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1. Introduction

Among the best structures for implementing recursive digital filters are lattice wave digital
(LWD) filters (parallel connections of all-pass filters). They are characterized by many attrac-
tive properties, such as a reasonably low coefficient sensitivity, a low roundoff noise level,
and the absence of parasitic oscillations. This book chapter describes an efficient algorithm
for the design of multiplierless LWD filters in the following three cases. In the first case, the
overall filter is constructed as a cascade of low-order LWD filters. As a consequence, the num-
ber of bits required for both the data and coefficient representations are significantly reduced
compared with the conventional direct-form LWD filter. In the second case, approximately
linear-phase LWD filters are constructed as a single block because it has been observed that
in this case the use of a cascade of several filter blocks does not provide any benefits over the
direct-form LWD filter design. The third case concentrates on the design of special recursive
single-stage and multistage Nth-band decimators and interpolators providing the sampling
rate conversion by the factor of N. For this filter class, the decimation and interpolation filter
in the single-stage design (the kth decimation and interpolation filter in the multistage design,
where N is factorizable as a product of K integers as N = N1N2 · · · NK) is characterized by the
fact that it can be decomposed into parallel connection of N (Nk) polyphase components that
are obtainable from cascades of first-order all-pass filters by substituting for each unit delay
N (Nk) unit delays.
The coefficient optimization is performed using the following three steps. First, an initial
infinite-precision filter is designed such that it exceeds the given criteria in order to provide
some tolerance for coefficient quantization. Second, a nonlinear optimization algorithm is
used for determining a parameter space of the infinite-precision coefficients including the
feasible space where the filter meets the given criteria. The third step involves finding the filter
parameters in this space so that the resulting filter meets the given criteria with the simplest
coefficient representation forms. The proposed algorithm guarantees that the optimum finite-
precision solution can be found for the multiplierless coefficient representation forms. Filters
of this kind are very attractive in very large-scale integration implementations because the
realization of these filters does not require the use of very costly general multiplier elements.
Several examples are included to illustrate the benefits of the proposed synthesis scheme as
well as the resulting filters.
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2. Lattice Wave Digital Filters

One of the best structures for implementing recursive digital filters are the lattice wave digi-
tal (LWD) filters (Fettweis, 1986; Fettweis et al., 1974; Gazsi, 1985; Wanhammar, 1998) that are
related to certain analog prototype networks. The number of multipliers required in the im-
plementation is directly the filter order, unlike in some other implementation forms, such as
in the canonical direct-form realizations requiring approximately twice the number of multi-
pliers.
An LWD filter consists of a parallel connection of all-pass filters. These all-pass subfilters can
be realized by using first- and second-order sections as basic building blocks. The resulting
filter structures are highly modular, thereby making them suitable for very large-scale integra-
tion (VLSI) implementations (Milić & Lutovac, 1999; Saramäki & Ritoniemi, 1993). All-pass
subfilters are also the basic building blocks of recursive half-band filters (Ansari & Liu, 1983;
Gazsi, 1985), Hilbert transformers (Brophy & Salazar, 1975; Regalia, 1993; Saramäki & Ren-
fors, 1995), filters approximately providing an arbitrary linear-phase phase response or an
arbitrary phase delay in the given passband (Saramäki & Renfors, 1995), several efficient re-
cursive filter-bank classes (Bregović, 2003; Saramäki & Bregović, 2002; Vollmer & Kopmann,
2002), and recursive Nth-band filters (Renfors & Saramäki, 1987; Taxén, 1981) that have been
found to be very efficient in sampling rate conversion applications. It is also possible to de-
sign LWD filters to have an approximately linear phase in the passband (Jaworski & Saramäki,
1994; Jones et al., 1991; Renfors & Saramäki, 1986; Surma-aho, 1997; Surma-aho & Saramäki,
1999). Such designs are suitable in applications where linear-phase finite-impulse response
(FIR) filters would have an excessive signal delay, that is, in applications demanding nar-
row transition bandwidth. This is due to the fact that the order of linear-phase FIR filters is
roughly inversely proportional to the transition bandwidth (Herrmann et al., 1973; Saramäki,
1993). In addition, those approximately linear-phase LWD filters proposed in (Surma-aho,
1997; Surma-aho & Saramäki, 1999) are superior over their linear-phase FIR equivalents, in
terms of the required number of multipliers, adders, and delay elements, in narrow-band
cases, where linear-phase FIR filters have inherently a high filter order.
This section revises the transfer functions of the filter classes under consideration in this con-
tribution. These filter classes consist of cascades of low-order LWD filters, approximately
linear-phase LWD filters, and recursive Nth-band decimators and interpolators.

2.1 Cascade Connection of LWD Filters

When considering the parallel connection of two all-pass filters, it is well-known that the co-
efficient sensitivity is very low in the passband provided that the all-pass filter structures are
constructed such that their transfer functions remain all-pass in spite of coefficient quantiza-
tion (Regalia et al., 1988). However, the stopband sensitivity is not as good. In most cases, it
has turned out that the required coefficient wordlength is roughly proportional to the required
stopband attenuation (Renfors & Saramäki, 1986). Therefore, the coefficient wordlength re-
quirements can be reduced if the filter is realized using subfilters with lower stopband atten-
uations, e.g., in cascade or, more generally, as a tapped cascaded interconnection of identical
subfilters (Saramäki & Renfors, 1987).
An approach to designing recursive filters using a cascade of different LWD filters has been
proposed in (Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki,
1999b). The main advantage of this approach is that the poles of the cascaded LWD filters are
further away from the unit circle compared with the direct LWD filters. This means that the
number of data bits and the number of bits required for the coefficient representations can be
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significantly reduced. By properly determining the number of filter stages to be cascaded as
well as their orders, all the coefficient values can be optimized to be representable as a few
powers of two. This makes the proposed filter structure very attractive for VLSI implementa-
tions as under these circumstances all the coefficient values can be simply implemented using
hardwired logic consisting of only shift operations as well as additions and/or subtractions,
instead of using very costly general multiplier elements.
The transfer function of a cascade connection of LWD filters is given by

H(z) =
K

∏
k=1

Hk(z), where Hk(z) =
1

2

[

A
(k)
0 (z) + A

(k)
1 (z)

]

. (1)

Here, the A
(k)
0 (z)’s and A

(k)
1 (z)’s are the transfer functions of stable all-pass filters of orders

M
(k)
0 and M

(k)
1 , respectively. An implementation of the above transfer function is depicted in

Fig. 1. In the sequel, the main emphasis is laid on synthesizing low-pass filters even though
high-pass, band-pass, and band-stop filters can be designed in a similar manner as will be

described in some detail in the sequel. In the low-pass case, M
(k)
0 = M

(k)
1 − 1 or M

(k)
0 =

M
(k)
1 + 1, so that M

(k)
0 + M

(k)
1 , the overall order of Hk(z), is odd. If the A

(k)
0 (z)’s and A

(k)
1 (z)’s

are implemented as a cascade of first- and second-order wave digital all-pass structures and

M
(k)
0 and M

(k)
1 are assumed to be odd and even, respectively, then the A

(k)
0 (z)’s and A

(k)
1 (z)’s

are expressible in terms of the adaptor coefficients as follows [see, e.g., (Gazsi, 1985)]:

A
(k)
0 (z) =

−γ
(k)
0 + z−1

1 − γ
(k)
0 z−1

L
(k)
0

∏
ℓ=1

−γ
(k)
2ℓ−1 + γ

(k)
2ℓ

(

γ
(k)
2ℓ−1 − 1

)

z−1 + z−2

1 + γ
(k)
2ℓ

(

γ
(k)
2ℓ−1 − 1

)

z−1 − γ
(k)
2ℓ−1z−2

with L
(k)
0 =

M
(k)
0 − 1

2

(2a)

and

A
(k)
1 (z) =

L
(k)
0 +L

(k)
1

∏
ℓ=L

(k)
0 +1

−γ
(k)
2ℓ−1 + γ

(k)
2ℓ

(

γ
(k)
2ℓ−1 − 1

)

z−1 + z−2

1 + γ
(k)
2ℓ

(

γ
(k)
2ℓ−1 − 1

)

z−1 − γ
(k)
2ℓ−1z−2

with L
(k)
1 =

M
(k)
1

2
. (2b)

If A
(k)
0 (z) possesses a real pole at z = r

(k)
0 and L

(k)
0 complex-conjugate pole pairs at z =

r
(k)
ℓ

exp(±jθ
(k)
ℓ

) for ℓ = 1, 2, . . . , L
(k)
0 and A

(k)
1 (z) possesses L

(k)
1 complex-conjugate pole pairs

at z = r
(k)
ℓ

exp(±jθ
(k)
ℓ

) for ℓ = L
(k)
0 + 1, L

(k)
0 + 2, . . . , L

(k)
0 + L

(k)
1 , then

γ
(k)
0 = r

(k)
0 , (3a)

whereas

γ
(k)
2ℓ−1 = −

(

r
(k)
ℓ

)2
and γ

(k)
2ℓ =

2r
(k)
ℓ

cos
(

θ
(k)
ℓ

)

1 +
(

r
(k)
ℓ

)2
for ℓ = 1, 2, . . . , L

(k)
0 + L

(k)
1 . (3b)
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Fig. 1. Filter structure for a cascade connection of LWD filters. The detailed implementation

of the kth transfer function Hk(z) as a parallel connection of A
(k)
0 (z) and the A

(k)
1 (z) is shown

in Fig. 2.
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Fig. 2. Implementation of the kth transfer function in Fig. 1 as a parallel connection of two

all-pass filter transfer functions. A
(k)
0 (z) and A

(k)
1 (z) are stable all-pass filter transfer functions

consisting of a cascade of first- and second-order wave digital all-pass sections. These first-
and second-order wave digital all-pass sections are constructed based on the use of two-port
adaptor structures to be described in Section 3.

