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1. Introduction

Nowadays, the major advancements in the control of motion systems are due to the automatic
control theory. Motion control systems are characterized by complex nonlinear dynamics and
can be found in the robotic, automotive and electromechanical area, among others. In such
systems it is always wanted to impose a desired behavior in order to cope with the control
objectives that can go from velocity and position tracking to torque and current tracking
among other variables. Motion control systems become vulnerable when the output tracking
signals present small oscillations of finite frequency known as chattering. The chattering
problem is harmful because it leads to low control accuracy; high wear of moving mechanical
parts and high heat losses in power circuits. The chattering phenomenon can be caused
by the deliberate use of classical sliding mode control technique. This control technique is
characterized by a discontinuous control action with an ideal infinite frequency. When fast
dynamics are neglected in the mathematical model such phenomenon can appear. Another
situation responsible for chattering is due to implementation issues of the sliding mode control
signal in digital devices operating with a finite sampling frequency, where the switching
frequency of the control signal cannot be fully implemented. Despite of the disadvantage
presented by the sliding mode control, this is a popular technique among control engineer
practitioners due to the fact that introduces robustness to unknown bounded perturbations
that belong to the control sub-space; moreover, the residual dynamic under the sliding regime,
i.e., the sliding mode dynamic, can easily be stabilized with a proper choice of the sliding
surface. A proof of their good performance in motion control systems can be found in the
book by Utkin et al. (1999). A solution to this problem is the high order sliding mode (HOSM)
technique, Levant (2005). This control technique maintains the same sliding mode properties
(in this sense, first-order sliding mode) with the advantage of eliminating the chattering
problem due to the continuous-time nature of the control action. The actual disadvantage of
this control technique is that the stability proofs are based on geometrical methods since the
Lyapunov function proposing results in a difficult task, Levant (1993). The work presented
in Moreno & Osorio (2008) proposes quadratic like Lyapunov functions for a special case of
second-order sliding mode controller, the super-twisting sliding mode controller (STSMC),
making possible to obtain an explicit relation for the controller design parameters.
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2 Sliding Mode Control

In this chapter, two motion control problems will be addressed. First, a position trajectory
tracking controller for an under-actuated robotic system known as the Pendubot will be
designed. Second, a rotor velocity and magnetic rotor flux modulus tracking controller will
be designed for an induction motor.
The Pendubot (see Spong & Vidyasagar (1989)) is an under-actuated robotic system,
characterized by having less actuators than links. In general, this can be a natural design
due to physical limitations or an intentional one for reducing the robot cost. The control of
such robots is more difficult than fully actuated ones. The Pendubot is a two link planar
robot with a dc motor actuating in the first link, with the first one balancing the second
link. The purpose of the Pendubot is research and education inside the control theory of
nonlinear systems. Common control problems for the Pendubot are swing-up, stabilization
and trajectory tracking. In this work, a super-twisting sliding mode controller for the
Pendubot is designed for trajectory tracking, where the proper choice of the sliding function
can easily stabilize the residual sliding mode dynamic. A novel Lyapunov function is used for
a rigorous stability analysis of the controller here designed. Numeric simulations verify the
good performance of the closed-loop system.
In the other hand, induction motors are widely used in industrial applications due to its
simple mechanical construction, low service requirements and lower cost with respect to DC
motors that are also widely used in the industrial field. Therefore, induction motors constitute
a classical test bench in the automatic control theory framework due to the fact that represents
a coupled MIMO nonlinear system, resulting in a challenging control problem. It is worth
mentioning that there are several works that are based on a mathematical induction motor
model that does not consider power core losses, implying that the induction motor presents
a low efficiency performance. In order to achieve a high efficiency in power consumption
one must take into consideration at least the power core losses in addition to copper losses;
then, to design a control law under conditions obtained when minimizing the power core
and copper losses. With respect to loss model based controllers, there is a main approach
for modeling the core, as a parallel resistance. In this case, the resistance is fixed in parallel
with the magnetization inductance, increasing the four electrical equations to six in the (α, β)
stationary reference frame, Levi et al. (1995). In this work, one is compelled to design a
robust controller-observer scheme, based on the super-twisting technique. A novel Lyapunov
function is used for a rigorous stability analysis. In order to yield to a better performance of
induction motors, the power core and copper losses are minimized. Simulations are presented
in order to demonstrate the good performance of the proposed control strategy.
The remaining structure of this chapter is as follows. First, the sliding mode control will
be revisited. Then, the Pendubot is introduced to develop the super-twisting controller
design. In the following part, the induction motor model with core loss is presented, and
the super-twisting controller is designed in an effort of minimizing the power losses. Finally
some comments conclude this chapter.

