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1. Introduction 

In this chapter, the following abbreviations are used: Variable-denominator IIR VFD filters 
as VdIIR VFD filters. Fixed-denominator IIR VFD filters as FdIIR VFD filters. Allpass VFD 
filters as AP VFD filters. FIR VFD filters the same as FIR VFD filters. Symbol t is used to 
represent fractional delay (instead of the symbol d normally used to denote the operation of 
differentiation). Five frequently referenced design methods are abbreviated for ease of 
reference in Sections 5-8 as: (Zhao & Kwan, 2007) as (ZK); (Kwan & Jiang, 2009a) as (KJ); 
(Tsui et al., 2007) as (TCK); (Lee et al., 2008) as (LCR); and (Lu & Deng, 1999) as (LD). 
 
Variable fractional delay (VFD) digital filters have various applications in signal processing 
and communications (Laakso et al., 1996). So far, finite impulse response (FIR) VFD digital 
filters have been studied and a number of design methods (Deng, 2001; Deng & Lian, 2006; 
Kwan & Jiang, 2009a, 2009b; Lu & Deng, 1999; Tseng, 2002a; Zhao & Yu, 2006) have been 
advanced. Since the frequency response of an FIR VFD filter is a linear function of its 
polynomial coefficients, an optimal design can be obtained by numerical procedures (Kwan 
& Jiang, 2009a, 2009b; Tseng, 2002a; Zhao & Yu, 2006) or in closed forms (Deng, 2001; Deng 
& Lian, 2006; Lu & Deng, 1999). In contrast to FIR VFD filter design, allpass (AP) VFD filter 
design faces additional challenges due to the existence of a denominator. Since allpass VFD 
filters have fullband unity magnitude responses, the problem of designing an allpass VFD 
filter is to minimize the approximation error of phase or group delay response between an 
allpass VFD filter to be designed and the ideal one. A number of algorithms (Lee, et al., 2008; 
Tseng, 2002a, 2002b) have been proposed based on this strategy. Another property of allpass 
VFD filters which has been exploited in (Kwan & Jiang, 2009a; Deng, 2006) is the mirror 
symmetric relation between the numerator and the denominator. Such algorithms (Kwan & 
Jiang, 2009a; Deng, 2006) minimize the approximation error in terms of frequency responses 
of the denominator. The resulting problem is nonconvex, which is either simplified and 
solved (Kwan & Jiang, 2009a) as a quadratic programming (QP) problem with positive-
realness-based stability constraints, or solved (Deng, 2006) in closed-form. 
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Results obtained in (Kwan & Jiang, 2009a, 2009b; 2007) indicate that general infinite impulse 
response (IIR) digital filters exhibit lower mean group delay (compared to allpass digital 
filters) and wider band characteristics (compared to allpass and FIR digital filters) in VFD 
filter design. In general, general IIR VFD filter design methods (Kwan et al., 2006; Kwan & 
Jiang, 2007, 2009a, 2009b; Tsui et al., 2007; Zhao & Kwan, 2005, 2007; Zhao et al., 2006) can be 
classified as two-stage approach and semi-integrated approach. Under the two-stage 
approach (Kwan et al., 2006; Kwan & Jiang, 2007, 2009a, 2009b; Zhao & Kwan, 2005, 2007; 
Zhao et al., 2006), a set of stable IIR digital filters with sampled fractional delays (FDs) are 
designed first, and then the polynomial coefficients are determined by fitting the obtained 
IIR FD filter coefficients in the least-squares (LS) sense. Under the semi-integrated approach 
(Tsui et al., 2007), direct optimization is carried out on the polynomial coefficients of each 
filter coefficient of the numerator. In (Kwan et al., 2006; Kwan & Jiang, 2007; Zhao & Kwan, 
2005, 2007; Zhao et al., 2006), both the numerator and denominator coefficients are variable. 
In (Kwan & Jiang, 2009a, 2009b; Tsui et al., 2007), only the numerator coefficients are 
variable. In (Kwan & Jiang, 2007), both variable and fixed denominators are considered.  
 
In this chapter, sequential and gradient-based methods are applied to design IIR VFD filters 
with variable and fixed denominators, but unlike (Kwan & Jiang, 2007), these methods are 
integrated design methods. Second-order cone programming (SOCP) is used to formulate 
the problem in the sequential design method, and in the initial design of the gradient-based 
design method. An advantage of using the SOCP formulation of the problem is that both 
linear and (convex) quadratic constraints can be readily incorporated. On the other hand, 
unlike the design algorithm of (Tsui et al., 2007), which models the denominator and 
optimizes the numerator separately, the proposed methods optimize them simultaneously 
during the design procedures. As described in this chapter, the sequential and especially the 
gradient-based design methods could achieve some improved results as compared to (a) our 
previous designs presented in (Zhao & Kwan, 2007) for variable-denominator IIR VFD 
filters, in (Kwan & Jiang, 2009a) and (Tsui et al., 2007) for fixed-denominator IIR VFD filters, 
and in (Kwan & Jiang, 2009a) for allpass and FIR VFD filters; and (b) the allpass (Lee et al., 
2008) and the FIR (Lu & Deng, 1999) VFD filters of other researchers. A preliminary version 
of the sequential design method can be found in (Jiang & Kwan, 2009b). The chapter is 
organized as follows: In Section 2, the weighted least-squares (WLS) design problem is 
formulated. A sequential design method is introduced in Section 3. Then, a gradient-based 
design method is introduced in Section 4. Four sets of filter examples are presented in 
Section 5 and their design performances using the proposed and a number of other methods 
are analyzed in Section 6. Section 7 gives a summary of the chapter. Finally, conclusions are 
made in Section 8.  

 
2. Problem formulation  
Let the ideal frequency response of a VFD digital filter be defined as 

       
( )( , ) ,     [0, ]j D t

dH t e          (1) 

where 0 < α < 1, D denotes a mean group delay, and t denotes a variable fractional delay 
within the range of [−0.5, 0.5]. The transfer function of an IIR VFD filter can be expressed as 
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In (2)-(6), the superscript T denotes the transposition of a vector (or matrix). Each of the 
numerator coefficients pn(t) for n = 0, 1, …, N (or the denominator coefficients qm(t) for m = 1, 
2, …, M) can be expressed as an order K1 (or K2) polynomial of the fractional delay t as 
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(Tsui et al., 2007), direct optimization is carried out on the polynomial coefficients of each 
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2005, 2007; Zhao et al., 2006), both the numerator and denominator coefficients are variable. 
In (Kwan & Jiang, 2009a, 2009b; Tsui et al., 2007), only the numerator coefficients are 
variable. In (Kwan & Jiang, 2007), both variable and fixed denominators are considered.  
 
In this chapter, sequential and gradient-based methods are applied to design IIR VFD filters 
with variable and fixed denominators, but unlike (Kwan & Jiang, 2007), these methods are 
integrated design methods. Second-order cone programming (SOCP) is used to formulate 
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design method. An advantage of using the SOCP formulation of the problem is that both 
linear and (convex) quadratic constraints can be readily incorporated. On the other hand, 
unlike the design algorithm of (Tsui et al., 2007), which models the denominator and 
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during the design procedures. As described in this chapter, the sequential and especially the 
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2008) and the FIR (Lu & Deng, 1999) VFD filters of other researchers. A preliminary version 
of the sequential design method can be found in (Jiang & Kwan, 2009b). The chapter is 
organized as follows: In Section 2, the weighted least-squares (WLS) design problem is 
formulated. A sequential design method is introduced in Section 3. Then, a gradient-based 
design method is introduced in Section 4. Four sets of filter examples are presented in 
Section 5 and their design performances using the proposed and a number of other methods 
are analyzed in Section 6. Section 7 gives a summary of the chapter. Finally, conclusions are 
made in Section 8.  
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All the polynomial coefficients an,k and bm,k are assumed to be real values. By stacking all an 
for n = 0 to N together, the numerator coefficient vector a can be defined as 

       0 1
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N   a a a a   (13) 

Similarly, the denominator coefficient vector b can be defined as 
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Then, P(z,t) and Q(z,t) in (2) can be written as 
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Given a nonnegative weighting function W(ω,t), the WLS design problem can be expressed as 
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where x = [aT, bT]T, and the complex approximation error e(ω,t) is defined as 

       ( , ) ( , ) ( , )j
de t H e t H t     (20) 

For the general IIR VFD filter design problem expressed in (19), there is an implicit stability 
requirement on the denominator Q(z,t), that is, all the roots of Q(z,t) for 褐t 樺 [−0.5, 0.5] 
should lie inside the unit circle on the z-plane. The derivations shown under Sections 2-4 
are formulated for VdIIR VFD filters which are applicable to FdIIR VFD filters by setting K2 
= 0. For K2 = 0, qm(t) = qm for m = 1 to M; hence, q(t) = q = [q1 q2 … qM]T and Q(z,t) = Q(z).  

 
 
 

3. Sequential design of IIR VFD digital filters 

The nonlinear nature of the general problem defined by (19)-(20) can be simplified using the 
Levy’s method (Levy, 1959), solved iteratively using Sanathanan and Koerner algorithm 
(Sanathanan & Koerner, 1963), and formulated as an iterative design problem for stable IIR 
digital filters by (Lu et al., 1998). In this section, the sequential design procedure for IIR VFD 
filters developed from (Lu et al., 1998) will be described first. Then, linear inequality 
constraints are introduced to guarantee the stability of a designed IIR VFD filter. 

 
3.1 Sequential design procedure 
The sequential design procedure starts from a specified initial point x(0). At the lth iteration  
(l = 1, 2, …), the integrand of the cost function in (19) is reformulated as 
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In (21), Re{·} denotes the real part of a complex variable. In (24), the superscript H represents 
the conjugate transpose of a complex-valued vector or matrix. Using (21), the cost function 
of (19) can be expressed in the following quadratic form 

       
( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)( ) 2l l l T l l l T l lJ c    x x G x x g  (25) 

where 
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Note that the matrix G(l-1) is symmetric and positive semidefinite (PSD). Therefore, only the 
upper (or lower) triangular part of G(l-1) needs to be computed. In practice, the integrals in (26)-
(28) can be replaced by finite summations of grid points taken from [0,  π] × [-0.5, 0.5]. In 
practice, minimization of (25) is a straight-forward task. However, if linear or nonlinear 
constraints (such as the linear stability constraints (34) or (35) introduced later in Section 3.2) 
are required to be incorporated, (25) can be reformulated as (29) by introducing an auxiliary 
variable ε(l). Consequently, at the lth iteration, the WLS design problem can be cast as the 
following SOCP problem 
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2( 1) ( ) ( ) ( 1) ( )s.t. 2l l l T l l  G x x g

 

(29a) 

where ( 1)lG  = [G(l-1)]1/2, and .  denotes the Euclidean norm of a vector. In (29), the decision 
variables are x(l) and ε(l). The constraint (29a) is a hyperbolic constraint, which can be further 
transformed into a second-order cone (SOC) constraint.  
 
To guarantee the stability of a design obtained by (29), either the stability constraints (34) or 
(35) are to be incorporated into (29). Also, to improve the numerical robustness of the 
sequential design procedure, the filter coefficients x(l) are updated using the iteration scheme 
(Jiang & Kwan, 2009a; Lu et al., 1998; Lu, 1999; Tsang, 2004; Tsang & Lee, 2002) as 

       
( ) ( 1) ( 1)( ) (1 )l l l     x x x  (30) 

where 0 < λ < 1 is a relaxation constant, and Ψ represents the mathematical operation of 
mapping a x(l-1) to a solution x(l) by (29). Our design experience indicates that generally λ can 
be chosen within the range [0.1, 0.5]. A larger λ could cause numerical instability. Stability 
guarantee and robustness improvement serve different purposes and do not affect each 
other. 
 
The sequential design procedure continues until the following condition is satisfied 
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where μ is a specified positive small tolerance and J(x) is the cost function defined in (19). 
The stopping criterion (31) means that the sequential design procedure is to be terminated 
as the WLS error cannot be further reduced in a meaningful manner. It should be 
emphasized that if [J(x(l-1))−J(x(l))]/J(x(l-1)) < 0, we have J(x(l-1)) < J(x(l)), which means the 
performance of the current design is worse than that of the previous design, the filter 
coefficients obtained at the previous iteration through (30) should be restored and adopted 
as the final design. 

 
3.2 Stability consideration  
The IIR VFD filter designed by the sequential design procedure presented in Section 3.1 
cannot definitely guarantee the stability of obtained IIR VFD filters. Therefore, stability 
constraints have to be incorporated. For ease of explanation, a stability constraint based on 
the positive realness is first introduced for designing IIR VFD filters with the fixed 
denominator. Then, the stability constraint can be readily extended to the case of designing 
IIR VFD filters with the variable denominator.  
 
