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Acceleration-based 3D Flight Control for UAVs: 
Strategy and Longitudinal Design 

Iain K. Peddle and Thomas Jones 
Stellenbosch University 

South Africa 

1. Introduction     

The design of autopilots for conventional flight of UAVs is a mature field of research. Most 

of the published design strategies involve linearization about a trim flight condition and the 

use of basic steady state kinematic relationships to simplify control law design (Blakelock,  

1991);(Bryson, 1994). To ensure stability this class of controllers typically imposes significant 

limitations on the aircraft’s allowable attitude, velocity and altitude deviations. Although 

acceptable for many applications, these limitations do not allow the full potential of most 

UAVs to be harnessed. For more demanding UAV applications, it is thus desirable to 

develop control laws capable of guiding aircraft though the full 3D flight envelope. Such an 

autopilot will be referred to as a manoeuvre autopilot in this chapter. 

A number of manoeuvre autopilot design methods exist. Gain scheduling (Leith &. 

Leithead, 1999) is commonly employed to extend aircraft velocity and altitude flight 

envelopes (Blakelock, 1991), but does not tend to provide an elegant or effective solution for 

full 3D manoeuvre control. Dynamic inversion has recently become a popular design 

strategy for manoeuvre flight control of UAVs and manned aircraft (Bugajski & Enns, 1992); 

(Lane & Stengel, 1998);(Reiner et al., 1996);(Snell et al., 1992) but suffers from two major 

drawbacks. The first is controller robustness, a concern explicitly addressed in (Buffington et 

al., 1993) and (Reiner et al., 1996), and arises due to the open loop nature of the inversion 

and the inherent uncertainty of aircraft dynamics. The second drawback arises from the 

slightly Non Minimum Phase (NMP) nature of most aircraft dynamics, which after direct 

application of dynamic inversion control, results in not only an impractical controller with 

large counterintuitive control signals (Hauser et al., 1992) (Reiner et al., 1996), but also in 

undesired internal dynamics whose stability must be investigated explicitly (Slotine & Li, 

1991). Although techniques to address the latter drawback have been developed (Al-

Hiddabi & McClamroch, 2002);(Hauser et al., 1992), dynamic inversion is not expected to 

provide a very practical solution to the 3D flight control problem and should ideally only be 

used in the presence of relatively certain minimum phase dynamics. 

Receding Horizon Predictive Control (RHPC) has also been applied to the manoeuvre flight 

control problem (Bhattacharya et al., 2002);(Miller & Pachter, 1997);(Pachter et al., 1998), and 

similarly to missile control (Kim et al., 1997). Although this strategy is conceptually very 

promising the associated computational burden often makes it a practically infeasible 

solution for UAVs, particularly for lower cost UAVs with limited processing power. 

www.intechopen.com



 Advances in Flight Control Systems 

 

174 

The manoeuvre autopilot solution presented in this chapter moves away from the more 
mainstream methods described above and instead returns to the concept of acceleration 
control which has been commonly used in missile applications, and to a limited extent in 
aircraft applications, for a number of decades (see (Blakelock, 1991) for a review of the major 
results). However, whereas acceleration control has traditionally been used within the 
framework of linearised flight control (the aircraft or missile dynamics are linearised, 
typically about a straight and level flight condition), the algorithms and mathematics 
presented in this chapter extend the fundamental acceleration controller to operate equally 
effectively over the entire 3D flight envelope. The result of this extension is that the aircraft 
then reduces to a point mass with a steerable acceleration vector from a 3D guidance 
perspective. This abstraction which is now valid over the entire flight envelope is the key to 
significantly reducing the complexity involved in solving the manoeuvre flight control 
problem. 
The chapter thus begins by presenting the fundamental ideas behind the design of gross 
attitude independent specific acceleration controllers. It then highlights how these inner 
loop controllers simplify the design of a manoeuvre autopilot and motivates that they lead 
to an elegant, effective and robust solution to the problem. Next, the chapter presents the 
detailed design and associated analysis of the acceleration controllers for the case where the 
aircraft is constrained to the vertical plane. A number of interesting and useful novel results 
regarding aircraft dynamics arise from the aforementioned analysis. The 2D flight envelope 
illustrates the feasibility of the control strategy and provides a foundation for development 
to the full 3D case.  