2. Sliding mode control

The sliding mode control is a well documented control technique, and their fundamentals
can be founded in the following references, Utkin (1993), Utkin et al. (1999), among others.
Therefore in this section, the main features of this control technique are revisited in order to
introduce the super-twisting algorithm.
The first order or classical sliding mode control is a two-step design procedure consisting
of a sliding surface (S = 0) design with relative degree one w.r.t. the control (the control
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appears explicitly in Ṡ), and a discontinuous control action that ensures a sliding regime or a
sliding mode. When the states of the system are confined in the sliding mode, i.e., the states
of the system have reached the surface, the convergence happens in a finite-time fashion,
moreover, the matched bounded perturbations are rejected. From this time instant the motion
of the system is known as the sliding mode dynamic and it is insensitive to matched bounded
perturbations. This dynamic is commonly characterized by a reduced set of equations. At
the initial design stage, one must predict the sliding mode dynamic structure and then to
design the sliding surface in order to stabilize it. It is worth mentioning that the sliding
mode dynamic (commonly containing the output) is commonly asymptotically stabilized.
This fact is sometimes confusing since one can expect to observe the finite-time convergence
at the output of the system, but as mentioned above the finite-time convergence occurs at
the designed surface. The main disadvantage of the classical sliding mode is the chattering
phenomenon, that is characterized by small oscillations at the output of the system that can
result harmful to motion control systems. The chattering can be developed due to neglected
fast dynamics and to digital implementation issues.
In order to overcome the chattering phenomenon, the high-order sliding mode concept
was introduced by Levant (1993). Let us consider a smooth dynamic system with an
output function S of class Cr−1 closed by a constant or dynamic discontinuous feedback
as in Levant & Alelishvili (2007). Then, the calculated time derivatives S, Ṡ, . . . , Sr−1, are
continuous functions of the system state, where the set S = Ṡ = . . . = Sr−1 = 0 is non-empty
and consists locally of Filippov trajectories. The motion on the set above mentioned is said
to exist in r-sliding mode or rth order sliding mode. The rth derivative Sr is considered
to be discontinuous or non-existent. Therefore the high-order sliding mode removes the
relative-degree restriction and can practically eliminate the chattering problem.
There are several algorithms to realize HOSM. In particular, the 2nd order sliding mode
controllers are used to zero the outputs with relative degree two or to avoid chattering while
zeroing outputs with relative degree one. Among 2nd order algorithms one can find the
sub-optimal controller, the terminal sliding mode controllers, the twisting controller and the
super-twisting controller. In particular, the twisting algorithm forces the sliding variable S
of relative degree two in to the 2-sliding set, requiring knowledge of Ṡ. The super-twisting
algorithm does not require Ṡ, but the sliding variable has relative degree one. Therefore,
the super-twisting algorithm is nowadays preferable over the classical siding mode, since it
eliminates the chattering phenomenon.
The actual disadvantage of HOSM is that the stability proofs are based on geometrical
methods, since the Lyapunov function proposal results in a difficult task, Levant (1993). The
work presented in Moreno & Osorio (2008) proposes quadratic like Lyapunov functions for
the super-twisting controller, making possible to obtain an explicit relation for the controller
design parameters. In the following lines this analysis will be revisited.
Let us consider the following SISO nonlinear scalar system

σ̇ = f (t, σ) + u (1)

where f (t, σ) is an unknown bounded perturbation term and globally bounded by | f (t, σ)| ≤
δ|σ|1/2 for some constant δ > 0. The super-twisting sliding mode controller for perturbation
and chattering elimination is given by

u = −k1

√

|σ|sign(σ) + v

v̇ = −k2sign(σ). (2)
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4 Sliding Mode Control

System (1) closed by control (2) results in

σ̇ = −k1

√

|σ|sign(σ) + v + f (t, σ)

v̇ = −k2sign(σ). (3)

Proposing the following candidate Lyapunov function:

V = 2k2|σ|+
1

2
v2 +

1

2
(k1|σ|

1/2sign(σ)− v)2

= ξTPξ

where ξT =
(

|σ|1/2sign(σ) v
)

and

P =
1

2

(

4k2 + k2
1 −k1

−k1 2

)

,

Its time derivative along the solution of (3) results as follows:

V̇ = −
1

|σ1/2|
ξTQξ +

f (t, σ)

|σ1/2|
qT

1 ξ

where

Q =
k1

2

(

2k2 + k2
1 −k1

−k1 1

)

,

qT
1 =

(

2k2 +
1
2 k2

1 − 1
2 k1

)

.

Applying the bounds for the perturbations as given in Moreno & Osorio (2008), the expression
for the derivative of the Lyapunov function is reduced to

V̇ = −
k1

2|σ1/2|
ξTQ̃ξ

where

Q̃ =

(

2k2 + k2
1 − ( 4k2

k1
+ k1)δ −k1 + 2δ

−k1 + 2δ 1

)

.

In this case, if the controller gains satisfy the following relations

k1 > 2δ, k2 > k1
5δk1 + 4δ2

2(k1 − 2δ)
,

then, Q̃ > 0, implying that the derivative of the Lyapunov function is negative definite.

3. STSMC for an under-actuated robotic system

In this section a super-twisting sliding mode controller for the Pendubot is designed. The
Pendubot is schematically shown in Figure 1.
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Fig. 1. Schematic diagram of the Pendubot.