A sufficient condition for the stability of designed IIR digital filters has been introduced in 
(Dumitrescu & Niemistö, 2004), which is stated as: If Q(l-1)(z) is a Schur polynomial, i.e., all 
the roots of Q(l-1)(z) lie inside the unit circle, and the transfer function R(l)(z) = Q(l)(z)/Q(l-1)(z) 
is strictly positive real (SPR), i.e., 

        ( )Re ( ) 0,    [0, ]l jR e       (32) 

then all the convex combination of Q(l-1)(z) and Q(l)(z), i.e., Q(l)(z) = (1−)Q(l-1)(z)+Q(l)(z) for 褐 樺 [0, 1], is a Schur polynomial. According to this condition, a stability domain with an 
interior point q(l-1) can be defined as Ds = {q(l)| R(l)(z) is SPR}. Note that the condition that 
R(l)(z) is SPR is equivalent to requiring that 
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is real and positive on the unit circle. Since the denominator of (33) is always positive on the 
unit circle, it follows that the symmetric numerator polynomial of (33) must be positive on 
the unit circle for 褐ω 株 [0, π], which can be cast as a linear matrix inequality (LMI) constraint 
independent of frequency ω (Dumitrescu & Niemistö, 2004). Here, the stability constraint 
R(l)(ejω)+R(l)(e-jω) > 0 can be expressed in the form of linear inequality constraints as 

       
   

 

( 1) ( ) ( 1)
2Re ( ) ( ) Re ( )

      0, , 1, ,

i i ij j jl T l l

i

Q e e Q e

i I

  

 

  

  

φ q  (34) 

where ν is a specified small positive number. If variable denominator is utilized in H(z,t), the 
term q(l)Tφ2(ejω) in (34) should be replaced by b(l)Tu2(ejω,t). Thereby, (34) can be expressed as 
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Note that the matrix G(l-1) is symmetric and positive semidefinite (PSD). Therefore, only the 
upper (or lower) triangular part of G(l-1) needs to be computed. In practice, the integrals in (26)-
(28) can be replaced by finite summations of grid points taken from [0,  π] × [-0.5, 0.5]. In 
practice, minimization of (25) is a straight-forward task. However, if linear or nonlinear 
constraints (such as the linear stability constraints (34) or (35) introduced later in Section 3.2) 
are required to be incorporated, (25) can be reformulated as (29) by introducing an auxiliary 
variable ε(l). Consequently, at the lth iteration, the WLS design problem can be cast as the 
following SOCP problem 
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where ( 1)lG  = [G(l-1)]1/2, and .  denotes the Euclidean norm of a vector. In (29), the decision 
variables are x(l) and ε(l). The constraint (29a) is a hyperbolic constraint, which can be further 
transformed into a second-order cone (SOC) constraint.  
 
To guarantee the stability of a design obtained by (29), either the stability constraints (34) or 
(35) are to be incorporated into (29). Also, to improve the numerical robustness of the 
sequential design procedure, the filter coefficients x(l) are updated using the iteration scheme 
(Jiang & Kwan, 2009a; Lu et al., 1998; Lu, 1999; Tsang, 2004; Tsang & Lee, 2002) as 
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where 0 < λ < 1 is a relaxation constant, and Ψ represents the mathematical operation of 
mapping a x(l-1) to a solution x(l) by (29). Our design experience indicates that generally λ can 
be chosen within the range [0.1, 0.5]. A larger λ could cause numerical instability. Stability 
guarantee and robustness improvement serve different purposes and do not affect each 
other. 
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where μ is a specified positive small tolerance and J(x) is the cost function defined in (19). 
The stopping criterion (31) means that the sequential design procedure is to be terminated 
as the WLS error cannot be further reduced in a meaningful manner. It should be 
emphasized that if [J(x(l-1))−J(x(l))]/J(x(l-1)) < 0, we have J(x(l-1)) < J(x(l)), which means the 
performance of the current design is worse than that of the previous design, the filter 
coefficients obtained at the previous iteration through (30) should be restored and adopted 
as the final design. 

 
3.2 Stability consideration  
The IIR VFD filter designed by the sequential design procedure presented in Section 3.1 
cannot definitely guarantee the stability of obtained IIR VFD filters. Therefore, stability 
constraints have to be incorporated. For ease of explanation, a stability constraint based on 
the positive realness is first introduced for designing IIR VFD filters with the fixed 
denominator. Then, the stability constraint can be readily extended to the case of designing 
IIR VFD filters with the variable denominator.  
 
A sufficient condition for the stability of designed IIR digital filters has been introduced in 
(Dumitrescu & Niemistö, 2004), which is stated as: If Q(l-1)(z) is a Schur polynomial, i.e., all 
the roots of Q(l-1)(z) lie inside the unit circle, and the transfer function R(l)(z) = Q(l)(z)/Q(l-1)(z) 
is strictly positive real (SPR), i.e., 
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then all the convex combination of Q(l-1)(z) and Q(l)(z), i.e., Q(l)(z) = (1−)Q(l-1)(z)+Q(l)(z) for 褐 樺 [0, 1], is a Schur polynomial. According to this condition, a stability domain with an 
interior point q(l-1) can be defined as Ds = {q(l)| R(l)(z) is SPR}. Note that the condition that 
R(l)(z) is SPR is equivalent to requiring that 
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is real and positive on the unit circle. Since the denominator of (33) is always positive on the 
unit circle, it follows that the symmetric numerator polynomial of (33) must be positive on 
the unit circle for 褐ω 株 [0, π], which can be cast as a linear matrix inequality (LMI) constraint 
independent of frequency ω (Dumitrescu & Niemistö, 2004). Here, the stability constraint 
R(l)(ejω)+R(l)(e-jω) > 0 can be expressed in the form of linear inequality constraints as 
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where ν is a specified small positive number. If variable denominator is utilized in H(z,t), the 
term q(l)Tφ2(ejω) in (34) should be replaced by b(l)Tu2(ejω,t). Thereby, (34) can be expressed as 
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4. Gradient-based design of IIR VFD digital filters 

In this section, a gradient-based design method for IIR VFD digital filters is presented. An 
initial design is first obtained by solving a SOCP problem, and a local search procedure is 
then applied to refine the design. 

 
4.1 Initial design using SOCP 

IIR VFD filter design using optimization is a non-convex problem and there could be many 
local minima on its error performance surface. Also, a large IIR VFD filter design problem 
involves many variables (N+1)(K1+1)+M(K2+1). In order to obtain a good initial design that 
would lead to a satisfactory final design, consider the following initial design problem 
derived from (19) by applying the Levy’s method (Levy, 1959) on e(w,t) to obtain 
e(w,t)Q(ejw,t) as 
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where G, g, and c can be readily obtained by replacing the weighting function W(l-1)(ω, t) of 
(22) in (26)-(28) by W(ω, t) of (19). Similar to (25)-(29), the design problem (36) can be 
transformed into the following SOCP problem as 

       
min   (37) 

                                                                
2
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(37a) 

where the matrix G  = G1/2. 

 
4.2 Stability consideration 

In order to guarantee the stability of a designed IIR VFD filter, stability constraints should 
be incorporated in (37). The linear stability constraints (34) or (35) can be directly 
incorporated into the design problem (37). Besides (34) or (35), the following strategy can 
also be employed to ensure the stability. It is known that by suppressing 2( )q t , the poles 
can be forced to move towards the origin in the z-plane (Zhao & Kwan, 2007). To do so, a 
regularization term defined in (38) below is introduced as 
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By combining J2(x) with the cost function J1(x) of (36) through a regularization coefficient , 
the design problem (36) is then formulated as 
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In (42), 0m×n represents a zero matrix of size m-by-n. The design problem (41) can then be 
formulated as a SOCP problem similar to (37) as 

       
min   (43) 
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(43a) 

where 
~
G  = 


G 1/2. 

 
4.3 Local search 

Although both the design problem (37) subject to stability constraints (34) or (35) and the 
design problem (43) are convex and can be efficiently solved, the obtained design in either 
case may not be a truly (locally) optimal design in the WLS sense, since the cost function 
J1(x) of (36) is not equivalent to the original one in (19). Therefore, a local search should be 
performed to locate the local optimum near the initial design (obtained by solving (37) with 
appropriate stability constraints (34) or (35) or by solving (43)). Here, a general-purpose 
gradient-based optimization algorithm (e.g., quasi-Newton) is employed to achieve a local 
optimal design. Normally, such an algorithm requires a designer to provide subroutines to 
calculate the function value and the gradient at a given point. Thus, the formulas to 
calculate the gradients of J(x) defined in (19) can be derived as 
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In this section, a gradient-based design method for IIR VFD digital filters is presented. An 
initial design is first obtained by solving a SOCP problem, and a local search procedure is 
then applied to refine the design. 

 
4.1 Initial design using SOCP 

IIR VFD filter design using optimization is a non-convex problem and there could be many 
local minima on its error performance surface. Also, a large IIR VFD filter design problem 
involves many variables (N+1)(K1+1)+M(K2+1). In order to obtain a good initial design that 
would lead to a satisfactory final design, consider the following initial design problem 
derived from (19) by applying the Levy’s method (Levy, 1959) on e(w,t) to obtain 
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where G, g, and c can be readily obtained by replacing the weighting function W(l-1)(ω, t) of 
(22) in (26)-(28) by W(ω, t) of (19). Similar to (25)-(29), the design problem (36) can be 
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where the matrix G  = G1/2. 
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In order to guarantee the stability of a designed IIR VFD filter, stability constraints should 
be incorporated in (37). The linear stability constraints (34) or (35) can be directly 
incorporated into the design problem (37). Besides (34) or (35), the following strategy can 
also be employed to ensure the stability. It is known that by suppressing 2( )q t , the poles 
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By combining J2(x) with the cost function J1(x) of (36) through a regularization coefficient , 
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In (42), 0m×n represents a zero matrix of size m-by-n. The design problem (41) can then be 
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Although both the design problem (37) subject to stability constraints (34) or (35) and the 
design problem (43) are convex and can be efficiently solved, the obtained design in either 
case may not be a truly (locally) optimal design in the WLS sense, since the cost function 
J1(x) of (36) is not equivalent to the original one in (19). Therefore, a local search should be 
performed to locate the local optimum near the initial design (obtained by solving (37) with 
appropriate stability constraints (34) or (35) or by solving (43)). Here, a general-purpose 
gradient-based optimization algorithm (e.g., quasi-Newton) is employed to achieve a local 
optimal design. Normally, such an algorithm requires a designer to provide subroutines to 
calculate the function value and the gradient at a given point. Thus, the formulas to 
calculate the gradients of J(x) defined in (19) can be derived as 
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In (44)-(45), the subscript * denotes complex conjugate operation. It is noted that if an initial 
design is stable, the IIR filter obtained by the local search is stable. It is because if any of the 
poles moves close to the unit circle, it will create a large approximation error; and in case the 
situation that a pole and a zero nearly cancel or cancel each other emerges, the error 
performance will degrade due to a reduced filter order. Since a gradient-based algorithm 
can only find local minima around an initial design, if pole-zero cancellation does not 
appear in an initial design, pole-zero cancellation is not likely to appear in the subsequent 
local search using a gradient-based algorithm. Furthermore, the step size of a gradient-based 
algorithm can be automatically adjusted to guarantee that the obtained filter in each 
iteration stays inside the stable domain. The above scheme works well in all our designs. In 
the designs, the optimization command ‘fminunc’ in MATLAB was adopted to perform the 
local search. The stability of a designed VdIIR VFD filter is ensured if  its maximum pole 
radius is within the unity circle at each of the fractional delay values obtained from a dense 
grid of fractional delay t  [-0.5, 0.5]. On the other hand, the stability of a designed FdIIR 
VFD filter can simply be checked by ensuring its maximum pole radius is within the unity 
circle. 

 
5. Design specifications  

In this section, four sets of filter examples are presented to demonstrate the effectiveness of 
the sequential and gradient-based design methods. For a fair comparison, at each of the four 
specified cutoff frequencies, all the three types (IIR, allpass, and FIR) of VFD filters are 
specified to have the same number of variable coefficients, i.e., (N+1)(K1+1)+M(K2+1) = 
MAP(K1+1) = (LFIR+1)(K1+1), where MAP and LFIR denote, respectively, the filter order of an 
allpass VFD filter and the filter order of an FIR VFD filter. To achieve a good IIR VFD filter 
design based on a general IIR digital filter, the denominator order needs not be as high as 
the numerator order. Therefore, in each of the IIR VFD filter designs, the denominator order 
M is chosen to be 6 which is smaller than the corresponding numerator order N. The filter 
specifications of the IIR VFD filters with variable and fixed denominators are summarized in 
Table 1 whereas the design specifications of allpass and FIR VFD filters are summarized in 
Table 2.  
 
