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1. Introduction

Trajectory control problem arises if the manipulator is required to follow a desired trajectory.
In the robotic literature mainly two approaches are used: computer torque (inverse dynamic
control) and sliding mode control Sciavicco & Siciliano (1996); Slotine & Li (1991). The system
under inverse dynamics controller is linear and decoupled with respect to the newly obtained
input. In robotics literature very popular is the sliding mode method described by Slotine &
Li (1987; 1991). The approach differs from the previous one because even if the parameters
are exactly known, the manipulator equations of motion are not linearized by the control
law. The sliding mode control strategies are used in the manipulator joint space as well
as in its operational space Sciavicco & Siciliano (1996); Slotine & Li (1987; 1991). From the
practical point of view to track the position of the end-effector of the manipulator is more
convenient than the joint position tracking because the task is realized directly. The motion
control problem in the manipulator joint space and the operational space is investigated also
in newer references Kelly & Moreno (2005); Moreno & Kelly (2003); Moreno et al. (2003);
Moreno-Valenzuela & Kelly (2006). Sometimes also a friction model is taken into account,
e.g. Moreno et al. (2003); Moreno-Valenzuela & Kelly (2006). One of known applications of
the sliding mode approach allows one to control a shape Mochiyama et al. (1999). In order
to design various versions of control laws strict Lyapunov functions for a class of global
regulators for robot manipulators are introduced Santibanez & Kelly (1997); Spong (1992) or
in terms of the IQV also in Herman (2009b).
Classical description leads to obtaining second-order nonlinear differential equations of
motion. The equations involve both generalized position vector and velocity vector which
represent a joint space of the manipulator. However, for control purposes first-order equations
of motion with diagonal mass matrix seem more convenient than the second-order equations.
It is possible to consider the dynamics of mechanical systems using quasi-velocities and
differential geometry Kwatny & Blankenship (2000). The obtained first-order equations of
motion are the Poincaré’s form of the Lagrange’s equations. One of useful solutions which
leads to the diagonal or the unit inertia matrix is introducing so called inertial quasi-velocities
(IQV). There exist several methods which enable such decomposition (e.g.Hurtado (2004); Jain
& Rodriguez (1995); Junkins & Schaub (1997); Loduha & Ravani (1995); Sovinsky et al. (2005)).
The method presented in Hurtado (2004) is associated with the Cholesky decomposition
Sovinsky et al. (2005). In the method described by Jain & Rodriguez (1995) the normalized
quasi-velocities (NQV) and the unnormalized quasi-velocities (UQV) were introduced. The
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next method Junkins & Schaub (1997) is based on the eigenvalues and eigenvectors calculation
of the inertia matrix. The Loduha and Ravani offer the generalized velocity components
(GVC) which can be related to the modified Kane’s equations given e.g. in Kane & Levinson
(1983). Finally, also the normalized generalized velocity components (NGVC) are considered
in references Herman (2005b; 2006). The NGVC are a useful form of the GVC.
The key idea of the paper is a survey of selected non-adaptive sliding mode controllers
expressed in terms of the inertial quasi-velocities (IQV). The IQV mean that the
quasi-velocities contain the kinematic and dynamic parameters of a rigid manipulator as well
as its geometrical dimensions. In spite that there exist several IQV, only some of them are
considered here, namely: the GVC described in Loduha & Ravani (1995), the NQV given in
Jain & Rodriguez (1995), and the NGVC presented in Herman (2005b; 2006). It is because these
kind of IQV very well explain the idea of non-adaptive sliding mode control in terms of the
quasi-velocities. The second aim is to point at some advantages which offers the sliding mode
control scheme in using the IQV. It is also shown which benefits are observable if the system
under the proposed control law is considered. One of advantages arises from the fact that
the IQV are decoupled in the kinetic energy sense and they lead to decoupling of the inertia
matrix of the manipulator. Consequently, the inertia which takes into account also dynamical
coupling can be determined. Moreover, some disadvantages of the IQV control approach are
indicated. The third objective is to show that the sliding mode controllers are realized both
in the manipulator joint space and the operational space. Additionally, it is possible to take
into consideration disturbances (here represented by a viscous damping function) which, in
prospect, it allows one to extend the results for use of various friction models.
The paper is organized as follows. Section 2 gives diagonalized equations of motion in terms of
the IQV. In Section 3 the sliding mode controllers in the joint space of a manipulator as well as
in its operational space are presented. Simulation results comparing performance between the
new control schemes and the classical controllers for two models of rigid serial manipulator,
namely 3 D.O.F. spatial DDArm robot and Yasukawa-like robot are contained in Section 4. The
last section offers conclusions and future research.

2. Dynamics in terms of inertial quasi-velocities

2.1 Notation

θ, θ̇, θ̈ ∈ RN - vectors of generalized positions, velocities, and accelerations, respectively,
N - number of degrees of freedom,
M(θ) ∈ RN×N - system inertia matrix,
C(θ, θ̇)θ̇ ∈ RN - vector of Coriolis and centrifugal forces in classical equations of motion,
G(θ) ∈ RN - vector of gravitational forces in classical equations of motion,
f (θ̇) = Fθ̇ ∈ RN - vector of forces due to friction (viscous damping) which depends on
the joint velocity vector θ̇ where F = diag {F1, . . . , FN } is a positive definite diagonal matrix
containing the damping coefficients for all joints,
Q ∈ RN - vector of generalized forces,
N ∈ RN×N - diagonal system inertia matrix in terms of the GVC,
u, u̇ ∈ RN - vector of generalized velocity components and its time derivative, respectively,
Υ = Υ(θ) ∈ RN×N - upper triangular transformation matrix between the velocity vector θ̇
and the generalized velocity components vector u Loduha & Ravani (1995),
Υ̇(θ) ∈ RN×N - time derivative of the matrix Υ(θ),
Cu(θ, u)u ∈ RN - vector of Coriolis and centrifugal forces in terms of the GVC,
Gu(θ) ∈ RN - vector of gravitational forces in terms of the GVC,
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fu(θ, θ̇) ∈ RN - vector of friction damping forces in terms of the GVC,
π ∈ RN - vector of quasi-forces in terms of the GVC,
ϑ, ϑ̇ ∈ RN - vector of quasi-velocities, i.e. the NGVC and its time derivative, respectively,
Φ = Φ(θ) ∈ RN×N - upper triangular velocity transformation matrix in terms of the NGVC,
Φ̇(θ) ∈ RN×N - time derivative of the matrix Φ(θ),
Cϑ(θ, ϑ)ϑ ∈ RN - vector of Coriolis and centrifugal forces in terms of the NGVC,
Gϑ(θ) ∈ RN - vector of gravitational forces in terms of the NGVC,
fϑ(θ, θ̇) ∈ RN - vector of friction damping forces in terms of the NGVC,
̟ ∈ RN - vector of quasi-forces in terms of NGVC,
ν ∈ RN vector of normalized quasi-velocities,
Cν(θ, ν)ν ∈ RN vector of Coriolis and centrifugal forces in the NQV,
Gν(θ) ∈ RN vector of gravitational forces in the NQV,
m = m(θ) ∈ RN×N spatial operator (matrix) - "square root" of the inertia matrix M(θ),
ṁ(θ) ∈ RN×N time derivative of the matrix m(θ),
ǫ ∈ RN vector of normalized quasi-forces (in terms of the NQV),
D ∈ RN×N articulated inertia about joint axes matrix Jain & Rodriguez (1995),
(.)T - transpose operation.