3.1 Mathematical model of the Pendubot

The equation of motion for the Pendubot can be described by the following general
Euler-Lagrange equation Spong & Vidyasagar (1989):

D(q)q̈ + C(q, q̇) + G(q) + F(q̇) = τ (4)

where q = [q1, q2]
T ∈ ℜn is the vector of joint variables (generalized coordinates), q1 ∈ ℜm

represents the actuated joints, and q2 ∈ ℜ(n−m) represents the unactuated ones. D(q) is the
n × n inertia matrix, C(q, q̇) is the vector of Coriolis and centripetal torques, G(q) contains the
gravitational terms, F(q̇) is the vector of viscous frictional terms, and τ is the vector of input
torques. For the Pendubot system, the dynamic model (4) is particularized as

[

D11 D12

D12 D22

] [

q̈1

q̈2

]

+

[

C1

C2

]

+

[

G1

G2

]

+

[

F1

F2

]

=

[

τ1

0

]

where D11(q2) = m1l2
cl + m2(l

2
1 + l2

c2 + 2l1lc2 cos q2) + I1 + I2, D12(q2) = m2(l
2
c2 +

l1lc2 cos q2) + I2, D22 = m2l2
c2 + I2, C1(q2, q̇1, q̇2) = −2m2l1lc2q̇1q̇2 sin q2 − m2l1lc2q̇2

2 sin q2,

C2(q2, q̇1) = m2l1lc2q̇2
1 sin q2, G1(q1, q2) = m1glc1 cos q1 + m2gl1 cos q1 + m2glc2 cos (q1 + q2),

G2(q1, q2) = m2glc2 cos (q1 + q2), F1(q̇1) = μ1q̇1, F2(q̇2) = μ2q̇2, with m1 and m2 as the
mass of the first and second link of the Pendubot respectively, l1 is the length of the first
link , lc1 and lc2 are the distance to the center of mass of link one and two respectively, g is
the acceleration of gravity, I1 and I2 are the moment of inertia of the first and second link
respectively about its centroids, and μ1and μ2 are the viscous drag coefficients. The nominal
values of the parameters are taken as follows: m1 = 0.8293, m2 = 0.3402, l1 = 0.2032,
lc1 = 0.1551, lc2 = 0.1635125, g = 9.81, I1 = 0.00595035, I2 = 0.00043001254, μ1 = 0.00545,

μ2 = 0.00047. Choosing x =
(

x1 x2 x3 x4

)T
=

(

q1 q2 q̇1 q̇2

)T
as the state vector, u = τ1 as

the input, and x2 as the output, the description of the system can be given in state space form
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6 Sliding Mode Control

as:

ẋ(t) = f (x) + g(x)u(t) (5)

e(x, w) = x2 − w2

ẇ = s(w) (6)

where e(x, w) is output tracking error, w = (w1, w2)
T, and w2 as the reference signal generated

by the known exosystem (6),

f (x) =

⎛

⎜

⎜

⎝

f1(x3)
f2(x4)
f3(x)

f4(x1, x2, x3)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

x3

x4

b3(x2)p1(x)
b4(x2)p2(x)

⎞

⎟

⎟

⎠

,

g(x) =

⎛

⎜

⎜

⎝

b1

b2

b3(x2)
b4(x2)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0
0

D22

D11(x2)D22−D2
12(x2)

−D12(x2)
D11(x2)D22−D2

12(x2)

⎞

⎟

⎟

⎟

⎠

,

s(w) =

(

αw2

−αw1

)

,

p1(x) =
D12(x2)

D22
(C2(x2, x3) + G2(x1, x2) + F2(x4))− C1(x2, x3, x4)− G1(x1, x2)− F1(x3),

p2(x) =
D11(x2)

D12
(C2(x2, x3) + G2(x1, x2) + F2(x4))− C1(x2, x3, x4)− G1(x1, x2)− F1(x3).

3.2 Control design

Now, the steady-state zero output manifold π(w) = (π1(w), π2(w), π3(w), π4(w))T is
introduced. Making use of its respective regulator equations:

∂π1(w)

∂w
s(w) = π3(w) (7)

∂π2(w)

∂w
s(w) = π4(w) (8)

∂π3(w)

∂w
s(w) = b3(π2(w))p1(π(w)) + b3(π2(w))c(w) (9)

∂π4(w)

∂w
s(w) = b4(π2(w))p2(π(w)) + b4(π2(w))c(w) (10)

0 = π2(w)− w2 (11)

π/2 = π1(w) + π2(w) (12)

with c(w) as the steady-state value for u(t) that will be defined in the following lines. From
equation (11) one directly obtains π2(w) = w2, then, replacing π2(w) in equation (8) yields
to π4(w) = −αw1. For calculating π1(w) and π3(w), the solution of equations (7) and (9)
are needed, but in general this is a difficult task, that it is commonly solved proposing an
approximated solution as in Ramos et al. (1997) and Rivera et al. (2008). Thus, one proposes
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the following approximated solution for π1(w)

