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1. Introduction      

Interest in oscillation susceptibility of an aircraft was generated by crashes of high 
performance fighter airplanes such as the YF-22A and B-2, due to oscillations that were not 
predicted during the aircraft development. Flying qualities and oscillation prediction, based 
on linear analysis, cannot predict the presence or the absence of oscillations, because of the 
large variety of nonlinear interactions that have been identified as factors contributing to 
oscillations. Pilot induced oscillations have been analyzed extensively in many papers by 
numerical means. 
Interest in oscillation susceptibility analysis of an unmanned aircraft, whose flight control 
system fails, was generated by the need to elaborate an alternative automatic flight control 
system for the Automatic Landing Flight Experiment (ALFLEX) reentry vehicle for the case 
when the existing automatic flight control system of the vehicle fails.  
The purpose of this chapter is the analysis of the oscillation susceptibility of an unmaned 
aircraft whose automatic flight control system fails. The analysis is focused on the research 
of oscillatory movement around the center of mass in a longitudinal flight with constant 
forward velocity (mainly in the final approach and landing phase). The analysis is made in a 
mathematical model defined by a system of three nonlinear ordinary differential equations, 
which govern the aircraft movement around its center of mass, in such a flight. This model 
is deduced in the second paragraph, starting with the set of 9 nonlinear ordinary differential 
equations governing the movement of the aircraft around its center of mass.In the third 
paragraph it is shown that in a longitudinal flight with constant forward velocity, if the 
elevator deflection outruns some limits, oscillatory movement appears. This is proved by 
means of coincidence degree theory and Mawhin's continuation theorem. As far as we 
know, this result was proved and published very recently by the authors of this chapter 
(research supported by CNCSIS-–UEFISCSU, project number PNII – IDEI 354 No. 7/2007) 
and never been included in a book concerning the topic of flight control.The fourth 
paragraph of this chapter presents mainly numerical results. These results concern an Aero 
Data Model in Research Environment (ADMIRE) and consists in: the identification of the range 
of the elevator deflection for which steady state exists; the computation of the manifold of 
steady states; the identification of stable and unstable steady states; the simulation of 
successful and unsuccessful maneuvers; simulation of oscillatory movements.  
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2. The mathematical model 

Frequently, we describe the evolution of real phenomena by systems of ordinary differential 
equations. These systems express physical laws, geometrical connections, and often they are 
obtained by neglecting some influences and quantities, which are assumed insignificant 
with respect to the others. If the obtained simplified system correctly describes the real 
phenomenon, then it has to be topologically equivalent to the system in which the small 
influences and quantities (which have been neglected) are also included. Furthermore, the 
simplified system has to be structurally stable. Therefore, when a simplified model of a real 
phenomenon is build up, it is desirable to verify the structural stability of the system. This 
task is not easy at all. What happens in general is that the results obtained in simplified 
model are tested against experimental results and in case of agreement the simplified model 
is considered to be authentic. This philosophy is also adapted in the description of the 
motion around the center of gravity of a rigid aircraft. According to Etkin & Reid, 1996; 
Cook, 1997, the system of differential equations, which describes the motion around the 
center of gravity of a rigid aircraft, with respect to an xyz body-axis system, where xz is the 
plane of symmetry, is: 
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(1)

     

The state parameters of this system are: forward velocity  V, angle of attack α, sideslip angle 

ǃ, roll rate p, pitch rate q, yaw rate r, Euler roll angle φ, Euler pitch angle θ and Euler yaw 

angle ψ. The constants Ix , Iy and Iz -moments of inertia about the x, y and z-axis, respectively;  
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Ixz - product of inertia, g -gravitational acceleration; and m - mass of the vehicle. The aero 

dynamical forces X, Y, Z and moments L, M, N are functions of the state parameters and the 

control parameters:  δa - aileron deflection;  δe - elevator deflection; and δr - rudder deflection 

(the body flap, speed break, δc, δca are available as additional controls but, for simplicity, 

they are set to 0 in the analysis to follow). When the automatic flight control system is in 

function, then the control parameters are functions of the state parameters, describing how 

the flight control system works. When the automatic flight control system fails, then the 

control parameters are constant. This last situation will be analyzed in this chapter. 

A flight with constant forward velocity V is defined as a flight for which V = const (i.e. 

0V =
c

). 
 In a flight with constant forward velocity V the following equalities hold: 
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Replacing V
c

by 0 in the system (1), the equalities(2) are obtained.   

If in a flight with constant forward velocity V one has ( )2 1
2

n πβ ≡ + ⋅ , then the following 

equalities hold: 
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Replacing 0β =
c

and (2 1)
2

n πβ ≡ + ⋅ in (2), the equalities (3) are obtained.   