2.2 Equations of motion

Recall that the classical equations of motion for a manipulator can be written in the following
form Sciavicco & Siciliano (1996); Slotine & Li (1987; 1991):

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Q. (1)

In terms of the IQV the equations of motion depend on the used decomposition of the inertia
matrix M(θ). The first of here considered decomposition methods is based on the generalized
velocity components (GVC) Loduha & Ravani (1995). In this method M(θ) = Υ−TNΥ−1. The
equations were proposed by Loduha & Ravani (1995).

Nu̇ + Cu(θ, u)u+ Gu(θ) = π, (2)

θ̇ = Υ(θ)u, (3)

where matrices and vectors are given as follows:

N = ΥTM(θ)Υ, u̇ = Υ−1θ̈ + Υ̇−1θ̇, (4)

Cu(θ, u) = ΥT[M(θ)Υ̇ + C(θ, θ̇)Υ], (5)

Gu(θ) = ΥTG(θ), (6)

π = ΥTQ. (7)

Equations (2) and (3) provide a closed set of first-order differential equations for manipulator
in terms of GVC.
In the second considered method assuming the inertia matrix decomposition method given
in Jain & Rodriguez (1995), which leads to the NQV and with M(θ) = mmT, we obtain the
following equations of motion:

ν̇ + Cν(θ, ν)ν + Gν(θ) = ǫ, (8)

ν = mT(θ)θ̇, (9)
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where

ν̇ = ṁT(θ)θ̇ +mT(θ)θ̈, (10)

Cν(θ, ν) = [m−1(θ)Cν(θ, θ̇) − ṁT(θ)](m−1(θ))T, (11)

Gν(θ) = m−1(θ)G(θ), (12)

ǫ = m−1(θ)Q. (13)

As results from Jain & Rodriguez (1995) we have also the relationship

νTCν(θ, ν)ν = 0. (14)

However, we can prove this property. The time derivative of the mass matrix is Ṁ = ṁmT +
mṁT . Using (9), (11), and taking into account the above assumption one can calculate:

νTCν(θ, ν)ν = νT[m−1Cν(θ, θ̇) − ṁT](mT)−1ν = θ̇TCν(θ, θ̇)θ̇ − θ̇TmṁT θ̇ = θ̇T
1

2
Ṁθ̇

−θ̇TmṁT θ̇ = θ̇T [
1

2
(ṁmT −mṁT)]θ̇ = νT

1

2
m−1(ṁmT −mṁT)(m−1)Tν = 0, (15)

because the matrix (ṁmT −mṁT) is a skew symmetric one. From the above derivation arises
that Cν(θ, ν) = 1

2m
−1(ṁmT −mṁT)(m−1)T.

The third decomposition method Herman (2005b; 2006) is an extension of the method Loduha
& Ravani (1995) and it is based on the NGVC with M(θ) = ΦTΦ. Hence the two first-order
equations (the diagonalized equation of motion and the velocity transformation equation) for
rigid manipulator can be rewritten in the form:

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) = ̟, (16)

ϑ = Φ(θ)θ̇, (17)

where

ϑ̇ = Φθ̈ + Φ̇θ̇, Φ = N
1
2 Υ−1, (18)

Cϑ(θ, ϑ) = [(ΦT)−1C(θ, θ̇) − Φ̇]Φ−1, (19)

Gϑ(θ) = (ΦT)−1G(θ), (20)

̟ = (ΦT)−1Q. (21)

Remark 1. If the viscous damping forces are taken into account then we have the following
classical equations of motion, and e.g. the equations in terms of the GVC and the NGVC:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + f (θ̇) = Q, (22)

Nu̇ + Cu(θ, u)u+ Gu(θ) + fu(θ, θ̇) = π, (23)

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) + fϑ(θ, θ̇) = ̟, (24)

where fu(θ, θ̇) = ΥT f (θ̇) and fϑ(θ, θ̇) = (ΦT)−1 f (θ̇).
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2.3 Other decomposition methods

The main problem concerning the transformed equations of motion is the selection method
for decomposition of the inertia matrix. There are various known methods for decomposition
of the inertia matrix to obtain a diagonal matrix or the identity matrix. For this purpose the
Cholesky factorization (which can be referred to Hurtado (2004); Matlab (1996); Sovinsky
et al. (2005) or decomposition into the eigenvalues and the eigenvectors considered in
Junkins & Schaub (1997); Matlab (1996). Moreover, using e.g. the Schur decomposition or the
singular value decomposition Matlab (1996) we are able to decompose the inertia matrix. The
eigenvalue and eigenvector based decomposition method, the Schur decomposition method
and the singular value decomposition method for a symmetric and positive definite matrix
M lead to obtaining a transformation matrix which has, in general, all nonzero elements.
This fact complicates a possible controller design because the number of necessary numerical
operation increase and each variable. However, sometimes the use of the appropriate method
(not very much time consuming) may decide about performance of a non-adaptive sliding
mode controller.

2.4 Some useful properties of IQV

Some advantages arising from the description of motion in terms of the IQV concern an
insight into the manipulator dynamics. The kinetic energy of the manipulator is expressed
as (compare Herman (2005a), Jain & Rodriguez (1995), and Herman (2005b), respectively):

K(θ, u) =
1

2
θ̇TM(θ)θ̇ =

1

2
uTNu =

1

2

N

∑
k=1

Nku
2
k =

N

∑
k=1

Kk, (25)

K(θ, ν) =
1

2
θ̇TM(θ)θ̇ =

1

2
θ̇Tm(θ)mT(θ)θ̇ =

1

2
νTν =

1

2

N

∑
k=1

ν2
k =

N

∑
k=1

Kk, (26)

K(θ, ϑ) =
1

2
θ̇TM(θ)θ̇ =

1

2
θ̇TΦTΦθ̇ =

1

2
ϑTϑ =

1

2

N

∑
k=1

ϑ2
k =

N

∑
k=1

Kk. (27)

The above given formulas allow one to determine the part of energy corresponding to each
inertial quasi-velocity individually (and also concerning the appropriate link taking into
account the dynamical coupling).
Additionally, it is possible to calculate elements of the matrix N (GVC and NGVC) or D (NQV)
- see Notation - which can be understood as a rotational inertia about each joint axis or a mass
shifted along the translational joint. Using the equation (1) this information is inaccessible.