Figure 2 shows the realization for a low-pass sub-filter transfer function Hk(z), where the first-
and second-order sections of (2a) and (2b) are implemented as a cascade of first- and second-
order wave-digital all-pass structures, out of which the best ones for the main purposes of this
book chapter will be considered in detail in Section 3.
In the high-pass case, the corresponding transfer function is obtained by simply changing the

sign of A
(k)
0 (z) or A

(k)
1 (z) in (1) (Gazsi, 1985). In the band-stop case, M

(k)
0 and M

(k)
1 are two

times an odd integer and an even integer, respectively, and M
(k)
0 = M

(k)
1 − 2 or M

(k)
0 = M

(k)
1 +

2. The corresponding band-pass design can be generated by changing the sign of A
(k)
0 (z) or

A
(k)
1 (z). The main difference of the band-pass and band-stop filter designs in comparison with

the low-pass and high-pass filter designs is thus that the first-order section is absent.
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2.2 Approximately Linear-Phase LWD Filters

One of the most difficult problems in digital filter synthesis is the simultaneous optimization
of the phase and magnitude responses of recursive digital filters. This is because the phase
of recursive filters is inherently nonlinear and, therefore, the frequency selectivity and phase
linearity are conflicting requirements. The most straightforward approach to arrive at a re-
cursive filter having simultaneously a selective magnitude response and an approximately
linear-phase response in the passband region is to generate the filter in two steps. First, a fil-
ter with the desired magnitude response is designed. Then, the phase response of this filter
is made approximately linear in the passband by cascading it with an all-pass phase equal-
izer (Deczky, 1972; Rabiner & Gold, 1975). The main drawback in this approach is that the
phase response of the frequency-selective filter is usually very nonlinear and, therefore, a
very high-order phase equalizer is needed in order to make the phase response of the overall
filter approximately linear.
It has turned out (Földvári-Orosz et al., 1991; Jaworski & Saramäki, 1994; Jones et al., 1991;
Lawson & Wicks, 1992; Leeb, 1991; Surma-aho, 1997; Surma-aho & Saramäki, 1999) to be more
beneficial to implement an approximately linear-phase recursive filter directly without us-
ing a separate phase equalizer. In the design techniques described in (Földvári-Orosz et al.,
1991; Jaworski & Saramäki, 1994; Jones et al., 1991; Lawson & Wicks, 1992; Leeb, 1991; Surma-
aho, 1997; Surma-aho & Saramäki, 1999), it has been observed that in order to simultaneously
achieve a selective magnitude response and an approximately linear-phase performance in
the passband, it is required that some zeros of the filter be located outside the unit circle.
For approximately linear-phase LWD filters, it has been discovered in (Saramäki & Yli-
Kaakinen, 2002) that the use of a cascade of several filter blocks does not provide any benefits
in the VLSI implementations. Therefore, the transfer function for the approximately linear-
phase LWD filters is given by (1) with K = 1, that is, H(z) is expressible as

H(z) =
1

2

[

A
(1)
0 (z) + A

(1)
1 (z)

]

, (4)

where A
(1)
0 (z) and A

(1)
1 (z) are given by (2a) and (2b), respectively.

2.3 Recursive N th-Band Decimators and Interpolators

The best structures for implementing decimation and interpolation filters in cases where
the phase linearity is not important, are the so-called recursive Nth-band filters (Renfors &
Saramäki, 1987; Saramäki & Renfors, 1998; Yli-Kaakinen et al., 1999).1 These recursive Nth-
band filters when used alone for decimation by the factor of N suffer, due to their properties,
from the drawback that, after specifying the passband edge to be ωp = απ/N with α < 1, only
aliasing into the passband region [0, ωp] can be fully avoided, but aliasing into the transition
band [ωp, π/N] occurs. In the interpolation case, this causes the corresponding imaging ef-
fects. If these effects can be tolerated and a linear-phase performance is not required, then
these recursive polyphase filters require the lowest computational complexities among the
known decimators and interpolators. From a computational point of view, it is very advan-
tageous to use multistage decimators and interpolators whenever possible, instead of using a
single-stage realization. The design of recursive Nth-band filters and their use for decimation

1 It is also possible to design recursive Nth-band filters to have an approximately linear-phase response
in the passband (Ansari & Liu, 1983; Renfors & Saramäki, 1987). These filters require significantly
higher computational complexities than the corresponding nonlinear-phase Nth-band filters, but they
compare favorably with conventional linear-phase FIR filters.
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N1

x(n)
H1(z) NKH2(z) H2(z)

y(n)

Fs/N
N2

x(n)
H1(z)H2(z

N1)H3(z
N1N2) · · · HK(z

N1N2···NK)
Fs

N1N2···NK

y(n)

Fs/N

(a)

(b)

Fs

Fig. 3. (a) A general implementation form for an N-to-1 decimator. (b) Its single-stage equiv-
alent.

and interpolation has been discussed in detail in (Renfors & Saramäki, 1987). In this arti-
cle, it has also been described how to get around the above-mentioned drawbacks by using
an additional LWD filter at the output of the overall decimator or at the input of the overall
interpolator.
Due to the duality between decimators and interpolators, the discussion in this book chapter
will concentrate on the design of decimators. If the sampling rate conversion ratio can be
factored into the product

N =
K

∏
k=1

Nk, (5)

where N1, N2, . . . , NK are integers, then the overall decimation by the factor of N can be im-
plemented using K stages as shown in Fig. 3(a) (Renfors & Saramäki, 1987). In order to con-
siderably clarify the analysis and determination of the roles of the sub-blocks of Fig. 3(a) in
simultaneously providing the desired decimation by the overall factor of N, it is advantageous
to replace the implementation of Fig. 3(a) by its its single-stage equivalent of Fig. 3(b). In this
equivalent, only one filter with transfer function

H(z) =
K

∏
k=1

Hk(z
Ñk ), where Ñ1 = 1 and Ñr =

r−1

∏
k=1

Nk for r = 2, 3, . . . , K (6)

is involved followed by decimation by a factor of N. The magnitude response of the above
overall filter is thus

|H(ejω)| =
K

∏
k=1

Hk(e
jÑkω). (7)

When the transfer functions Hk(z) for k = 1, 2, . . . , K in Fig. 3(a) are implemented with the
aid of the K recursive (nonlinear-phase) Nkth-band filters, where Nk is the decimation factor
after the kth subfilter, the transfer function in the single-stage equivalent of Fig. 3(b) is used
as a basic transfer function when synthesizing Nth-band decimators. For this purpose, this
transfer function is expressed as

H(z) =
K

∏
k=1

Hk(z
Ñk ), where Hk(z) =

1

Nk

Nk−1

∑
n=0

z
−n

A
(k)
n (zNk ). (8a)
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Fig. 4. Filter structure for multistage recursive Nth-band decimators. The A
(k)
n (z)’s are the

transfer functions of stable all-pass filters consisting of a cascade of first-order wave-digital
all-pass sections.
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A2
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AN 1–

k( )
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Hk(z)

1/Nk

Fig. 5. Commutative structure for the kth stage in Fig. 4.

Here, the transfer functions A
(k)
n (z) are the following cascades of first-order stable all-pass

transfer functions:

A
(k)
n (z) =

L̃
(k)
n +L

(k)
n

∏
ℓ=L̃

(k)
n +1

−γ
(k)
ℓ

+ z−1

1 − γ
(k)
ℓ

z−1
for n = 0, 1, . . . , Nk − 1 and for k = 1, 2, . . . , K, (8b)

where

L̃0 = 0 and L̃
(k)
n =

n−1

∑
r=0

L
(k)
r for n = 0, 1, . . . , Nk − 1. (8c)

Hence, each A
(k)
n for n = 0, 1, . . . , Nk − 1 and for k = 1, 2, . . . , K possesses L

(k)
n real poles at

z = r
(k)
ℓ

= γ
(k)
ℓ

for ℓ = L̃
(k)
n + 1, L̃

(k)
n + 2, . . . , L̃

(k)
n + L

(k)
n .

The transfer function of (8a), (8b), and (8c) corresponds to the decimation structure of Fig. 4.
From the practical implementation point of view, this structure becomes very attractive if the
kth transfer function followed by decimation by the factor of Nk is replaced by the highly ef-
ficient commutative structure of Fig. 5 (Crochiere & Rabiner, 1983). The advantages of this

structure are that the delay line is not needed and the branch filters A
(k)
n (zNk )’s are imple-

mented as A
(k)
n (z)’s at the lower sampling rate. This reduces by the factor of Nk both the

number of multiplications per input sample and the delay terms required for implementing
the branch filters.
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3. Coefficient Representation under Consideration

This contribution concentrates on the coefficient quantization in fixed-point arithmetic. In
many implementations, it is attractive to carry out the multiplication of a data sample by
a filter coefficient value using a sequence of shifts and adds and/or substracts. For such a
purpose, it is desirable to express the coefficient values in the form