 

α (K1, K2) (N, M, D) 

0.9625 
(5, 5) (49, 6, 25), (49, 6, 28), (49, 6, 31) 
(5, 0) (54, 6, 27), (54, 6, 30), (54, 6, 33) 

0.9500 
(5, 5) (46, 6, 23), (46, 6, 26), (46, 6 29) 
(5, 0) (51, 6, 26), (51, 6, 29), (51, 6 32) 

0.9250 
(5, 5) (41, 6, 21), (41, 6, 24), (41, 6, 27) 
(5, 0) (46, 6, 23), (46, 6, 26), (46, 6, 29) 

0.9000 
(5, 5) (36, 6, 18), (36, 6, 21), (36, 6, 24) 
(5, 0) (41, 6, 21), (41, 6, 24), (41, 6, 27) 

Table 1. IIR VFD filter specifications (Keys: : Normalized passband; K1 (K2): Numerator 
(Denominator) coefficient polynomial order; N (M): Numerator (Denominator) order; D: IIR 
mean group delay) 
 

α K1 (MAP, DAP) (LFIR, DFIR) 
0.9625 5 (56, 56) (55, 28) 
0.9500 5 (53, 53) (52, 26) 
0.9250 5 (48, 48) (47, 24) 
0.9000 5 (43, 43) (42, 21) 

Table 2. Allpass and FIR VFD filter specifications (Keys: : Normalized passband; K1: 
Coefficient polynomial order; MAP: Allpass order; DAP: Allpass mean group delay; LFIR: FIR 
order; DFIR: FIR mean group delay) 
 
The respective mean group delay is somehow related to (a) the numerator and denominator 
orders, N and M, for an IIR VFD filter; (b) the filter order MAP of an allpass VFD filter; and 
(c) the filter order LFIR of an FIR VFD filter. In Tables 1 and 2, the respective mean group 
delay is chosen as: (a) D = the round up value of (N+M)/2 for an IIR VFD filter; (b) DAP = the 
filter order MAP for an allpass VFD filter; and (c) DFIR = the round up value of LFIR/2 for an 
FIR VFD filter. The choice of mean group delay values D = (N+M)/2 and (N+M)/2 3 
shown in Table 1 for all the IIR VFD filter design methods allows a comparison of their 
relative performances in order to determine the best design method upon which its best 
mean group delay value that yields a minimum erms can be determined by simulations to be 
described in Section 6.2. The design results obtained by the proposed designs are compared 
with those of the IIR VFD filters with variable denominators designed by (ZK), the IIR VFD 
filters with fixed denominators designed by (KJ) and (TCK), the allpass VFD filters designed 
by (KJ) and (LCR), and the FIR VFD filters designed by (KJ) and (LD). For fair comparisons, 
the weighting function W(ω,t) in (19) and (36) is always set equal to 1 for 褐ω 樺 [0, απ] and 褐t 樺 [−0.5, 0.5]. The relaxation constant λ used in (30) and the tolerance μ used in the stopping 
criterion (31) are chosen as 0.5 and 10-4, respectively. The stability constraints (35) are 
imposed on 21×21 discrete points evenly distributed over the domain [0, π] × [−0.5, 0.5]. For 
K2 = 0, the stability constraints (34) are imposed on 21 frequency points, which are equally 
spaced over the range [0, π]. The parameter ν in (34) and (35) are chosen as 10-3. The optimal 
value of  used in (46) is 10-10 (except for VdIIR VFD filters at  = 0.9625,  = 10-9; and for 
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In (44)-(45), the subscript * denotes complex conjugate operation. It is noted that if an initial 
design is stable, the IIR filter obtained by the local search is stable. It is because if any of the 
poles moves close to the unit circle, it will create a large approximation error; and in case the 
situation that a pole and a zero nearly cancel or cancel each other emerges, the error 
performance will degrade due to a reduced filter order. Since a gradient-based algorithm 
can only find local minima around an initial design, if pole-zero cancellation does not 
appear in an initial design, pole-zero cancellation is not likely to appear in the subsequent 
local search using a gradient-based algorithm. Furthermore, the step size of a gradient-based 
algorithm can be automatically adjusted to guarantee that the obtained filter in each 
iteration stays inside the stable domain. The above scheme works well in all our designs. In 
the designs, the optimization command ‘fminunc’ in MATLAB was adopted to perform the 
local search. The stability of a designed VdIIR VFD filter is ensured if  its maximum pole 
radius is within the unity circle at each of the fractional delay values obtained from a dense 
grid of fractional delay t  [-0.5, 0.5]. On the other hand, the stability of a designed FdIIR 
VFD filter can simply be checked by ensuring its maximum pole radius is within the unity 
circle. 

 
5. Design specifications  

In this section, four sets of filter examples are presented to demonstrate the effectiveness of 
the sequential and gradient-based design methods. For a fair comparison, at each of the four 
specified cutoff frequencies, all the three types (IIR, allpass, and FIR) of VFD filters are 
specified to have the same number of variable coefficients, i.e., (N+1)(K1+1)+M(K2+1) = 
MAP(K1+1) = (LFIR+1)(K1+1), where MAP and LFIR denote, respectively, the filter order of an 
allpass VFD filter and the filter order of an FIR VFD filter. To achieve a good IIR VFD filter 
design based on a general IIR digital filter, the denominator order needs not be as high as 
the numerator order. Therefore, in each of the IIR VFD filter designs, the denominator order 
M is chosen to be 6 which is smaller than the corresponding numerator order N. The filter 
specifications of the IIR VFD filters with variable and fixed denominators are summarized in 
Table 1 whereas the design specifications of allpass and FIR VFD filters are summarized in 
Table 2.  
 
 

α (K1, K2) (N, M, D) 

0.9625 
(5, 5) (49, 6, 25), (49, 6, 28), (49, 6, 31) 
(5, 0) (54, 6, 27), (54, 6, 30), (54, 6, 33) 

0.9500 
(5, 5) (46, 6, 23), (46, 6, 26), (46, 6 29) 
(5, 0) (51, 6, 26), (51, 6, 29), (51, 6 32) 

0.9250 
(5, 5) (41, 6, 21), (41, 6, 24), (41, 6, 27) 
(5, 0) (46, 6, 23), (46, 6, 26), (46, 6, 29) 

0.9000 
(5, 5) (36, 6, 18), (36, 6, 21), (36, 6, 24) 
(5, 0) (41, 6, 21), (41, 6, 24), (41, 6, 27) 

Table 1. IIR VFD filter specifications (Keys: : Normalized passband; K1 (K2): Numerator 
(Denominator) coefficient polynomial order; N (M): Numerator (Denominator) order; D: IIR 
mean group delay) 
 

α K1 (MAP, DAP) (LFIR, DFIR) 
0.9625 5 (56, 56) (55, 28) 
0.9500 5 (53, 53) (52, 26) 
0.9250 5 (48, 48) (47, 24) 
0.9000 5 (43, 43) (42, 21) 

Table 2. Allpass and FIR VFD filter specifications (Keys: : Normalized passband; K1: 
Coefficient polynomial order; MAP: Allpass order; DAP: Allpass mean group delay; LFIR: FIR 
order; DFIR: FIR mean group delay) 
 
The respective mean group delay is somehow related to (a) the numerator and denominator 
orders, N and M, for an IIR VFD filter; (b) the filter order MAP of an allpass VFD filter; and 
(c) the filter order LFIR of an FIR VFD filter. In Tables 1 and 2, the respective mean group 
delay is chosen as: (a) D = the round up value of (N+M)/2 for an IIR VFD filter; (b) DAP = the 
filter order MAP for an allpass VFD filter; and (c) DFIR = the round up value of LFIR/2 for an 
FIR VFD filter. The choice of mean group delay values D = (N+M)/2 and (N+M)/2 3 
shown in Table 1 for all the IIR VFD filter design methods allows a comparison of their 
relative performances in order to determine the best design method upon which its best 
mean group delay value that yields a minimum erms can be determined by simulations to be 
described in Section 6.2. The design results obtained by the proposed designs are compared 
with those of the IIR VFD filters with variable denominators designed by (ZK), the IIR VFD 
filters with fixed denominators designed by (KJ) and (TCK), the allpass VFD filters designed 
by (KJ) and (LCR), and the FIR VFD filters designed by (KJ) and (LD). For fair comparisons, 
the weighting function W(ω,t) in (19) and (36) is always set equal to 1 for 褐ω 樺 [0, απ] and 褐t 樺 [−0.5, 0.5]. The relaxation constant λ used in (30) and the tolerance μ used in the stopping 
criterion (31) are chosen as 0.5 and 10-4, respectively. The stability constraints (35) are 
imposed on 21×21 discrete points evenly distributed over the domain [0, π] × [−0.5, 0.5]. For 
K2 = 0, the stability constraints (34) are imposed on 21 frequency points, which are equally 
spaced over the range [0, π]. The parameter ν in (34) and (35) are chosen as 10-3. The optimal 
value of  used in (46) is 10-10 (except for VdIIR VFD filters at  = 0.9625,  = 10-9; and for 
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FdIIR VFD filters at  = 0.9,  = 0). At each iteration, the SOCP problems in (29), (37) and 
(43) are solved using SeDuMi (Sturm, 1999) under MATLAB environment. 

 
6. Performance analysis 

6.1 Error measurements and stability check 

To evaluate the performances of each designed VFD filter, the maximum absolute error emax, 
and the normalized root-mean-squared (RMS) error erms of its (a) frequency responses, (b) 
magnitude responses, and (c) fractional group delay responses are adopted and they are 
defined, respectively, by 

        max ( , ) ,  [0, ], [ 0.5,0.5]maxe e t t       (46) 
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where 
 

       ( , ) ( , ) ( , )j
MAG de t H e t H t    (52) 

       ( , ) ( , )FGDe t t t   

 

(53) 

 

In (53), τ(ω,t) denotes the actual fractional group delay of a designed VFD filter. Since the 
design problem is formulated in the WLS sense (see (19)), so the erms of the frequency 
responses is the most appropriate criterion for comparisons among different design 
methods. In case two designs have the same erms, other error measurements shall be 
compared. For each of the designed VdIIR VFD filters and AP VFD filters, a uniform grid 
consisting of 1001 discrete fractional delay values t were used to ensure all these 1001 VFD 
filters are stable. By checking individual maximum pole radius to be within the unity circle, 
each of the designed VFD filters has been verified to be stable.  

 
6.2 IIR VFD filter performances 

Based on the design specifications of Table 1, the error performances of the designed IIR 
VFD filters are summarized in Tables 3-4. The keywords adopted in Tables 3-4 are defined 
as follows: The “Sequential design” refers to the minimization problem defined by (29) 
subject to (a) stability inequality constraints (35) for VdIIR VFD filter design; and (b) stability 
inequality constraints (34) for FdIIR VFD filter design. The “Gradient-based design with 
(35)” refers to the minimization problem defined by (37) subject to stability inequality 
constraints (35) for an initial VdIIR VFD filter design, and followed by a local search. The 
“Gradient-based design with (34)” refers to the minimization problem defined by (37) 
subject to stability inequality constraints (34) for an initial FdIIR VFD filter design, and 
followed by a local search. The “Gradient-based design with (43)” refers to the minimization 
problem defined by (43) for an initial VdIIR or FdIIR VFD filter design, and followed by a 
local search. Within each of the four sets of designs, the relative erms (in frequency responses) 
performances are ranked from top to bottom as shown in Tables 3-4. The top performer of 
each IIR VFD design method in Tables 3-4 is listed in Table 5.  
 
As shown in Table 5, the erms performances among the VdIIR VFD filters can be summarized 
as follows: The top performers for 0.95    0.9625 are the gradient-based designs with (35). 
The top performers for 0.9    0.925 are the gradient-based designs with (43). The bottom 
performer is the two-stage design of (ZK). The performance of the sequential designs (29) 
ranks at the middle between the designs of (ZK) and the gradient-based designs with (35) 
and with (43). As also shown in Table 5, the erms performances among the FdIIR VFD filters 
can be summarized as follows: The top performers for 0.925    0.9625 are the gradient-
based designs with (43) but has an average performance for  = 0.9. The top performer for  
= 0.9 is the gradient-based design with (34) which has close but lower performances than 
those of the gradient-based designs with (43) for 0.925    0.95. The bottom performer for 
0.925    0.9625 is (TCK) but it ranks second among all the FdIIR VFD designs for  = 0.9. 
Between (KJ) and the sequential design (29), the former ranks higher than those of the 
sequential designs (29) for 0.95     0.9625 but vice versa for 0.9    0.925. Comparing 
(KJ) and (TCK), the former yields better performances for 0.925    0.9625 but vice versa 
for  = 0.9. 
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FdIIR VFD filters at  = 0.9,  = 0). At each iteration, the SOCP problems in (29), (37) and 
(43) are solved using SeDuMi (Sturm, 1999) under MATLAB environment. 

 
6. Performance analysis 

6.1 Error measurements and stability check 

To evaluate the performances of each designed VFD filter, the maximum absolute error emax, 
and the normalized root-mean-squared (RMS) error erms of its (a) frequency responses, (b) 
magnitude responses, and (c) fractional group delay responses are adopted and they are 
defined, respectively, by 

        max ( , ) ,  [0, ], [ 0.5,0.5]maxe e t t       (46) 
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where 
 

       ( , ) ( , ) ( , )j
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(53) 

 

In (53), τ(ω,t) denotes the actual fractional group delay of a designed VFD filter. Since the 
design problem is formulated in the WLS sense (see (19)), so the erms of the frequency 
responses is the most appropriate criterion for comparisons among different design 
methods. In case two designs have the same erms, other error measurements shall be 
compared. For each of the designed VdIIR VFD filters and AP VFD filters, a uniform grid 
consisting of 1001 discrete fractional delay values t were used to ensure all these 1001 VFD 
filters are stable. By checking individual maximum pole radius to be within the unity circle, 
each of the designed VFD filters has been verified to be stable.  