2. Autopilot design strategy for 3D manoeuvre flight 

For most UAV autopilot design purposes, an aircraft is well modelled as a six degree of 
freedom rigid body with specific and gravitational forces and their corresponding moments 
acting on it. The specific forces typically include aerodynamic and propulsion forces and 
arise due to the form and motion of the aircraft itself. On the other hand the gravitational 
force is universally applied to all bodies in proportion to their mass, assuming an 
equipotential gravitational field. The sum of the specific and gravitational forces determines 
the aircraft’s total acceleration. It is desirable to be able to control the aircraft’s acceleration 
as this would leave only simple outer control loops to regulate further kinematic states. 
Of the total force vector, only the specific force component is controllable (via the 
aerodynamic and propulsion actuators), with the gravitational force component acting as a 
well modelled bias on the system. Thus, with a predictable gravitational force component, 
control of the total force vector can be achieved through control of the specific force vector. 
Modelling the specific force vector as a function of the aircraft states and control inputs is an 
involved process that introduces almost all of the uncertainty into the total aircraft model. 
Thus, to ensure robust control of the specific force vector a pure feedback control solution is 
desirable. Regulation techniques such as dynamic inversion are thus avoided due to the 
open loop nature of the inversion and the uncertainty associated with the specific force 
model. 
Considering the specific force vector in more detail, the following important observation is 

made from an autopilot design simplification point of view. Unlike the gravitational force 

vector which remains inertially aligned, the components that make up the specific force 

vector tend to remain aircraft aligned. This alignment occurs because the specific forces arise 
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as a result of the form and motion of the aircraft itself. For example, the aircraft’s thrust 

vector acts along the same aircraft fixed action line at all times while the lift vector tends to 

remain close to perpendicular to the wing depending on the specific angle of attack. The 

observation is thus that the coordinates of the specific force vector in a body fixed axis 

system are independent of the gross attitude of the aircraft. This observation is important 

because it suggests that if gross attitude independent measurements of the specific force 

vector’s body axes coordinates were available, then a feedback based control system could 

be designed to regulate the specific force vector independently of the aircraft’s gross 

attitude. Of course, appropriately mounted accelerometers provide just this measurement, 

normalized to the aircraft’s mass, thus practically enabling the control strategy through 

specific acceleration instead. 

With gross attitude independent specific acceleration controllers in place, the remainder of a 

full 3D flight autopilot design is greatly simplified. From a guidance perspective the aircraft 

reduces to a point mass with a fully steerable acceleration vector. Due to the acceleration 

interface, the guidance dynamics will be purely kinematic and the only uncertainty present 

will be that associated with gravitational acceleration. The highly certain nature of the 

guidance dynamics thus allows among others, techniques such as dynamic inversion and 

RHPC to be effectively implemented at a guidance level. In addition to the associated 

autopilot simplifications, acceleration based control also provides for a robust autopilot 

solution. All aircraft specific uncertainty remains encapsulated behind a wall of high 

bandwidth specific acceleration controllers. Furthermore, high bandwidth specific 

acceleration controllers would be capable of providing fast disturbance rejection at an 

acceleration level, allowing action to be taken before the disturbances manifest themselves 

into position, velocity and attitude errors. 

With the novel control strategy and its associated benefits conceptually introduced the 

remainder of this chapter focuses on the detailed development of the inner loop specific 

acceleration controllers for the case where the aircraft’s motion is constrained to the 2D 

vertical plane. No attention will be given to outer guidance level controllers in the 

knowledge that control at this level is simplified enormously by the inner loop controllers. 

The detailed design of the remaining specific acceleration controllers to complete the set of 

inner loop controllers for full 3D flight are presented in (Peddle, 2008). 

3. Modelling 

To take advantage of the potential of regulating the specific acceleration independently of 

the aircraft’s gross attitude requires writing the equations of motion in a form that provides 

an appropriate mathematical hold on the problem. Conceptually, the motion of the aircraft 

needs to be split into the motion of a reference frame relative to inertial space (to capture the 

gross attitude and position of the aircraft) and the superimposed rotational motion of the 

aircraft relative to the reference frame. With this mathematical split, it is expected that the 

specific acceleration coordinates in the reference and body frames will remain independent 

of the attitude of the reference frame. An obvious and appropriate choice for the reference 

frame is the commonly used wind axis system (axial unit vector coincides with the velocity 

vector). Making use of this axis system, the equations of motion are presented in the desired 

form below. The dynamics are split into the point mass kinematics (motion of the wind axis 

system through space), 
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 ( )cosW W WC g VΘ = − + Θ$  (1) 

 sinW WV A g= − Θ$
 (2) 

 cosN WP V= Θ$  (3) 

 sinD WP V= − Θ$  (4) 

and the rigid body rotational dynamics (attitude of the body axis system relative to the wind 
axis system), 

 yyQ M I=$  (5) 