R

∑
r=1

ar2−Pr , (9)

where each of the ar’s is either 1 or −1 and the Pr’s are non-negative integers in the increasing
order.
The goal in optimization problems stated in Section 4 is to minimize the implementation cost
by finding all the coefficient values in such a way that, first, R, the number of powers of two,
is made as small as possible and, then, PR, the number of fractional bits, is made as small as
possible.
A reasonable estimate for the implementation cost of the filter is the number of adders and/or
subtracters required to implement all the adaptor coefficients. When using this estimate, the
overall silicon area and the power consumption required by the full-custom VLSI implemen-
tation of the filter is roughly minimized (Ohlsson et al., 2001; Wanhammar, 1998).
It should be pointed out that, in addition to adders and/or subtracters needed for the adaptor
coefficients, several structural adders are also required for implementing the wave-digital all-
pass sections. These first- and second-order wave-digital all-pass sections are constructed
based on the use of two-port adaptor structures and delays as depicted in Fig 2. For LWD
filters, there exists a great variety of adaptor structures according to the realization possibilities
of the analog reference filters (Fettweis, 1986; Fettweis et al., 1974; Gazsi, 1985). The actual
multipliers to be implemented and the number of structural adders required to implement
the two-port adaptor structures depends on the selected adaptor type.
Figure 6 shows particular symmetric two-port adaptor structures that lead to the optimal scal-
ing for a sinusoidal excitation according to the discussion in (Gazsi, 1985). However, it has
been shown, based a further study performed in (Renfors & Zigouris, 1988), that in some
cases for the second-order wave-digital all-pass sections, the additional scaling factors c and
1/c are required at the input and the output of the second adaptor, respectively, in order to
achieve the optimal scaling. In order to keep the resulting second-order sections still all-pass,
c must be a (positive or negative) power of two. Due to this fact, the above improved scaling
has no effect on the overall procedure and the results achieved in this contribution.
The selection among the four optional structures of Fig. 6 depends on the value of the mul-
tiplier γ such that the structures of Figs. 6(a), 6(b), 6(c), and 6(d) are chosen for 1

2 < γ < 1,

0 < γ ≤ 1
2 , − 1

2 ≤ γ < 0, and −1 < γ < − 1
2 , respectively. In these cases, the value of α, the

actual multiplier to be implemented, depends on the value of γ as follows:

α =



















1 − γ for 1
2 < γ < 1

γ for 0 < γ ≤ 1
2

−γ for − 1
2 ≤ γ < 0

1 + γ for −1 < γ < − 1
2 .

(10)

Consequently, the value of α is always positive and less than or equal to half. Therefore, when
the absolute value of γ is greater than half, the number of adders required for implementing
the corresponding α coefficient decreases by one.
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Fig. 6. Efficient two-port adaptor structures yielding optimal scaling for a sinusoidal excitation
(Gazsi, 1985).

4. Optimization Problems for the Filter Classes under Consideration

This chapter summarizes the optimization problems for all the three filter classes under con-
sideration in this book chapter. For each filter class, the specifications, the adjustable parame-
ter vector, and the optimization problem will be described.
Before stating the optimization problem for each of the above-mentioned three filter classes,
the transfer function for each filter class is denoted in the same manner by H(Φ, z), where
Φ is the adjustable parameter vector containing the adjustable parameters which depend on
the filter class at hand in a manner to be described later on. Similarly, the magnitude criteria
are stated in the common manner as follows. Given Ωp and Ωs, the passband and stopband
regions, respectively, as well as δp and δs, the passband and stopband ripples, respectively, the
magnitude specifications for the filter are stated as follows:

1 − δp ≤ |H(Φ, ejω)| ≤ 1 for ω ∈ Ωp (11a)

|H(Φ, ejω)| ≤ δs for ω ∈ Ωs. (11b)

It is worth pointing out that these specifications are typical of most recursive filters built using
all-pass filters as building blocks as, in these most cases, the filter structure constrains the max-
imum of the magnitude response to be unity. Alternatively, the above criteria are expressible
as

|E(Φ, ω)| ≤ 1 for ω ∈ Ωp ∪ Ωs (12a)

E(Φ, ω) ≤ 0 for ω ∈ Ωp, (12b)

where
E(Φ, ω) = W(ω)[|H(Φ, ejω)| − D(ω)] (12c)

with

D(ω) =

{

1 for ω ∈ Ωp

0 for ω ∈ Ωs
and W(ω) =

{

1/δp for ω ∈ Ωp

1/δs for ω ∈ Ωs.
(12d)
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As the third option for later use, the above magnitude criteria are stated as

0 ≤ 20 log10|H(Φ, ejω)| ≤ −Ap for ω ∈ Ωp (13a)

20 log10|H(Φ, ejω)| ≤ −As for ω ∈ Ωs, (13b)

where

Ap = −20 log10(1 − δp) and As = −20 log10(δs) (13c)

are the admissible positive passband variation and stopband attenuation, respectively. These
criteria will be mainly used in connection of Examples of Section 6 for specifying the magni-
tude criteria for the three filter classes under consideration.
The target in all of the following optimization problems is to find the quantized values of the
adaptor coefficients corresponding to the parameter values included in Φ such that, first, the
coefficient values are expressible in the form of (9) and, second, the number of adders and
subtracters required to implement all the adaptor coefficient is minimized.

4.1 Cascade Connection of LWD Filters

According to the construction of the overall transfer function for these filters in Subsection 2.1
by means of (1), (2a), (2b), (3a), and (3b), the optimization problem is stated in the low-pass

case as follows: Find K, the number of sub-stages, M
(k)
0 and M

(k)
1 for k = 1, 2, . . . , K, the orders

of the all-pass subfilters, as well as the adjustable parameter vector as given by

Φ =
[

r
(1)
0 , r

(1)
1 , . . . , r

(1)

L
(1)
0 +L

(1)
1

, θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)

L
(1)
0 +L

(1)
1

,

r
(2)
0 , r

(2)
1 , . . . , r

(2)

L
(2)
0 +L

(2)
1

, θ
(2)
1 , θ

(2)
2 , . . . , θ

(2)

L
(2)
0 +L

(2)
1

, . . . ,

r
(K)
0 , r

(K)
1 , . . . , r

(K)

L
(K)
0 +L

(K)
1

, θ
(K)
1 , θ

(K)
2 , . . . , θ

(K)

L
(K)
0 +L

(K)
1

]

,

(14)

in such a way that the criteria given by (12a)–(12d) are met and the above-mentioned target
for the coefficient implementations is achieved.

4.2 Approximately Linear-Phase LWD Filters

In the sequel, when synthesizing approximately linear-phase low-pass LWD filters, in addi-
tion to the magnitude criteria of (12a)–(12d), the phase requirements are stated as follows
(Surma-aho & Saramäki, 1999):

|arg H(Φ, ejω)− τω| ≤ ∆ for ω ∈ Ωp. (15)

Here, arg H(Φ, ejω) denotes the unwrapped phase response of the filter, whereas τ is the
value minimizing the maximum absolute value of arg H(Φ, ejω) − τω on the passband re-
gion Ωp and ∆ is the upper limit for this maximum. Since only a single LWD filter is under
optimization, the adjustable vector reduces to

Φ =
[

r
(1)
0 , r

(1)
1 , . . . , r

(1)

L
(1)
0 +L

(1)
1

, θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)

L
(1)
0 +L

(1)
1

]

. (16)

In this case, the optimization problem is the following: Find M
(1)
0 and M

(1)
1 , the orders of the

all-pass subfilters, as well as the adjustable parameter vector Φ, as given by (16), in such a
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way that in addition to meeting the magnitude criteria of (12a)–(12d), the phase specifications
of (15) are satisfied and the above-mentioned target for the coefficient implementations is
achieved.

4.3 Recursive N th-Band Decimators and Interpolators

If the desired sampling rate conversion factor is N, then the passband region of the decimation
filter is selected as Ωp = [0, ωp] where ωp < π/N. The selection of the stopband region
Ωs depends on whether or not aliasing is allowed into the transition band [ωp, π/N] of the
filter. Due to the properties of recursive Nth-band filters, their stopband region for the above-
specified passband region is inherently restricted to be (Renfors & Saramäki, 1987)

Ωs =
⌊N/2⌋
⋃

r=1

[

r
2π

N
− ωp, min

(

r
2π

N
+ ωp, π

)

]

. (17)

This region has the following properties. First, for N > 3, Ωs is a multiband stopband region
that consist of ⌊N/2⌋ bands such that the first ⌊N/2⌋ − 1 bands are [r2π/N − ωp, r2π/N +
ωp] for r = 1, 2, . . . , ⌊N/2⌋− 1 and the last band is [π −ωp, π] and [(N − 1)2π/N −ωp, (N −
1)π/N +ωp] for N even and odd, respectively (As a typical example, see Fig. 19 in Subsection
6.3 showing the magnitude response for a finite-precision eighth-band (N = 8) design.). Sec-
ond, for N = 2 and N = 3, Ωs = [π − ωp, π] and Ωs = [2π/3− ωp, 2π/3+ ωp], respectively.
Therefore, first, the lower edge of the first stopband region is located at ω = 2π/N − ωp and,
second, Ωs has for N > 2, in addition to the transition band of width 2(π/N − ωp), don’t
care bands of the same width around ωr = (2r + 1)π/N for r = 1, 2, . . . , ⌊(N + 1)/2⌋ − 1.
The above stopband region guarantees that the aliasing is fully avoidable into the passband
region. If this control is desired to extend onto [0, π/N], then an additional LWD filter can be
implemented after the overall decimation (Renfors & Saramäki, 1987).
This book chapter concentrates on the design of those single-stage and multistage recursive
Nth-band decimators, where this additional LWD filter is excluded. For this purpose, the
following second main characteristics of the recursive Nth-band filters is utilized. If the max-
imum magnitude value of the filter on Ωs is δs, then it is guaranteed that in the minimum

magnitude value on the passband region [0, ωp] is larger than or equal
√

1 − (N − 1)(δs)2

(Renfors & Saramäki, 1987). This implies that for any practical stopband attenuation on Ωs,
the passband variation becomes negligible. Consequently, the design of recursive Nth-band
decimator can concentrate on the stopband region Ωs only. Therefore, the criteria of (11) can
be reduced into the following form:

E(Φ, ω) = |H(Φ, ejω)| ≤ δs for ω ∈ Ωs, (18)

where Ωs is given by (17).
According to the construction of the overall transfer function in the single-stage equivalent in
Subsection 2.3 by means of (5), (6), (8a), (8b), and (8c), the optimization problem is stated as
follows: Find K, the number of sub-stages, N1, N2, . . . , NK , the decimation factors of the sub-

stages, the L
(k)
n ’s, the orders of the branch filters, as well as the adjustable parameter vector as
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given by

Φ =
[

r
(1)
1 , r

(1)
2 , . . . , r

(1)

L
(1)
0 +L

(1)
1 +···+L

(1)
N1−1

,

r
(2)
1 , r

(2)
2 , . . . , r

(2)

L
(2)
0 +L

(2)
1 +···+L

(2)
N2−1

, . . . ,

r
(K)
1 , r

(K)
2 , . . . , r

(K)

L
(K)
0 +L

(K)
1 +···+L

(K)
NK−1

]

,

(19)

in such a way that criteria given by (18) are met and the above-mentioned target for the coef-
ficient implementations is achieved.