 
6.2 IIR VFD filter performances 

Based on the design specifications of Table 1, the error performances of the designed IIR 
VFD filters are summarized in Tables 3-4. The keywords adopted in Tables 3-4 are defined 
as follows: The “Sequential design” refers to the minimization problem defined by (29) 
subject to (a) stability inequality constraints (35) for VdIIR VFD filter design; and (b) stability 
inequality constraints (34) for FdIIR VFD filter design. The “Gradient-based design with 
(35)” refers to the minimization problem defined by (37) subject to stability inequality 
constraints (35) for an initial VdIIR VFD filter design, and followed by a local search. The 
“Gradient-based design with (34)” refers to the minimization problem defined by (37) 
subject to stability inequality constraints (34) for an initial FdIIR VFD filter design, and 
followed by a local search. The “Gradient-based design with (43)” refers to the minimization 
problem defined by (43) for an initial VdIIR or FdIIR VFD filter design, and followed by a 
local search. Within each of the four sets of designs, the relative erms (in frequency responses) 
performances are ranked from top to bottom as shown in Tables 3-4. The top performer of 
each IIR VFD design method in Tables 3-4 is listed in Table 5.  
 
As shown in Table 5, the erms performances among the VdIIR VFD filters can be summarized 
as follows: The top performers for 0.95    0.9625 are the gradient-based designs with (35). 
The top performers for 0.9    0.925 are the gradient-based designs with (43). The bottom 
performer is the two-stage design of (ZK). The performance of the sequential designs (29) 
ranks at the middle between the designs of (ZK) and the gradient-based designs with (35) 
and with (43). As also shown in Table 5, the erms performances among the FdIIR VFD filters 
can be summarized as follows: The top performers for 0.925    0.9625 are the gradient-
based designs with (43) but has an average performance for  = 0.9. The top performer for  
= 0.9 is the gradient-based design with (34) which has close but lower performances than 
those of the gradient-based designs with (43) for 0.925    0.95. The bottom performer for 
0.925    0.9625 is (TCK) but it ranks second among all the FdIIR VFD designs for  = 0.9. 
Between (KJ) and the sequential design (29), the former ranks higher than those of the 
sequential designs (29) for 0.95     0.9625 but vice versa for 0.9    0.925. Comparing 
(KJ) and (TCK), the former yields better performances for 0.925    0.9625 but vice versa 
for  = 0.9. 
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α N D A R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

1 49 

25 

(29) 9 -35.490 1.892e-3 -37.360 1.289e-3 1.763 2.754e-1 
(35) 3 -50.347 3.683e-4 -50.402 2.923e-4 3.970e-1 6.042e-2 
(43) 4 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
(ZK) 12 -11.622 2.766e-2 -12.295 2.402e-2 1.972 4.208e-1 

28 

(29) 8 -40.026 1.403e-3 -40.664 1.036e-3 1.160 1.823e-1 
(35) 2 -50.808 3.444e-4 -51.710 2.318e-4 4.850e-1 7.108e-2 
(43) 5 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
(ZK) 11 -12.042 2.623e-2 -13.067 2.268e-2 1.892 4.291e-1 

31 

(29) 7 -42.041 8.851e-4 -42.698 6.840e-4 9.504e-1 1.431e-1 
(35) 1 -52.436 2.890e-4 -53.731 1.833e-4 4.442e-1 6.963e-2 
(43) 6 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
(ZK) 10 -12.674 2.460e-2 -13.590 2.110e-2 1.797 4.203e-1 

2 46 

23 

(29) 9 -43.309 8.175e-4 -46.118 5.256e-4 6.791e-1 1.095e-1 
(35) 5 -57.964 1.563e-4 -57.970 1.230e-4 1.561e-1 2.346e-2 
(43) 6 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
(ZK) 10 -17.857 1.511e-2 -18.471 1.328e-2 1.097 2.441e-1 

26 

(29) 8 -48.237 4.151e-4 -50.465 2.946e-4 3.830e-1 6.093e-2 
(35) 3 -59.298 1.354e-4 -60.759 9.100e-5 1.680e-1 2.487e-2 
(43) 4 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
(ZK) 11 -17.735 1.531e-2 -18.573 1.340e-2 1.021 2.346e-1 

29 

(29) 7 -48.984 3.667e-4 -49.148 2.845e-4 3.047e-1 4.843e-2 
(35) 1 -60.500 1.171e-4 -63.434 7.782e-5 1.400e-1 2.453e-2 
(43) 2 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
(ZK) 12 -11.036 2.871e-2 -12.351 2.526e-2 1.702 3.513e-1 

3 41 

21 

(29) 9 -57.865 1.108e-4 -61.693 6.780e-5 1.306e-1 1.993e-2 
(35) 5 -62.965 5.007e-5 -63.189 3.882e-5 5.270e-2 7.486e-3 
(43) 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
(ZK) 10 -18.100 1.752e-2 -18.330 1.493e-2 4.667e-1 1.575e-1 

24 

(29) 7 -60.523 8.940e-5 -60.973 6.550e-5 9.716e-2 1.449e-2 
(35) 4 -66.111 4.390e-5 -67.968 3.004e-5 5.477e-2 8.191e-3 
(43) 3 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
(ZK) 11 -15.405 1.998e-2 -15.883 1.767e-2 6.691e-1 1.745e-1 

27 

(29) 8 -59.811 9.295e-5 -59.859 7.225e-5 7.450e-2 1.322e-2 
(35) 2 -67.930 3.255e-5 -72.267 2.048e-5 4.415e-2 7.135e-3 
(43) 1 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
(ZK) 12 -13.440 2.520e-2 -14.190 2.242e-2 1.020 2.197e-1 

 
 

4 36 

18 

(29) 7 -70.872 3.336e-5 -74.955 2.250e-5 2.631e-2 4.264e-3 
(35) 9 -71.177 3.592e-5 -71.466 2.760e-5 2.270e-2 3.510e-3 
(43) 4 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
(ZK) 11 -20.667 1.381e-2 -20.070 1.113e-2 2.332e-1 1.109e-1 

21 

(29) 6 -71.817 3.311e-5 -73.389 2.411e-5 2.564e-2 3.895e-3 
(35) 5 -72.620 2.730e-5 -73.472 1.881e-5 2.110e-2 3.541e-3 
(43) 2 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
(ZK) 10 -21.880 1.139e-2 -22.079 9.317e-3 2.680e-1 1.033e-1 

24 

(29) 8 -71.882 3.488e-5 -72.448 2.545e-5 1.982e-2 3.541e-3 
(35) 3 -75.763 2.294e-5 -77.805 1.494e-5 2.183e-2 3.434e-3 
(43) 1 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
(ZK) 12 -14.311 2.847e-2 -14.477 2.483e-2 5.477e-1 1.958e-1 

Table 3. Performances of VdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (35): Gradient-based design with (35); (43): 
Gradient-based design with (43); (ZK): (Zhao & Kwan, 2007); R: Rank; FGD: Fractional 
group delay) 
 

α N D A R 
Freq. Responses Mag. Responses FGD Responses 
emax erms emax,1(dB) erms,1 emax,2 erms,2 

1 54 

27 

(29) 12 -38.000 1.426e-3 -40.368 9.325e-4 1.556 2.398e-1 
(34) 6 -51.464 2.796e-4 -52.628 2.229e-4 3.141e-1 4.812e-2 
(43) 5 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
(KJ) 9 -39.632 5.615e-4 -39.696 4.623e-4 8.980e-1 1.365e-1 

(TCK) 15 -30.303 2.429e-3 -31.218 1.974e-3 3.359 5.846e-1 

30 

(29) 11 -42.034 9.887e-4 -43.963 7.094e-4 1.014 1.559e-1 
(34) 4 -50.852 2.683e-4 -53.605 1.810e-4 3.932e-1 6.088e-2 
(43) 3 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
(KJ) 7 -40.645 5.044e-4 -41.407 3.952e-4 1.010 1.446e-1 

(TCK) 14 -31.333 2.206e-3 -34.075 1.415e-3 3.364 6.026e-1 

33 

(29) 10 -43.634 6.475e-4 -45.398 4.989e-4 8.047e-1 1.196e-1 
(34) 2 -50.271 2.647e-4 -54.681 1.649e-4 4.254e-1 6.933e-2 
(43) 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
(KJ) 8 -40.973 5.101e-4 -42.615 3.681e-4 1.143 1.668e-1 

(TCK) 13 -33.233 1.793e-3 -38.764 8.176e-4 2.853 5.160e-1 

2 51 26 

(29) 12 -46.106 4.757e-4 -49.348 3.021e-4 4.745e-1 7.514e-2 
(34) 9 -56.847 1.423e-4 -59.984 1.015e-4 1.334e-1 2.122e-2 
(43) 3 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
(KJ) 5 -55.680 1.241e-4 -58.979 8.890e-5 2.465e-1 3.491e-2 

(TCK) 15 -38.816 8.603e-4 -38.917 7.661e-4 1.178 1.856e-1 
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α N D A R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

1 49 

25 

(29) 9 -35.490 1.892e-3 -37.360 1.289e-3 1.763 2.754e-1 
(35) 3 -50.347 3.683e-4 -50.402 2.923e-4 3.970e-1 6.042e-2 
(43) 4 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
(ZK) 12 -11.622 2.766e-2 -12.295 2.402e-2 1.972 4.208e-1 

28 

(29) 8 -40.026 1.403e-3 -40.664 1.036e-3 1.160 1.823e-1 
(35) 2 -50.808 3.444e-4 -51.710 2.318e-4 4.850e-1 7.108e-2 
(43) 5 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
(ZK) 11 -12.042 2.623e-2 -13.067 2.268e-2 1.892 4.291e-1 

31 

(29) 7 -42.041 8.851e-4 -42.698 6.840e-4 9.504e-1 1.431e-1 
(35) 1 -52.436 2.890e-4 -53.731 1.833e-4 4.442e-1 6.963e-2 
(43) 6 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
(ZK) 10 -12.674 2.460e-2 -13.590 2.110e-2 1.797 4.203e-1 

2 46 

23 

(29) 9 -43.309 8.175e-4 -46.118 5.256e-4 6.791e-1 1.095e-1 
(35) 5 -57.964 1.563e-4 -57.970 1.230e-4 1.561e-1 2.346e-2 
(43) 6 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
(ZK) 10 -17.857 1.511e-2 -18.471 1.328e-2 1.097 2.441e-1 

26 

(29) 8 -48.237 4.151e-4 -50.465 2.946e-4 3.830e-1 6.093e-2 
(35) 3 -59.298 1.354e-4 -60.759 9.100e-5 1.680e-1 2.487e-2 
(43) 4 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
(ZK) 11 -17.735 1.531e-2 -18.573 1.340e-2 1.021 2.346e-1 

29 

(29) 7 -48.984 3.667e-4 -49.148 2.845e-4 3.047e-1 4.843e-2 
(35) 1 -60.500 1.171e-4 -63.434 7.782e-5 1.400e-1 2.453e-2 
(43) 2 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
(ZK) 12 -11.036 2.871e-2 -12.351 2.526e-2 1.702 3.513e-1 

3 41 

21 

(29) 9 -57.865 1.108e-4 -61.693 6.780e-5 1.306e-1 1.993e-2 
(35) 5 -62.965 5.007e-5 -63.189 3.882e-5 5.270e-2 7.486e-3 
(43) 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
(ZK) 10 -18.100 1.752e-2 -18.330 1.493e-2 4.667e-1 1.575e-1 

24 

(29) 7 -60.523 8.940e-5 -60.973 6.550e-5 9.716e-2 1.449e-2 
(35) 4 -66.111 4.390e-5 -67.968 3.004e-5 5.477e-2 8.191e-3 
(43) 3 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
(ZK) 11 -15.405 1.998e-2 -15.883 1.767e-2 6.691e-1 1.745e-1 

27 

(29) 8 -59.811 9.295e-5 -59.859 7.225e-5 7.450e-2 1.322e-2 
(35) 2 -67.930 3.255e-5 -72.267 2.048e-5 4.415e-2 7.135e-3 
(43) 1 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
(ZK) 12 -13.440 2.520e-2 -14.190 2.242e-2 1.020 2.197e-1 

 
 

4 36 

18 

(29) 7 -70.872 3.336e-5 -74.955 2.250e-5 2.631e-2 4.264e-3 
(35) 9 -71.177 3.592e-5 -71.466 2.760e-5 2.270e-2 3.510e-3 
(43) 4 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
(ZK) 11 -20.667 1.381e-2 -20.070 1.113e-2 2.332e-1 1.109e-1 

21 

(29) 6 -71.817 3.311e-5 -73.389 2.411e-5 2.564e-2 3.895e-3 
(35) 5 -72.620 2.730e-5 -73.472 1.881e-5 2.110e-2 3.541e-3 
(43) 2 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
(ZK) 10 -21.880 1.139e-2 -22.079 9.317e-3 2.680e-1 1.033e-1 