 ( )cosW WQ C g Vα = + + Θ$  (6) 

with, WΘ  the flight path angle, V  the velocity magnitude, NP  and DP  the north and down 

positions, g  the gravitational acceleration, Q  the pitch rate, M  the pitching moment, yyI  the 

pitch moment of inertia, α  the angle of attack and WA  and WC  the axial and normal specific 

acceleration coordinates in wind axes respectively. Note that the point mass kinematics 

describe the aircraft’s position, velocity magnitude and gross attitude over time, while the 

rigid body rotational dynamics describes the attitude of the body axis system with respect to 

the wind axis system (through the angle of attack) as well as how the torques on the aircraft 

affect this relative attitude. It must be highlighted that the particular form of the equations of 

motion presented above is in fact readily available in the literature (Etkin, 1972), albeit not 

appropriately rearranged. However, presenting this particular form within the context of the 

proposed manoeuvre autopilot architecture and with the appropriate rearrangements will be 

seen to provide a novel perspective on the form that explicitly highlights the manoeuvre 

autopilot design concepts. Expanding now the specific acceleration terms with a commonly 

used pre-stall flight aircraft specific force and moment model yields, 

 ( )cosWA T D mα= −  (7) 

 ( )sinWC T L mα= − +  (8) 

with, 

 T C TT T Tτ τ= − +$  (9) 

 LL qSC=  (10) 

 DD qSC=  (11) 

 mM qSC=  (12) 

where m  is the aircraft’s mass, Tτ  the thrust time constant, S  the area of the wing, LC , DC  

and mC  the lift, drag and pitching moment coefficients respectively and, 
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 2 2q Vρ=  (13) 

the dynamic pressure. Expansion of the aerodynamic coefficients for pre-stall flight (Etkin & 
Reid, 1995) yields, 

 ( )
0

2
Q E

L L L L L EC C C C c V Q C
α δ
α δ= + + +  (14) 

 
0

2
D D LC C C Aeπ= +  (15) 

 ( )
0

2
Q E

m m m m m EC C C C c V Q C
α δ
α δ= + + +  (16) 

where A  is the aspect ratio, e  the Oswald efficiency factor and standard non-dimensional 

stability derivative notation is used. Note that it is assumed in this chapter that the non-
dimensional stability derivatives above are independent of both the point mass and rigid 
body rotational dynamics states. Although in reality the derivatives do change somewhat 
with the system states, for many UAVs operating under pre-stall flight conditions this 
change is small. Furthermore, with the intention being to design a feedback based control 
system to regulate specific acceleration, the adverse effect of the modelling errors will be 
greatly reduced thus further justifying the assumption. 
 

Rigid Body Rotational Dynamics
T

Eδ [ ]TQα

m
yyI

WA

WC

Point mass kinematics

T

W N DV P P⎡ ⎤Θ⎣ ⎦

W
Θ

V

NP

DP

cos Wg Θ

( )Df Pρ =

V

cos Wg Θ

ρ

g

 

Fig. 1. Split between the rigid body rotational dynamics and the point mass kinematics. 