3. Sliding mode controllers using inertial quasi-velocities

3.1 Control algorithms in joint space

In classical form the sliding mode controller in joint space of a manipulator can be expressed
as follows Sciavicco & Siciliano (1996); Slotine & Li (1991):

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kDs. (28)

The used symbols denote: θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃ with θ̈d as the desired joint acceleration

vector and θ̃ = θd − θ, ˙̃θ = θ̇d − θ̇ the joint velocities error, and the joint error between the
desired and actual posture, respectively. The matrix Λ is constant and it has eigenvalues
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strictly in the right-half complex plane and kD is a constant positive definite control gain

matrix. The vector s is defined as s = ˙̃θ + Λθ̃.
In terms of the GVC introduced originally by Loduha & Ravani (1995) the non-adaptive
sliding mode controller can be presented in the given below proposition. Recall also that from
(3) arises the relationship u = Υ−1θ̇ (the matrix Υ is invertible) and the time derivative of
θ̇ = Υu is θ̈ = Υ̇u + Υu̇. It is assumed the following sliding surface of the objective point

Υ−1( ˙̃θ + Λθ̃) = 0. (29)

Proposition 1. Consider the system (2) and (3) together with the controller in terms of the
GVC Herman (2005a)

π = Nu̇r + C(θ, u)ur + Gu(θ) + kDsu + ΥTkP θ̃, (30)

where

ur = Υ−1θ̇r , u̇r = Υ−1(θ̈r − Υ̇ur), (31)

su = ur − u = Υ−1( ˙̃θ + Λθ̃), (32)

with positive definite kD , kP, Λ control gain matrices, and θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃, θ̃ =

θd − θ, ˙̃θ = θ̇d − θ̇. Using the definition (29) and if the signals θ̇d, θ̇d, θ̈d are bounded, then the
equilibrium point [sTu , θ̃T ]T = 0 is globally asymptotically stable in the sense of Lyapunov. The
joint forces (which arises from (7)) are given as Q = (ΥT)−1π.
Proof Herman (2005a). The closed loop system with control (30) using su is given as follows

Nu̇ + C(θ,u)u + Gu(θ) = Nu̇r + C(θ,u)ur + Gu(θ) + kDsu + ΥTkP θ̃, (33)

what leads to
Nṡu + [C(θ, u) + kD ]su + ΥTkP θ̃ = 0. (34)

As a Lyapunov function candidate consider the following expression

L(su, θ̃) =
1

2
sTuNsu +

1

2
θ̃TkP θ̃. (35)

The time derivative of N equals (where M = M(θ))

Ṅ =
d

dt
(ΥTMΥ) = Υ̇TMΥ + ΥTṀΥ + ΥTMΥ̇. (36)

Next we calculate the time derivative of (35), use (2)-(7), (34), (36), and the property, e.g. Kelly
& Moreno (2005); Slotine & Li (1991)

qT
[

1

2
Ṁ(θ) − C(θ, θ̇)

]

q = 0, ∀q, θ, θ̇ ∈ RN . (37)
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After transposition of (3) one can obtain (L̇ = dL
dt ):

L̇(su, θ̃) = sTuNṡu +
1

2
sTu Ṅsu + ˙̃θTkP θ̃ = sTu [−C(θ,u)su − kDsu +

1

2
Ṅsu] − sTuΥTkP θ̃

+ ˙̃θTkP θ̃ = sTu [−ΥTMΥ̇su − ΥTC(θ, θ̇)Υsu − kDsu +
1

2
(Υ̇TMΥ + ΥTṀΥ

+ΥTMΥ̇)su] − sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTukDsu + sTu [
1

2
ΥTMΥ̇ − ΥTMΥ̇ +

1

2
Υ̇TMΥ

+ΥT(
1

2
Ṁ− C(θ, θ̇))Υ]su − sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTu kDsu +

1

2
sTu (Υ̇TMΥ − ΥTMΥ̇)su

−sTuΥTkP θ̃ + ˙̃θTkP θ̃ = −sTu kDsu − sTuΥTkP θ̃ + ˙̃θTkP θ̃. (38)

Using (32) one can write:

L̇(su, θ̃) = −sTukDsu − ( ˙̃θT + θ̃TΛT)kP θ̃ + ˙̃θTkP θ̃ = −sTukDsu − θ̃TΛTkP θ̃. (39)

Assumption that kP = kDΛ leads to

L̇(su, θ̃) = −sTu kDsu − θ̃TΛTkDΛθ̃. (40)

The time derivative L̇ (40) is a negative semidefinite function. Invoking Lyapunov direct
method Khalil (1996); Slotine & Li (1991) the above proof is completed. Therefore, [sTu , θ̃T]T = 0
is globally asymptotically stable in the sense of Lyapunov.
Remark 2. The control law (30) can be also simplified as follows: π = Nu̇r + C(θ, u)ur +
Gu(θ) + kDsu. The proof, in such case, can be given basing on the Barbalat’s Lemma Slotine &
Li (1991). However, the performance of the simplified control algorithm is worse than if the
controller (30) is used because of absence the additional position error regulation term.
The analogous tracking control problem can be considered in terms of the NQV. Consider the
following surface:

mT( ˙̃θ + Λθ̃) = 0, (41)

which is also a sliding surface of the objective point (the matrix mT is invertible Jain &
Rodriguez (1995)).
Proposition 2. Consider the system (8) and (9) together with the controller in terms of the
NQV

ǫ = ν̇r + Cν(θ, ν)νr + Gν(θ) + kDsν + m−1kP θ̃, (42)

where

νr = mT θ̇r, ν̇r = mT(θ̈r − (ṁT)−1νr), (43)

sν = νr − ν = mT( ˙̃θ + Λθ̃), (44)

with positive definite kD , kP, Λ control gain matrices, and θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃, θ̃ =

θd − θ, ˙̃θ = θ̇d − θ̇. Using the definition (41) and if the signals θ̇d, θ̇d, θ̈d are bounded, then the
equilibrium point [sTν , θ̃T ]T = 0 is globally asymptotically stable in the sense of Lyapunov. The
input forces vector of manipulator Q = mǫ arises from (13).
Proof. The closed loop system with control (42) using sν is given as follows:

ν̇ + Cν(θ, ν)ν + Gν(θ) = ν̇r + Cν(θ, ν)νr + Gν(θ) + kDsν + m−1kP θ̃, (45)
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which, using (44), leads to equation:

ṡν + [Cν(θ, ν) + kD]sν + m−1kP θ̃ = 0. (46)

As a Lyapunov function candidate consider the following expression:

L =
1

2
sTν sν +

1

2
θ̃TkP θ̃. (47)

Next, calculating the time derivative of (47), using (46), definition (44) and property (14) one
obtains:

L̇ = sTν ṡν + ˙̃θTkP θ̃ = sTν (−Cν(θ, ν)sν − kDsν −m−1kP θ̃) + ˙̃θTkP θ̃

= −sTν Cν(θ, ν)sν − sTν kDsν − sTν m
−1kP θ̃ + ˙̃θTkP θ̃ = −sTν kDsν − ( ˙̃θT + θ̃TΛT)kP θ̃

+ ˙̃θTkP θ̃ = −sTν kDsν − θ̃TΛTkP θ̃. (48)

Choosing kP = kDΛ yields

L̇ = −sTν kDsν − θ̃TΛTkDΛθ̃. (49)

One can observe that L̇ (49) is a negative semidefinite function. Invoking Lyapunov direct
method Khalil (1996); Slotine & Li (1991) the above proof is completed. Therefore, [sTν , θ̃T]T = 0
is globally asymptotically stable in the sense of Lyapunov.