24 

(29) 8 -71.882 3.488e-5 -72.448 2.545e-5 1.982e-2 3.541e-3 
(35) 3 -75.763 2.294e-5 -77.805 1.494e-5 2.183e-2 3.434e-3 
(43) 1 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
(ZK) 12 -14.311 2.847e-2 -14.477 2.483e-2 5.477e-1 1.958e-1 

Table 3. Performances of VdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (35): Gradient-based design with (35); (43): 
Gradient-based design with (43); (ZK): (Zhao & Kwan, 2007); R: Rank; FGD: Fractional 
group delay) 
 

α N D A R 
Freq. Responses Mag. Responses FGD Responses 
emax erms emax,1(dB) erms,1 emax,2 erms,2 

1 54 

27 

(29) 12 -38.000 1.426e-3 -40.368 9.325e-4 1.556 2.398e-1 
(34) 6 -51.464 2.796e-4 -52.628 2.229e-4 3.141e-1 4.812e-2 
(43) 5 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
(KJ) 9 -39.632 5.615e-4 -39.696 4.623e-4 8.980e-1 1.365e-1 

(TCK) 15 -30.303 2.429e-3 -31.218 1.974e-3 3.359 5.846e-1 

30 

(29) 11 -42.034 9.887e-4 -43.963 7.094e-4 1.014 1.559e-1 
(34) 4 -50.852 2.683e-4 -53.605 1.810e-4 3.932e-1 6.088e-2 
(43) 3 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
(KJ) 7 -40.645 5.044e-4 -41.407 3.952e-4 1.010 1.446e-1 

(TCK) 14 -31.333 2.206e-3 -34.075 1.415e-3 3.364 6.026e-1 

33 

(29) 10 -43.634 6.475e-4 -45.398 4.989e-4 8.047e-1 1.196e-1 
(34) 2 -50.271 2.647e-4 -54.681 1.649e-4 4.254e-1 6.933e-2 
(43) 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
(KJ) 8 -40.973 5.101e-4 -42.615 3.681e-4 1.143 1.668e-1 

(TCK) 13 -33.233 1.793e-3 -38.764 8.176e-4 2.853 5.160e-1 

2 51 26 

(29) 12 -46.106 4.757e-4 -49.348 3.021e-4 4.745e-1 7.514e-2 
(34) 9 -56.847 1.423e-4 -59.984 1.015e-4 1.334e-1 2.122e-2 
(43) 3 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
(KJ) 5 -55.680 1.241e-4 -58.979 8.890e-5 2.465e-1 3.491e-2 

(TCK) 15 -38.816 8.603e-4 -38.917 7.661e-4 1.178 1.856e-1 
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29 

(29) 11 -49.943 2.895e-4 -52.464 2.166e-4 2.821e-1 4.396e-2 
(34) 8 -55.870 1.386e-4 -63.233 8.848e-5 1.524e-1 2.632e-2 
(43) 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
(KJ) 4 -56.758 1.193e-4 -59.001 8.726e-5 1.691e-1 2.528e-2 

(TCK) 14 -40.109 8.059e-4 -42.311 5.295e-4 1.314 2.294e-1 

32 

(29) 10 -51.166 2.425e-4 -52.046 1.934e-4 2.142e-1 3.369e-2 
(34) 7 -55.703 1.382e-4 -61.363 9.540e-5 1.556e-1 2.623e-2 
(43) 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
(KJ) 6 -55.965 1.287e-4 -55.998 9.835e-5 1.528e-1 2.498e-2 

(TCK) 13 -41.867 6.935e-4 -48.144 3.326e-4 1.023 1.822e-1 

3 46 

23 

(29) 12 -56.063 1.152e-4 -60.966 7.670e-5 1.237e-1 1.812e-2 
(34) 3 -59.700 7.518e-5 -67.140 5.471e-5 4.434e-2 6.868e-3 
(43) 4 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
(KJ) 10 -58.608 9.039e-5 -62.759 6.328e-5 8.504e-2 1.145e-2 

(TCK) 13 -55.650 1.372e-4 -56.367 1.175e-4 1.242e-1 1.750e-2 

26 

(29) 7 -60.462 8.640e-5 -64.213 6.376e-5 6.447e-2 9.586e-3 
(34) 6 -59.137 8.352e-5 -66.130 5.871e-5 6.708e-2 9.784e-3 
(43) 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
(KJ) 9 -61.008 8.814e-5 -63.846 6.359e-5 5.162e-2 7.425e-3 

(TCK) 14 -54.098 1.536e-4 -55.608 1.325e-4 2.001e-1 2.945e-2 

29 

(29) 5 -61.122 8.273e-5 -64.300 6.255e-5 5.129e-2 7.660e-3 
(34) 11 -58.753 9.176e-5 -65.279 6.558e-5 7.955e-2 1.131e-2 
(43) 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
(KJ) 8 -62.337 8.694e-5 -64.720 6.295e-5 4.210e-2 6.087e-3 

(TCK) 15 -54.170 1.639e-4 -57.739 8.782e-5 2.696e-1 4.845e-2 

4 41 

21 

(29) 8 -63.290 6.478e-5 -68.632 4.749e-5 2.587e-2 3.957e-3 
(34) 1 -62.541 5.875e-5 -71.768 4.111e-5 2.003e-2 3.037e-3 
(43) 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
(KJ) 11 -66.316 7.136e-5 -70.722 5.197e-5 7.839e-3 1.202e-3 

(TCK) 2 -64.839 5.948e-5 -71.691 4.386e-5 2.400e-2 3.768e-3 

24 

(29) 6 -63.812 6.103e-5 -69.829 4.557e-5 1.439e-2 2.480e-3 
(34) 3 -61.956 5.978e-5 -70.458 4.250e-5 2.073e-2 3.177e-3 
(43) 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
(KJ) 12 -65.803 7.137e-5 -70.716 5.194e-5 1.140e-2 1.686e-3 

(TCK) 14 -63.694 8.469e-5 -64.780 5.867e-5 6.538e-2 1.150e-2 

27 
(29) 7 -64.154 6.237e-5 -69.549 4.676e-5 1.283e-2 2.222e-3 
(34) 9 -62.223 6.748e-5 -66.374 4.933e-5 1.815e-2 3.434e-3 

(43) 10 -62.973 7.050e-5 -65.414 5.395e-5 1.670e-2 3.412e-3 
(KJ) 13 -66.208 7.147e-5 -70.498 5.203e-5 1.101e-2 1.632e-3 

(TCK) 15 -58.427 1.680e-4 -58.631 1.203e-4 7.196e-2 1.499e-2 
Table 4. Performances of FdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (34): Gradient-based design with (34); (43): 
Gradient-based design with (43); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 2007); R: 
Rank; FGD: Fractional group delay) 

 

  
VdIIR FdIIR 

(29) (35) (43) (ZK) (29) (34) (43) (KJ) (TCK) 

1 
erms 8.851e-4 2.890e-4 4.790e-4 2.460e-2 6.475e-4 2.647e-4 1.360e-4 5.044e-4 1.793e-3 
R 3 1 2 4 4 2 1 3 5 

2 
erms 3.667e-4 1.171e-4 1.310e-4 1.511e-2 2.425e-4 1.382e-4 1.018e-4 1.193e-4 6.935e-4 
R 3 1 2 4 4 3 1 2 5 

3 
erms 8.940e-5 3.255e-5 1.269e-5 1.752e-2 8.273e-5 7.518e-5 7.065e-5 8.694e-5 1.372e-4 
R 3 2 1 4 3 2 1 4 5 

4 
erms 3.311e-5 2.294e-5 6.257e-6 1.139e-2 6.103e-5 5.875e-5 6.049e-5 7.136e-5 5.948e-5 
R 3 2 1 4 4 1 3 5 2 

Table 5. Top-performed (erms) VFD filters from Tables 3-4 (Keys: 1= 0.9625, 2= 0.95, 3= 
0.925, 4= 0.9; (ZK): (Zhao & Kwan, 2007); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 
2007); R: Rank) 

 
6.3 Allpass and FIR VFD filter performances 

The error performances of the AP VFD filters designed by (KJ) and (LCR) and the FIR VFD 
filters designed by (KJ) and (LD) are summarized in Table 6. In general, the two AP VFD 
filters achieve erms improvements over the two FIR VFD filters (except for (LD) at  = 0.9625). 
The top erms performances of the AP VFD filters are (KJ) for 0.925    0.9625 and (LCR) for 
 = 0.9.  

 
6.4 Optimal gradient-based designs with (43) 
It can be observed in Tables 3-4 that the error performances of VdIIR and FdIIR VFD filters 
at any specified cutoff frequency is a function of the mean group delay value D. To 
investigate this property further, consider the case of the gradient-based design with (43) in 
Table 5 in which it ranks top among VdIIR VFD filters for 0.9    0.925 and ranks top 
among FdIIR VFD filters for 0.925     0.9625. For each of the four cutoff frequencies, the 
error performances of the gradient-based designs with (43) for VdIIR and FdIIR VFD filters 
versus mean group delay D (at a step size of 3) are, respectively, summarized in Tables 7-8 
and their corresponding erms values versus D are plotted in Figs. 1-8. From Tables 7-8, their  
mean group delay values D that yield minimum erms values are summarized in Table 9. For 
comparisons, the erms performances of the AP and FIR VFD filters from Table 6 are also 
listed under Table 9. The magnitude responses and group delay responses of the widest 
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29 

(29) 11 -49.943 2.895e-4 -52.464 2.166e-4 2.821e-1 4.396e-2 
(34) 8 -55.870 1.386e-4 -63.233 8.848e-5 1.524e-1 2.632e-2 
(43) 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
(KJ) 4 -56.758 1.193e-4 -59.001 8.726e-5 1.691e-1 2.528e-2 

(TCK) 14 -40.109 8.059e-4 -42.311 5.295e-4 1.314 2.294e-1 

32 

(29) 10 -51.166 2.425e-4 -52.046 1.934e-4 2.142e-1 3.369e-2 
(34) 7 -55.703 1.382e-4 -61.363 9.540e-5 1.556e-1 2.623e-2 
(43) 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
(KJ) 6 -55.965 1.287e-4 -55.998 9.835e-5 1.528e-1 2.498e-2 

(TCK) 13 -41.867 6.935e-4 -48.144 3.326e-4 1.023 1.822e-1 

3 46 

23 

(29) 12 -56.063 1.152e-4 -60.966 7.670e-5 1.237e-1 1.812e-2 
(34) 3 -59.700 7.518e-5 -67.140 5.471e-5 4.434e-2 6.868e-3 
(43) 4 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
(KJ) 10 -58.608 9.039e-5 -62.759 6.328e-5 8.504e-2 1.145e-2 

(TCK) 13 -55.650 1.372e-4 -56.367 1.175e-4 1.242e-1 1.750e-2 

26 

(29) 7 -60.462 8.640e-5 -64.213 6.376e-5 6.447e-2 9.586e-3 
(34) 6 -59.137 8.352e-5 -66.130 5.871e-5 6.708e-2 9.784e-3 
(43) 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
(KJ) 9 -61.008 8.814e-5 -63.846 6.359e-5 5.162e-2 7.425e-3 

(TCK) 14 -54.098 1.536e-4 -55.608 1.325e-4 2.001e-1 2.945e-2 

29 

(29) 5 -61.122 8.273e-5 -64.300 6.255e-5 5.129e-2 7.660e-3 
(34) 11 -58.753 9.176e-5 -65.279 6.558e-5 7.955e-2 1.131e-2 
(43) 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
(KJ) 8 -62.337 8.694e-5 -64.720 6.295e-5 4.210e-2 6.087e-3 

(TCK) 15 -54.170 1.639e-4 -57.739 8.782e-5 2.696e-1 4.845e-2 

4 41 

21 

(29) 8 -63.290 6.478e-5 -68.632 4.749e-5 2.587e-2 3.957e-3 
(34) 1 -62.541 5.875e-5 -71.768 4.111e-5 2.003e-2 3.037e-3 
(43) 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
(KJ) 11 -66.316 7.136e-5 -70.722 5.197e-5 7.839e-3 1.202e-3 

(TCK) 2 -64.839 5.948e-5 -71.691 4.386e-5 2.400e-2 3.768e-3 

24 

(29) 6 -63.812 6.103e-5 -69.829 4.557e-5 1.439e-2 2.480e-3 
(34) 3 -61.956 5.978e-5 -70.458 4.250e-5 2.073e-2 3.177e-3 
(43) 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
(KJ) 12 -65.803 7.137e-5 -70.716 5.194e-5 1.140e-2 1.686e-3 

(TCK) 14 -63.694 8.469e-5 -64.780 5.867e-5 6.538e-2 1.150e-2 

27 
(29) 7 -64.154 6.237e-5 -69.549 4.676e-5 1.283e-2 2.222e-3 
(34) 9 -62.223 6.748e-5 -66.374 4.933e-5 1.815e-2 3.434e-3 