Figure 1 provides a graphical overview of the particular form of the dynamics presented 
here. The dash-dotted vertical line in the figure highlights a natural split in the aircraft 
dynamics into the aircraft dependent rigid body rotational dynamics on the left and the 
aircraft independent point mass kinematics on the right. It is seen that all of the aircraft 
specific uncertainty resides within the rigid body rotational dynamics, with gravitational 
acceleration being the only inherent uncertainty in the point mass kinematics. Of course left 
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unchecked, the aircraft specific uncertainty in the rigid body rotational dynamics would 
leak into the point mass kinematics via the axial and normal specific acceleration, thus 
motivating the design of feedback based specific acceleration controllers. 
Continuing to analyze Figure 1, the point mass kinematics are seen to link back into the 
rigid body rotational dynamics via the velocity magnitude, air density (altitude) and flight 
path angle. If it can be shown that the aforementioned couplings do not strongly influence 
the rigid body rotational dynamics, then the rigid body rotational dynamics would become 
completely independent of the point mass kinematics and thus the gross attitude of the 
aircraft. This in turn would provide the mathematical platform for the design of gross 
attitude independent specific acceleration controllers. 
Investigating the feedback couplings, the velocity magnitude and air density couple into the 
rigid body rotational dynamics primarily through the dynamic pressure, which is seen in 
equations (10) through (12) to scale the magnitude of the aerodynamic forces and moments. 
However, the dynamics of most aircraft are such that the angle of attack and pitch rate 
dynamics operate on a timescale much faster than that of the velocity magnitude and air 
density dynamics. Thus, assuming that a timescale separation either exists or can be 
enforced through feedback control, the dynamic coupling is reduced to a static dependence 
where the velocity magnitude and air density are treated as parameters in the rigid body 
rotational dynamics. 
The flight path angle is seen to couple only into the angle of attack dynamics, via 
gravitational acceleration. The flight path angle coupling term in equation (6) represents the 
tendency of the wind axis system to rotate under the influence of the component of 
gravitational acceleration normal to the velocity vector. The rotation has the effect of 
changing the relative attitude of the body and wind axis system as modelled by the angle of 
attack dynamics. However, the normal specific acceleration (shown in parenthesis next to 
the gravity term in equation (6)) will typically be commanded by an outer loop guidance 
controller to cancel the gravity term and then further to steer the aircraft as desired in 
inertial space. Thus, the effect of the flight path coupling on the angle of attack dynamics is 
expected to be small. However, to fully negate this coupling, it will be assumed that a 
dynamic inversion control law can be designed to reject it, the details of which will be 
discussed in a following section. Note however, that dynamic inversion will only be used to 
reject the arguably weak flight path angle coupling, with the remainder of the control 
solution to be purely feedback based. 
With the above timescale separation and dynamic inversion assumptions in place, the rigid 
body rotational dynamics become completely independent of the point mass kinematics and 
thus provide the mathematical platform for the design of gross attitude independent specific 
acceleration controllers. With all aircraft specific uncertainty encapsulated within the inner 
loop specific acceleration controllers and disturbance rejection occurring at an acceleration 
level, the design is argued to provide a robust solution to the manoeuvre flight control 
problem. The remainder of this article focuses of the design and simulation of the axial and 
normal specific acceleration controllers, as well as the associated conditions for their 
implementation. 

4. Decoupling the axial and normal dynamics 

Control of the axial and normal specific acceleration is dramatically simplified if the rigid 
body rotational dynamics can be decoupled into axial and normal dynamics. This 
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decoupling would allow the axial and normal specific acceleration controllers to be 
designed independently. To this end, consider equations (7) and (8), and notice that for 
small angles of attack and typical lift to drag ratios, the equations can be well approximated 
as follows, 

 ( )WA T D m≈ −  (17) 

 WC L m≈ −  (18) 

With these simplifying assumptions, the thrust no longer couples into the normal dynamics 
whose states and controls include the angle of attack, pitch rate and elevator deflection. On 
the other hand, the normal dynamics states still drive into the axial dynamics through the 
drag coupling of equation (17). However, through proper use of the bandwidth-limited 
thrust actuator the drag coupling can be rejected up to some particular frequency. Assuming 
that effective low frequency disturbance rejection can be achieved up to the open loop 
bandwidth of the thrust actuator, then only drag disturbance frequencies beyond this 
remain of concern from a coupling point of view. 
Considering now the point mass kinematics, it is clear from equation (2) that the axial 
specific acceleration drives solely into the velocity magnitude dynamics. Thus 
uncompensated high frequency drag disturbances will result in velocity magnitude 
disturbances which in turn will couple back into the rest of the rigid body rotational 
dynamics both kinematically and through the dynamic pressure. However, the natural 
integration process of the velocity magnitude dynamics will filter the high frequency part of 
the drag coupling. Thus, given acceptable deviations in the velocity magnitude, the thrust 
actuator need only reject enough of the low frequency portion of the drag disturbance for its 
total effect on the velocity magnitude to be acceptable. By acceptable it is meant that the 
velocity magnitude perturbations are small enough to result in a negligible coupling back 
into the rigid body rotational dynamics. 
To obtain a mathematical hold on the above arguments, consider the closed loop transfer 
function from the normalized drag input to the axial specific acceleration output, 

 
( )

( )
( )
W

D

A s
S s

D s m
≡  (19) 

Through proper control system design, the gain of the sensitivity transfer function above 

can be kept below a certain threshold within the controller bandwidth. The bandwidth of 

the axial specific acceleration controller will however typically be limited to that of the 

thrust actuator for saturation reasons. For frequencies above the controller bandwidth, the 

sensitivity transfer function will display some form of transient and then settle to unity gain. 