3.2 Control algorithms in operational space

Consider the sliding mode controller in the workspace of a rigid serial manipulator if the
viscous damping is taken into account. In classical case the controller related to (22) can be
described as follows Sciavicco & Siciliano (1996); Slotine & Li (1987):

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + Fθ̇r + kDs (50)

where in order to extend the joint space controller to task space it is necessary to introduce:

θ̇r = J−1
A (θ) [ẋd + Λ(xd − x)] (51)

θ̈r = J−1
A (θ)

{
[ẍd + Λ(ẋd − ẋ)] − J̇A θ̇r

}
(52)

s = θ̇r − θ̇ = J−1
A (θ)[ẋd − JA(θ)θ̇ + Λ(xd − x)]. (53)

In the above equations the xd, ẋd and ẍd are the desired end-effector posture (position
and orientation), velocity and acceleration, respectively. Moreover, x and ẋ denote actual
end-effector posture and velocity whereas θr , θ̇r and θ̈r are reference joint position, velocity
and acceleration Slotine & Li (1987). The matrix kD is positive definite whereas the matrix Λ

is a diagonal (constant) matrix whose eigenvalues are strictly in the right-half complex plane.
The used symbol JA means the analytical Jacobian because the end-effector velocity can be
defined by the kinematic relationship ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996). In general

J−1
A (θ) have to be replaced by the right pseudo-inverse of JA i.e. J†

A = JTA(JA J
T
A)−1. Using

the controller (50) the sliding surface

˙̃x + Λx̃ = 0, (54)

where ˙̃x = ẋd − ẋ and x̃ = xd − x is reached which in turn implies that x̃ → 0 as t → 0.

262 Sliding Mode Control

www.intechopen.com



Proposition 3 Herman (2009a). Consider the system (23) and (3) together with the controller
in terms of the GVC

π = Nu̇r + Cu(θ, u)ur + Gu(θ) + ΥTFΥur + kDsu + JTAu(θ)kP x̃, (55)

where

ur = J−1
Au(θ) [ẋd + Λ(xd − x)] , (56)

u̇r = J−1
Au(θ)

{
[ẍd + Λ(ẋd − ẋ)] − J̇Au(θ)ur

}
, (57)

su = ur − u = J−1
Au(θ)[ẋd − JAu(θ)u + Λ(xd − x)] = J−1

Au(θ)( ˙̃x + Λx̃), (58)

with positive definite kD , kP, Λ control gain matrices. Using the definition (54) (assuming that

J−1
Au(θ) is a nonsingular matrix) and if the signals xd, ẋd, ẍd are bounded then the end-effector

posture (position and orientation) error x̃ = xd − x and the velocity error ˙̃x = ẋd − ẋ are
convergent to zero and the equilibrium point [sTu , x̃T]T = 0 is globally exponentially stable.
The joint forces (which arises from (7)) are given as Q = (ΥT)−1π.
The end-effector velocity can be defined by ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996) as well as
by ẋ = JAu(θ)u. Comparing both relationships and taking into account (3) we conclude that

JAu(θ) = JA(θ)Υ. Besides, in general case instead of J−1
Au = J−1

Au(θ) the right pseudo-inverse

matrix J†
Au = JTAu(JAu J

T
Au)

−1 should be used. It is also assumed (basing on (3)) that θ̇r = Υur.
Proof can be found in Herman (2009a).
In terms of the NGVC we propose the following nonlinear controller.
Proposition 4Herman (2009c). Consider a system (16) and (17) together with the controller

̟ = ϑ̇r + Cϑ(θ, ϑ)ϑr + Gϑ(θ) + (ΦT)−1FΦ−1ϑr + kDsϑ + JTAϑ(θ)kP x̃, (59)

where

ϑr = J−1
Aϑ(θ) [ẋd + Λ(xd − x)] , (60)

ϑ̇r = J−1
Aϑ(θ)

{
[ẍd + Λ(ẋd − ẋ)] − J̇Aϑ(θ)ϑr

}
, (61)

sϑ = ϑr − ϑ = J−1
Aϑ(θ) [ẋd − JAϑ(θ)ϑ + Λ(xd − x)] = J−1

Aϑ(θ)( ˙̃x + Λx̃), (62)

with positive definite kD , kP, Λ control gain matrices. Using the definition (54) (assuming that

J−1
Aϑ(θ) is a nonsingular matrix) and if the signals xd, ẋd, ẍd are bounded, then the end-effector

position error x̃ = xd − x and the velocity error ˙̃x = ẋd − ẋ are convergent to zero, and the
equilibrium point [sTϑ , x̃T ]T = 0 is globally exponentially stable. The joint forces (which arises

from (21)) are given as Q = ΦT̟.
Proof (based on Herman (2009c)). The closed-loop system (16) and (17) together with the
controller (59) can be written as:

ϑ̇ + Cϑ(θ, ϑ)ϑ + Gϑ(θ) + (ΦT)−1FΦ−1ϑ

= ϑ̇r + Cϑ(θ, ϑ)ϑr + Gϑ(θ) + (ΦT)−1FΦ−1ϑr + kDsϑ + JTAϑkP x̃, (63)

what leads to
ṡϑ + [Cϑ(θ, ϑ) + kD + (ΦT)−1FΦ−1]sϑ + JTAϑkP x̃ = 0. (64)

The proposed the Lyapunov function candidate is assumed as follows:

L(sϑ, x̃) =
1

2
sTϑ sϑ +

1

2
x̃TkP x̃. (65)
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The time derivative of L(sϑ, x̃) along of the system trajectories (16) and (17) is given by:

L̇(sϑ, x̃) = sTϑ ṡϑ + ˙̃xTkP x̃ = sTϑ [−Cϑ − kD − (ΦT)−1FΦ−1]sϑ − sTϑ J
T
AϑkP x̃ + ˙̃xTkP x̃. (66)

Consider the term −sTϑCϑsϑ. Calculating the time derivative of the inertia matrix M = ΦTΦ