(43) 10 -62.973 7.050e-5 -65.414 5.395e-5 1.670e-2 3.412e-3 
(KJ) 13 -66.208 7.147e-5 -70.498 5.203e-5 1.101e-2 1.632e-3 

(TCK) 15 -58.427 1.680e-4 -58.631 1.203e-4 7.196e-2 1.499e-2 
Table 4. Performances of FdIIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; A: 
Design method; (29): Sequential design; (34): Gradient-based design with (34); (43): 
Gradient-based design with (43); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 2007); R: 
Rank; FGD: Fractional group delay) 

 

  
VdIIR FdIIR 

(29) (35) (43) (ZK) (29) (34) (43) (KJ) (TCK) 

1 
erms 8.851e-4 2.890e-4 4.790e-4 2.460e-2 6.475e-4 2.647e-4 1.360e-4 5.044e-4 1.793e-3 
R 3 1 2 4 4 2 1 3 5 

2 
erms 3.667e-4 1.171e-4 1.310e-4 1.511e-2 2.425e-4 1.382e-4 1.018e-4 1.193e-4 6.935e-4 
R 3 1 2 4 4 3 1 2 5 

3 
erms 8.940e-5 3.255e-5 1.269e-5 1.752e-2 8.273e-5 7.518e-5 7.065e-5 8.694e-5 1.372e-4 
R 3 2 1 4 3 2 1 4 5 

4 
erms 3.311e-5 2.294e-5 6.257e-6 1.139e-2 6.103e-5 5.875e-5 6.049e-5 7.136e-5 5.948e-5 
R 3 2 1 4 4 1 3 5 2 

Table 5. Top-performed (erms) VFD filters from Tables 3-4 (Keys: 1= 0.9625, 2= 0.95, 3= 
0.925, 4= 0.9; (ZK): (Zhao & Kwan, 2007); (KJ): (Kwan & Jiang, 2009a); (TCK): (Tsui et al., 
2007); R: Rank) 

 
6.3 Allpass and FIR VFD filter performances 

The error performances of the AP VFD filters designed by (KJ) and (LCR) and the FIR VFD 
filters designed by (KJ) and (LD) are summarized in Table 6. In general, the two AP VFD 
filters achieve erms improvements over the two FIR VFD filters (except for (LD) at  = 0.9625). 
The top erms performances of the AP VFD filters are (KJ) for 0.925    0.9625 and (LCR) for 
 = 0.9.  

 
6.4 Optimal gradient-based designs with (43) 
It can be observed in Tables 3-4 that the error performances of VdIIR and FdIIR VFD filters 
at any specified cutoff frequency is a function of the mean group delay value D. To 
investigate this property further, consider the case of the gradient-based design with (43) in 
Table 5 in which it ranks top among VdIIR VFD filters for 0.9    0.925 and ranks top 
among FdIIR VFD filters for 0.925     0.9625. For each of the four cutoff frequencies, the 
error performances of the gradient-based designs with (43) for VdIIR and FdIIR VFD filters 
versus mean group delay D (at a step size of 3) are, respectively, summarized in Tables 7-8 
and their corresponding erms values versus D are plotted in Figs. 1-8. From Tables 7-8, their  
mean group delay values D that yield minimum erms values are summarized in Table 9. For 
comparisons, the erms performances of the AP and FIR VFD filters from Table 6 are also 
listed under Table 9. The magnitude responses and group delay responses of the widest 
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band designs at α = 0.9625 obtained by the VdIIR and FdIIR VFD filters shown in Table 9 are 
plotted in Figs. 9-12. 
 

α OD A/F 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 

56, 
56 

A(KJ) -40.677 3.246e-4 N.A. N.A. 1.980 1.717e-1 
A(LCR) -24.604 9.309e-3 N.A. N.A. 5.920e-1 1.374e-1 

55, 
28 

F(KJ) 2.798 8.242e-1 -24.807 3.048e-3 2.117 1.761 
F(LD) -31.994 3.573e-3 -31.997 2.933e-3 1.548 3.248e-1 

α2 

53, 
53 

A(KJ) -61.643 5.626e-5 N.A. N.A. 4.437e-1 3.779e-2 
A(LCR) -55.710 2.258e-4 N.A. N.A. 8.224e-2 2.181e-2 

52, 
26 

F(KJ) -32.726 1.493e-3 -32.770 1.216e-3 8.027e-1 1.633e-1 
F(LD) -38.421 1.552e-3 -38.432 1.229e-3 6.470e-1 1.459e-1 

α3 

48, 
48 

A(KJ) -70.691 1.264e-5 N.A. N.A. 2.011e-2 1.745e-3 
A(LCR) -73.920 1.265e-5 N.A. N.A. 2.991e-3 9.069e-4 

47, 
24 

F(KJ) 2.474 7.957e-1 -42.609 3.731e-4 7.122e-1 1.732 
F(LD) -50.268 3.654e-4 -50.411 2.917e-4 1.802e-1 3.536e-2 

α4 

43, 
43 

A(KJ) -80.513 4.987e-6 N.A. N.A. 5.892e-3 5.193e-4 
A(LCR) -84.237 4.119e-6 N.A. N.A. 3.870e-4 1.044e-4 

42, 
21 

F(KJ) -53.561 1.310e-4 -53.810 1.027e-4 7.986e-2 1.609e-2 
F(LD) -59.247 1.354e-4 -59.572 1.015e-4 5.479e-2 1.223e-2 

Table 6. Performances of allpass and FIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 
4= 0.9; OD: Filter order and mean group delay (MAP, DAP) or (LFIR, DFIR); A: Allpass design, 
F: FIR design; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & Deng, 1999); 
FGD: Fractional group delay) 
 
The relationship between numerator and denominator orders, and optimal mean group 
delay of a VdIIR or FdIIR VFD filter is a subject of interest. Table 10 summarizes such 
relationships among those VdIIR and FdIIR VDF filters listed in Table 9. It can be observed 
from Table 10 that as  changes from 0.9     0.9625, the ratio D/(N+M) changes from 0.64 
to 0.67 for VdIIR VFD filters, and changes from 0.57 to 0.55 for FdIIR VFD filters. Also, as 
seen from Figs. 1-8, for the higher wideband side with  = 0.9625 and 0.95, there is a mean 
group delay value that yields a minimum erms value; but for the lower wideband side with  
= 0.925 and 0.9, each of the mean group delay curves shows that erms becomes lower much 
earlier at smaller D before reaching its minimum erms value. In other words, the mean group 
delay requirement is lower for lower wideband cutoff frequencies. From Table 10, in 
general, the VdIIR VFD filters require slightly higher optimal mean group delay values D 
than those of the corresponding FdIIR VFD filters.  
 
 

 

α N D R 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 49 

25 6 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
28 7 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
31 8 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
34 3 -55.689 1.709e-4 -56.650 1.203e-4 3.135e-1 4.301e-2 
37 1 -56.746 1.157e-4 -56.792 8.227e-5 2.371e-1 3.090e-2 
40 2 -54.753 1.333e-4 -55.272 8.621e-5 2.725e-1 3.913e-2 
43 4 -52.061 1.811e-4 -54.511 1.181e-4 3.634e-1 5.468e-2 
46 5 -48.664 2.877e-4 -48.979 2.016e-4 3.676e-1 6.420e-2 

α2 46 

23 7 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
26 6 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
29 5 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
32 2 -63.424 6.157e-5 -66.513 4.168e-5 1.025e-1 1.451e-2 
35 1 -64.515 5.514e-5 -67.411 3.558e-5 1.019e-1 1.364e-2 
38 3 -62.722 6.798e-5 -63.918 4.290e-5 1.184e-1 1.767e-2 
41 4 -57.588 9.448e-5 -57.757 7.247e-5 1.200e-1 1.731e-2 
44 8 -48.195 2.999e-4 -52.186 2.194e-4 5.620e-1 5.862e-2 

α3 41 

18 8 -49.959 3.716e-4 -50.563 2.537e-4 2.966e-1 4.916e-2 
21 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
24 5 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
27 2 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
30 1 -75.789 1.082e-5 -80.087 6.474e-6 2.048e-2 3.090e-3 
33 3 -71.425 1.823e-5 -71.675 1.433e-5 2.420e-2 3.420e-3 
36 4 -67.853 2.618e-5 -69.170 1.809e-5 3.759e-2 5.315e-3 
39 7 -59.463 7.159e-5 -61.018 5.770e-5 1.011e-1 1.101e-2 

α4 36 

12 8 -54.423 3.608e-4 -54.631 2.655e-4 2.113e-1 3.317e-2 
15 7 -62.453 1.158e-4 -64.365 8.504e-5 7.312e-2 1.147e-2 
18 6 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
21 3 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
24 2 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
27 1 -81.501 5.606e-6 -82.356 4.315e-6 6.449e-3 9.108e-4 
30 4 -76.734 8.225e-6 -82.492 5.195e-6 1.332e-2 1.626e-3 
33 5 -68.507 2.048e-5 -73.101 1.519e-5 2.204e-2 3.328e-3 

Table 7. Performances of gradient-based design (43) of VdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 
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band designs at α = 0.9625 obtained by the VdIIR and FdIIR VFD filters shown in Table 9 are 
plotted in Figs. 9-12. 
 

α OD A/F 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 

56, 
56 

A(KJ) -40.677 3.246e-4 N.A. N.A. 1.980 1.717e-1 
A(LCR) -24.604 9.309e-3 N.A. N.A. 5.920e-1 1.374e-1 

55, 
28 

F(KJ) 2.798 8.242e-1 -24.807 3.048e-3 2.117 1.761 
F(LD) -31.994 3.573e-3 -31.997 2.933e-3 1.548 3.248e-1 

α2 

53, 
53 

A(KJ) -61.643 5.626e-5 N.A. N.A. 4.437e-1 3.779e-2 
A(LCR) -55.710 2.258e-4 N.A. N.A. 8.224e-2 2.181e-2 

52, 
26 

F(KJ) -32.726 1.493e-3 -32.770 1.216e-3 8.027e-1 1.633e-1 
F(LD) -38.421 1.552e-3 -38.432 1.229e-3 6.470e-1 1.459e-1 

α3 

48, 
48 

A(KJ) -70.691 1.264e-5 N.A. N.A. 2.011e-2 1.745e-3 
A(LCR) -73.920 1.265e-5 N.A. N.A. 2.991e-3 9.069e-4 

47, 
24 

F(KJ) 2.474 7.957e-1 -42.609 3.731e-4 7.122e-1 1.732 
F(LD) -50.268 3.654e-4 -50.411 2.917e-4 1.802e-1 3.536e-2 

α4 

43, 
43 

A(KJ) -80.513 4.987e-6 N.A. N.A. 5.892e-3 5.193e-4 
A(LCR) -84.237 4.119e-6 N.A. N.A. 3.870e-4 1.044e-4 

42, 
21 

F(KJ) -53.561 1.310e-4 -53.810 1.027e-4 7.986e-2 1.609e-2 
F(LD) -59.247 1.354e-4 -59.572 1.015e-4 5.479e-2 1.223e-2 

Table 6. Performances of allpass and FIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 
4= 0.9; OD: Filter order and mean group delay (MAP, DAP) or (LFIR, DFIR); A: Allpass design, 
F: FIR design; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & Deng, 1999); 
FGD: Fractional group delay) 
 
The relationship between numerator and denominator orders, and optimal mean group 
delay of a VdIIR or FdIIR VFD filter is a subject of interest. Table 10 summarizes such 
relationships among those VdIIR and FdIIR VDF filters listed in Table 9. It can be observed 
from Table 10 that as  changes from 0.9     0.9625, the ratio D/(N+M) changes from 0.64 
to 0.67 for VdIIR VFD filters, and changes from 0.57 to 0.55 for FdIIR VFD filters. Also, as 
seen from Figs. 1-8, for the higher wideband side with  = 0.9625 and 0.95, there is a mean 
group delay value that yields a minimum erms value; but for the lower wideband side with  
= 0.925 and 0.9, each of the mean group delay curves shows that erms becomes lower much 
earlier at smaller D before reaching its minimum erms value. In other words, the mean group 
delay requirement is lower for lower wideband cutoff frequencies. From Table 10, in 
general, the VdIIR VFD filters require slightly higher optimal mean group delay values D 
than those of the corresponding FdIIR VFD filters.  
 