If in a flight with constant forward velocity V one has ( )2 1
2

n πβ ≠ + ⋅ , then the following equality 

holds: 
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Equation (4) is the solvability (compatibility) condition, with respect to ,α β
c c

, of the system 

(2) when ( )2 1
2

n πβ ≠ + ⋅ .   
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If ( )2 1
2

n πβ ≠ + ⋅  and equality (4) holds, then the system (2) can be solved with respect to ,α β
c c

,  

obtaining in this way the explicit system of differential equations, which describes the motion around 
the center of mass of the aircraft in a flight, with constant forward velocityV: 
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 (5) 

System (5) is obtained solving system (2) with respect to α
c

, β
c

 and replacing in system (1) 

the equations (1)1, (1)2 , (1)3 with the obtained α
c

and β
c

.  
A longitudinal flight is defined as a flight for which the following equalities hold: 

 0p rβ ϕ ψ≡ ≡ ≡ ≡ ≡  and 0a rδ δ= = . (6) 

A longitudinal flight is possible if and only if 0Y L N= = =  for 0p rβ ϕ ψ= = = = =  and 

0a rδ δ= = . 
This result is obtained from (1) taking into account the definition of a longitudinal flight.   
The explicit system of differential equations which describes the motion of the aircraft in a 
longitudinal flight is: 
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This result is obtained from (1) taking into account the definition of a longitudinal flight.   

In system (7) X, Z, M depend only on , ,qα θ  and eδ . These dependences are obtained 

replacing in the general expression of the aerodynamic forces and moments: 

0p rβ ϕ ψ= = = = =  and 0a rδ δ= = . 

The explicit system of differential equations which describes the motion around the center of gravity 

of the aircraft in a longitudinal flight with constant forward velocity V is: 
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This system is obtained from (7) taking into account 0V =
c

.  
A longitudinal flight with constant forward velocity is possible if the following equalities hold: 
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This result is obtained from system (7), taking into account the fact that V
c

is equal to zero.   

In (8) , ,X Z M depend on , , , eqα θ δ and V . Taking into account (10), the system (8) can be 

written as: 
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The system (11) describes the motion around the center of gravity of an aircraft in a 

longitudinal flight with constant forward velocity V and defines the general nonlinear 

model. 

In system (11) the functions ( , , ; , )eZ Z q Vα θ δ=  and ( , , ; , )eM M q Vα θ δ=  are considered 

known. When the automated flight control system fails, eδ  and V are parameters. 
Frequently, in a research environment for the description of the movement around the 

center of the gravity of some types of aircrafts in a flight with constant forward velocity V, 

the explicit system of differential equations (12) is employed by Balint et al., 2009a,b,c; 

2010a,b; Kaslik & Balint, 2007; Goto & Matsumoto, 2000.  

The model defined by equations (12) is called Aero Data Model In a Research Environment  

(ADMIRE). 
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System (12) can be obtained from (5) substituting the general aero dynamical forces and moments 
(see for example section 4), assuming that ǂ  and ǃ are small and making the  approximations (13). 
Due to the approximations (13), the ADMIRE model defined by (12) is also called the 
simplified  ADMIRE model.  

The simplified system which governs the longitudinal flight with constant forward velocity V of the 
ADMIRE aircraft is (14). 

System (14) is obtained from (12) for 0p rβ ϕ= = = = , 0a r c caδ δ δ δ= = = =  and defines the 

simplified nonlinear model of the motion around the center of gravity of the aircraft in a 
longitudinal flight with constant forward velocity V.   

In system (14) 2 2, , , , , , , , , ,
e eqg V z z m m m c a a m

α
α δ α δc

are considered constants (see Section 4). 
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3. Theoretical proof of the existence of oscillatory movements 