(see 2.2) one obtains Ṁ = d
dt (ΦTΦ) = Φ̇TΦ + ΦTΦ̇. Introducing sφ = Φ−1sϑ and using (19)

one gets:

−sTϑCϑsϑ = −sTϑ [(ΦT)−1C− Φ̇]Φ−1sϑ = sTφ(ΦTΦ̇ − C)sφ

= sTφ(
1

2
ΦTΦ̇ +

1

2
ΦTΦ̇ − C +

1

2
Φ̇TΦ −

1

2
Φ̇TΦ)sφ = sTφ

[

(
1

2
Ṁ− C) +

1

2
(ΦTΦ̇ − Φ̇TΦ)

]

sφ. (67)

Because the matrix ( 1
2 Ṁ − C) is skew-symmetric then we can use (37). Moreover, the matrix

(ΦTΦ̇ − Φ̇TΦ) is also skew-symmetric (see Herman (2009c)). Thus, one can write:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − sTϑ J
T
AϑkP x̃ + ˙̃xTkP x̃. (68)

Using now (62) one obtains:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − ( ˙̃xT + x̃TΛT)kP x̃ + ˙̃xTkP x̃

= −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − x̃TΛTkP x̃. (69)

Assuming that kP = δΛ (where δ is a positive constant serving for the position error
regulation) we have:

L̇(sϑ, x̃) = −sTϑ [kD + (ΦT)−1FΦ−1]sϑ − x̃TδΛTΛx̃. (70)

As a result, one can write the above equation in the following form:

L̇(sϑ, x̃) = −

[
sϑ

x̃

]T [
kD + (ΦT)−1FΦ−1 0

0 δΛTΛ

]

︸ ︷︷ ︸

A

[
sϑ

x̃

]

. (71)

Note that the symmetric matrix A is positive definite. Thus, λm{A} > 0. Denoting now xs =
[sTϑ , x̃T ]T one can write

L̇(t, xs) ≤ −λm{A}||xs||
2 (72)

for all t ≥ 0 and xs ∈ R2N .
Therefore, basing on the Lyapunov direct method Khalil (1996); Slotine & Li (1991), the
conclusion that the state space origin of the system (16) and (17) together with the controller
(59)

lim
t→∞

[
sϑ(t)
x̃(t)

]

= 0 (73)

is globally exponentially convergent can be done.
The end-effector velocity is defined by ẋ = JA(θ)θ̇ Sciavicco & Siciliano (1996). Introducing
the analytical Jacobian in terms of the vector ϑ we can write the relationship ẋ = JAϑ(θ)ϑ.
Comparing ẋ from both relationships and taking into account Eq.(17) we conclude that
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JAϑ(θ) = JA(θ)Φ−1. Moreover, in general case, instead of J−1
Aϑ = J−1

Aϑ(θ) the right

pseudo-inverse matrix J†
Aϑ = JTAϑ(JAϑ J

T
Aϑ)−1 should be used. Based on Eq.(17) it is also

assumed that ϑr = Φθ̇r. Kinematics singularities are the same as in JA(θ) because we obtain
only a new Jacobian, but the structure of the manipulator is the same.
Remark 3. Analogous proofs can be carried out regarding the controllers in the manipulator
joint space considered earlier.

3.3 Advantages and disadvantages of the IQV controllers

Consider some aspects of the presented controllers in terms of the IQV.

1. The controllers expressed in terms of IQV seem complicated. Note however, that the
controls algorithms can be realized using quantities arising from the spatial operators
which decrease their computational complexity Jain & Rodriguez (1995). Also Kane’s
equations are computationally effective Kane & Levinson (1983). Thus, the algorithms
seem a useful tool for simulation of serial rigid manipulators.

2. The manipulator input torque Q can be calculated from the relationship Q = (Υ−1)Tπ and
Q = mǫ, i.e for the controllers (30) and (42) it has have the form:

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kP θ̃ + (Υ−1)TkDΥ−1s, (74)

Q = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kP θ̃ + mkDm
Ts. (75)

Comparing (75) and (74) with (28) it can be seen that the difference relies on an additional
term kP θ̃ and the use of the matrix (Υ−1)TkDΥ−1 or mkDm

T instead of the matrix kD .
The term kP θ̃ causes that one obtains more precise trajectory tracking than using the
controller (28). In spite of that in Berghuis & Nijmeijer (1993) the classical controller with
the term kP θ̃ was proposed, the controllers in terms of the IQV have one more benefit. The
matrix mkDm

T contains both kinematic and dynamical parameters which are present in
the matrix M(θ). As a result, the matrices m and mT give an additional gains and improve
the controller performance (after some time their elements are almost constant). Similarly,
the use of the controller (59), in comparison with the classical controller (50), has two
advantages. First, after transformation Q = ΦT̟ (see (21)) the generalized force vector
is as follows:

Q = Mθ̈r + C(θ, θ̇)θ̇r + G(θ) + Fθ̇r + ΦTkDΦs + JTA(θ)kP x̃. (76)

Recalling (50) one can observe that the NGVC controller has two terms which are absent
in the classical control algorithm. The first term contains instead of the matrix kD the
matrix ΦTkDΦ. The elements of ΦT and Φ give an additional gain and, as a result, the
desired position and velocity using the NGVC controller is achieved faster or with smaller
coefficients of kD than using the classical controller. The second term JTA(θ)kP x̃ ensures the
position error convergence in the operational space. Lack of the term causes that the proof
of the error convergence can be done based on the Barbalat’s Lemma Slotine & Li (1991).

3. An important advantages of the controllers in terms of the IQV arises from the fact,
that the matrices (Υ−1)TkDΥ−1 or mkDm

T reflect dynamics of the considered system.
Consequently, the elements of kD serve for tuning of gain coefficients (in contrast in (28)
the matrix kD is selected using various methods depending on experience of the user).
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4. The sliding mode control algorithm described by Slotine and Li Slotine & Li (1987) enables
also adaptive trajectory control. The equation (1) can be written as follows Sciavicco &
Siciliano (1996):

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Y(θ, θ̇, θ̈)p = τ (77)

where p is an m-dimensional vector of constant parameters and Y is an (N × m) matrix
which is a function of joint positions, velocities and accelerations. Decomposition of the
matrix M in Eq.(1) which leads to Eq.(8) (after multiplication by the matrix m−1) causes that
one obtains m−1Y(θ, θ̇, θ̈)p = ǫ. However, for dynamics equation in terms of the nominal
parameters one has m̂−1Y(θ, θ̇, θ̈) p̂ = ǫ̂. Therefore, in terms of the NQV vector adaptation
with respect to the vector of parameters p is impossible because parameters of the system
are involved in matrices m−1 and m̂−1. Analogous conclusion can be made about other
kinds of the IQV that is an disadvantage.