 

 

α N D R 
Freq. Responses Mag. Responses FGD Responses 

emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 49 

25 6 -46.317 4.790e-4 -46.373 3.607e-4 5.621e-1 7.708e-2 
28 7 -45.817 4.981e-4 -48.255 3.327e-4 6.545e-1 9.443e-2 
31 8 -45.492 5.203e-4 -46.819 3.439e-4 6.152e-1 1.034e-1 
34 3 -55.689 1.709e-4 -56.650 1.203e-4 3.135e-1 4.301e-2 
37 1 -56.746 1.157e-4 -56.792 8.227e-5 2.371e-1 3.090e-2 
40 2 -54.753 1.333e-4 -55.272 8.621e-5 2.725e-1 3.913e-2 
43 4 -52.061 1.811e-4 -54.511 1.181e-4 3.634e-1 5.468e-2 
46 5 -48.664 2.877e-4 -48.979 2.016e-4 3.676e-1 6.420e-2 

α2 46 

23 7 -55.398 2.194e-4 -56.439 1.629e-4 2.370e-1 3.347e-2 
26 6 -59.500 1.442e-4 -59.567 1.025e-4 1.855e-1 2.446e-2 
29 5 -59.982 1.310e-4 -60.924 9.276e-5 1.434e-1 2.400e-2 
32 2 -63.424 6.157e-5 -66.513 4.168e-5 1.025e-1 1.451e-2 
35 1 -64.515 5.514e-5 -67.411 3.558e-5 1.019e-1 1.364e-2 
38 3 -62.722 6.798e-5 -63.918 4.290e-5 1.184e-1 1.767e-2 
41 4 -57.588 9.448e-5 -57.757 7.247e-5 1.200e-1 1.731e-2 
44 8 -48.195 2.999e-4 -52.186 2.194e-4 5.620e-1 5.862e-2 

α3 41 

18 8 -49.959 3.716e-4 -50.563 2.537e-4 2.966e-1 4.916e-2 
21 6 -64.763 6.303e-5 -67.058 4.233e-5 7.008e-2 1.016e-2 
24 5 -69.381 3.348e-5 -70.084 2.327e-5 4.344e-2 6.336e-3 
27 2 -75.807 1.269e-5 -78.312 8.311e-6 2.229e-2 2.984e-3 
30 1 -75.789 1.082e-5 -80.087 6.474e-6 2.048e-2 3.090e-3 
33 3 -71.425 1.823e-5 -71.675 1.433e-5 2.420e-2 3.420e-3 
36 4 -67.853 2.618e-5 -69.170 1.809e-5 3.759e-2 5.315e-3 
39 7 -59.463 7.159e-5 -61.018 5.770e-5 1.011e-1 1.101e-2 

α4 36 

12 8 -54.423 3.608e-4 -54.631 2.655e-4 2.113e-1 3.317e-2 
15 7 -62.453 1.158e-4 -64.365 8.504e-5 7.312e-2 1.147e-2 
18 6 -71.255 2.661e-5 -73.122 1.942e-5 2.182e-2 3.217e-3 
21 3 -79.979 7.880e-6 -83.184 5.360e-6 8.086e-3 1.170e-3 
24 2 -83.278 6.257e-6 -85.250 4.068e-6 8.721e-3 1.314e-3 
27 1 -81.501 5.606e-6 -82.356 4.315e-6 6.449e-3 9.108e-4 
30 4 -76.734 8.225e-6 -82.492 5.195e-6 1.332e-2 1.626e-3 
33 5 -68.507 2.048e-5 -73.101 1.519e-5 2.204e-2 3.328e-3 

Table 7. Performances of gradient-based design (43) of VdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 
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α N D R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 54 

24 9 -47.551 4.030e-4 -48.815 3.254e-4 3.946e-1 6.066e-2 
27 8 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
30 7 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
33 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
36 2 -54.776 1.581e-4 -56.752 1.100e-4 2.200e-1 3.225e-2 
39 3 -53.351 1.695e-4 -58.289 1.097e-4 3.108e-1 4.832e-2 
42 4 -52.767 1.852e-4 -57.168 1.246e-4 3.521e-1 5.312e-2 
45 5 -51.723 2.027e-4 -54.003 1.500e-4 3.394e-1 4.971e-2 
48 6 -50.532 2.165e-4 -53.051 1.745e-4 3.007e-1 4.414e-2 

α2 51 

23 7 -57.352 1.585e-4 -57.948 1.258e-4 1.085e-1 1.823e-2 
26 4 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
29 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
32 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
35 3 -56.737 1.073e-4 -63.980 7.180e-5 1.307e-1 1.956e-2 
38 5 -56.078 1.210e-4 -60.347 8.811e-5 1.470e-1 2.142e-2 
41 6 -57.176 1.354e-4 -58.376 1.015e-4 1.199e-1 1.825e-2 
44 8 -54.520 1.590e-4 -57.346 1.155e-4 1.488e-1 2.299e-2 
47 9 -51.036 2.173e-4 -58.471 1.441e-4 3.066e-1 5.044e-2 

α3 46 

17 9 -54.883 1.565e-4 -56.964 1.190e-4 1.131e-1 1.781e-2 
20 8 -60.232 7.723e-5 -65.677 5.865e-5 3.142e-2 5.028e-3 
23 5 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
26 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
29 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
32 3 -62.120 7.440e-5 -66.268 5.689e-5 2.962e-2 4.939e-3 
35 4 -60.883 7.454e-5 -66.131 5.552e-5 4.267e-2 6.465e-3 
38 7 -59.235 7.703e-5 -67.887 5.477e-5 6.825e-2 1.023e-2 
41 6 -58.976 7.603e-5 -66.870 5.497e-5 6.936e-2 1.007e-2 

α4 41 

12 9 -55.792 1.883e-4 -58.359 1.342e-4 1.093e-1 1.991e-2 
15 8 -62.408 7.731e-5 -65.923 5.838e-5 3.030e-2 5.618e-3 
18 2 -63.307 5.875e-5 -71.407 4.177e-5 1.061e-2 1.921e-3 
21 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
24 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
27 1 -63.586 5.820e-5 -70.713 4.244e-5 9.738e-3 1.712e-3 
30 3 -61.756 5.975e-5 -70.908 4.170e-5 2.336e-2 3.916e-3 
33 6 -62.236 6.151e-5 -70.075 4.376e-5 3.241e-2 4.699e-3 
36 7 -61.444 6.189e-5 -68.939 4.454e-5 2.113e-2 3.729e-3 

Table 8. Performances of gradient-based design (43) of FdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 

 

  VdIIR FdIIR AP FIR 
(43) (43) (KJ) (LCR) (KJ) (LD) 

1 
D 37 33 56 56 28 28 

erms 1.157e-4 1.360e-4 3.246e-4 9.309e-3 8.242e-1 3.573e-3 

2 
D 35 32 53 53 26 26 

erms 5.514e-5 1.018e-4 5.626e-5 2.258e-4 1.493e-3 1.552e-3 

3 
D 30 29 48 48 24 24 

erms 1.082e-5 7.065e-5 1.264e-5 1.265e-5 7.957e-1 3.654e-4 

4 
D 27 27 43 43 21 21 

erms 5.606e-6 5.820e-5 4.987e-6 4.119e-6 1.310e-4 1.354e-4 
Table 9. Performances (erms) of VFD filters selected from Tables 6-8 (Keys: 1= 0.9625, 2= 
0.95, 3= 0.925, 4= 0.9; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & 
Deng, 1999)) 
 

  D N M N+M D/(N+M) 

VdIIR 

1 37 49 6 55 0.6727 
2 35 46 6 52 0.6731 
3 30 41 6 47 0.6383 
4 27 36 6 42 0.6429 

FdIIR 

1 33 54 6 60 0.5500 
2 32 51 6 57 0.5614 
3 29 46 6 52 0.5577 
4 27 41 6 47 0.5745 

Table 10. D/(N+M) for IIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9) 
 

 
Fig. 1. erms versus mean group delay D (VdIIR VFD filter, α = 0.9625, N = 49, M = 6) 
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α N D R Freq. Responses Mag. Responses FGD Responses 
emax (dB) erms emax,1(dB) erms,1 emax,2 erms,2 

α1 54 

24 9 -47.551 4.030e-4 -48.815 3.254e-4 3.946e-1 6.066e-2 
27 8 -49.821 2.791e-4 -49.826 2.345e-4 2.523e-1 4.390e-2 
30 7 -49.940 2.663e-4 -51.336 1.906e-4 3.675e-1 5.526e-2 
33 1 -58.117 1.360e-4 -59.459 1.055e-4 1.553e-1 2.391e-2 
36 2 -54.776 1.581e-4 -56.752 1.100e-4 2.200e-1 3.225e-2 
39 3 -53.351 1.695e-4 -58.289 1.097e-4 3.108e-1 4.832e-2 
42 4 -52.767 1.852e-4 -57.168 1.246e-4 3.521e-1 5.312e-2 
45 5 -51.723 2.027e-4 -54.003 1.500e-4 3.394e-1 4.971e-2 
48 6 -50.532 2.165e-4 -53.051 1.745e-4 3.007e-1 4.414e-2 

α2 51 

23 7 -57.352 1.585e-4 -57.948 1.258e-4 1.085e-1 1.823e-2 
26 4 -60.282 1.172e-4 -62.605 9.084e-5 8.234e-2 1.344e-2 
29 2 -60.166 1.051e-4 -64.946 7.397e-5 8.715e-2 1.359e-2 
32 1 -58.723 1.018e-4 -65.813 7.060e-5 1.013e-1 1.683e-2 
35 3 -56.737 1.073e-4 -63.980 7.180e-5 1.307e-1 1.956e-2 
38 5 -56.078 1.210e-4 -60.347 8.811e-5 1.470e-1 2.142e-2 
41 6 -57.176 1.354e-4 -58.376 1.015e-4 1.199e-1 1.825e-2 
44 8 -54.520 1.590e-4 -57.346 1.155e-4 1.488e-1 2.299e-2 
47 9 -51.036 2.173e-4 -58.471 1.441e-4 3.066e-1 5.044e-2 

α3 46 

17 9 -54.883 1.565e-4 -56.964 1.190e-4 1.131e-1 1.781e-2 
20 8 -60.232 7.723e-5 -65.677 5.865e-5 3.142e-2 5.028e-3 
23 5 -61.491 7.567e-5 -66.350 5.607e-5 3.709e-2 5.591e-3 
26 2 -61.693 7.237e-5 -68.770 5.183e-5 3.782e-2 5.498e-3 
29 1 -60.702 7.065e-5 -69.047 5.209e-5 3.796e-2 5.501e-3 
32 3 -62.120 7.440e-5 -66.268 5.689e-5 2.962e-2 4.939e-3 
35 4 -60.883 7.454e-5 -66.131 5.552e-5 4.267e-2 6.465e-3 
38 7 -59.235 7.703e-5 -67.887 5.477e-5 6.825e-2 1.023e-2 
41 6 -58.976 7.603e-5 -66.870 5.497e-5 6.936e-2 1.007e-2 

α4 41 

12 9 -55.792 1.883e-4 -58.359 1.342e-4 1.093e-1 1.991e-2 
15 8 -62.408 7.731e-5 -65.923 5.838e-5 3.030e-2 5.618e-3 
18 2 -63.307 5.875e-5 -71.407 4.177e-5 1.061e-2 1.921e-3 
21 5 -64.151 6.078e-5 -71.767 4.448e-5 1.876e-2 2.673e-3 
24 4 -63.959 6.049e-5 -69.984 4.491e-5 1.615e-2 2.565e-3 
27 1 -63.586 5.820e-5 -70.713 4.244e-5 9.738e-3 1.712e-3 
30 3 -61.756 5.975e-5 -70.908 4.170e-5 2.336e-2 3.916e-3 
33 6 -62.236 6.151e-5 -70.075 4.376e-5 3.241e-2 4.699e-3 
36 7 -61.444 6.189e-5 -68.939 4.454e-5 2.113e-2 3.729e-3 

Table 8. Performances of gradient-based design (43) of FdIIR VFD filters versus mean group 
delay (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9; R: Rank; FGD: Fractional group delay) 

 

  VdIIR FdIIR AP FIR 
(43) (43) (KJ) (LCR) (KJ) (LD) 

1 
D 37 33 56 56 28 28 

erms 1.157e-4 1.360e-4 3.246e-4 9.309e-3 8.242e-1 3.573e-3 

2 
D 35 32 53 53 26 26 

erms 5.514e-5 1.018e-4 5.626e-5 2.258e-4 1.493e-3 1.552e-3 

3 
D 30 29 48 48 24 24 

erms 1.082e-5 7.065e-5 1.264e-5 1.265e-5 7.957e-1 3.654e-4 

4 
D 27 27 43 43 21 21 

erms 5.606e-6 5.820e-5 4.987e-6 4.119e-6 1.310e-4 1.354e-4 
Table 9. Performances (erms) of VFD filters selected from Tables 6-8 (Keys: 1= 0.9625, 2= 
0.95, 3= 0.925, 4= 0.9; (KJ): (Kwan & Jiang, 2009a); (LCR): (Lee et al., 2008); (LD): (Lu & 
Deng, 1999)) 
 

  D N M N+M D/(N+M) 

VdIIR 

1 37 49 6 55 0.6727 
2 35 46 6 52 0.6731 
3 30 41 6 47 0.6383 
4 27 36 6 42 0.6429 

FdIIR 

1 33 54 6 60 0.5500 
2 32 51 6 57 0.5614 
3 29 46 6 52 0.5577 
4 27 41 6 47 0.5745 

Table 10. D/(N+M) for IIR VFD filters (Keys: 1= 0.9625, 2= 0.95, 3= 0.925, 4= 0.9) 
 

