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1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been developed for the purposes of scientific
observations, detecting disasters, surveillance of traffic and army objectives (Wilson, 2007;
Langelaan & Rock, 2005; Cho et al., 2005). This paper presents an autonomous flight control
design to give insights for developing helicopter-type UAVs.
A Helicopter is generally an unstable aircraft. Once it is stalled, it is not easy to recover
its attitude. A control system is therefore needed to keep the vehicle stable during flight
(Bramwell, 1976; Padfield, 1996; Johnson & Kannan, 2005). This paper presents a flight
control design for the longitudinal motion of helicopter to establish autopilot techniques of
helicopters. The flight mission considered in this paper is that a helicopter hovers at a start
position, moves to a goal position with keeping a specified cruise velocity and hovers again at
the goal. The characteristics of the linearized equation of the helicopter is changed during this
flight mission because the trim values of the equation are widely varied. Gain scheduling (GS)
is one of candidates to stabilize the vehicle for the entire flight region. In this paper, a flight
control system is designed as follows. The flight control system is constructed as a double
loop control system (Fujimori et al., 1999; Fujimori et al., 2002) which consists of an inner-loop
controller and an outer-loop controller. The former is needed for stabilizing the controlled
plant, while the latter is used for tracking the reference which is given to accomplish the
flight mission. To design the inner-loop controller, the longitudinal motion of a helicopter is
first modeled by a linear interpolative polytopic model whose varying parameter is the flight
velocity. A GS state feedback law is then designed by linear matrix inequality (LMI) (Boyd
et al., 1994; Fujimori et al., 2007) so as to stabilize the polytopic model for the entire flight
region. On the other hand, the outer-loop controller is designed by taking into consideration
the steady-state of the controlled variable.
The rest of this paper is organized as follows. Section 2 shows equations of the longitudinal
motion of helicopter. Section 3 gives a flight mission and shows a double loop control system
adopted in this paper. The details of the controller designs are presented in Section 4. Section
5 shows computer simulation in Matlab/Simulink to evaluate the proposed flight control
system. Concluding remarks are given in Section 6.
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Fig. 1. Helicopter in forward flight

2. Equation of longitudinal motion of helicopter

Figure 1 shows a helicopter considered in this paper. The angular velocity of the main rotor
is Ω. The main rotor produces the thrust T which is needed for not only lifting the vehicle
against the gravity but also moving transitionally and rotationally. It depends on the tilting
angle of the control plane.
(x, y, z) represent the body-fixed-axes whose origin is located at the center of gravity of the
vehicle. The forward velocity is V whose x- and z-axes elements are u and w, respectively.
The longitudinal motion of helicopter consists of the transitional motion with respect to x-
and z-axes and the rotational motion around y-axis; that is, the pitch angle denoted as θ and
its derivative q(= θ̇). It is represented as the following equations (Bramwell, 1976; Padfield,
1996):

m(u̇ + qw) = X − mg sin θ (1)

m(ẇ − qu) = Z + mg cos θ (2)

Iyy q̇ = M (3)

where m and Iyy are respectively the mass and the moment of inertia of the vehicle. g is the
gravity acceleration. The external forces X, Z and the moment M are given by

X = T sin(θc − a1) − D cos ε (4)

Z = −T cos(θc − a1) − D sin ε (5)

M = −ThR sin(θc − a1) (6)

where ε is defined as ε tan. θc is the cyclic pitch angle which is one of the control inputs for
the longitudinal motion of the helicopter. a1 is the angle between the control plane and the tip
path plane. hR is the distance of the hub from the center of gravity. D is the drag of the vehicle
and is given by

D =
1

2
ρV2SCD (7)
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where ρ is the atmospheric density, S the representative area and CD the drag coefficient. The
thrust T can be calculated by integrating the lift over the whole blade. This results in the
following expression for the thrust coefficient:

CT
△
=

T

ρ(ΩR)2πR2
=

Nc

4πR
Clα{(

2

3
+ µ2)θ0 − λc − λi} (8)

where

µ
△
=

V

ΩR
cos αc, λc

△
=

V

ΩR
sin αc, λi

△
=

vi

ΩR
(9)

αc
△
= θc − ε (10)

R is the radius of the rotor blades, c the chord length, N the number of the blades and Clα the
lift slope of the blades. vi is the induced velocity through the rotor. θ0 is the collective pitch
angle which is another control input. According to Van Hoydonck (2003), the dimensionless
induced velocity λi through the rotor is approximated by