π1(w) = a0 + a1w1 + a2w2 + a3w2
1 + a4w1w2 + a5w2

2 + a6w3
1

+a7w2
1w2 + a8w1w2

2 + a9w3
2 + O4(‖w‖1) (13)

replacing (13) in (7) and chosing α = 0.3 yields the approximated solution for π3(w)

π3(w) = 0.3a1w2 − 0.3a2w1 + 0.6a3w1w2 + 0.3a4w2
2 − 0.3a4w2

1 − 0.6a5w2w1 + 0.9a6w2
1w2

+0.6a7w1w2
2 − 0.3a7w3

1 + 0.3a8w3
2 − 0.6a8w2

1w2 − 0.9a9w2
2w1 + O4(‖w‖1). (14)

Calculating from (10) c(w) = −p2(π(w))− α2w2/b4(π2(w)), and using it along with (14) in
equation (9) and performing a series Taylor expansion of the right hand side of this equation
around the equilibrium point (π/2, 0, 0, 0)T , then, one can find the values ai (i = 0, . . . , 9) if the
coefficients of the same monomials appearing in both side of such equation are equalized. In
this case, the coefficients results as follows: a0 = 1.570757, a1 = −0.00025944, a2 = −1.001871,
a3 = 0.0, a4 = 0.0, a5 = 0.0, a6 = 0.0, a7 = 0.001926, a8 = 0.0, a9 = −0.00001588. It is
worth mentioning that there is a natural steady-state constraint (12) for the Pendubot (see
Figure 1), i.e., the sum of the two angles, q1 and q2 equals π/2. Using such constraint one
can easily calculate π1a(w) = π/2 − π2(w), and replacing π1a(w) in equation (7) yields to
π3a(w) = αw1, where the sub-index a refers to an alternative manifold. This result was
simulated yielding to the same results when using the approximate manifold, which is to
be expected if the motion of the pendubot is forced only along the geometric constraints.

Then, the variable z = x − π(w) =
(

z1, z2
)T

is introduced, where

z1 =
(

z1, z2, z3

)T
=

(

x1 − π1, x2 − π2, x3 − π3

)T

z2 = z4 = x4 − π4. (15)

Then, system (5) is represented in the new variables (15) as

ż1 = z3 + π3 −
∂π1

∂w
s(w)

ż2 = z4 + π4 −
∂π2

∂w
s(w)

ż3 = b3(z2 + π2)p1(z + π) + b3(z2 + π2)u −
∂π3

∂w
s(w)

ż4 = b4(z2 + π2)p2(z + π) + b4(z2 + π2)u −
∂π4

∂w
s(w) (16)

e(z, w) = z2 + π2 − w2

ẇ = s(w).

We now define the sliding manifold:

σ = z4 + Σ1(z1, z2, z3)
T, Σ1 = (k1, k2, k3) (17)

and by taking its derivative along the solution of system (16) results in

σ̇ = φ(w, z) + γ(w, z)u (18)
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8 Sliding Mode Control

where

φ(w, z) = b4(z2 + π2)p2(z + π)−
∂π4

∂w
s(w) + k1(z3 + π3 −

∂π1

∂w
s(w))

+ k2(z4 + π4 −
∂π2

∂w
s(w)) + k3(b3(z2 + π2)p1(z + π)−

∂π3

∂w
s(w)),

γ(w, z) = b4(z2) + π2 + k3b3(z2 + π2),

moreover, one can assume that φ(w, z) is an unknown perturbation term bounded by
|φ(w, z)| ≤ δφ with δφ > 0. At this point, one can propose the super-twisting controller as
follows:

u = (−ρ1

√

|σ|sign(σ) + v)/γ(w, z)

v̇ = −ρ2sign(σ), (19)

and the system (18) closed-loop by control (19) results in

σ̇ = −ρ1

√

|σ|sign(σ) + v + φ(w, z)

v̇ = −ρ2sign(σ), (20)

where the controller gains ρ1 and ρ2 are determined in a similar fashion to the procedure
outlined in the previous section.
When the sliding mode occurs, i.e., σ = 0 one can easily determine from (17) that

z4 = −k1z1 − k2z2 − k3z3

moreover the order of system (16) reduces in one, obtaining the sliding mode dynamic, i.e.,

ż1 = φsm(w, z) = f1(w, z) + g1(w, z)ueq|z4=−k1z1−k2z2−k3z3
(21)

e(z, w) = z2 + π2 − w2

ẇ = s(w).

with

f1 =

⎛

⎜

⎝

z3 + π3 −
∂π1
∂w s(w)

z4 + π4 −
∂π2
∂w s(w)

b3(z2 + π2)p1(z + π)− ∂π3
∂w s(w)

⎞

⎟

⎠
, g1(w, z) =

⎛

⎝

0
0

b3(z2 + π2)

⎞

⎠ ,

and ueq as the equivalent control calculated from σ̇ = 0 as

ueq = −
φ(w, z)

b4(w, z) + k3b3(w, z)
.