5. Filter Optimization

The solutions to the three optimization problems stated in the previous section can be found
in a similar manner by using the following three steps. In the first step, a filter with infinite-
precision coefficients is determined in such a way that it exceeds the given frequency-domain
criteria in order to provide some tolerance for coefficient quantization. Then, in the second
step, the smallest and largest values are determined for each adjustable parameter by reop-
timizing the remaining unknowns in the parameter vector in such a manner that the given
specifications are met. This enables one to find the parameter space of the infinite-precision
coefficients including the feasible space where the filter meets the specifications. Finally, the
third step involves finding the filter parameters in this space so that the resulting filter meets
the given criteria with the simplest coefficient representation forms. This strategy is general
but particularly efficient for LWD filters due to the fact that for these filters only the denomi-
nator coefficients of the all-pass sections have to be quantized.
The proposed quantization scheme provides significant advantages over those based on the
use of other existing techniques. First of all, it is always guaranteed that the optimum solution
can be found to the above three optimization problems. Second, the computational workload
to arrive at the optimum finite-precision solution is in most cases significantly smaller than in
other existing techniques.

5.1 Generating the Initial Infinite-Precision Solution

In many cases, finding a good initial solution is not trivial as it implies a good understanding
and characterization of the problem. Furthermore, for each problem at hand the way of gen-
erating the start-up solution is very different. If there is a systematic approach for finding an
initial solution being close to the optimum one, then the above-described three-step procedure
gives in most cases more quickly a solution that is better than those obtained, e.g., by using
simulated annealing or genetic algorithms.

5.1.1 Cascade connection of LWD filters

The design of an initial conventional LWD filter for further optimization can be carried out
by, first, using an appropriate classical analog-filter approximation and, then, converting the
resulting continuous-time transfer function into a desired discrete-time transfer function (An-
toniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010). Another approach for designing an initial
filter is to use explicit formulas developed directly for digital filters in (Gazsi, 1985). It is well
known that the odd-order elliptic filter is the most selective low-pass or high-pass filter be-
ing implementable as a parallel connection of two all-pass filters [see, e.g., (Gazsi, 1985)]. For
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Fig. 7. Alternating distribution for the poles of a prototype filter among the two all-pass filters
A0(z) and A1(z) for a seventh-order low-pass filter with ωp = 0.4π, ωs = 0.5π, Ap = 0.2 dB

(δp = 0.0228), and As = 60 dB (δs = 10−3).

conventional low-pass, high-pass, band-pass and, band-stop criteria, the order of an elliptic
filter meeting the given specifications can be estimated using the well-known approximation
formulas (Antoniou, 1993; Rabiner & Gold, 1975; Schüßler, 2010).
Since the real pole and the complex-conjugate pole pairs of the all-pass filters for low-pass and
high-pass designs have the real zero and complex-conjugate zero pairs in conjugate reciprocal
positions (Antoniou, 1993; Schüßler, 2010), the poles of the designed filter unambiguously
determine the all-pass filters. After knowing the poles of the filter, the problem is to implement
the overall transfer function in such a way that the poles are properly shared between the two
all-pass sections A0(z) and A1(z). If the poles are distributed in the low-pass case in a regular
manner, then A0(z) can be selected to realize the real pole, the second innermost complex-
conjugate pole pair, the fourth innermost complex-conjugate pole pair and so on, whereas
A1(z) realizes the remaining poles (Gazsi, 1985). For a very complicated pole distribution, the
procedure described in (Saramäki, 1985) can be used for sharing the poles between A0(z) and
A1(z). The alternating distribution of the poles among the two all-pass filters for a seventh-
order elliptic prototype filter is illustrated in Fig. 7.
The above discussion applies directly to a single LWD filter. For the cascades of low-order
LWD filters, in turn, it has turned out to be advantageous in most cases to select all the

A
(k)
0 (z)’s and the A

(k)
1 (z)’s to be of the same order, respectively. In this case, the starting

point filter for further optimization can be determined by using several identical copies of
the same subfilter. For K identical copies of the same subfilter, the passband and stopband
ripples for this subfilter should be approximately equal to δp/K and K

√
δs, respectively. There

is clearly a trade-off between K, the number of subfilters, and the order of the subfilter; the
higher is the value of K, the lower is the order of the subfilter. However, since the subfilter
order is restricted to be an odd integer, there are only a few practical combinations for the
subfilter order and K. It is not necessary for the subfilter being an odd-order elliptic filter to
exactly meet the ripple requirements. This is due to the fact that further optimization makes
the subfilters different and simultaneously improves the overall filter performance.
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5.1.2 Approximately linear-phase LWD filters

For these low-pass LWD filters, there exist no closed-form solution for satisfying both the
magnitude criteria of (12a)–(12d) and the phase criteria of (15). Therefore, these filters have
to be designed using optimization techniques. An efficient systematic algorithm for design-
ing an initial solution for these filters has been proposed in (Surma-aho, 1997; Surma-aho &
Saramäki, 1999). This design scheme consists of two basic steps. The first step involves finding
in a simple straightforward manner a good suboptimal solution that determines Φ so that ∆ in
(15) has a reasonably small value subject to the magnitude specifications. In the second step,
this solution is then used as an initial filter for further optimization carried out with the aid
of a constrained optimization for minimizing the value of ∆ in (15) subject to the magnitude
criteria.

5.1.3 Recursive N th-band decimators and interpolators

The initial infinite-precision solutions for the recursive Nth-band filter in both the single-
stage and multistage implementations can be properly synthesized by utilizing the synthesis
schemes described in (Renfors & Saramäki, 1987). The design of single-stage filters relies on
the properties of these filters and enables one to significantly reduce the number of the origi-
nal unknowns. Furthermore, the remaining unknowns can be found by means of an efficient
Remez-type algorithm. As a result, solutions being very close to the optimized solutions can
be achieved in a very fast and reliable manner in comparison with other existing very time-
consuming optimization techniques, which are based on optimizing the original unknowns
and do not necessarily guarantee the arrival at the optimized solution.
The multistage design, in turn, counts on the fact that each stage, as has been observed in
(Renfors & Saramäki, 1987), has its own predetermined frequency range to take care of in
order to provide the desired magnitude response for the overall design. Based on this fact,
the simultaneous design of the sub-stages can be conveniently performed by iteratively de-
termining them such that they provide for the overall filter as high attenuation as possible in
their predetermined frequency ranges. This iteration is continued until the successive overall
solutions become practically the same. What is left is to determine the minimum filter orders
to meet the given specifications.

5.2 Optimization of Infinite-Precision Filters

The optimization algorithm is based on the following observation. Finding the smallest and
largest values for each adjustable parameter by reoptimizing the remaining unknowns in the
parameter vector so that the given criteria are still met enables one to determine a parameter
space including the feasible space where the filter specifications are satisfied. After figuring
out this space, all that is needed is to check whether in this space there exist the desired discrete
values for the given coefficient representation form.

5.2.1 Cascade connection of LWD filters

For cascaded LWD filters, the parameter space of the infinite-precision coefficients can be
determined as follows. For each complex-conjugate pole pair, the smallest and largest values
for both the radius and the angle are determined so that by reoptimizing the locations of the
remaining poles the given overall magnitude criteria of (12a)–(12d) can still be met. For the
real pole, the smallest and largest values for the radius are found in the same manner.
The above procedure gives for the upper-half-plane pole of each complex-conjugate pole pair

r
(k)
ℓ

exp(±jθ
(k)
ℓ

) for ℓ = 1, 2, . . . , L
(k)
0 + L

(k)
1 and for k = 1, 2, . . . , K, the region R exp(jΘ) where
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Fig. 8. Typical search spaces for the poles when three powers of two with seven fractional bits
(R = 3 and PR = 7) are used for the adaptor coefficients. (a) Upper-half-plane pole for the
complex-conjugate pole pair. (b) Real pole.