τλ̇i = CT − CTGl
(11)

where CTGl
is the thrust coefficient which is given by Glauert’s hypotheses. τ is a time constant

of λi.
Summarizing the above equations, define the state and the input vectors as

xp
△
= [u w q θ λi]

T ∈ ℜ5, up
△
= [θ0 θc]

T ∈ ℜ2. (12)

The equation of the longitudinal motion of the helicopter is then written as

ẋp = fp(xp, up). (13)

Equation (13) is referred as the nonlinear plant Pnl hereafter.
Letting xe and he be horizontal and the vertical positions of the helicopter from the start, they
are given by

ẋe = u cos θ + w sin θ (14)

ḣe = u sin θ − w cos θ. (15)

Defining ξp as ξp
△
= [xe he]T , they are compactly given as

ξ̇p = gp(xp). (16)

In this paper, numerical values of the Eurocopter Deutschland Bo105 (Padfield, 1996) were
used in simulation. They are listed in Table 1. Since this paper considers hovering and forward
flight, the trim condition is given in level flight. Letting x̄p and ūp be the state and the input
in trim, respectively, f (x̄p, ūp) = 0 holds. Figure 2 shows variations of x̄p and ūp with respect
to the flight velocity V. It is seen that all trim values are changed in the range of V ∈ [0, 60]
[m/s].
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Fig. 2. Trim values with respect to forward velocity V
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parameter value unit

Clα 6.113 [1/rad]

c 0.27 [m]

m 2200 [kg]

Ibl 231.7 [kgm2]

Iyy 4973.0 [kgm2]

R 4.91 [m]

Ω 44.4 [rad/s]

N 4 [-]

CDS 1.5 [m2]

hR 1.48 [m]

Table 1. Parameters of Bo105 (Padfield, 1996)

Vc1

0
tc1 tc3tc2 tc4 t

Vc2

Vr

tc5

Fig. 3. Flight velocity profile Vr

3. Construction of flight control system

Let the start position be the origin of the coordinates (xe, he). A flight mission considered in
this paper is to navigate the helicopter from the start (0,0) to the goal, denoted as (xr, hr),
with keeping its attitude stable. To design a control system, the followings are assumed to be
satisfied:

(i) The motion in y-axis direction is not taken into account.

(ii) xp is measurable.

(iii) The trim values x̄p and ūp are known in advance.

To realize the flight mission, this paper constructs a tracking control system whose controlled
variable is the flight velocity. The flight region is divided into six phases with respect to the
flight velocity as shown in Fig. 3. They are referred as follows.
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Fig. 4. Flight control system

0 ≤ t < tc1 : initial hovering phase

tc1 ≤ t < tc2 : acceleration phase

tc2 ≤ t < tc3 : cruise phase

tc3 ≤ t < tc4 : deceleration phase

tc4 ≤ t < tc5 : low speed phase

tc5 ≤ t : approach phase

From the initial hovering phase to the low speed phase, the reference of the flight velocity
is given by Vr shown in Fig. 3. In this paper, the total time of the flight is not cared. But the
integrated value of Vr for t ∈ [0, tc5] must be less than xr not to overtake the goal before the
approach phase. In the approach phase, the reference is generated to meet the position of the
helicopter ξp = [xe he]T with the goal ξr = [xr hr]T .
Taking into consideration the above, a double loop control system (Fujimori et al., 1999;
Fujimori et al., 2002) is used as a flight control system in this paper. It is shown in Fig. 4. Pnl

represents the nonlinear helicopter dynamics given by Eq. (13), Kin is the inner-loop controller,
Kout is the outer-loop controller and Kp is a gain. The controlled variable from the initial

hovering phase to the low speed phase is given by zp
△
= [u w]T and its reference is given

by zr
△
= [ur wr]T . In the approach phase, another loop is added outside of (zr − zp)-loop,

where ξp
△
= [xe he]T is the controlled variable and ξr

△
= [xr hr]T is its reference.

Kin consists of
Kin = [E − F] (17)

where E is a feedforward gain for tracking the reference, while F is a feedback gain
for stabilizing the plant. Since the trim values are widely varied as shown in Fig. 2, the
characteristics of the linearized plant is also varied. Then, F is designed by a GS technique
in terms of LMI formulation (Boyd et al., 1994).
The reference zr from the initial hovering phase to the low speed phase is generated by the
flight velocity profile shown in Fig. 3, and zr in the approach phase is derived from the
positional error ξr − ξp. The switch of the reference is done at t = tc5.