The sliding function parameters k1, k2 and k3 should stabilize the sliding mode dynamic (21).
For a proper choice of such constant parameters one can linearize the sliding mode dynamic

ż1 = Asm(κ)z
1

where Asm(κ) = ∂φsm/∂z1 |z1=0, with κ = (k1, k2, k3). In order to choose the design
parameters, a polynomial with desired poles is proposed, pd(s) = (s − λ1)(s − λ2)(s − λ3),
such that, the coefficients of the characteristic equation that results from the matrix Asm(κ) are
equalized with the ones related with pd(s), i. e., det(sI − Asm(κ)) = pd(s), in such manner
one can find explicit relations for κ. In this case limt→∞z = 0, accomplishing with the control
objective.

244 Sliding Mode Control

www.intechopen.com



Super-Twisting Sliding Mode in Motion

Control Systems 9

0 10 20 30 40
−10

−5

0

5

10

s

d
e

g
.

ω
2

x
2

0 10 20 30 40
80

85

90

95

100

s

x
1
  

(d
e

g
)

0 10 20 30 40
−0.5

0

0.5

1

1.5

s

σ

0 10 20 30 40
−2

−1

0

1

2

3

4

s

u
  

(N
−

m
)

Fig. 2. a) Output tracking of the angle of the second link. b) Angle of the first link. c) Sliding
surface. d) Control signal.

3.3 Simulations

In order to show the performance of the control methodology here proposed, simulations
are carried out. The initial condition for the Pendubot is chosen as follows: x1(0) =
1.5, x2(0) = 0.09. Moreover, plant parameter variations are considered from time t = 0,
due to possible measurement errors, therefore, the mass of the second link is considered as
m2 = 0.5, the moment of inertias of the first and second link are assumed to be I1 = 0.007
and I2 = 0.0006 respectively and the frictions of the first and second link are μ1 = 0.01 and
μ2 = 0.001 respectively. The results are given in Fig. 2, where the robust performance of the
super-twisting controller is put in evidence.

4. STSMC for induction motors with core loss

4.1 Induction motor model with core loss

In this section a super-twisting sliding mode controller for the induction motor is designed
for copper and core loss minimization. Now we show the nonlinear affine representation
for the induction motor with core loss in the stationary (α, β) reference frame taken from
Rivera Dominguez et al. (2010):

dω

dt
= η0(ψαiβ − ψβiα)−

Tl

J

dψα

dt
= −η4ψα − Npωψβ + η4Lmiα,Lm
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dψβ

dt
= −η4ψβ + Npωψα + η4Lmiβ,Lm

diα,Lm

dt
= −(η1 + η2)iα,Lm +

η1

Lm
ψα + η2iα

diβ,Lm

dt
= −(η1 + η2)iβ,Lm +

η1

Lm
ψβ + η2iβ

diα

dt
= −(Rsη3 + η5)iα − η1η3ψα

+ (η5 + η1η3Lm)iα,Lm + η3vα

diβ

dt
= −(Rsη3 + η5)iβ − η1η3ψβ

+ (η5 + η1η3Lm)iβ,Lm + η3vβ (22)

where

η0 =
3Lm Np

2J(Lr − Lm)
, η1 =

Rc

Lr − Lm
,

η2 =
Rc

Lm
, η3 =

1

Ls − Lm
,

η4 =
Rr

Lr − Lm
, η5 =

Rc

Ls − Lm
.

with ω as the rotor velocity, vα, vβ are the stator voltages, iα, iβ are the stator currents,
iα,Lm, iβ,Lm are the magnetization currents and ψα, ψβ are the rotor fluxes, with Np as the
number of pole pairs, Rs, Rr and Rc as the stator, rotor and core resistances respectively, Lls,
Llr and Lm as the stator leakage, rotor leakage and magnetizing inductances respectively.

4.2 Transformation to the (d, q) rotating frame

Now, the induction motor model (22) will be transformed to the well known (d, q) reference
frame by means of the following change of coordinates

[

id

iq

]

= e−Jθψ

[

iα

iβ

]

,

[

ψd

ψq

]

= e−Jθψ

[

ψα

ψβ

]

[

idLm

iqLm

]

= e−Jθψ

[

iαLm

iβLm

]

,

[

vα

vβ

]

= eJθψ

[

vd

vq

]

where

e−Jθψ =

[

cos θψ sin θψ

− sin θψ cos θψ

]

with

θψ = arctan

(

ψβ

ψα

)

.
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The field oriented or (d, q) model of the induction motor with core loss is now shown

˙θψ = npω +
η4LmiqLm

ψd

dω

dt
= η0iqψd −

Tl

J

dψd

dt
= −η4ψd + η4LmidLm

didLm

dt
= − (η1 + η2) idLm

+
η1ψd

Lm
+ η2id + iqLm

θ̇

diqLm

dt
= − (η1 + η2) iqLm

+ η2iq + idLm
θ̇

did
dt

= − (Rsη3 + η5) id − η1η3ψd + (η5 + η1η3Lm) idLm
+ η3vd + iq θ̇

diq

dt
= − (Rsη3 + η5) iq + (η5 + η1η3Lm) iqLm

+ η3vq − idθ̇ (23)

The control problem is to force the rotor angular velocity ω and the square of the rotor flux
modulus ψm = ψ2

α + ψ2
β to track some desired references ωr and ψm,r, ensuring at the same

time load torque rejection. The control problem will be solved in a subsequent subsection by
means of a super-twisting sliding mode controller.