Interest in oscillation susceptibility of an aircraft is generated by crashes of high 
performance fighter airplanes such as the YF-22A and B-2, due to oscillations that were not 
predicted during the aircraft development (Mehra & Prasanth, 1998).Flying qualities and 
oscillation prediction are based on linear analysis and their quasi-linear extensions. These 
analyses cannot, in general, predict the presence or the absence of oscillations, because of the 
large variety of nonlinear interactions that have been identified as factors contributing to 
oscillations. The effects of some of these factors have been reported by Mehra et al., 1977; 
Shamma & Athans, 1991; Kish et al., 1997; Klyde et al., 1997.  The oscillation susceptibility 
analysis in a nonlinear model involves the computation of nonlinear phenomena including 
bifurcations, which lead sometimes to large changes in the stability of the aircraft. 
Interest in oscillation susceptibility analysis of an unmanned aircraft, whose flight control 
system fails, was generated by the elaboration of an alternative automatic flight control for 
the case when the existing automatic flight control system of the aircraft fails Goto & 
Matsumoto, 2000. Numerical results concerning this problem for the ALFLEX unmanned 
reentry vehicle, considered by Goto & Matsumoto, 2000, for the final approach and landing 
phase are reported by Kaslik et al., 2002; 2004 a; 2004 b; 2005 a; 2005 b; 2005 c; Caruntu et al., 
2005. 
A theoretical proof of the existence of oscillatory solutions of the ALFLEX unmanned 
reentry vehicle in a longitudinal flight with constant forward velocity and decoupled flight 
control system is reported Kaslik & Balint, 2010. Numerical results related to oscillation 
susceptibility analysis along the path of the longitudinal flight equilibriums of a simplified 
ADMIRE-model, when the automated flight control system fails are reported by Balint et al., 
2009 a; 2009 b; 2009 c; 2010 a. 
In this section we give a theoretical proof of the existence of oscillatory solutions in 
longitudinal flight in the simplified ADMIRE model of an unmanned aircraft, when the 
flight control system fails. This result was established by Balint et al., 2010b. 
The simplified system of differential equations which governs the motion around the center 
of mass in a longitudinal flight with constant forward velocity of a rigid aircraft, when the 
automatic flight control system fails, is given by (see Balint et al., 2010b): 
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In this system, the state parameters are: angle of attack α , pitch rate q  and Euler pitch 

angle θ . The control parameter is the elevator angle eδ . V is the forward velocity of the 

aircraft, considered constant and g  is the gravitational acceleration.  
The aero dynamical data appearing in (15) are given in section 4. 
The following proposition (Balint et al., 2010b) addresses the existence of equilibrium states 
for the system (15). 

Proposition 1. ( ), Tqα θ  is an equilibrium state of the system (15) corresponding to eδ  if and only 

if α is a solution of the equation: 

 2 2 0e eA B C Dα δ α δ⋅ + ⋅ ⋅ + ⋅ + =  (16) 

q  is equal to zero and θ  is a solution of the equation: 
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Proof. By computation.   

Proposition 2. Equation (16) has real solutions if and only if  eδ  satisfies: 
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Proof. By computation.   

Proposition 3. If  0zα <  and α is a real solution of Eq.(16), then Eq.(17) has a solution if and only 

if for α  the following inequality holds: 
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Proof. By computation.   

Remark. For 0eδ =  the solutions of Eq.(16) are: 
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and both verify (20) for 0zα < . 

In the following assume that 0zα <  and consider eδ , eδ  defined as follows: 

{ }inf 0, .(16) (20)e e e a real solution of eq for which holdsδ δ δ= < ∃  

{ }sup 0, .(16) (20)e e e a real solution of eq for which holdsδ δ δ= > ∃  

Let I be the closed interval [ , ]e eI δ δ= . 

Proposition 4. 

a. If e Iδ ∈ , then for the system (15) there exists a countable infinity of equilibriums corresponding to 

eδ , namely for any n Z∈  

      

( )

( )

2 2 2
1,2

1,2

1
4 ; 0 ;

2 2

2 arccos
e

e e e

n e

B
B A C D q

A A

V
n z z

g
α δ

α δ δ δ

θ π α δ±

⎛ = − ⋅ ± ⋅ ⋅ − ⋅ ⋅ ⋅ + =⎜ ⋅ ⋅⎝
⎞⎡ ⎤

= ⋅ ⋅ ± ⋅ − ⋅ − ⋅ ⎟⎢ ⎥ ⎟⎣ ⎦ ⎠

 

b. If { },e e eIδ δ δ∈∂ = , then the equilibriums corresponding to eδ  are saddle-node bifurcation points. 
c. If e Iδ ∈ , then for the system (15) there are no equilibriums corresponding to eδ .  

Proof. By computation.   
Proposition 4 translates into the following necessary and sufficient condition for the 

existence of equilibrium states for (15): ,e e eIδ δ δ⎡ ⎤∈ = ⎣ ⎦ . At ,e eδ δ δ=  saddle-node 

bifurcation occurs. 
It can be easily verified that the following proposition is valid. 
Proposition 5.  

a. If ( )( ), ( ), ( ) Tt q t tα θ is a solution of the system (15), then ( )tθ is a solution of the third  order 

differential equation: 

 
( )

( )

2
2

2
2

sin cos

cos sin
e e

q q

e

g c
z m z m m m a

V a

g g c
m z m z a m z z m

V V a

α α α α

α α α α δ α δ
α

θ θ θ θ θ

θ θ δ

⎡ ⎤⎛ ⎞− + ⋅ + ⋅ − + ⋅ ⋅ + ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅⎜ ⎟
⎝ ⎠

c

$
$$$ $$ $

 (22) 

b. If ( )tθ  is a solution of (22), then  

2
2

1
( ) cos sin

( ) ( )

( ) ( )

eq e

g c
t m m a m

m V a

q t t

t t

α δ
α

α θ θ θ θ δ

θ
θ θ

⎡ ⎤⎛ ⎞= ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

=
=

$
$$ $

$  

is a solution of the system (15). 
Proof. By computation.   
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A solution ( )tθ of Eq.(22) is called monotonic oscillatory solution if the derivative ( )tθ$  is a 

strictly positive or a strictly negative periodic function. 