 
Fig. 1. erms versus mean group delay D (VdIIR VFD filter, α = 0.9625, N = 49, M = 6) 
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Fig. 2. erms versus mean group delay D (VdIIR VFD filter, α = 0.95, N = 46, M = 6) 

 

 
Fig. 3. erms versus mean group delay D (VdIIR VFD filter, α = 0.925, N = 41, M = 6) 

 

 
Fig. 4. erms versus mean group delay D (VdIIR VFD filter, α = 0.90, N = 36, M = 6) 
 

 
Fig. 5. erms versus mean group delay D (FdIIR VFD filter, α = 0.9625, N = 54, M = 6) 
 

 
Fig. 6. erms versus mean group delay D (FdIIR VFD filter, α = 0.95, N = 51, M = 6) 
 

 
Fig. 7. erms versus mean group delay D (FdIIR VFD filter, α = 0.925, N = 46, M = 6) 
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Fig. 2. erms versus mean group delay D (VdIIR VFD filter, α = 0.95, N = 46, M = 6) 

 

 
Fig. 3. erms versus mean group delay D (VdIIR VFD filter, α = 0.925, N = 41, M = 6) 

 

 
Fig. 4. erms versus mean group delay D (VdIIR VFD filter, α = 0.90, N = 36, M = 6) 
 

 
Fig. 5. erms versus mean group delay D (FdIIR VFD filter, α = 0.9625, N = 54, M = 6) 
 

 
Fig. 6. erms versus mean group delay D (FdIIR VFD filter, α = 0.95, N = 51, M = 6) 
 

 
Fig. 7. erms versus mean group delay D (FdIIR VFD filter, α = 0.925, N = 46, M = 6) 
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Fig. 8. erms versus mean group delay D (FdIIR VFD filter, α = 0.90, N = 41, M = 6) 
  

 
Fig. 9. Magnitude responses of VdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 49, M = 6, D = 37) 
 

 
Fig. 10. Group delay responses of VdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 49, M = 6, D = 37) 

 
Fig. 11. Magnitude responses of FdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 54, M = 6, D = 33) 
 

 
Fig. 12. Group delay responses of FdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 54, M = 6, D = 33) 

 
6.5 Overall IIR, allpass, and FIR VFD filter performances  
To facilitate explanation in this sub-section, (29), (34), (35), (43) denote different proposed 
VdIIR and FdIIR VFD design methods explained at the beginning of Section 6.2 and listed 
on Tables 3-5 and 9. Using the same number of distinct variable coefficients at each of the 
four specified wideband cutoff frequencies, design results indicate that: (a) When compared 
to the corresponding FIR VFD filters (KJ; LD) shown in Table 6: As seen from Table 5, all the 
design methods (except (ZK)) for VdIIR and FdIIR VFD filters could achieve improved erms 
performances. (b) When compared to the corresponding AP VFD filters (KJ; LCR) shown in 
Table 6, the following VdIIR VFD filters could achieve improved erms performances: (i) (29) 
over (LCR) for  = 0.9625 (see Table 5); (ii) (35) over (KJ; LCR) for  = 0.9625 and over (LCR) 
for  = 0.95 (see Table 5); and (iii) (43) over (KJ; LCR) for 0.925     0.9625 (see Table 9). (c) 
When compared to the corresponding AP VFD filters (KJ; LCR) shown in Table 6, the 
following FdIIR VFD filters could achieve improved erms performances: (i) (29) over (LCR) 
for  = 0.9625 (see Table 5); (ii) (34) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 
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Fig. 8. erms versus mean group delay D (FdIIR VFD filter, α = 0.90, N = 41, M = 6) 
  

 
Fig. 9. Magnitude responses of VdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 49, M = 6, D = 37) 
 

 
Fig. 10. Group delay responses of VdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 49, M = 6, D = 37) 

 
Fig. 11. Magnitude responses of FdIIR VFD filter obtained by gradient-based design method 
with (43) (α = 0.9625, N = 54, M = 6, D = 33) 
 

 
Fig. 12. Group delay responses of FdIIR VFD filter obtained by gradient-based design 
method with (43) (α = 0.9625, N = 54, M = 6, D = 33) 

 
6.5 Overall IIR, allpass, and FIR VFD filter performances  
To facilitate explanation in this sub-section, (29), (34), (35), (43) denote different proposed 
VdIIR and FdIIR VFD design methods explained at the beginning of Section 6.2 and listed 
on Tables 3-5 and 9. Using the same number of distinct variable coefficients at each of the 
four specified wideband cutoff frequencies, design results indicate that: (a) When compared 
to the corresponding FIR VFD filters (KJ; LD) shown in Table 6: As seen from Table 5, all the 
design methods (except (ZK)) for VdIIR and FdIIR VFD filters could achieve improved erms 
performances. (b) When compared to the corresponding AP VFD filters (KJ; LCR) shown in 
Table 6, the following VdIIR VFD filters could achieve improved erms performances: (i) (29) 
over (LCR) for  = 0.9625 (see Table 5); (ii) (35) over (KJ; LCR) for  = 0.9625 and over (LCR) 
for  = 0.95 (see Table 5); and (iii) (43) over (KJ; LCR) for 0.925     0.9625 (see Table 9). (c) 
When compared to the corresponding AP VFD filters (KJ; LCR) shown in Table 6, the 
following FdIIR VFD filters could achieve improved erms performances: (i) (29) over (LCR) 
for  = 0.9625 (see Table 5); (ii) (34) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 

www.intechopen.com



Digital Filters204

(see Table 5); (iii) (43) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 (see Table 9); 
(iv) (KJ) over (LCR) for 0.95     0.9625 (see Table 5); and (v) (TCK) over (LCR) for  = 
0.9625 (see Table 5). 
 
Due to the mirror symmetric coefficient relation in an allpass VFD filter and for stability 
reason, it is a common practice to select its mean group delay to be the same as its filter 
order. Based on Table 10, as α decreases from 0.9625 to 0.9, the reductions in mean group 
delay values of (a) VdIIR VFD filters versus AP VFD filters range approximately from 1.5 to 
1.6 times; and (b) FdIIR VFD filters versus AP VFD filters are higher and range 
approximately from 1.7 to 1.6 times.  
 
The maximum pole radius versus fractional delay t of the four VdIIR VFD filters as listed in 
Table 9 and the four AP VFD filters designed by (KJ) and (LCR) are plotted with 1001 points, 
respectively, in Figs. 13-15. Figs. 13-15 indicate that all the three types of variable-
denominator designs are stable; and the maximum pole radius at any t reduces as the 
passband cutoff frequency is lowered. As a general trend, it can be observed from the results 
that the error performances of each type of the VdIIR VFD filters, the FdIIR VFD filters, the 
AP VFD filters, and the FIR VFD filters improves along with a reduction in filter order with 
decreasing passband cutoff frequency . 
 

 
Fig. 13. Maximum pole radius of VdIIR VFD filter obtained by gradient-based design 
method with (43) versus fractional delay t (Solid: α = 0.9625, N = 49, M = 6, D = 37; Dashed: α 
= 0.95, N = 46, M = 6, D = 35; Dash-dot: α = 0.925, N = 41, M = 6, D = 30; Dotted: α = 0.90, N = 
36, M = 6, D = 27) 
 

 
Fig. 14. Maximum pole radius of allpass VFD filter designed by (Kwan & Jiang, 2009a) 
versus fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; 
Dash-dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 
 

 
Fig. 15. Maximum pole radius of allpass VFD filter designed by (Lee et al., 2008) versus 
fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; Dash-
dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 

 
7. Summary 

This chapter introduces an integrated design of IIR variable fractional delay (VFD) digital 
filters with variable and fixed denominators. Both sequential and gradient-based design 
approaches in the weighted least-squares (WLS) sense are adopted. The results obtained are 
compared to other design methods for IIR, allpass, and FIR VFD filters. In the sequential 
design method, the Levy’s method is adopted along with an iterative reweighting technique 
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(see Table 5); (iii) (43) over (KJ; LCR) for  = 0.9625 and over (LCR) for  = 0.95 (see Table 9); 
(iv) (KJ) over (LCR) for 0.95     0.9625 (see Table 5); and (v) (TCK) over (LCR) for  = 
0.9625 (see Table 5). 
 
Due to the mirror symmetric coefficient relation in an allpass VFD filter and for stability 
reason, it is a common practice to select its mean group delay to be the same as its filter 
order. Based on Table 10, as α decreases from 0.9625 to 0.9, the reductions in mean group 
delay values of (a) VdIIR VFD filters versus AP VFD filters range approximately from 1.5 to 
1.6 times; and (b) FdIIR VFD filters versus AP VFD filters are higher and range 
approximately from 1.7 to 1.6 times.  
 
The maximum pole radius versus fractional delay t of the four VdIIR VFD filters as listed in 
Table 9 and the four AP VFD filters designed by (KJ) and (LCR) are plotted with 1001 points, 
respectively, in Figs. 13-15. Figs. 13-15 indicate that all the three types of variable-
denominator designs are stable; and the maximum pole radius at any t reduces as the 
passband cutoff frequency is lowered. As a general trend, it can be observed from the results 
that the error performances of each type of the VdIIR VFD filters, the FdIIR VFD filters, the 
AP VFD filters, and the FIR VFD filters improves along with a reduction in filter order with 
decreasing passband cutoff frequency . 
 

 
Fig. 13. Maximum pole radius of VdIIR VFD filter obtained by gradient-based design 
method with (43) versus fractional delay t (Solid: α = 0.9625, N = 49, M = 6, D = 37; Dashed: α 
= 0.95, N = 46, M = 6, D = 35; Dash-dot: α = 0.925, N = 41, M = 6, D = 30; Dotted: α = 0.90, N = 
36, M = 6, D = 27) 
 

 
Fig. 14. Maximum pole radius of allpass VFD filter designed by (Kwan & Jiang, 2009a) 
versus fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; 
Dash-dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 
 

 
Fig. 15. Maximum pole radius of allpass VFD filter designed by (Lee et al., 2008) versus 
fractional delay t (Solid: α = 0.9625, MAP = DAP = 56; Dashed: α = 0.95, MAP = DAP = 53; Dash-
dot: α = 0.925, MAP = DAP = 48; Dotted: α = 0.90, MAP = DAP = 43) 

 
7. Summary 

This chapter introduces an integrated design of IIR variable fractional delay (VFD) digital 
filters with variable and fixed denominators. Both sequential and gradient-based design 
approaches in the weighted least-squares (WLS) sense are adopted. The results obtained are 
compared to other design methods for IIR, allpass, and FIR VFD filters. In the sequential 
design method, the Levy’s method is adopted along with an iterative reweighting technique 
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to transform the original nonconvex approximation error into a (convex) quadratic form. 
The design problem (at each iteration) can be further cast as a second-order cone 
programming (SOCP) problem. The stability of such a designed IIR VFD filter can be 
ensured by imposing a set of linear stability constraints derived from a sufficient condition 
in terms of the positive realness. In the gradient-based design method, a simple SOCP 
problem is first formulated using the Levy’s method. The design is then refined through a 
local search starting from the initial design obtained. The stability of the initial filter can be 
ensured by the linear positive-realness based stability constraints or with the use of a 
regularization term aimed to suppress the energy of the denominator coefficients. Four sets 
of wideband filter examples are adopted with performances analyzed to illustrate the 
performances of the proposed design methods. 

 
8. Conclusions 

In this chapter, an integrated sequential design method and an integrated gradient-based 
design method for IIR VFD filters with variable-denominator and fixed-denominator have 
been presented. In contrast to the previous two-stage design methods, by merging the 
polynomial coefficient fitting into each respective integrated design, the approximation 
error caused by a separate polynomial coefficient fitting stage is eliminated. Also, instead of 
modeling denominator and optimizing numerator in separate steps, each of the sequential 
and gradient-based design methods jointly optimizes the numerator and denominator 
coefficients. Consequently, during the design procedure any change on any numerator or 
denominator coefficient can be utilized to optimize all the numerator and denominator 
coefficients in the subsequent design procedure. This facilitates the search of a better design 
in the coefficient vector space. The results of four sets of wideband filter examples designed 
using the proposed design methods, the VdIIR VFD (ZK) and the FdIIR VFD (KJ; TCK) 
design methods, and a number of AP VFD (KJ; LCR) and FIR VFD (KJ; LD) design methods 
indicate that IIR VFD filters could achieve some erms improvements over the other two types 
of VFD filters along with reduced mean group delays when compared to AP VFD filters. In 
particular, erms improvements can be observed in (a) the proposed gradient-based VdIIR 
design (with (43)) for wider band designs with  0.925 ≤ α ≤ 0.9625; and (b) the proposed 
gradient-based FdIIR design (with (43)) for the widest band design with α = 0.9625. For 
narrower band designs such as α = 0.9, erms improvements become obvious in the AP VFD 
designs (KJ; TCK). In term of design complexity, the FIR VFD designs (KJ; LD) remain to be 
the simplest. Finally, it should be emphasized that the error performances of a VFD filter 
design depend not only on the type (IIR, AP, and FIR) of VFD filters, but also depend on the 
effectiveness of its design method.  
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