4.2.1 Optimal rotor flux calculation

The copper and core losses are obtained by the corresponding resistances and currents.
Therefore, the power lost in copper and core are expressed as follows:

PL =
3

2
Rs

(

i2
d,s + i2

q,s

)

+
3

2
Rr

(

i2
d,r + i2

q,r

)

+
3

2
Rc

(

i2
d,Rc + i2

q,Rc

)

where id,r and iq,r are the currents flowing through the rotor, id,Rc and iq,Rc are the currents
flowing through the resistance that represents the core. Since PL is a positive-definite function
can be considered as a cost function and then to be minimized with any desired variables, in
this case the most suitable is the rotor flux, i. e.,

∂PL

∂ψd
= 0.

The resulting rotor flux component is given of the following form

ψd,o =

(

RrLm

Rr + Rc
+

RcLr

Rr + Rc

)

idLm
−

Rc (Lr − Lm) id

Rr + Rc

4.3 Control design

In order to solve the posed control problem using the super-twisting sliding mode approach,
we first derive the expression of the tracking error dynamics z1 = ω − ωr, z2 = ψm − ψd,o

which are the output which we want to force to zero. The error tracking dynamic for the rotor
velocity results as

ż1 = η0ψdiq −
Tl

J
− ω̇r. (24)
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Proposing a desired dynamic for z1 of the following form

ż1 = η0ψdiq −
Tl

J
− ω̇r = k1z1

one can calculate iq as a reference signal, i. e., iqr

iqr =

(

k1z1 +
Tl
J + ω̇r

)

η0ψd
(25)

in order to force the current component iq to track its reference current, one defines the
following trackng error

ξ2 = iq − iqr (26)

and tanking the derivative of this error

ξ̇2 = φq + η3vq. (27)

where
φq = − (Rsη3 + η5) iq + (η5 + η1η3Lm) iqLm

− id θ̇ψ − ˙iqr

is considered to be a bounded unknown perturbation term, i.e., |φq| ≤ δq with δq > 0. The
control law is proposed of the following form:

vq = (−ρq,1

√

|ξ2|sign(ξ2) + νq)/η3

ν̇q = −ρq,2sign(ξ2), (28)

and the system (27) closed-loop by control (28) results in

ξ̇2 = −ρq,1

√

|ξ2|sign(ξ2) + νq + φq

ν̇q = −ρq,2sign(ξ2), (29)

where the controller gains ρq,1 and ρq,2 are determined in a similar fashion to procedure
outlined in the previous section. Now, from (26) one can write iq as follows

iq = ξ2 + iqr

and when substituting it along with (25) in (24) yields to

ż1 = k1z1 + η0ψdξ2.

Finally, collecting the equations
ż1 = k1z1 + η0ψdξ2

ξ̇2 = −ρq,1

√

|ξ2|sign(ξ2) + νq + φq

ν̇q = −ρq,2sign(ξ2).

When the sliding mode occurs, i.e., ξ2 = 0, the sliding mode dynamic results as:

ż1 = k1z1
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and that with a proper choice of k1, one can lead to z1 = 0.
Let us consider the second output z2, where its dynamic results as follows:

ż2 = −η4ψd + η4LmidLm
− ˙ψdr, (30)

note that the relative degree for z2 is three, therefore in order to cope with the relative degree
of z1, one proposes the following desired dynamic for z2

ż2 = −η4ψd + η4LmidLm
− ˙ψdr = k2z2 + z3

where the new variable z3 is calculated as:

z3 = −η4ψd + η4LmidLm
− ˙ψdr − k2z2.

Taking the derivative of z3 and assigning a desired dynamic

ż3 = idLm

(

−η4
2Lm − η4η1Lm − η4η2Lm − k2η4Lm

)

+ ψd

(

η4
2 + η4η1 + k2η4

)

+ η4η2Lmid + η4LmiqLmθ̇ψ − ψ̈dr + k2 ˙ψdr = k3z3 (31)

then, one can calculate id as a reference current, i. e., idr

idr =
k3z3 − idLm

(

−η4
2Lm − η4η1Lm − η4η2Lm − k2η4Lm

)

− ψd

(

η4
2 + η4η1 + k2η4

)

η4η2Lm

+
−η4LmiqLmθ̇ψ + ψ̈dr − k2 ˙ψdr

η4η2Lm
. (32)