4. Design of control system

4.1 Linear interpolative polytopic model

The objective of flight control in this paper is that the controlled variable is regulated to the
specified trim condition. Linearized models along with the trim is therefore used for controller
design. Letting x̄p(V), ūp(V) be respectively the state and the input in trim where the flight
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velocity is V, the perturbed state and the input are defined as

δxp(t)
△
= xp(t) − x̄p(V), δup(t)

△
= up(t) − ūp(V) (18)

The linearized equation of Eq. (13) is then given as

δẋp(t) = Ap(V)δxp(t) + Bp(V)δup(t) (19)

where

Ap(V)
△
=

∂ fp(x̄p, ūp)

∂xT
p

, Bp(V)
△
=

∂ fp(x̄p, ūp)

∂uT
p

. (20)

Although matrices Ap and Bp are functions with respect to V, it is hard to get their explicit
representations because of complicated dependence of V as described in Section 2. Then, Ap

and Bp are approximated by interpolating multiple linearized models in the trim condition.
For the range of the flight velocity V ∈ [0, Vu], r points {V1, · · · , Vr}, called the operating
points, are chosen as

0 ≤ V1 < · · · < Vr ≤ Vu. (21)

The linearized model for V = Vi is a local LTI model representing the plant near the i-th
operating point. Linearly interpolating them, a global model over the entire range of the flight
velocity is constructed as

⎧

⎨

⎩

δẋp(t) = Ap(V)δxp(t) + Bp(V)δup(t)

zp(t) = Cpδxp(t) + z̄p(V)
(22)

where

Ap(V) =
r

∑
i=1

µi(V)Api, Bp(V) =
r

∑
i=1

µi(V)Bpi,

Cp =

⎡

⎣

1 0 0 0 0

0 1 0 0 0

⎤

⎦ . (23)

µi(V) satisfies the following relations.

0 ≤ µi(V) ≤ 1 (i = 1, · · · , r) (24)

r

∑
i=1

µi(V) = 1 (25)

Equation (22) with Eq. (23) is called the linear interpolative polytopic model in this paper.

4.2 Design of Kin

Under assumption (ii), consider a state feedback law

δup(t) = −F(V)δxp(t) + E(V)v(t) (26)
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where v is a feedforward input for tracking zr and is given by v = zr − z̄p when designing
Kin. The closed-loop system combining Eq. (26) with Eq. (22) is given by

⎧

⎨

⎩

δẋp(t) = AF(V)δxp(t) + Bp(V)E(V)v(t)

zp(t) = Cp(V)δxp(t) + Dp(V)E(V)v(t) + z̄p(V)
(27)

AF(V)
△
= Ap(V) − Bp(V)F(V).

The steady-state controlled variable is given by

zp(∞) = −Cp A−1
F BpEv + z̄p. (28)

v is then given so as to meet zp(∞) with the reference zr; that is, zp(∞) → zr. E is designed as

E = −(Cp A−1
F Bp)

−1. (29)

Next, F(V) is designed so that the closed-loop system is stable over the entire flight range and
H2 cost is globally suppressed (Fujimori et al., 2007). The controlled plant is newly given by

⎧

⎨

⎩

δẋp(t) = Ap(V)δxp(t) + Bp(V)δup(t) + B1(V)w1(t)

z1(t) = C1(V)δxp(t) + D1(V)δup(t)
(30)

where z1 and w1 are respectively the input and the output variable for evaluating H2 cost.
B1(V), C1(V) and D1(V) are matrices corresponding to z1 and w1. Substituting Eq. (26)
without v into Eq. (30), the closed-loop system is

⎧

⎨

⎩

δẋp(t) = AF(V)δxp(t) + B1(V)w1(t)

z1(t) = C1F(V)δxp(t)
(31)

C1F(V)
△
= C1(V) − D1(V)F(V).

In this paper, F(V) is designed so as to minimize the integration of H2 cost over V ∈ [0, Vu].
That is, the objective is to find F(V) such that (Boyd et al., 1994).

inf
F,P,W

∫ Vu

0
trW(V)dV subject to

⎡

⎣

P(V) P(V)B1(V)

(⋆) W(V)

⎤

⎦ > 0, (32a)

⎡

⎣

He(P(V)AF(V)) + V̇ dP
dV (⋆)

C1F(V) −Iq

⎤

⎦ < 0 (32b)

He(A) is defined as He(A)
△
= A + AT where (⋆) means the transpose of the element located

at the diagonal position. P(V) > 0 is the parameter dependent Lyapunov variable. To derive
finite number of inequalities from Eq. (32), the following procedures are performed. First

define new variables X(V)
△
= P−1(V) and M(V)