R(min) ≤ R ≤ R(max) and Θ(min) ≤ Θ ≤ Θ(max), as illustrated in Fig. 8(a). The crosses
numbered by 1, 2, 3, and 4 correspond, respectively, to the points where the smallest radius

R(min), the largest radius R(max), the smallest angle Θ(min), and the largest angle Θ(max) are
reached. Inside this region, there is the feasible region, given by the dashed line in Fig. 8(a),
where the pole can be located such that by relocating the remaining poles the given overall

criteria are still met by using an infinite-precision arithmetic. For each real pole r
(k)
0 for k =

1, 2, . . . , K, there exists the corresponding region R
(min)
0 ≤ R ≤ R

(max)
0 that is simultaneously

the feasible region. In Fig. 8(b), the crosses numbered by 5 and 6 indicate R
(min)
0 and R

(max)
0 ,

respectively.
For the complex-conjugate pole pairs, the larger region is used because it can be found very
quickly by applying only four times the algorithm to be described next. For the real pole,
there is a need to use this algorithm only twice. Hence, in order to find the above-mentioned
regions for all the poles of the low-pass transfer function, as given by (1), (2a), (2b), (3a), and

(3b), there are for each of the K sub-stages 2 + 4(L
(k)
0 + L

(k)
1 ) problems of the following form:

Find the adjustable parameter vector Φ to minimize ψ subject to the conditions of (12a)–(12d).

For these problems, ψ is r
(k)
0 and −r

(k)
0 for the real pole, whereas for the complex-conjugate

pole pairs, ψ is selected to be r
(k)
ℓ

, −r
(k)
ℓ

, θ
(k)
ℓ

, and −θ
(k)
ℓ

for ℓ = 1, 2, . . . , L
(k)
0 + L

(k)
1 .
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In order to guarantee the stability of the resulting filters and to prevent the poles from chang-
ing their ordering, e.g., to inhibit the outermost complex-conjugate pole pair from becoming
the second outermost complex-conjugate pole pair when minimizing its radius, the following
additional constraints:

− 1 ≤ r
(1)
0 ≤ r

(2)
0 ≤ · · · ≤ r

(K)
0 < 1 (20a)

and

0 ≤ r
(1)
1 ≤ r

(2)
1 ≤ · · · ≤ r

(K)
1 ≤ r

(1)

L
(1)
0 +1

≤ r
(2)

L
(2)
0 +1

≤ · · · ≤ r
(K)

L
(K)
0 +1

≤ r
(1)
2 ≤ r

(2)
2 ≤ · · · ≤ r

(K)
2 ≤ r

(1)

L
(1)
0 +2

≤ r
(2)

L
(2)
0 +2

≤ · · · ≤ r
(K)

L
(K)
0 +2

≤ · · ·

≤ r
(1)

L
(1)
0

≤ r
(2)

L
(2)
0

≤ · · · ≤ r
(K)

L
(K)
0

≤ r
(1)

L
(1)
0 +L

(1)
1

≤ r
(2)

L
(2)
0 +L

(2)
1

≤ · · · ≤ r
(K)

L
(K)
0 +L

(K)
1

< 1 (20b)

are required.2

For later use, Φ
(k)
1 and Φ

(k)
2 denote the solutions with minimized r

(k)
0 and −r

(k)
0 (maximized

r
(k)
0 ), whereas

Φ
(k)

2+ℓ
, Φ

(k)

2+(L
(k)
0 +L

(k)
1 )+ℓ

, Φ
(k)

2+2(L
(k)
0 +L

(k)
1 )+ℓ

, and Φ
(k)

2+3(L
(k)
0 +L

(k)
1 )+ℓ

for ℓ = 1, 2, . . . , L
(k)
0 + L

(k)
1 denote the solutions with the minimized r

(k)
ℓ

, the minimized −r
(k)
ℓ

(maximized r
(k)
ℓ

), the minimized Θ
(k)
ℓ

, and the minimized −Θ
(k)
ℓ

(maximized Θ
(k)
ℓ

), respec-
tively.
To solve these problems, the passband and stopband regions in the magnitude criteria of
(12a)–(12d) are discretized into the frequency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp and ωi ∈ Ωs

for i = Ξp + 1, Ξp + 2, . . . , Ξp + Ξs, which gives rise to the following discretized criteria:

|E(Φ, ωi)|− 1 ≤ 0 for i = 1, 2, . . . , Ξp + Ξs (21a)

and

E(Φ, ωi) ≤ 0 for i = 1, 2, . . . , Ξp. (21b)

The resulting discrete minimization problems are to find Φ to minimize ψ subject to the con-
straints of (20a) and (20b) and the constraints of (21a) and (21b). Here, ψ is one of the above-

mentioned 2 + 4(L
(k)
0 + L

(k)
1 ) problems for each of the K sub-stages, that is, the total number

2 In these constraints, it is assumed that the following two facts are valid. First, the transfer function,
as given by (1), (2a), (2b), (3a), and (3b), is either a low-pass or high-pass filter design. Second, the

orders of K subfilters, as given by 2(L
(k)
0 + L

(k)
1 ) + 1 for k = 1, 2, . . . , K are the same, denoted by 2L̃ + 1

so that each stage has L̃ complex-conjugate pole-pairs. Under these assumptions, (20a) means that the
radius of the real pole for the (k + 1)th stage is larger than that for the kth stage for k = 1, 2, . . . , K − 1.
According to (20b), the same is true when considering the radii of the innermost complex-conjugate

pole pairs included in the K sub-stages. Furthermore, this fact is valid up to the L̃th innermost pole
pairs (that are simultaneously the outmost pole pairs) in these sub-stages. In addition, (20b) implies
that the radius of the second innermost complex-conjugate pole pair in the first stage is larger than the
radius of the innermost complex-conjugate pole pair in the last stage and the same constraint is true up

to the L̃th innermost pole pairs.
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of problems is
K

∑
k=1

[

2 + 4(L
(k)
0 + L

(k)
1 )

]

.

The above-mentioned problems can be conveniently solved by using the second algorithm
of Dutta and Vidyasagar (Dutta & Vidyasagar, 1977) or the function fmincon from the op-
timization toolbox provided by MathWorks, Inc. (Coleman et al., 1999). For more detail, see
(Saramäki & Yli-Kaakinen, 2002; Yli-Kaakinen, 2002; Yli-Kaakinen & Saramäki, 2007).
For transfer functions, as given by (1), (2a), (2b), (3a), and (3b), the key goal is to quantize

the adaptor coefficients γ
(k)
ℓ

for ℓ = 0, 1, . . . , 2(L
(k)
0 + L

(k)
1 ) and for k = 1, 2, . . . , K to achieve

the optimization target stated in Section 4. It can be shown that the larger region including
the feasible region, where LWD filter meets the given criteria, can be determined, by means

of the above solutions Φ
(k)
p for p = 1, 2, . . . , 2 + 4(L

(k)
0 + L

(k)
1 ) and for k = 1, 2, . . . , K, by

specifying the minimum and maximum values of γ
(k)
ℓ

for ℓ = 0, 1, . . . , 2(L
(k)
0 + L

(k)
1 ) and for

k = 1, 2, . . . , K as follows:

γ
(k)(min)
ℓ

= min
p=1,2,...,2+4(L

(k)
0 +L

(k)
1 )

{γ
(k)
ℓ,p} and γ

(k)(max)
ℓ

= max
p=1,2,...,2+4(L

(k)
0 +L

(k)
1 )

{γ
(k)
ℓ,p}, (22)

where γ
(k)
ℓ,p denotes the value of γ

(k)
ℓ

determined according to the pth solution, Φ
(k)
p , of the

above-mentioned optimization problems.
As shown in Fig. 8(a), the search space determined in the above manner by the adaptor coeffi-
cient values for the complex-conjugate pole pairs is significantly larger than the corresponding
original space found in terms of the radius and the angle for the pole pair under consideration.
When concentrating in the sequel on determining desired finite-precision values for the adap-
tor coefficients, the use of the smaller search space will be utilized in a manner to be described
later on in Subsection 5.3.4.

5.2.2 Approximately linear-phase LWD Filters

When determining the smallest and largest radius of the real pole and the smallest and largest
values of the radius and the angle for each of the complex-conjugate pole pairs for the approx-
imately linear-phase LWD filters, there are two main differences compared to the cascaded
LWD filters. First, the overall filter is constructed as a single stage, that is, K = 1. Therefore,
the constraints of (20a) and (20b) reduce, in the low-pass case, to the constraints that all the
radii are less than unity and the complex-conjugate pole pairs are ordered in terms of their
radii such that their ordering remains intact. Second, in addition to the above-mentioned con-
straints on the radii of the poles and the magnitude-response constraints of (21a) and (21b),
the following phase-response constraints:

|arg H(Φ, ejωi )− τωi| − ∆ ≤ 0 for i = 1, 2, . . . , Ξp (23)

should be included. These constraints are obtained from the original phase response con-
straint, as given by (15) in Subsection 4.2, by dicretizing the passband region into the fre-
quency points ωi ∈ Ωp for i = 1, 2, . . . , Ξp in a manner similar to that performed earlier for
the magnitude criteria.
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5.2.3 Recursive N th-band decimators and interpolators

For recursive Nth-band decimators and interpolators, there are also two differences compared
to the cascaded LWD filters when determining the parameter space of the infinite-precision
coefficients. First, the transfer functions, as given by (8a), (8b), and (8c), have only real poles

and, therefore, the number of problems reduces to 2 ∑
Nk−1
n=0 L

(k)
n for each of the K sub-stages.