Proposition 6. a. If there exists an increasing oscillatory solution ( )tθ of Eq.(22)and 0T > is the 

period of ( )tθ$ , then there exists *n N∈  such that ( ) ( ) 2t T t nθ θ π+ = + and there exists a 2nπ - 

periodic solution ( )x s of the equation: 

 

( )

( )

2 22
2

32
2

" 2( ') ' sin cos

cos sin
e e

x x
q q

x
e

g c
x x z m x e z m m m s a s e

V a

g g c
m z m s z a s m z z m e

V V a

α α α α

α α α α δ α δ
α

δ

⎡ ⎤⎛ ⎞= + + ⋅ ⋅ + ⋅ − + ⋅ ⋅ + ⋅ ⋅ ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞− ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
c

$

 (23) 

satisfying  

 
2

( )

0

n
x se ds T

π

⋅ =∫  (24) 

b. If for *n N∈  there exists a 2nπ - periodic solution ( )x s of Eq.(23), then there exists an increasing 

oscillatory solution ( )tθ of Eq.(22) satisfying ( ) ( ) 2t T t nθ θ π+ = + , where T is given by (24). 

Proof. See Balint et al., 2010b. 
In order to prove that Eq.(22) has an increasing oscillatory solution, it is sufficient to prove 

that there exists a 2nπ - periodic solution of the Eq.(23). 

Denoting 1x x=  and 2
2 ( ) 'x x

qx z m e x eα
− −= − + ⋅ − ⋅ , eq.(23) is replaced by the system: 

 ( ) ( )
1 1

1

2
1 2

2
2 2

2
2

' ( )

' cos sin

sin cos

e e

x x
q

x
e

q

x z m e x e

g g c
x z m m z m z m s z a s e

V V a

g c
z m m m s a s

V a

α

α δ α δ α α α α

α α α

δ

= − + ⋅ − ⋅

⎡ ⎤
= − ⋅ + ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ −⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞− ⋅ − + ⋅ ⋅ + ⋅ ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

$

$

 (25) 

Proposition 7. a. If there exists a decreasing oscillatory solution ( )tθ of (22) and 0T >  is the period 

of  ( )tθ$ , then there exists *n N∈ such that ( ) ( ) 2t T t nθ θ π+ = − and there exists a 2nπ - periodic 

solution ( )x s of the equation: 

 

( )

( )

2 22
2

32
2

" 2( ') ' sin cos

cos sin ( )
e

x x
q q

x
e e

g c
x x z m x e z m m m s a s e

V a

g g c
m z m s z a s m z m e

V V a

α α α α

α α α α α α δδ δ

⎡ ⎤⎛ ⎞= − + ⋅ ⋅ + ⋅ − + ⋅ ⋅ + ⋅ ⋅ ⋅ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤+ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

$

$

 (26) 

satisfying 

 
2

( )

0

n
x sT e ds

π

= ⋅∫  (27) 
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b. If for *n N∈ , there exists a 2nπ - periodic solution ( )x s of(26), then there exists a decreasing 

oscillatory solution ( )tθ of (22), satisfying ( ) ( ) 2t T t nθ θ π+ = − with T given by (27). 

Proof. See Balint et al., 2010b. 
It follows that in order to prove that Eq.(22) has a decreasing oscillatory solution, it is 

sufficient to prove that there exists a 2nπ - periodic solution of the Eq.(26). 

Denoting by 1x x=  and 2
2 ( ) 'x x

qx z m e x eα
− −= + ⋅ + ⋅  Eq.(26) is replaced by the system: 

 ( ) ( )
1 1

1

2
1 2

2
2 2

2
2

' ( )

' cos sin

sin cos

e e

x x
q

x
e

q

x z m e x e

g g c
x z m m z m z m s z a s e

V V a

g c
z m m m s a s

V a

α

α δ α δ α α α α

α α α

δ

= + ⋅ + ⋅

⎡ ⎤
= − ⋅ + ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞+ ⋅ − + ⋅ ⋅ + ⋅ ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

$

$

 (28) 

Hence, in order to show the existence of a decreasing oscillatory solution of Eq.(22) it is 

sufficient to show the existence of a 2nπ - periodic solution of (28). 