5. Robustness issue. In case where uncertainty of parameters occurs we should ask about
robustness of the proposed controller. The appropriate case concerning the GVC controller
is considered in Herman (2005a).

4. Simulation results using various controllers

4.1 Examples of serial manipulators

The DDA manipulator is characterized by the following set of manipulator parameters An et
al. (1988) (see Table 1):

Link number k 1 2 3
mk kg 19.67 53.01 67.13

Jxx kgm2 0.1825 3.8384 23.1568
Jxy kgm2 0 0 0
Jxz kgm2 −0.0166 0 0.3145
Jyy kgm2 0.4560 3.6062 20.4472
Jyz kgm2 0 −0.0709 1.2948

Jzz kgm2 0.3900 0.6807 0.7418
cxk m 0.0158 0 0
cyk m 0 −0.0643 −0.0362

czk m 0.0166 −0.1480 0.5337
lk m 0 0.462 0

Table 1. Parameters of the DDArm manipulator An et al. (1988)

The Yasukawa-like manipulator is characterized by the parameters given in Table 2. The
appropriate equations of motion can be found in reference Kozlowski (1992).

4.2 GVC - joint space

4.2.1 DDArm manipulator

In order to show performance and advantages of the controller (30) consider DDArm
manipulator depicted in Figure 1(a). The results are based on Herman (2005a).
The following fifth-order polynomial was chosen for tracking: initial points θi1 = (−7/6)π
rad, θi2 = (269.1/180)π rad, θi3 = (−5/9)π rad, and final points θ f1 = (2/9)π rad,
θ f2 = (19.1/180)π rad, θ f3 = (5/6)π rad, with time duration t f = 1.3 s. Starting points
were different from initial points ∆ = +0.2, +0.2, +0.2 rad, respectively. All simulations (were

266 Sliding Mode Control

www.intechopen.com



(a)

x

x

x

y

y y

y

z

z

z

z

1

2

1

2

1

3

3

3

4

4

1

2
l

1

2

2

3

�

�

�

x

4

l

(b)

Fig. 1. Examples of spatial manipulator: (a) kinematic scheme of DDArm; (b) kinematic
scheme of Yasukawa

Link number k 1 2 3
mk kg 10 30 65

Jxx kgm2 0.4 0.2 0
Jxy kgm2 0 0.01 0
Jxz kgm2 0 −0.01 0
Jyy kgm2 0.04 0.7 0

Jyz kgm2 −0.01 −0.01 0
Jzz kgm2 0.5 1.5 1.5
cxk m 0 0.01 0
cyk m 0.1 0.01 0

czk m 0.01 0 0
lk m 0.4 0.65 0

Table 2. Parameters of the Yasukawa-like manipulator

realized using MATLAB with SIMULINK). The assumed diagonal control coefficients were
as follows: kD = diag{10, 10, 10}, Λ = diag{15, 15, 15}, kP = diag{150, 150, 150} for the
GVC controller and kD = diag{10, 10, 10}, Λ = diag{30, 30, 30} for the classical controller
(CL). Diagonal values of the matrix Λ are two times smaller than for the classical controller in
order to show some differences between both control algorithms. The set of control gains is a
trade-of between acceptable position trajectory error and over-regulation.
Profiles of the desired joint position and velocity trajectories are shown in Figure 2(a). In
Figures 2(b) and 2(c) the joint position errors for GVC and classical (CL) controllers are
presented. The GVC controller gives similar errors for the first and the second joint. However,
all errors tend to zero very quickly. For CL controller (for the third joint) position error tends
slower. It can be concluded that third diagonal value of kD and Λ are not sufficient to obtain
comparable performance. But increasing of these gains may lead to over-regulation. Figure
2(d) – the error norm (in logarithmic scale) says that the position error is reduced faster if the
GVC controller is used. From Figures 2(e) and 2(f) arises that joint torques obtained using GVC
controller and CL have comparable values. Each element of the matrix N given in Figure 2(g)
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Fig. 2. Simulation results - joint space control (DDArm based on Herman (2005a)): a) profiles
of desired joint position and velocity trajectory; b) joint position errors e for GVC controller;
c) joint position errors e for classical (CL) controller; d) comparison between joint position
error norms ||e|| (in logarithmic scale) for both controllers; e) joint torques Q obtained using
GVC controller; f) joint torques Q obtained using CL controller; g) elements of matrix N
obtained from GVC controller; h) kinetic energy in all joints and for the entire manipulator
(GVC controller); i) comparison between kinetic energy reduction (in logarithmic scale) for
both classical (KCL) and GVC (KGVC) controller
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represents a rotational inertia about joint axis arising from the motion of other manipulator
links. Figure 2(h) compares the kinetic energy for the whole manipulator K and for all joints.
The great value of K3 can be related to the dominant values of N3 (the two informations can be
obtained only for the GVC controller). From Figure 2(i) it is observable that the kinetic energy
is reduced faster using GVC controller than using the CL controller.

4.2.2 Yasukawa-like manipulator

The manipulator is depicted in Figure 1(b). The given below results are based on Herman
(2009b).
The polynomial trajectories were described with initial points θi1 = (1/3)π rad, θi2 = π
rad, θi3 = (−1/2)π rad, final points θ f1 = (−2/3)π rad, θ f2 = 0 rad, θ f3 = (1/2)π
rad, and the time duration t f = 1 s. The starting points were different from the initial
points ∆ = +0.2, +0.2, +0.2 rad. It was assumed the following control coefficients set:
kD = diag{10, 10, 10}, Λ = diag{15, 15, 15}, kP = diag{150, 150, 150} for the GVC
controller (30). For the classical controller (28) we assumed the set kD = diag{10, 10, 10},
Λ = diag{30, 30, 30}. Diagonal elements values of the matrix Λ are two times smaller for the
GVC controller than for the classical one. For the same set of coefficients performance of the
classical controller are worse than for the considered case.
Profiles of the desired joint position and velocity trajectories are shown in Figure 3(a). The joint
position errors for the GVC and the classical (CL) controller are shown in Figures 3(b) and 3(c),
respectively. It is observable that the errors for the GVC controller tend very fast to zero and
the manipulator works correctly. But for the CL controller the joint position errors tend to
zero more slowly. Increasing the gain coefficients kD or Λ could lead to better performance
obviously under condition avoidance undesirable over-regulation. This observation confirms
Figure 3(d) because the error norm (in logarithmic scale) has distinctly smaller values for
the GVC controller than for the CL one. Figure 3(e) presents the joint torques obtained using
the GVC controller (for the classical one they have almost the same values). In Figure 3(f)
elements of the matrix N are shown (such information gives only for the GVC controller).
These quantities represents some rotational inertia along each axis which arise from other
links motion. They are characteristic for the tested manipulator and for the desired joint
velocity set. Values N3 are dominant almost all time what says that the third joint is the most
laden. Figure 3(g) a kinetic energy time history for the total manipulator K and for all joints
is presented. Most of the kinetic energy is related to the second joint (K2) (and also to the
same link). This fact may be associated with the dominant values N2 in the time interval
0.4 ÷ 0.6 s. Figure 3(h) compares the kinetic energy reduction for the manipulator if both
control algorithms are used. It can be noticed that after some time this energy is reduced
much faster using the GVC controller than using the classical one.