For these problems, ψ is r
(k)
ℓ

and −r
(k)
ℓ

for ℓ = 1, 2, . . . , L
(k)
0 + L

(k)
1 + · · · + L

(k)
Nk−1 and for

k = 1, 2, . . . , K. In this case,

Φ
(k)
ℓ

and Φ
(k)

L
(k)
0 +L

(k)
1 +···+L

(k)
N

k
−1+ℓ

for ℓ = 1, 2, . . . , L
(k)
0 + L

(k)
1 + · · ·+ L

(k)
Nk−1 denote the solutions with minimized r

(k)
ℓ

and −r
(k)
ℓ

(maximized r
(k)
ℓ

), respectively. The above procedure gives for each real pole r
(k)
ℓ

for ℓ =

1, 2, . . . , L
(k)
0 + L

(k)
1 + · · ·+ L

(k)
NK−1 and for k = 1, 2, . . . , K, the region r

(k)(min)
ℓ

≤ r
(k)
ℓ

≤ r
(k)(max)
ℓ

that is directly the feasible region, where the pole can be located such that by relocating the re-
maining poles the given overall criteria are still met by using the infinite-precision arithmetic.
Second, the constraints of (20a) and (20b) for the radii of the real poles and for the complex-
conjugate pole pairs are replaced by the following constraints for radii of the real poles:

−1 ≤ r
(k)
1 ≤ r

(k)

L
(k)
0 +1

≤ · · · ≤ r
(k)

L
(k)
0 +L

(k)
1 +···+L

(k)
N1−2+1

≤ r
(k)
2 ≤ r

(k)

L
(k)
0 +2

≤ · · · ≤ r
(k)

L
(k)
0 +L

(k)
1 +···+L

(k)
N1−2+2

≤ · · · ≤

≤ r
(k)

L
(k)
0

≤ r
(k)

L
(k)
0 +L

(k)
1

≤ · · · ≤ r
(k)

L
(k)
0 +L

(k)
1 +···+L

(k)
N1−1

≤ 0, (24)

for k = 1, 2 . . . , K.3

3 In this constraint, each of the K sub-stages is considered independently of each other due to their own
predetermined frequency-response shaping responsibilities in providing the desired overall magnitude
response (Renfors & Saramäki, 1987) in contrast to the cascaded LWD filters, where all the filter stages
generate as joint effort the overall response in the same passband and stopband regions. For the kth
stage for k = 1, 2, . . . , K, the above constraint simply means the following four experimentally observed
facts. First, all the poles are located on the negative real axis. Second, if the overall number of adjustable
poles in the kth stage is T1 Nk + T2, where Nk is the decimation factor after this stage and T1 and T2 are

integers, then the nth all-pass filter transfer function A
(k)
n (z), which is involved in generating the kth

stage in the single-stage equivalent in Section 2.3 according to (8a), (8b), and (8c), contains T1 + 1 and
T1 adjustable real pole locations for n = 0, 1, . . . , T2 − 1 and for n = T2, T2 + 1, . . . , Nk − 1, respectively.
Third, when considering the radii of the outermost poles in the above-mentioned all-pass filter transfer
functions for n = 0, 1, . . . , T2 − 1, the radius of the nth transfer function is less than that of (n + 1)th
transfer function. Fourth, if T1 > 1 and it is assumed that the outermost real pole is absent for n =
T2, T2 + 1, . . . , Nk − 1, then the following two additional facts are true. First, the above-mentioned
third fact is true starting from the second outermost real poles up to the innermost real pole for n =
0, 1, . . . , Nk − 1. Second, if the location of the pole of the last transfer function is more innermost than
that of first transfer function, then its radius is smaller.
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5.3 Optimization of Finite-Precision Filters

It has been experimentally proved that the above-defined parameter space for each of three fil-
ter types under consideration forms a space including the feasible space where the filter spec-
ifications are satisfied. After finding this larger space, all that is needed is to check whether in
this space there exist combinations of the discrete pole positions with which the given overall
criteria are met.

5.3.1 Cascade connection of LWD filters

For cascade connections of low-order LWD filters, this search can be conveniently accom-

plished by first finding the sets of powers-of-two numbers Γ
(k)
ℓ

for ℓ = 0, 1, . . . , 2(L
(k)
0 + L

(k)
1 )

and for k = 1, 2, . . . , K between the smallest and largest values of each adaptor coefficient, that
is, by determining

{

Γ
(k)
ℓ

∈ POT(R,PR)

∣

∣ γ
(k)(min)
ℓ

≤ Γℓ ≤ γ
(k)(max)
ℓ

}

. (25)

for ℓ = 0, 1, . . . , 2(L
(k)
0 + L

(k)
1 ) and for k = 1, 2, . . . , K. Here, POT(R,PR) denotes the space of the

powers-of-two numbers for R, the given maximum number of power-of-two terms, and PR,

the maximum number of fractional bits [cf. (9)]. Denote by S
(k)
ℓ

the number of powers-of-two

values between γ
(k)(min)
ℓ

and γ
(k)(max)
ℓ

. Furthermore, denote by Γ
(k)(s)
ℓ

for s = 1, 2, . . . , S
(k)
ℓ

the
sth existing discrete value between these smallest and largest values.

The magnitude response is then evaluated for each combination of the Γ
(k)(s)
ℓ

for ℓ =

0, 1, . . . , 2(L
(k)
0 + L

(k)
1 ) and s = 1, 2, . . . , S

(k)
ℓ

to check whether the filter meets the given specifi-
cations. Hence, the number of discrete coefficient value combinations to be considered is

K

∏
k=1

2(L
(k)
0 +L

(k)
1 )

∏
ℓ=0

S
(k)
ℓ

. (26)

5.3.2 Approximately linear-phase LWD Filters

For approximately linear-phase LWD filters, the phase response is evaluated for all the so-
lutions satisfying the magnitude specifications to make sure that the finite-wordlength filter
meets the given overall criteria, that is, also the phase criteria of (23).

5.3.3 Recursive N th-band decimators and interpolators

For multistage decimators and interpolators, this finite-precision search can be performed
independently for each filter stage as in the single-stage equivalent described in Subsection
2.3, all the filter stages have, according to the discussion in (Renfors & Saramäki, 1987), their
own roles in providing the given attenuation in the predetermined stopband regions. This
considerably reduces the overall optimization time. Furthermore, having only real poles in the
overall implementation significantly reduces the overall finite-precision optimization time.

5.3.4 Finite wordlength considerations

The proper values for R and PR are selected to be the smallest values for which there exist the
discrete coefficient values between the smallest and largest values for the adaptor coefficients.
If no solution satisfying the prescribed criteria are found for the predetermined discrete co-
efficient representation form, then another less stringent coefficient representation has to be
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tried, that is, the wordlength or the maximum number of power-of-two terms is gradually
increased and the search is restarted until one or more desired finite-precision filters meeting
the given specifications are found.
It should be pointed out that for certain given wordlengths, there are typically several so-
lutions meeting the magnitude specifications. Therefore, it is advisable to find first all the
solutions satisfying the given criteria and then to choose among which the one with the best
attenuation characteristics or the minimum number of adders and/or subtracters required to
implement all the multipliers for the given wordlength.
In Fig. 8, the dots indicate the allowable locations for both the upper-half-plane complex-
conjugate pole and a real pole when three power-of-two terms with seven fractional bits are
used for the adaptor coefficient representations (R = 3 and PR = 7). Note that these distribu-
tions are highly irregular for a few power-of-two terms due to the desired coefficient represen-
tation form. However, as can be seen from this figure, there are, particularly for the innermost
complex-conjugate pole, regions where the angle of the pole corresponding to finite-precision

values of γ2l−1 and γ2l is smaller than Θ(min) or larger than Θ(max). For this reason, it is ad-
visable to check whether the angle of the discrete pole is in the prescribed region in order to
avoid the vain evaluation of the corresponding magnitude response. In addition, it is bene-
ficial, in order to speed up the search, to check whether the filter meets the given magnitude
specifications in two steps. First, the magnitude response is evaluated at band edges, that is,
in the low-pass case at ω = ωp and at ω = ωs. Second, only if the magnitude response at
these points stays within the given specifications, the remaining frequency points are evalu-
ated. This is because the worst-case deviations in both the passband(s) and stopband(s) of the
resulting finite-precision filter occur most likely at the band edges.

6. Numerical Examples

This section shows, by means of examples, the applicability of the overall synthesis scheme
described in the previous section for solving three optimization problems stated in Section 4.
More examples can be found in (Yli-Kaakinen, 1998; 2002; Yli-Kaakinen & Saramäki, 1999a;b;
2000; 2005; 2007).

6.1 Example 1

This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing cascade connections of low-order LWD filters as well as to show the
superiority of these cascaded filters over direct LWD filters in finite wordlength implementa-
tions.
It is desired to design a low-pass filter with the passband and stopband edges at ωp = 0.1π

and at ωs = 0.2π, respectively. The maximum allowable passband ripple is Ap = 0.5 dB

(δp = 0.0559) and the minimum stopband attenuation is at least As = 100 dB (δs = 10−5),
respectively.
When the three-stage quantization scheme described in Section 5 is applied to K = 4, that
is, the overall transfer function is a cascade of four LWD filters of the same order, the initial
infinite-precision start-up solution for further optimization described in Subsection 5.1.1 (the
first main step of Section 5) can be determined by using four identical copies of a third-order
elliptic filter with the passband ripple of δp/4 = 0.0143 and the stopband ripple of 4

√
δs =

0.0562. The minimum odd order of an elliptic filter to meet the given magnitude criteria is
three. For this third-order initial elliptic subfilter just meeting the given passband criteria, the
minimum stopband attenuation is 25.75 dB (δs = 0.05158). The radius of the real pole as well
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A
(1,2,3,4)
0 (z) A

(1,2,3,4)
1 (z)

r
(1,2,3,4)
0 = 0.714855 r

(1,2,3,4)
1 = 0.893594 θ

(1,2,3,4)
1 = 0.118835π

Table 1. Initial pole locations for the cascade of four LWD filters in Example 1.