For a continuous 2nπ periodic function we define: 

0, 2
max ( )

M s n
f f s

π∈⎡ ⎤⎣ ⎦
=                 

0, 2
min ( )

L s n
f f s

π∈⎡ ⎤⎣ ⎦
=  

Proposition 8. If f  is a smooth 2nπ periodic function, then 

2

0

1
( )

2

n

M L
f f f s ds

π

≤ + ⋅ ⋅∫ $ . 

Proof. See Balint et al., 2010b. 

Let ,X Y be two infinite dimensional Banach spaces. A linear operator :L DomL X Y⊂ → is 

called a Fredholm operator if Ker L has finite dimension and Im L is closed and has finite 

codimension. The index of a Fredholm operator L is the integer 

( ) dim dim Imi L KerL co L= − . 

In the following, consider :L DomL X Y⊂ → a Fredholm operator of index zero, which is 

not injective. Let :P X X→ and :Q Y Y→ be continuous projectors, such that 

Im , Im ,KerQ L P KerL X KerL KerP= = = ⊕  and Im ImY L Q= ⊕ . The operator 

: ImP DomL KerPL L DomL KerP L∩= ∩ →  is an isomorphism. Consider the operator 

:PQK Y X→  defined by 1( )PQ PK K I Q−= − . Let XΩ ⊂ be an open bounded set and 

:N YΩ→  be a continuous nonlinear operator. We say that N  is L  compact if PQK N is 

compact, QN is continuous and ( )QN Ω is a bounded set in Y . Since ImQ is isomorphic to 

KerL , there exists an isomorphism : ImI Q KerL→ . 
Mawhin, 1972; Gaines & Mawhin, 1977 established the Mawhin’s continuation theorem : Let 

XΩ ⊂  be an open bounded set, let L be a Fredholm operator of index zero and let N be L − compact 

on Ω . Assume: 

a.   Lx Nxλ≠  for any ( )0, 1λ∈ and x DomL∈∂Ω∩ . 

b.   QNx ≠ 0 for any x KerL∈ ∩∂Ω . 
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c.  Brouwer degree deg ( , , 0) 0B IQN KerLΩ∩ ≠ . 

Then Lx Nx= has at least one solution in DomL∩Ω . 

Consider the Eq.(22) and denote by: 

 
( )

( )

2
2

2
2

( )

sin cos

sin
e e

q

q

e

z m

g c
z m m m a

V a

g c
m z z m z a

V a
g

m z m
V

α

α α α

α δ α δ α

α α α

τ

δ θ θ

γ δ θ

ε

= − +

⎛ ⎞= ⋅ − + ⋅ ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

= ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

= − ⋅ − ⋅

$

$

  (29) 

With these notations Eq.(22) can be written as: 

 cosθ τ θ δ θ γ ε θ+ ⋅ + ⋅ = − ⋅$$$ $$ $   (30) 

As concerns the quantities , ,τ δ γ , we make the following assumptions: 

 0, 0τ δ> >  and  2 4τ δ>  (31) 

Remark that the above inequalities can be assured as follows: 

 

( )

( )

( )

22 22
22

222 2 22
22

0 0

0

4
( ) 4 ( ) 4

q

q

q q

z m

g c
z m m m a

V a

g c
z m z m m m a

V a

α

α α α

α α α α

τ

δ

τ δ

+ < ⇔ >

⋅ − > ⋅ + ⋅ ⇒ >

+ > ⋅ ⋅ − + ⋅ + ⋅ ⇒ >

$

$

 (32)                          

Remark also that since 0zα <  for γ the following inequality holds:  

  ( ) ( )2 2
2 2e e e ee e

g gc c
m z z m z a m z z m z a

V a V a
α δ α δ α α δ α δ αδ γ δ⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ ≥ ≥ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅  (33)                          

In terms of , , ,τ δ γ ε  the systems (25) and (28) can be written in the forms: 

 
1 1

1

2
1 2

2

'

' ( ) cos ( )

x x

x

x e x e

x s s e s

τ

γ ε δ

⎧ = ⋅ − ⋅⎪
⎨

= − ⋅ ⋅ −⎡ ⎤⎪ ⎣ ⎦⎩
 (34) 

and  

 
1 1

1

2
1 2

2

'

' ( ) cos ( )

x x

x

x e x e

x s s e s

τ

γ ε δ

⎧ = − ⋅ + ⋅⎪
⎨

= − ⋅ ⋅ +⎡ ⎤⎪ ⎣ ⎦⎩
 (35) 

respectively. 
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Theorem 1. If the inequalities (32) hold and 

 ( ) 2
2e e e

g c
m z z m z a

V a
α δ α δ αδ ε⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ >  (36) 

then for any *n N∈  the system (2.20) has at least one 2nπ -periodic solution. 