△
= F(V)X(V). Ap(V) and Bp(V) are given
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by the polytopic forms Eq. (23). B1(V), C1(V), D1(V), X(V), M(V) and W(V) are also given

by similar polytopic forms. The range of V̇
△
= aV is given as aV ∈ [aV , aV ]. Furthermore,

dP/dV are approximated as

dP

dV
= −X−1 dX

dV
X−1 (33)

dX

dV
≃

Xi+1 − Xi

Vi+1 − Vi

△
=

∆Xi

∆Vi
(34)

Pre- and post-multiplying diag{X, I} to Eq. (32) and using the polytopic forms, the following
LMIs are derived as a sufficient condition.

inf
Mi ,Xi ,Wi

r−1

∑
i=1

tr(Wi∆Vi) subject to

⎡

⎣

Xi B1i

(⋆) Wi

⎤

⎦ > 0 (i = 1, · · · , r), (35a)

⎡

⎣

He(ApiXi − Bpi Mi) − aV
∆Xi
∆Vi

(⋆)

C1iXiD1i Mi −Iq

⎤

⎦ < 0, (35b)

⎡

⎣

He(ApjXj − Bpj Mj) − aV
∆Xi
∆Vi

(⋆)

C1jXjD1j Mj −Iq

⎤

⎦ < 0, (35c)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

He(ApiXj − Bpi Mj

+ApjXi − Bpj Mi) − 2aV
∆Xi
∆Vi

(⋆)

C1iXj − D1i Mj

+C1jXi − D1j Mi

−2Iq

⎤

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (35d)

(i = 1, · · · , r − 1, j = i + 1), aV = aV , aV

If Mi, Xi and Wi (i = 1, · · · , r) satisfying the above LMIs, F(V) is given by

F(V) =

(

r

∑
i=1

µi(V)Mi

) (

r

∑
i=1

µi(V)Xi

)−1

. (36)

4.3 Design of Kout

Since v in Eq. (26) is a feedforward input from the flight velocity reference, the tracking error
will be occurred by model uncertainties and/or disturbances. Let us evaluate this in the LTI
representation. Let Tzpv(s) be a transfer function from v to zp. zp converges to a constant zr if
there are no model uncertainties in Tzpv(s) because Tzpv(0) = I. If Tzpv(0) is varied as Tzpv(0) =
I + ∆ due to model uncertainties, we have the following steady-state error:

e0
△
= zr − zp(∞) = −∆zr (37)
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Model Vi [m/s] GS-SF

Ppoly−1 { 0, 50 } Fgs−1

Ppoly−2 { 0, 25, 50 } Fgs−2

Ppoly−3 { 0, 10, 15, 40, 50 } Fgs−3

Table 2. Operating points of polytopic models

Model Vd [m/s] Fixed-SF

Plti−1 0 Ff ix−1

Plti−2 25 Ff ix−2

Plti−3 50 Ff ix−3

Table 3. Design points of LTI models

To reduce the error, a feedback from zp; that is, an outer-loop is added as shown in Fig. 4. The
transfer function from zr to zp is given by

Tzpzr (s) = (I + Tzpv(s)Kout(s))−1Tzpv(s)(I + Kout(s)) (38)

The steady-state error is then

e1
△
= zr − zp(∞) = zr − lim

s→0
sTzpzr (s)

1

s
zr

= −(I + Tzpv(0)Kout(0))−1∆zr.

(39)

This means that the steady-state error e1 with the outer-loop is reduced by (I +
Tzpv(0)Kout(0))−1. Summarizing the above, the design requirements of Kout are given as
follows:

(i) Kout must stabilize Tzpv.

(ii) The amplitude of (I + Tzpv(jω)Kout(jω))−1 should be small in the low frequency region.

5. Simulation

To evaluate the proposed flight control system, a flight simulator was built on
MATLAB/Simulink. For design and discussion hereafter, the notations about plant models are
given as follows: Plpv(V) is a linear parameter varying (LPV) model obtained by linearizing
Pnl . Ppoly(V) is the linear interpolative polytopic model given by Eq. (22) with Eq. (23). Plti(Vd)
is an LTI model where the flight velocity is fixed at Vd.
Two cases of flight control system with respect to the state feedback gain F were compared in
simulation. One is that F was designed by GS where the plant model was Ppoly(V). Another
is that F was designed by LQR where the plant model was Plti(Vd). The former is referred to
as GS-SF, while the latter is referred to as Fixed-SF. The parameter values of the flight velocity
profile in Fig. 3 were given as follows:

(xr, hr) = (3000, 0) [m], Vc1 = 50, Vc2 = 15 [m/s],

tc1 = 5, tc2 = 30, tc3 = 60, tc4 = 80, tc5 = 100 [s].
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5.1 Evaluation of design models