as the radius and positive angle of the complex-conjugate pole pair for these initial subfilters
are given in Table 1. This initial filter already meets the given magnitude specifications and
can, therefore, be used itself without further optimization for accomplishing the second main
step of Section 5 that is described for these cascaded LWD filters in Subsection 5.2.1.
The smallest and largest values of the adaptor coefficients after the infinite-precision optimiza-
tion of this subsection are included in Table 2. In addition, this table gives the smallest and
largest values of the adaptor coefficients quantized at the third main step of Section 5 that is
described for these filters in Section 5.3.1 to the three power-of-two terms and five fractional

bits (R = 3 and PR = 5).4 The number of admissible discrete values S
(k)
ℓ

between γ
(k)(min)
ℓ

and

γ
(k)(min)
ℓ

for ℓ = 0, 1, 2 and for k = 1, 2, 3, 4 are also summarized in this table. In this case, the

overall number of combinations to be evaluated is approximately 134 · 106 [cf. (26)]. The CPU
time required by a Fortran 95 program to evaluate all these finite-precision coefficient combi-
nations on a 1.4-GHz Pentium-M with Ξp = Ξs = 30 [cf. (21a) and (21b)] was approximately
400 seconds.
The search space after the infinite-precision optimization is depicted in Fig. 9. In this figure,
the circles indicate the allowable locations for the poles inside the search space for the above-
mentioned adaptor coefficient representation form, whereas the largest, the second largest,
the third largest, and the smallest search spaces correspond to the kth sub-stage for k = 1,
k = 2, k = 3, and k = 4, respectively.
The specifications are met by the adaptor coefficients given in Table 3. A total of only six
adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are used. Note that two sub-stages are identical. For this coefficient
representation form, there are 17 finite-precision solutions meeting the specifications among
which the one with the minimum implementation cost is selected. In Figure 9, the crosses de-
note the pole locations of this optimal solution. Figure 10 shows for this design the magnitude
responses of the four sub-stages as well as that of the overall filter. In addition, the passband
details of the magnitude response for the overall filter is included in this figure. The pole-zero
plot for the overall design is depicted in Fig. 11.
For K = 1, in turn, that is, for the single-stage design, the given criteria are met by the ninth-
order filter with adaptor coefficients given in Table 4. In this case, four power-of-two terms
with nine fractional bits (R = 4 and PR = 9) are required by the adaptor coefficients to still
meet the magnitude criteria. The magnitude responses and the pole-zero plot for this direct
LWD design are depicted in Figs. 12 and 13, respectively.
The above cascade of four low-order LWD filter sections is very attractive for VLSI implemen-
tations because the use of a costly multiplier element can be replaced by a harwired logic. If
the adaptors of Fig. 6 are utilized, then this harwired logic requires at most two power-of-two

4 In this case, three power-of-two terms and four fractional bits (R = 3 and PR = 4) is the shortest
wordlength for which there exist at least one discrete value between the smallest and largest values of
each adaptor coefficient. However, for this coefficient wordlength, there is no solution satisfying the
given specifications.
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Fig. 9. Search spaces for the cascade of four LWD filters in Example 1 in the R = 3 and PR = 5
case.

k ℓ γ
(k)(min)
ℓ

(z) γ
(k)(max)
ℓ

(z) Γ
(k)(1)
ℓ

(z) Γ
(k)(S

(k)
ℓ

)

ℓ
(z) S

(k)
ℓ

0 0.182 392 0.729 620 2−2 − 2−4 1 − 2−2 − 2−5 18

1 1 −0.802 832 −0.531 560 −1 + 2−2 − 2−5 −2−1 − 2−4 8

2 0.739 326 0.931 286 1 − 2−2 1 − 2−3 + 2−5 6

0 0.473 568 0.745 019 2−1 1 − 2−2 − 2−5 8

2 1 −0.817 631 −0.666 228 −1 + 2−2 − 2−4 −1 + 2−2 + 2−4 5

2 0.835 625 0.934 313 1 − 2−3 − 2−5 1 − 2−3 + 2−5 3

0 0.573 298 0.770 266 2−1 + 2−3 − 2−5 1 − 2−2 6

3 1 −0.834 543 −0.726 433 −1 + 2−2 − 2−4 −1 + 2−2 3

2 0.863 579 0.937 735 1 − 2−3 1 − 2−4 3

0 0.663 425 0.802 724 1 − 2−2 − 2−4 1 − 2−2 + 2−5 4

4 1 −0.861 770 −0.757 413 −1 + 2−3 + 2−5 −1 + 2−2 − 2−5 3

2 0.887 134 0.942 355 1 − 2−3 + 2−5 1 − 2−4 2

Table 2. The smallest and largest values for both the infinite-precision and finite-precision
coefficients in Example 1.

terms, instead of R = 3 terms, containing only PR = 5 fractional for implementing all the α

values in these adaptors.
In comparison, the direct LWD design requires for some coefficient values R = 4 power-of-
two terms and PR = 9 fractional bits. The price paid for this significantly reduced complexity
in implementing the adaptor coefficient values in the cascaded implementation is a slight
increase (from nine to twelve) in the overall filter order compared to the direct LWD filter.
Another remarkable advantage of the proposed cascaded filter in comparison with the direct
LWD filter is that the radius of the outermost complex-conjugate pole pair is significantly
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A
(k)
0 (z) A

(k)
1 (z)

γ
(1,2)
0 = 2−1 + 2−3 γ

(1,2)
1 = −1 + 2−2 − 2−5 γ

(1,2)
2 = 1 − 2−3 + 2−5

γ
(3)
0 = 2−1 + 2−3 + 2−5 γ

(3)
1 = −1 + 2−2 γ

(3)
2 = 1 − 2−3 + 2−5

γ
(4)
0 = 1 − 2−2 + 2−5 γ

(4)
1 = −1 + 2−2 − 2−4 γ

(4)
2 = 1 − 2−4

Table 3. Optimized finite-precision adaptor coefficients for the cascade of four LWD filters in
Example 1.

A
(0)
0 (z) A

(1)
1 (z)

γ
(1)
0 = 1 − 2−3 + 2−6

γ
(1)
1 = −1 + 2−3 + 2−6 + 2−9 γ

(1)
5 = −1 + 2−2 − 2−4 + 2−9

γ
(1)
2 = 1 − 2−5 γ

(1)
6 = 1 − 2−6 + 2−9

γ
(1)
3 = −1 + 2−5 − 2−7 − 2−9 γ

(1)
7 = −1 + 2−4 + 2−6

γ
(1)
4 = 1 − 2−4 − 2−8 γ

(1)
8 = 1 − 2−4 + 2−6 − 2−8

Table 4. Optimized finite-precision adaptor coefficients for the direct LWD filter in Example 1.
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Fig. 10. Some magnitude responses for the cascade of four optimized finite-precision LWD
filters in Example 1. The solid and dashed lines show the responses for the overall filter
and the subfilters, respectively. Two subfilters are identical (the dashed line with the lowest
attenuation).

smaller. For K = 1 and K = 4, these values are 0.98920 and 0.90138, respectively. When
using the adaptors shown in Fig. 6, the output noise gains are 31.9 dB and 21.8 dB for K = 1
and K = 4, respectively. This means that for K = 4 roughly two fewer bits are required for
the data representation to arrive at approximately the same output noise level as with the
corresponding direct LWD filter.
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Fig. 11. Pole-zero plot for the cascade of four optimized finite-precision LWD filters in
Example 1.
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Fig. 12. Some magnitude responses for the optimized finite-precision direct LWD filter in
Example 1.

6.2 Example 2

This example is included to illustrate the performance of the proposed overall synthesis
scheme for designing approximately linear-phase finite-precision LWD filters as well as to
compare these filters with their linear-phase FIR filter equivalents.
It is desired to design a low-pass filter with passband and stopband edges at ωp = 0.05π and
at ωs = 0.1π, respectively. The maximum allowable passband ripple is Ap = 0.2 dB (δp =

0.0228) and the stopband attenuation is As = 60 dB (δs = 10−3). The maximum allowable
phase deviation in the passband from the average slope, in turn, is ∆ = 0.5 degrees. In this
case, an excellent phase performance is obtained by using a ninth-order LWD filter.
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Fig. 13. Pole-zero plot for the optimized finite-precision direct LWD filter in Example 1.

A
(1)
0 (z) A

(1)
1 (z)

γ
(1)
0 = 1 − 2−4

γ
(1)
1 = −1 + 2−5

− 2−7 γ
(1)
5 = −1 + 2−4 + 2−7 + 2−9

γ
(1)
2 = 1 − 2−5 + 2−7 γ

(1)
6 = 1 − 2−6

− 2−9 + 2−11

γ
(1)
3 = −1 + 2−3

− 2−6 + 2−10 γ
(1)
7 = −1 + 2−3

− 2−8

γ
(1)
4 = 1 − 2−7

− 2−10 γ
(1)
8 = 1 − 2−8

Table 5. Optimized finite-precision adaptor coefficients for the approximately linear-phase
LWD filter in Example 2.

The filter specifications are met if the adaptor coefficient are represented using four power-
of-two terms with eleven fractional bits (R = 4 and PR = 11) as given in Table 5. A total of
ten adders and/or subtracters are required to implement all the adaptor coefficients when the
adaptors shown in Fig. 6 are utilized. The magnitude and phase characteristics of the resulting
filter are depicted in Fig. 14, whereas Fig. 15 gives the pole-zero plot.
The minimum order of a linear-phase FIR filter to meet the same magnitude specifications
is 107, requiring 107 delay elements and 54 multipliers when exploiting coefficient symme-
try. The delay of the linear-phase FIR equivalent is 53.5 samples, whereas for the proposed
recursive filter the delay is only 40.9 samples.