Defining the tracking error for the current d component

ξ1 = id − idr (33)

and by taking its derivative, i. e.,
ξ̇1 = φd + η3vd (34)

where
φd = − (Rsη3 + η5) id − η1η3ψd + (η5 + η1η3Lm) idLm

+ iq θ̇ψ − ˙idr

is considered to be a bounded unknown perturbation term, i.e., |φd| ≤ δd with δd > 0. The
control law is proposed of the following form:

vd = (−ρd,1

√

|ξ1|sign(ξ1) + νd)/η3

ν̇d = −ρd,2sign(ξ1), (35)

and the system (34) closed-loop by control (35) results in

ξ̇1 = −ρd,1

√

|ξ1|sign(ξ1) + νd + φd

ν̇d = −ρd,2sign(ξ1), (36)

where the controller gains ρd,1 and ρd,2 are determined in a similar fashion to procedure
outlined in the previous section. Now, from (33) one can write

id = ξ1 + idr
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and replacing it in (31) along with (32) yields to

ż3 = k3z3 + η4η2Lmξ1.

Finally, collecting the equations
ż2 = k2z2 + z3

ż3 = k3z3 + η4η2Lmξ1

ξ̇1 = −ρd,1

√

|ξ1|sign(ξ1) + νd + φd

ν̇d = −ρd,2sign(ξ1).

When the sliding mode occurs, i.e., ξ1 = 0, the closed-loop channel reduces its order:

ż2 = k2z2 + z3

ż3 = k3z3

one can see that the determination of k2, k3, is easily achieved in order to lead to z2 = 0.

4.4 Observer design

The first problem with the control strategy here developed is that the measurements of the
rotor fluxes and magnetization currents are not possible. This problem is solved using an
sliding mode observer. The second problem concerns the estimation of the load torque, where
a classical Luemberger observer is designed.
The proposed sliding mode observer for rotor fluxes and magnetization currents is proposed
based on (22) as follows:

dψ̂α

dt
= −η4ψ̂α − Npωψ̂β + η4Lm îα,Lm + ρανα

dψ̂β

dt
= −η4ψ̂β + Npωψ̂α + η4Lm îβ,Lm + ρβνβ

dîα,Lm

dt
= −(η1 + η2)îα,Lm +

η1

Lm
ψ̂α + η2iα + λανα

dîβ,Lm

dt
= −(η1 + η2)îβ,Lm +

η1

Lm
ψ̂β + η2iβ + λβνβ

dîα

dt
= −(Rsη3 + η5)îα − η1η3ψ̂α

+ (η5 + η1η3Lm)îα,Lm + η3vα + να

dîβ

dt
= −(Rsη3 + η5)îβ − η1η3ψ̂β

+ (η5 + η1η3Lm)îβ,Lm + η3vβ + νβ

where ρα, ρβ, λα and λβ are the observer design parameters, and να and νβ are the injected
inputs to the observer that will be defined in the following lines. Now one defines the
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estimation errors, ψ̃α = ψα − ψ̂α, ψ̃β = ψβ − ψ̂β, ĩα,Lm = iα,Lm − îα,Lm, ĩβ,Lm = iβ,Lm − îβ,Lm,

ĩα = iα − îα and ĩβ = iβ − îβ, whose dynamics can be expressed as:

dψ̃α

dt
= −η4ψ̃α − Npωψ̃β + η4Lm ĩα,Lm − ρανα

dψ̃β

dt
= −η4ψ̃β + Npωψ̃α + η4Lm ĩβ,Lm − ρβνβ

dĩα,Lm

dt
= −(η1 + η2)ĩα,Lm +

η1

Lm
ψ̃α − λανα

dĩβ,Lm

dt
= −(η1 + η2)ĩβ,Lm +

η1

Lm
ψ̃β − λβνβ

dĩα

dt
= −(Rsη3 + η5)ĩα − η1η3ψ̃α

+ (η5 + η1η3Lm)ĩα,Lm − να

dĩβ

dt
= −(Rsη3 + η5)ĩβ − η1η3ψ̃β

+ (η5 + η1η3Lm)ĩβ,Lm − νβ. (37)

Since the stator currents are measurable variables, one can choose the observer injection as
να = lαsign(ĩα) and νβ = lβsign(ĩβ). From the derivative of the following Lyapunov candidate

function Vo = 1
2 (ĩ

2
α + ĩ2

β) along the trajectories of (37), one can easily determine the following

bounds, lα > |η1η3ψ̃α − (η5 + η1η3Lm)ĩα,Lm| and lβ > |η1η3ψ̃β − (η5 + η1η3Lm)ĩβ,Lm| that

guarantees the convergence of ĩα and ĩβ towards zero in finite time. When the sliding mode

occurs, i. e., ĩα = ĩβ = 0 one can calculate the equivalent control for the injected signals

from ˙̃iα = 0 and ˙̃iβ = 0 as να,eq = −η1η3ψ̃α + (η5 + η1η3Lm)ĩα,Lm, νβ,eq = −η1η3ψ̃β + (η5 +

η1η3Lm)ĩβ,Lm, then, the sliding mode dynamic can be obtained by replacing the calculated
equivalent controls, resulting in a linear time-variant dynamic system, ǫ̇ = Ao(ω)ǫ, where