Proof. See Balint et al., 2010b. 
Theorem 2. If inequalities (32) hold and 

 ( ) 2
2e e e

g c
m z z m z a

V a
α δ α δ αδ ε⋅ − ⋅ ⋅ − ⋅ ⋅ ⋅ < −  (37) 

then for any *n N∈ the system  (2.21) has at least one 2nπ -periodic solution.  

Proof. See Balint et al., 2010b. 
The conclusion of this section can be summarized as: 

Theorem 3. If inequalities (32) and (36) hold, then for any *n N∈ equation (22) has at least one 

solution ( )tθ , such that its derivative ( )tθ$  is a positive 2nπ -periodic function (i.e. ( )tθ is an 

increasing oscillatory solution). 

If inequalities (32) and (37) hold, then for any *n N∈  equation (22) has at least one solution ( )tθ , 

such that its derivative ( )tθ$ is a negative periodic function (i.e. ( )tθ  is a decreasing oscillatory 

solution). 

4. Numerical examples 

To describe the flight of ADMIRE (Aero Data Model in a Research Environment) aircraft 

with constant forward velocity V , the system of differential equations (12) is employed: 

where: 

( ) ( )e r

e r

r
N y r y yNz a C z a C y a C y a C y a Cδ δα β

α δ β δβ β= ⋅ = ⋅ = ⋅ = ⋅ = ⋅

( , ) ( , )a

a

p
y p yy a C y a Cδ

δ α β α β= ⋅ = ⋅ 2 1 2m N T m Nm a C c C c a C C a Cα α α α α
α

⎛ ⎞
= ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅⎜ ⎟

⎝ ⎠

c

  

( )2 1
e ee

e m mN Nm a C c C C a Cδ δδ α
δ = ⋅ − ⋅ + ⋅ ⋅  2 2 2

c

c

q
m q m m mm a C m a C C m a Cδ α α

δ
α

⎛ ⎞
= ⋅ = ⋅ + = ⋅⎜ ⎟

⎝ ⎠

c c

c  

1 1 1 1 1( ) ( ) ( ) ( ) r a

r a

p r
p r ll l l ll a C l a C l a C l a C l a Cδ δβ

β δ δα α α α= ⋅ = ⋅ = ⋅ = ⋅ = ⋅  

( )3 3n yn a C c Cβ β
β = ⋅ + ⋅  ( )( )3 3( , ) ( , ) ,p p

p n yn a C c Cα β α β α β= ⋅ + ⋅   3 3( ) ( )ca

ca nn a c Cδ
δ α α= ⋅ ⋅  

( )( )3 3( , ) ( , )r r
r n yn a C c Cα β α β β= ⋅ + ⋅   ( )3 3

r r

r n yn a C c Cδ δ
δ = ⋅ + ⋅   ( )3 3

a a

a n yn a C c Cδ δ
δ = ⋅ + ⋅    

( ) ( )2 2 2 2 2 2 ,pr
y r y p yy a c a C y a c a C y a c a Cβ

β β α β= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  

2 2 2 2
r a

r ay yy a c a C y a c a Cδ δ
δ δ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅    1 10.157[ ] 0.28[ ]p

T lC rad C radα − −= − = −  

( )1 13.295[ ] (0.344 0.02)[ ]r
N lC rad C radα α α− −= = ⋅ +     11.074[ ]e

NC radδ −=  

10.0907[ ]nC radβ −=      1 10.267[ ] 0.0846[ ]r
m nC rad C radδα − −= = −  10.426[ ]e

mC radδ −= −  

10.051[ ]a
nC radδ −=        ( )10.2[ ] 0.49 0.0145[ ]c ca

m nC rad C radδ δ α α−= = − ⋅ +   
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1 10.44[ ] 1.45[ ]q
m mC rad C radα − −= − = −
c

  2
1 ( ) 0.896 0.47 0.04 [ ]C radβ α α α= ⋅ − ⋅ −  

( )1 1 1 20.804[ ] 0.185[ ] 0.122[ ] 2.725 [ ]r a r
y y y yC rad C rad C rad C radδ δβ β β− − −= = − = = ⋅

( ) ( ) 2 3, 6.796 0.315 (0.237 0.498) 10 [ ]p
yC radα β α β α −= ⋅ + ⋅ + ⋅ − ⋅  

( ) ( )2 2, 1.572 0.368 1.07 0.005[ ]r
nC radα β α α β= ⋅ − ⋅ − ⋅ −  

( ) ( ) 20.024[ ]; 0.192[ ]; , 2.865 0.3 [ ]r a p
nl lC rad C rad C radδ δ α β α β= = = ⋅ + ⋅  