6.3 Example 3

This example is included to illustrate the performance of the proposed overall design algo-
rithm for synthesizing recursive Nth-band decimators. It is desired to design an eighth-band
(N = 8) filter with the passband edge at ωp = 0.0785π = 0.628π/8. The minimum stopband

attenuation is at least As = 60 dB (δs = 10−3). In this case, the stopband region, as given
by (17), is Ωs = [0.1715π, 0.3285π] ∪ [0.4215π, 0.5785π] ∪[0.6715π, 0.8285π] ∪ [0.9215π, π],
that is, the aliasing into to the transition band [0.0785π, 0.125π] is allowed from the bands
[0.3285π, 0.4215π], [0.5785π, 0.6715π], and [0.8285π, 0.9215π].
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Fig. 14. Magnitude and phase responses for the optimized finite-precision approximately
linear-phase LWD filter in Example 2.

For the three-stage design, the only option to factor the sampling rate conversion ratio is
N1 = N2 = N3 = 2. This factorization gives, according to the discussion of Subsection 2.3, rise
to a single-stage equivalent with the transfer function of the form H(z) = H1(z)H2(z

2)H3(z
4)

where H1(z), H2(z), and H3(z) are half-band LWD filters. According to the design scheme
described in (Renfors & Saramäki, 1987), the desired 60-dB stopband attenuation is achieved
by simultaneously determining these three subfilters such that H3(z

4), H2(z
2), and H1(z)

primarily take care of providing this attenuation on [0.1715π, 0.3285π] ∪ [0.6715π, 0.8285π],
[0.4215π, 0.5785π], and [0.9215π, π], respectively. The resulting minimum orders of H1(z),
H2(z), and H3(z) to simultaneously meet the given specifications become 3, 5, and 7, respec-

tively. When following the notations of Subsection 2.3, the orders L
(k)
0 and L

(k)
1 of the branch

transfer functions A
(k)
0 (z) and A

(k)
1 (z) of Hk(z) for k = 1, 2, 3 become L

(1)
0 = 1 and L

(1)
1 = 0;

L
(2)
0 = L

(2)
0 = 1; and L

(3)
0 = 2 and L

(3)
1 = 1; respectively.

The initial adaptor coefficient values for H3(z
4) are γ

(3)
1 = −0.085523, γ

(3)
2 = −0.718273,

and γ
(3)
3 = −0.326452, for H2(z

2), γ
(2)
1 = −0.116797 and γ

(2)
2 = −0.548630, and for H1(z),

γ
(1)
1 = −0.338473. The stopband attenuations provided by these initial sub-stages H3(z

4),

H2(z
2), and H1(z) in the stopband regions they primarily concentrate on are 73.21 dB, 83.97

dB, and 66.45 dB, respectively. The smallest and largest values for the adaptor coefficients of
the sub-stages H3(z

4), H2(z
2), and H1(z) after applying the infinite-precision optimization of

Subsection 5.2 are given in Table 6.
For this overall filter, the maximum number of power-of-two terms required to implement all
the adaptor coefficients is four (R = 4), whereas eight fractional bits (PR = 8) are required
to meet the magnitude specifications. For this coefficient representation form, the number
of discrete coefficient values between the smallest and largest values for the coefficients of
H3(z

3) is 14, 21, and 33, that is, the number of coefficient combinations for the last stage
is 14 · 21 · 33 = 9702. The number of discrete coefficient values between the smallest and
largest values for the coefficients of H2(z

2) are 19 and 33, that is, the number of coefficient
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Fig. 15. Pole-zero plot for the optimized finite-precision approximately linear- phase LWD
filter in Example 2.

A
(3)
0 (z4)

γ
(3)(min)
1 = −0.111647 γ

(3)(max)
1 = −0.057811

H3(z
4) γ

(3)(min)
2 = −0.771093 γ

(3)(max)
2 = −0.681117

A
(3)
1 (z4) γ

(3)(min)
3 = −0.395188 γ

(3)(max)
3 = −0.268425

H2(z
2)

A
(2)
0 (z2) γ

(2)(min)
1 = −0.156770 γ

(2)(max)
1 = −0.082365

A
(2)
1 (z2) γ

(2)(min)
2 = −0.618978 γ

(2)(max)
2 = −0.489915

H1(z) A
(1)
0 (z) γ

(1)(min)
1 = −0.341785 γ

(1)(max)
1 = −0.336582

Table 6. The smallest and largest infinite-precision coefficient values for the subfilters H3(z
4),

H2(z
2), and H1(z) in Example 3.

A
(3)
0 (z4)

γ
(3)
1 = −0.07812500 = −2−4

− 2−6

H3(z
4) γ

(3)
2 = −0.71093750 = −1 + 2−2 + 2−5 + 2−7

A
(3)
1 (z4) γ

(3)
3 = −0.31250000 = −2−2

− 2−4

H2(z
2)

A
(2)
0 (z2) γ

(2)
1 = −0.12500000 = −2−3

A
(2)
1 (z2) γ

(2)
2 = −0.56250000 = −2−1

− 2−4

H1(z) A
(1)
0 (z) γ

(1)
1 = −0.33984375 = −2−1 + 2−3 + 2−5 + 2−8

Table 7. Optimized finite-precision coefficient values for the three-stage eighth-band filter in
Example 3.

combinations for the second stage is 627. For the first stage with transfer function H1(z), there
exists only one discrete coefficient value between the smallest and largest values of the single
coefficient. The CPU time required when using a Fortran 95 program on a 1.4 GHz Pentium-
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Fig. 16. Magnitude responses for the optimized finite-precision three-stage eighth-band deci-
mator in Example 3. The solid line gives the magnitude response for the single-stage equiva-
lent H1(z)H2(z

2)H3(z
4), whereas the dotted, dot-dashed, and dashed lines give the responses

for H1(z), H2(z
2), and H3(z

4), respectively.

A
(1)
0 (z) γ

(1)
1 = −0.01953125 = −2−6

− 2−8 γ
(1)
2 = −0.53125000 = −2−1

− 2−5

A
(1)
1 (z) γ

(1)
1 = −0.04687500 = −2−4 + 2−6 γ

(1)
2 = −0.62500000 = −2−1

− 2−3

A
(1)
2 (z) γ

(1)
1 = −0.07812500 = −2−4

− 2−6 γ
(1)
2 = −0.71875000 = −1 + 2−2 + 2−5

A
(1)
3 (z) γ

(1)
1 = −0.12109375 = −2−3 + 2−8 γ

(1)
2 = −0.80859375 = −1 + 2−2

− 2−4 + 2−8

A
(1)
4 (z) γ

(1)
1 = −0.17968750 = −2−2 + 2−4 + 2−7 γ

(1)
2 = −0.87890625 = −1 + 2−3

− 2−8

A
(1)
5 (z) γ

(1)
1 = −0.24218750 = −2−2 + 2−7 γ

(1)
2 = −0.94921875 = −1 + 2−4

− 2−6 + 2−8

A
(1)
6 (z) γ

(1)
1 = −0.32031250 = −2−2

− 2−4
− 2−7

A
(1)
7 (z) γ

(1)
1 = −0.43359375 = −2−1 + 2−4 + 2−8

Table 8. Optimized finite-precision adaptor coefficients for the single-stage eighth-band deci-
mator in Example 3.

M to evaluate all these combinations with Ξs = 100 stopband grid points was less than one
second.
The number of adders and/or subtracters required to implement all the adaptor coefficients
is seven when the adaptors shown in Fig. 6 are utilized. The optimized finite-precision coeffi-
cients values are given in Table 7, whereas the magnitude responses for the sub-stages as well
as for the single-stage equivalent are depicted in Fig. 16. The pole-zero plot for this equivalent
is, in turn, shown in Fig. 17. The passband variation and the minimum stopband attenuation
for the optimized finite-precision overall filter are Ap = −4.278 · 10−6 dB and As = 60.21 dB,
respectively. An efficient implementation of the optimized eight-band decimator is depicted
in Fig. 18

For the single-stage design, that is, for a direct eighth-band filter, the minimum orders L
(1)
n of

the eight all-pass branch filters A
(1)
n (z) for n = 0, 1, . . . , 7 to meet the given specifications are

L
(1)
n = 2 for n = 0, 1, . . . , 5 and L

(1)
6 = L

(1)
7 = 1 so that the minimum number of multipli-
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Fig. 17. Pole-zero plot for the optimized finite-precision three-stage eighth-band decimator in
Example 3.

ers in the overall implementation is 14. The stopband attenuation of this initial filter is 60.84
dB. Again, the specifications are met by R = 4 and PR = 8 even though the allowable mar-
gin for the coefficient quantization is only 0.84 dB. The specifications are met by the adaptor
coefficients given in Table 8. In this case, the number of adders and/or subtracters required
to implement all the coefficients is 17 when the adaptors shown in Fig. 6 are utilized. The
passband variation and the minimum stopband attenuation for this optimized finite-precision
single-stage decimation filter are Ap = 1.584 · 10−5 dB and As = 60.18 dB, respectively. The
magnitude response and the pole-zero plot for this decimation filter are depicted in Figs. 19
and 20, respectively.

7. Conclusions

A systematic three-step algorithm has been developed for designing lattice wave digital
(LWD) filters with short coefficient wordlength. The filter classes under consideration have
been cascades of low-order LWD filters, approximately linear-phase LWD filters, and recur-
sive Nth-band decimators and interpolators. The transfer functions, filter specifications, and
optimization problems have been stated for each filter class under consideration. Then, the
proposed three-step algorithm has been adapted for solving these optimization problems. The
goal has been to find all the coefficient values such that the overall implementation does not
require general multipliers. It has been shown that significant savings in the implementation
cost are achieved by using the proposed technique. The efficiency and the robustness of the
proposed algorithm has been demonstrated by means of several examples.
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