According to Section 4.1, three linear interpolative polytopic models were obtained. Table 2
shows the operating points chosen for the models. While, the design points Vd of three LTI
models are shown in Table 3. The ν-gap metric is one of criteria measuring the model error
in the frequency domain. It had been introduced in robust control theories associated with
the stability margin (Vinnicombe, 2001). The ν-gap metric between two LTI models, P1(s) and
P2(s), is defined as

δν(P1, P2)
△
= ‖(I + P2P∗

2 )−1/2(P1 − P2)(I + P1P∗
1 )−1/2‖∞ (40)

The range is δν ∈ [0, 1]. A large δν means that the model error is large. The ν-gap metric is used
for evaluating the model Ppoly(V) and Plti(Vd). Figure 5 shows ν-gap metric between Plti(Vd)
and Plpv(V) and between Ppoly(V) and Plpv(V). δν(Plti(V), Plpv(Vd)) was rapidly increased
when V was shifted from Vd. On the other hand, the maximum of δν(Ppoly(V), Plpv(V))
was reduced according to the number of the operating points. It was seen that Ppoly(V)
appropriately approximated Plpv(V) over the entire range of the flight velocity.

5.2 Design of F and H2 cost

The design parameters for designing F in Eq. (30) were given as follows.

B1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−6.039 10.977

−154.03 49.188

3.954 −7.187

0 0

0.38495 −0.12395

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C1 =

⎡

⎣

0.001I5

02×5

⎤

⎦ , D1 =

⎡

⎣

05×2

I2

⎤

⎦
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They were used for both of GS-SF and Fixed-SF. Three GS-SF gains denoted as Fgs−i (i =
1, 2, 3) were designed according to Section 4.2, while three Fixed-SF gains denoted as Ff ix−i

(i = 1, 2, 3) were designed by LQR technique in which the weights of the quadratic index
were given by CT

1 C1 and DT
1 D1.

Figure 6 shows the H2 cost of the closed-loop system which the designed F is combined with
Eq. (30). The H2 cost by Ff ix−3 was minimized at V = 40 [m/s] which was near the design
point Vd = 50 [m/s], but was increased in the low flight velocity region. The H2 cost by Ff ix−1

and Ff ix−2 showed the similar result. On the other hand, the H2 cost by Fgs−2 and Fgs−3 was
kept small over the entire flight region. The H2 cost by Fgs−1 was small in the middle flight
velocity region but was increased in the low and the high flight velocity regions.

5.3 Tracking evaluation

The flight mission given in Fig. 3 was performed in Simulink. Figures 7 - 12 show the time
histories of the closed-loop system with the three GS-SF and three Fixed-SF gains. In the case
of Ff ix−1 shown in Fig. 7, the controlled variables u and w tracked their references until the
acceleration phase (5 ≤ t < 30 [s]) but they were diverged in the cruise phase (30 ≤ t < 60
[s]). In the deceleration phase (60 ≤ t < 80 [s]), the closed-loop system was stabilized again
but it was de-stabilized in the approach phase (t ≥ 100 [s]). Although the closed-loop system
remained stable for the entire flight region in the case of Ff ix−2 shown in Fig. 8, oscillatory
responses were observed in the cruise and approach phases. The responses using Ff ix−3

shown in Fig. 9 were better than those using Ff ix−2.
On the other hand, the three GS-SF gains provided stable responses as shown in Figs. 10 -
12, In particular, The responses by Fgs−3 showed improved tracking and settling properties
compared to other cases.
Summarizing the simulation in MATLAB/Simulink, polytopic model Ppoly−3 made the ν-gap
metric smaller than other models for the entire flight region. Fgs−3 designed by using Ppoly−3

showed better control performance.

6. Concluding remarks

This paper has presented an autonomous flight control design for the longitudinal motion of
helicopter to give insights for developing autopilot techniques of helicopter-type UAVs. The
characteristics of the equation of helicopter was changed during a specified flight mission
because the trim values of the equation were widely varied. In this paper, gain scheduling
state feedback (GS-SF) was included in the double loop flight control system to keep the
vehicle stable for the entire flight region. The effectiveness of the proposed flight control
system was evaluated by computer simulation in MATLAB/Simulink. The model error of
the polytopic model was smaller than that of LTI models which were obtained at specified
flight velocity. Flight control systems with GS-SF showed better control performances than
those with fixed-gain state feedback. The double loop flight control structure was useful for
accomplishing flight mission considered in this paper.
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