ǫ =
(

ψ̃α ψ̃β ĩα,Lm ĩβ,Lm

)T
,

Ao =

(

Ao,11 Ao,12

Ao,21 Ao,22

)

with

Ao,11 =

(

ραη1η3 − η4 −Npω
Npω ρβη1η3 − η4

)

,

Ao,12 =

(

η4Lm − ραγ 0
0 η4Lm − ρβγ

)

,

Ao,21 =

(

η1

Lm
+ λαη1η3 0

0
η1

Lm
+ λβη1η3

)

,

Ao,22 =

(

−η1 − η2 − λαγ 0
0 −η1 − η2 − λβγ

)

,

γ = η5 + η1η3Lm.
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In order to choose the design parameters, a polynomial with desired poles is proposed,
pd(s) = (s − p1)(s − p2)(s − p3)(s − p4), such that, the coefficients of the characteristic
equation that results from the matrix Ao are equalized with the ones related with pd(s), i. e.,
det(sI − Ao) = pd(s), moreover, one can assume that the rotor velocity is constant, therefore
the design parameters are easily determined. This will guarantee that limt→∞ǫ(t) = 0.
For the load torque estimation we consider that it is slowly varying, so one can assume it
is constant, i. e., Ṫl = 0. This fact can be valid since the electric dynamic of the motor is
faster than the mechanical one. Therefore, one proposes the following observer based on
rotor velocity and stator current measurements

dω̂

dt
= η0(ψ̂αiβ − ψ̂βiα)−

T̂l

J
+ l1(ω − ω̂)

dT̂l

dt
= l2(ω − ω̂).

Defining the estimation errors as eω = ω − ω̂ and eTl = Tl − T̂l one can determine the
estimation error dynamic

(

ėω

ėTl

)

=

(

−l1 − 1
J

−l2 0

)

(

eω

eTl

)

+ η0

(

ψ̃αiβ − ψ̃βiα

0

)

. (38)

When the estimation errors for the rotor fluxes in (37) are zero, equation (38) reduces to

(

ėω

ėTl

)

=

(

−l1 − 1
J

−l2 0

)

(

eω

eTl

)

(39)

where l1 and l2 can easily be determined in order to yield to limt→∞eω(t) = 0 and
limt→∞eTl(t) = 0.

4.5 Simulations

In this section we verify the performance of the proposed control scheme by means of numeric
simulations.
We consider an induction motor with the following nominal parameters: Rr = 10.1 Ω, Rs =
14 Ω, Rc = 1 kΩ, Ls = 400 × 10−3 H, Lr = 412.8 × 10−3 H, Lm = 377 × 10−3 H, J =
0.01 Kg m2.
Hence, η1 = 27, 932.96 Ω/H, η2 = 2, 652.51 Ω/H, η3 = 43.47 H−1, η4 = 282.12 Ω/H and
η5 = 43, 478.26 Ω/H.
A load torque Tl of 5 Nm, with decrements of 1 Nm and 2 Nm at 8 s and 12 s respectively, has
been considered in simulations. The reference velocity signal increases from 0 to 188.5 rad/s
in the first 5 s and then remains constant, while the rotor flux modulus reference signal is
directly taken from the calculated optimal flux.
A good tracking performance by the proposed controller can be appreciated in Figures 3 and
4. In Fig. 5 the power lost in copper and core is shown in the case of using the optimal flux
modulus and the predicted open-loop steady state values in the cases of considering or not
the core, this is a common practice when dealing with the control of the rotor flux in induction
motors. From this figure one can observe a low power lost in copper and core when using the
optimal flux, also one can note in Fig. 4 that the less is the load torque the lower is the flux
level and as a consequence the power lost is reduced.
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Fig. 3. Closed-loop velocity tracking of the proposed controller.
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Fig. 4. Closed-loop optimal flux tracking of the proposed controller.

5. Conclusions

In this chapter the super-twisting algorithm and its application to motion control systems is
shown. An under-actuated robotic system known as the Pendubot was closed-loop with a
super-twisting controller. The procedure can easily be generalized to such type of motion
systems. For that, one must consider the following generic steps: find the steady state for all
states, then, based on the dynamic of the steady state errors one proposes an sliding function
that linearly stabilizes the sliding mode dynamic. For the induction motor motion control,
the (d, q) reference frame allows to decouple the control problem simplifying the control
design. In each channel, a cascade strategy of defining first the output tracking error and
then a desired current that shapes the dynamic of such output. Therefore, the sliding surface
is simply chosen as a deviation of the current and its desired current. This strategy can be
applied to all type of electric motors. In both scenarios, the super-twisting algorithm facilitates
the motion control design and eliminates the chattering phenomenon at the outputs.
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Fig. 5. Comparison of the power lost in copper and core using the optimal flux modulus, and
the steady-state open-loop values for the flux modulus predicted by the classical fifth-order
model and the seventh-order model here presented.
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