

process r(t) =
√

h2
R(t) + h2

I (t) can be found in (Jakes, 1974). It is given by

Rr(τ) =2 F1

[

− 1

2
, − 1

2
; 1; J2

0 (2π fDτ)

]

(47)

where 2F1(·, ·; ·; ·) is a Gauss hypergeometric function.
In this Section we present the results obtained by using the IC method for the direct simulation
of correlated Nakagami-m and Weibull envelope sequences (Petrolino & Tavares, 2010b). In
particular, the simulation problem has been approached as follows: uncorrelated envelope
fading sequences have been generated with the MH algorithm and the IC method has been
afterwards applied to the uncorrelated sequences with the goal of imposing the desired
correlation structure, derived from existing channel models. Since the offline part of the IC
method has been discussed in the previous Section, here we present the online part for the
simulation of SISO channels. So, from now on, we consider that a matrix Trank, containing the
ranking positions of the matrix T has been previously computed and is available. Recalling
the results of Section 4, there are only two operations that must be executed during the online
simulation run:

1. Generate the n × P input matrix Xin containing nP uncorrelated rvs with the desired PDF.
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2. Create matrix X which is a rearranged version of Xin according to the ranks contained in
Trank to get the desired ACF.

Each of the n rows of X represents an P-samples fading sequence which can be used for
channel simulation.

5.3.1 Simulation of a SISO channel affected by Nakagami-m fading

In 1960, M. Nakagami proposed a PDF which models well the signal amplitude fading in a
large range of propagation scenarios. A rv RN is Nakagami-m distributed if its PDF follows
the distribution (Nakagami, 1960)

fRN
(r) =

2mmr2m−1

Γ(m)Ωm exp

(

−mr2

Ω

)

, r ≥ 0, m >
1

2
(48)

where Γ(·) is the gamma function, Ω = E[R2
N ] is the mean power and

m = Ω2/(R2
N − Ω)2 ≥ 1

2 is the Nakagami-m fading parameter which controls the depth of
the fading amplitude.
For m = 1 the Nakagami model coincides with the Rayleigh model, while values of m < 1
correspond to more severe fading than Rayleigh and values of m > 1 to less severe fading
than Rayleigh. The Nakagami-m envelope ACF is found as (Filho et al., 2007)

RRN
(τ) =

ΩΓ2(m + 1
2 )

mΓ2(m)
2F1

[

− 1

2
, − 1

2
; m; ρ(τ)

]

(49)

where ρ(τ) is an autocorrelation coefficient (ACC) which depends on the propagation
scenario. In this example and without loss of generality, we consider the isotropic scenario
with uniform distributed waves angles of arrival for which ρ(τ) = J2

0 (2π fDτ). With the goal
of reducing the simulation error induced by the finiteness of the sample size n, the simulated
ACF has been evaluated on all the n rows of the rearranged matrix X and finally the arithmetic
mean has been taken. Fig. 12 shows the results of the application of the proposed method to
the generation of correlated Nakagami-m envelope sequences. As is seen, the simulated ACF
matches the theoretical reference very well.

5.3.2 Simulation of a SISO channel affected by Weibull fading

The Weibull distribution is one of the most used PDFs for modeling the amplitude variations
of the fading processes. Indeed, field trials show that when the number of radio wave paths is
limited the variation in received signal amplitude frequently follows the Weibull distribution
(Shepherd, 1977). The Weibull PDF for a rv RW is given by (Sagias et al., 2004)

fRW
(r) =

βrβ−1

Ω
exp

(

− rβ

Ω

)

r, β ≥ 0 (50)

where E[rβ] = Ω and β is the fading severity parameter. As the value of β increases, the
severity of the fading decreases, while for the special case of β = 2 the Weibull PDF reduces
to the Rayleigh PDF (Sagias et al., 2004).
The Weibull envelope ACF has been obtained in (Yacoub et al., 2005) and validated by field
trials in (Dias et al., 2005). Considering again an isotropic scenario as was done in the case of
Nakagami fading, it is given by
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Fig. 12. Normalized linear ACF of the simulated Nakagami-m fading process plotted against
the theoretical normalized ACF for m = 1.5, normalized Doppler frequency fD = 0.05,
n = 10000 realizations and P = 210 samples.
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Fig. 13. Normalized linear ACF of the simulated Weibull fading process plotted against the
theoretical normalized ACF for β = 2.5, normalized Doppler frequency fD = 0.05, n = 10000
realizations and P = 210 samples.
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Also in this example an isotropic scenario with uniform distributed waves angles of arrival
is considered. The simulated ACF has been evaluated on all the n rows of the rearranged
matrix X and finally the arithmetic mean has been taken. Fig. 13 shows the results of
the application of the proposed method to the generation of correlated Weibull envelope
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Fig. 14. Average row crosscorrelation of the simulated Weibull fading process for β = 2.5,
normalized Doppler frequency fD = 0.05, n = 1000 realizations and P = 210 samples.

sequences. The simulated ACF matches the theoretical reference quite well. Fig. 14 plots the
average row crosscorrelation obtained from a simulation run of a Weibull fading process
with autocorrelation (51), for n = 1000 realizations and P = 210 samples. As is seen, the
crosscorrelation between rows is quite small (note the scale). This means that the n realizations
produced by the method are statistically uncorrelated, as is required for channel simulation.

6. Conclusions

In this chapter, we presented a SISO and MIMO fading channel simulator based on the
Iman-Conover (IC) method (Iman & Conover, 1982). The method allows the simulation of
radio channels affected by arbitrarily distributed fadings. The method is distribution-free and
is able to induce any desired spatial correlation matrix in case of MIMO simulations (Petrolino
& Tavares, 2010a) and any time ACF in case of SISO channels (Petrolino & Tavares, 2010b),
while preserving the initial PDF of the samples. The proposed method has been applied in
different MIMO and SISO scenarios and has been shown to provide excellent results. We
have also presented a simulator for Gaussian-based fading processes, like Rayleigh and Rician
fading. These simulators are based on the Karhunen-Loève expansion and have been applied
to the simulation of mobile-to-fixed (Petrolino et al., 2008a) and mobile-to-mobile (Petrolino
et al., 2008b) fading channels. Moreover a technique for generating uncorrelated arbitrarily
distributed sequences has been developed with the goal of combining it with the IC method.
This technique is based on the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis
et al., 1953) and allows the application of the IC method to a larger class of fadings.
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