4.3 NQV - joint space

Simulations were done for the DDArm manipulator with the parameters given in Table 1 and
under the same conditions. The assumed gain coefficients set was kD = diag{10, 10, 10}, Λ =
diag{15, 15, 15}, kP = diag{150, 150, 150} for the NQV controller and kD = diag{10, 10, 10},
Λ = diag{15, 15, 15} for the CL one. This means also that the desired joint position and
velocity trajectories are assumed as in Figure 2(a).
Simulation results obtained from the NQV controller (42) and the CL controller (28) are
presented in Figure 4. The joint position errors for the NQV and the CL controller, are
presented in Figure 4(a) and 4(b). One can observe that for the NQV controller all position
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Fig. 3. Simulation results - joint space control (Yasukawa based on Herman (2009b)): a)
desired joint position thd and joint velocity vd trajectory for all joints of manipulator; b) joint
position errors e for GVC controller; c) joint position errors e for classical (CL) controller; d)
comparison between joint position error norms ||e|| (in logarithmic scale) for both
controllers; e) joint torques Q obtained using GVC controller; f) elements of matrix N
obtained from GVC controller; g) kinetic energy reduced by each joints and by the total
manipulator (GVC controller); h) comparison between kinetic energy (in logarithmic scale)
for classical (KCL), and GVC (KGVC) controller
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Fig. 4. Simulation results - joint space control (DDArm): a) joint position errors e for NQV
controller; b) joint position errors e for CL controller; c) joint torques Q obtained using NQV
controller; d) articulated inertias Dk for all joints; e) kinetic energy K1,K2,K3 for all
manipulator joints and entire kinetic energy K; f) comparison between kinetic energy
reduction for NQV and CL controller (in logarithmic scale)

errors tend to zero after about 1.6 s. For the CL controller errors e1, e2 tend very fast to zero but
e3 tends to zero more slowly than for the NQV controller. Figure 3(c) shows the joint torques
obtained from the NQV controller. The big initial value of the joint torque Q3 arises from
the fact that we feed back some quantity including the kinematic and dynamical parameters
of the manipulator instead of the joint velocity only. However, for the tested manipulator
this value is allowed as results from reference An et al. (1988). The articulated inertia Dk for
each joint (Figure 4(d)) can be obtained only using the NQV controller. Each value Dk says
how much inertia rotates about the k-th joint axis. Most of the rotational inertia is transfered
by the third joint axis which means that dynamical interactions are great for the third joint
and the third link. Figure 4(e) gives a time history of the kinetic energy for each joint and
for the manipulator. Most of the energy is related to the third link which can be explained by
great values of D3. Next Figure 4(f) compares the kinetic energy (in logarithmic scale) which is
reduced by the manipulator. After about 1.6 s the kinetic energy is canceled for NQV controller
much faster than for CL controller.

4.4 GVC - operational space

The simulation results are obtained for a 3 D.O.F. Yasukawa-like manipulator Herman (2009a).
The first objective is to show performance of the GVC controller (55) in the manipulator
operational space. The following parameters are different than in Table 2:

• link masses: m1 = 5 kg, m3 = 60 kg;
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• link inertias: Jxx2 = 0.6 kgm2, Jxz1 = 0.02 kgm2, Jyy1 = 0.05 kgm2, Jyy2 = 0.8 kgm2,

Jzz2 = 2.0 kgm2, Jzz3 = 3.0 kgm2;

• distance: axis of rotation - mass center : cx1 = 0.01 m, cx2 = 0.1m, cy1 = 0.01 m;

• length of link: l2 = 1.3 m.
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Fig. 5. Simulation results - operational space control (Yasukawa based on Herman (2009c) -
the same as in Herman (2009a)): a) desired position trajectories in the operational space; b)
desired orientation trajectories in the operational space (used for GVC and NGVC case)

The desired position and orientation described by the vector xd =
[

pdx pdy pdz odφ odϑ

]T

are shown in Figures 5(a) and 5(b) Herman (2009c).
The simulations results realized in MATLAB/SIMULINK (Figure 6) come from reference
Herman (2009a).) The control gain matrices were assumed for all controllers as follows:
kD = diag{20, 20, 20}, Λ = diag{20, 20, 20, 20, 20, 20}, kP = diag{20, 20, 20, 20, 20}, ρ = 1.
Viscous damping coefficients were the same for all joints F = diag{2, 2, 2}.
Figures 6(a) and 6(b) show the position and the orientation error for the GVC controller (55)
in the operational space, respectively. One can observe that both errors converge to zero after
about 2 s. Next, in Figures 6(c) and 6(d) the same errors for the classical controller (50) are
presented. As arises from both figures in order to achieve the steady-state the controller needs
more than 3 s. At the same time the orientation errors are only close to zero. In the first phase
of the manipulator motion the classical controller (CL) gives smaller orientation error than
the GVC controller but after about 1 s the GVC controller gives better performance. This
phenomenon results from the fact that the dynamical parameters set in the controller (55)
is used. From Figure 6(e) one can observe that after 1 s the kinetic energy KGVC (for the
GVC controller) is reduced faster than for the classical controller KCL (results are presented
on logarithmic scale).
In Figure 6(f) the position error norms (on logarithmic scale) measured in the manipulator
task space for the GVC controller and the classical controller (CL) are compared. It can be seen
that the position error norm ||ep||GVC is smaller than the error norm ||ep||CL. Comparison
between the orientation error norms for both controllers are given in Figure 6(g). In the first
phase of the manipulator motion the classical controller (CL) gives smaller orientation error
than the GVC controller but after about 0.9 s the latter controller gives better performance.
This behavior also results from the fact that the dynamical parameters set in the controller
(55) is used. The joint torques for the GVC controller are shown in Figure 6(h). It is observable
that at the start (before 0.2 s) the torque in the third joint Q3 has great value (it is a consequence
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Fig. 6. Simulation results - operational space control (Yasukawa - based on Herman (2009a)):
a) position errors in the operational space for GVC controller; b) orientation errors in the
operational space for GVC controller; c) position errors in the operational space for classical
(CL) controller; d) orientation errors in the operational space for CL controller; e) comparison
between kinetic energy reduction (on logarithmic scale) for GVC and CL controller; f)
comparison between position error norm on logarithmic scale for both controllers; g)
comparison between orientation error norm on logarithmic scale for both controllers (GVC
and CL); h) joint torques Qk for GVC controller; i) joint torques Qk for CL controller
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of including dynamical parameters of the system in the GVC controller). As it is shown from
Figure 6(i) the third joint torque for the CL controller has smaller value than using the GVC
one. However, after about 0.3 s the torques for both controllers are comparable.