500[ ] 0.25H m M= =    1 3338[ ] 1.16[ ]sa m s kg mρ− −= ⋅ = ⋅   

2 19.81[ ] 84.5[ ]sg m s V M a m s− −= ⋅ = ⋅ = ⋅        1/ 0.116[ ]g V s−=  

245[ ] 5.2[ ] 10[ ]S m c m b m= = =   9100[ ] 1.3[ ] 0.15G em kg x m z= = = −  

2 2 221000[ ] 81000[ ] 101000[ ]x y zI kg m I kg m I kg m= ⋅ = ⋅ = ⋅  

1 1 1 1
1 2 30.485[ ] 88.743[ ] 11.964[ ] 18.45[ ]a s a s a s a s− − − −= − = = =

1 2 30.25 0.029 0.13c c c= = − =    1 2 30.952 0.987 0.594i i i= = =    

All the other derivatives are equal to zero. 

 The system which governs the longitudinal flight with constant forward velocity V of the 

ADMIRE aircraft, when the automatic flight control fails, is: 

 2
2

cos

cos sin

e

e

e

q e

g
q z z

V

g c
q m m q m a m

V a

q

α

α δ

α δ

α θ α δ

α θ θ δ

θ

⎧
= + ⋅ + ⋅ + ⋅⎪

⎪
⎪ ⎛ ⎞

= ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
=⎪

⎩

c

c

c

c

 (38)                          

When the automatic flight control system is in function, then eδ  in (38) is given by: 

 e q pk k q kαδ α θ= ⋅ + ⋅ + ⋅   (39) 

with 0.401;kα = −  284.1−=qk and 1 8pk = ÷ . 

System (38) is obtained from the system (12) for 0 0a r c cap rβ ϕ δ δ δ δ= = = = = = = = .  
The equilibriums of (38) are the solutions of the nonlinear system of equations: 

 2
2

cos 0

cos sin 0

0

e

e

e

q e

g
q z z

V

g c
m m q m a m

V a

q

α δ

α δ

θ α δ

α θ θ δα
•

⎧ + ⋅ + ⋅ + ⋅ =⎪
⎪

⎛ ⎞⎪ ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ =⎨ ⎜ ⎟
⎝ ⎠⎪

⎪ =
⎪
⎩

 (40) 

System (40) defines the equilibriums manifold of the longitudinal flight with constant 

forward velocity V of the ADMIRE aircraft. 
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It is easy to see that (40) implies: 

 2 2 0e eA B C Dα δ α δ⋅ + ⋅ ⋅ + ⋅ + =   (41) 

where A,B,C,D are given by: 

( )
( ) ( )

( )

22
2 22

22

2
22

22

22
2 22

22

2 2
22

22 2

2 2
e e e

e e e

c
A m m z a z

a

c
B m m z m m z a z z

a

c
C m m z a z

a

g c
D a

V a

α α α

α α δ δ α δ

δ δ δ

α

α α

α

•

• •

•

= − ⋅ + ⋅ ⋅

= ⋅ − ⋅ ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅

= − ⋅ + ⋅ ⋅

= − ⋅ ⋅

 

Solving Eq.(41) two solutions ǂ1 = ǂ1(δe) and ǂ2 = ǂ2(δe) are obtained. Replacing in (17) ǂ1 = 

ǂ1(δe) and ǂ2 = ǂ2(δe) the corresponding θ1 =θ1(δe)+2kπ and θ2 =θ2(δe) +2kπ  are obtained ( )k Z∈ . 

Hence a part of the equilibrium manifold MV ( 0)k = is the union of the following two 

pieces: 

P1 = ( ) ( )( ){ }1 1,0,e e e Iα δ θ δ δ ∈B ;              P2 = ( ) ( )( ){ }2 2,0,e e e Iα δ θ δ δ ∈B . 

The interval I where eδ varies follows from the condition that the angles 1( )eα δ  and 2( )eα δ  

have to be real. 
Using the numerical values of the parameters for the ADMIRE model aircraft and the 
software MatCAD Professional it was found that:  

eδ = -0.04678233231992 [rad] and  eδ = 0.04678233231992[rad]. 

The computed 1( )eα δ , 1( )eθ δ , 2( )eα δ , 2( )eθ δ  are represented on Fig.1, 2. 

Fig.1 shows that ( ) ( ) ( ) ( )1 2 1 2,e e e eα δ α δ α δ α δ= = and ( ) ( )1 2e eα δ α δ>  for ( ),e e eδ δ δ∈ . 