4.5 NGVC - operational space

Consider the Yasukawa-like manipulator again. The following parameters are different than
in Table 2:

• link masses: m1 = 5 kg, m3 = 60 kg;

• link inertias: Jxx1 = 0.5 kgm2, Jxx2 = 0.6 kgm2, Jxz1 = 0.02 kgm2, Jyy1 = 0.05 kgm2,

Jyy2 = 0.8 kgm2, Jzz3 = 3.0 kgm2;

• distance: axis of rotation - mass center : cx1 = 0.01 m, cx2 = 0.1m, cy1 = 0.01 m, cz1 = 0.02
m;

• length of link: l2 = 1.3 m.

The results obtained for the NGVC (59) controller are compared with the obtained from the
classical controller (50) in Figures 7 and 8 Herman (2009c).
The gain matrices were chosen as (the same for both controllers, i.e. the NGVC and the CL):
kD = diag{4, 4, 4}, Λ = diag{20, 20, 20, 20, 20, 20}, kP = diag{5, 5, 5, 5, 5}, δ = 0.25 whereas
the viscous damping coefficients were F = diag{2, 2, 2}.
In Figures 7(a) and 7(b) the position and the orientation error for the NGVC controller (59) in
the operational space are shown. Both errors tend to zero after about 1.5 s. The same errors for
the classical (CL) controller (50) are given in Figures 7(c) and 7(d). After 3 s (Figure 7(c)) the
position steady-state is not achieved. As a result to ensure the satisfying error convergence,
the CL controller needs more time than 3 s. The same conclusion can be made about the
orientation error convergence (Figure 7(d)). The joint applied torques for the NGVC controller
are shown in Figure 7(e). Comparing Figures 7(e) and 7(f) it can be observed that maximum
values of the torques using the NGVC controller are not much larger than if the CL controller
is applied.
The diagonal elements of the matrix Φ are given in Figure 8(a) whereas the off-diagonal ones
in Figure 8(b). Recall that the matrices ΦT and Φ give an additional gain in the term ΦTkDΦ of
the controller (59). It can be concluded that the NGVC controller uses small control coefficients
kD k to ensure fast position and orientation trajectory tracking. Moreover, each element Φ2

kk
represents an rotational inertia corresponding to the k-th quasi-velocity, whereas Φki (for i �= k)
show dynamic coupling between the joint velocities (and also between the appropriate links).
Such information is available only from the NGVC controller.
From Figure 8(c) it can be seen that the kinetic energy K which must be reduced by the
manipulator concerns mainly the third quasi-velocity K3 (and also by the 3-th link). Figure 8(d)
compares the kinetic energy reduction (on logarithmic scale) for both controllers. After about
1 s the kinetic energy KNGVC for the NGVC controller decreases faster than for the classical
controller KCL. Consequently, the NGVC control algorithm gives faster error convergence than
the CL control algorithm.

4.6 Discussion

From the presented simulation results arises the fact that the proposed nonlinear controllers in
terms of the IQV ensures faster, than the classical controller, the position and orientation error
convergence. Moreover, the kinetic energy reduction is also faster if the IQV controller is used.
An disadvantage of the IQV controllers is that sometimes, at the beginning of motion, great
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Fig. 7. Simulation results - operational space control (Yasukawa - based on Herman (2009c)):
a) position errors in the in the operational space for NGVC controller; b) orientation errors in
the operational space for NGVC controller; c) position errors in the operational space for
classical (CL) controller; d) orientation errors in the operational space for classical (CL)
controller; e) joint applied torques Q for NGVC controller; f) joint applied torques Q for CL
controller

initial torque can occur. The great values come from including the manipulator parameters set
into the control algorithm. Note, however that the same reason causes the benefit concerning
the fast error convergence and fast kinetic energy reduction. Thus, it should be verified if
for the considered manipulator the real torques are acceptable. It can be done via simulation
because the expected torques are determined from the time history of Q. To obtain comparable
results as for the IQV controller we have to assume for the CL controller the matrix kD with
bigger gain coefficients. However, at the same time elements of the matrix Λ should be enough
great to ensure fast error convergence. From all presented cases arise that if the IQV controller
is used then the gain matrix kD has rather small values. One can say that they serve for precise
tuning because the resultant gain matrix is related to the system dynamics.

5. Conclusion

In this paper, a review of a theoretical framework of non-adaptive sliding mode controllers
in terms of the inertial quasi-velocities (IQV) for rigid serial manipulators was provided.
The dynamics of the system using several kind of the IQV, namely: the GVC, the NQV, and
the NGVC was presented. The IQV equations of motion offer some advantages which are
inaccessible if the classical second-order differential equations are used. The IQV sliding mode
control algorithms, based on the decomposition of the manipulator inertia matrix, can be
realized both in the manipulator joint space and in its the operational space. It was shown

275Non-Adaptive Sliding Mode Controllers in Terms of Inertial Quasi-Velocities

www.intechopen.com



0 1 2 3
0

1

2

3

4

t  [s]

Φ  [kgm
2
]

Φ
33

NGVC

Φ
22

Φ
11

(a)

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8
Φ  [kgm

2
]

t  [s]

Φ
23

NGVC

Φ
12

Φ
13

(b)

0 1 2 3
0

20

40

60

80

100

120

140
K  [J] 

t  [s]

K
1

NGVC

K
2

K
3

K

(c)

0 1 2 3
−20

−15

−10

−5

0

5
log K  [−]

t  [s]

K
NGVC

K
CL

(d)

Fig. 8. Simulation results - operational space control (Yasukawa - based on Herman (2009c)):
a) diagonal elements of the matrix Φ; b) other elements of the matrix Φ; c) kinetic energy
time history corresponding to each quasi-velocity ϑk; d) comparison between kinetic energy
reduction (on logarithmic scale) for the NGVC controller and the CL controller

that the considered controllers are made the equilibrium point globally asymptotically or
exponentially stable in the sense of Lyapunov. Some advantages and disadvantages of the
IQV controllers were also given in the work. Moreover, the proposed control schemes are also
feasible if the damping forces are taken into account. Simulations results for two different 3
D.O.F. spatial manipulators have shown that the IQV controllers can give faster position and
orientation error convergence and/or using smaller velocity gain coefficients than the related
classical control algorithms. Faster kinetic energy reduction is also possible if the classical
controller is replaced by the IQV one. It is worth noting that the discussed controllers can
serve for dynamical coupling detection between the manipulator links via simulation which
allows one to avoid some expensive experimental tests.
Future works should concern investigation of the IQV controllers with models of friction,
especially with Coulomb friction and dynamic friction models. In order to show real
performance and properties of the controllers, experimental validation is expected.
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