Fig.2 shows that ( ) ( ) ( ) ( )1 2 1 2,e e e eθ δ θ δ θ δ θ δ= =  and ( ) ( )1 2e eθ δ θ δ<  for ( ),e e eδ δ δ∈ . 

The eigenvalues of the matrix ( )eA δ are: λ1= - 22.6334;   λ2= - 1.5765;   λ3= 1.0703 x 10-8 0≈  . 

For e eδ δ> the equilibriums of P1 are exponentially stable and those of P2 are unstable. These 

facts were deduced computing the eigenvalues of ( )eA δ . 

More precisely, it was obtained that the eigenvalues of ( )eA δ  are negative at the 

equilibriums of P1 and two of the eigenvalues are negative and the third is positive at the 

equilibriums of P2. Consequently, eδ is a turning point. Maneuvers on P1 are successful and 

on P2  are not successful, Fig.3, 4. 

Moreover, numerical tests show that when ( )', " ,e e e eδ δ δ δ∈ , the maneuver ' "e eδ δ→   

transfers the ADMIRE aircraft from the state in which it is at the moment of the maneuver in 

the asymptotically stable equilibrium ( ) ( )( )1 1" ,0, "e eα δ θ δ . 
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Fig. 1. The ǂ1(δe) and  ǂ2(δe) coordinates of the equilibriums on the manifold MV. 

 

 

Fig. 2. The θ1(δe)+2kπ  and  θ2(δe)+2kπ  coordinates of the equilibriums on the manifold MV. 
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Fig. 3. A successful maneuver on P1 : 

ǂ11 = 0.078669740237840  [rad]; q11= 0 [rad/s] ; θ11= 0.428832005303479 [rad] → 
 ǂ12 = 0.065516737567037  [rad]; q12= 0 [rad/s] ; θ12= - 0.698066723826469 [rad]  
 

 

Fig. 4. An unsuccessful maneuver on  P2 :  

ǂ 21 = 0.064883075974905 [rad]; q21= 0 [rad/s] ; θ21= 0.767462467841413 [rad] →  
ǂ12 = 0.065516737567037  [rad]; q12= 0 [rad/s] ; θ12= 0.698066723826469 [rad] instead of  
ǂ 21 = 0.064883075974905 [rad]; q21= 0 [rad/s] ; θ21= 0.767462467841413 [rad] → 
ǂ 22 = 0.046845089090947 [rad]; q22= 0 [rad/s] ; θ22= 1.036697186364400 [rad]. 
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Fig. 5. Oscillation when eδ = - 0.05 [rad] and the starting point is : 

α 1 = 0.086974288419088 [rad]; q1 = 0 [rad/sec]; θ1= 0.159329728679884[rad]. 
 

 

 

 

Fig. 6. Oscillation when eδ =  0.048 [rad] and the starting point is : 

α 1 = 0.086974288419088 [rad]; q1 = 0 [rad/sec]; θ1= 0.159329728679884[rad]. 
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The behavior of the ADMIRE aircraft changes when the maneuver ' "e eδ δ→  is so that 

( )' ,e e eδ δ δ∈  and ( )" ,e e eδ δ δ∉  . Computation shows that after such a maneuver α and q 

oscillate with the same period and θ tends to +∞ or −∞ . (Figs.5, 6) 

The oscillation presented in Figs. 5,6 is a non catastrophic bifurcation, because if eδ is reset,  

then equilibrium is recovered, as it is illustrated in Fig.7. 
 
 

 
 
 

Fig. 7. Resetting 0.048[ ]e eoradδ δ= <  after 3000 [s] of oscillations to e eoδ δ= , equilibrium is 

recovered. 

7. Conclusion 

For an unmanned aircraft whose automatic flight control system during a longitudinal flight 

with constant forward velocity fails, the following statements hold: 

1. If the elevator deflection is in the range given by formula (19), then the movement 
around the center of mass is stationary or tends to a stationary state. 

2. If the elevator deflection exceeds the value given by formula (36), then the movement 
around the center of mass becomes oscillatory decreasing and when the elevator 
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deflection is less than the value given by formula (37), then the movement around the 
center of mass becomes oscillatory increasing. 

3. This oscillatory movement is not catastrophic, because if the elevator deflection is reset 

in the range given by (19), then the movement around the center of mass becomes 

stationary. 

4. Numerical investigation of the oscillation susceptibility (when the automatic flight 

control system fails) in the general non linear model of the longitudinal flight with 

constant forward velocity reveals similar behaviour as that which has been proved 

theoretically and numerically in the framework of the simplified model. As far as we 

know, in the general non linear model of the longitudinal flight with constant forward 

velocity the existence of the oscillatory solution never has been proved theoretically. 

5. A task for a new research could be the proof of the existence of the oscillatory solutions 

in the general model.  
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