Considering the velocity magnitude dynamics of equation (2), the total transfer function of 

the normalized drag input to velocity magnitude is then, 

 
( ) ( )

( )
DV s S s

D s m s
=  (20) 

Note that the integrator introduced by the natural velocity dynamics will result in 

diminishing high frequency gains. Equation (20) can be used to determine whether drag 
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perturbations will result in acceptable velocity magnitude perturbations. Conversely, given 

the expected drag perturbation spectrum and the acceptable level of velocity magnitude 

perturbations, the specifications of the sensitivity transfer function can be determined. To 

ease the process of determining acceptable levels of velocity magnitude perturbations and 

expected levels of drag perturbations, it is convenient to write these both in terms of normal 

specific acceleration. The return disturbance in normal specific acceleration due to a normal 

specific acceleration perturbation can then be used to specify acceptable coupling levels. 

Relating first normalized drag to normal specific acceleration, use of equation (18) provides 

the following result, 

 
1

W LD

D m

C R
= −  (21) 

where use has been made of the fact that lift is related to drag through the lift to drag ratio 

LDR . Then, equation (18) can be used to capture the dominant relationship between velocity 

perturbations and the resulting normal specific acceleration perturbations. Partially 

differentiating equation (18) with respect to the velocity magnitude yields the desired result, 

 2LW L WqSCC VSC C

m mV V V

ρ−∂ ∂ −
= ≈ =

∂ ∂
 (22) 

Combining equations (20) to (22) yields the return disturbance sensitivity function, 

 

( )
( )

( )

1
2 ( )

W

W
C

W

W
D

LD

D mC V s
S s

D s m CV

C
S s

sVR

∂
≡ ⋅ ⋅

∂

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (23) 

Given an acceptable return disturbance level, the specifications of the sensitivity function of 

equation (19) can be determined for a particular flight condition. With the velocity 

magnitude and lift to drag ratio forming part of the denominator of equation (23), the 

resulting constraints on the sensitivity function are mild for low operating values of normal 

specific acceleration. Only during very high acceleration manoeuvres, does the sensitivity 

specification become more difficult to practically realize. This is illustrated through an 

example calculation at the end of section 5. 

Given the above arguments, the drag coupling into the axial specific acceleration dynamics 

can be ignored if the associated sensitivity function constraint is adhered to when designing 

the axial specific acceleration controller. With the coupling of the drag term ignored, the 

axial dynamics become independent of the normal dynamics allowing the controllers to be 

designed separately. Furthermore, note that the axial dynamics also become independent of 

the velocity magnitude and the air density. Thus, unlike the normal specific acceleration 

controller, there is no need for the axial specific acceleration controller to operate on a 

timescale much faster than these variables. This greatly improves the practical viability of 

designing an axial specific acceleration control system since most thrust actuators are 

significantly bandwidth limited. The axial and normal dynamics can thus be decoupled as 

follows, 
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Axial Dynamics: 

 1 1T T CT T Tτ τ= − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
$  (24) 

 1WA m T D m= + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (25) 

Normal Dynamics: 

 

0

0

cos
1 E

E

Q W

E
Q

yyyy yy yy

LL gL L

mV mV mV V mV
M M MM QQ

II I I

δα

δα

α α
δ

⎡ ⎤⎡ ⎤ Θ⎡ ⎤− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$  (26) 

 0EQ

W E

LLL L
C

Qm m m m

δα
α

δ
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤= − − + − + −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (27) 

where dimensional stability and control derivative notation has been used to remove clutter. 
Finally, notice that the normal dynamics are simply the classical short period mode 
approximation (Etkin & Reid, 1995) but have been shown here to be valid for all point mass 
kinematics states (i.e. all gross attitudes) with the flight path angle coupling term acting as a 
disturbance input. Intuitively this makes sense since the physical phenomena that manifest 
themselves into what is classically referred to as the short period mode are not dependent 
on the gross attitude of the aircraft. Whether an aircraft is flying straight and level, inverted 
or climbing steeply, its short period motion remains unchanged. 

5. Axial specific acceleration controller 

In this section a controller capable of regulating the axial specific acceleration is designed. 
Attention will also be given to the closed loop sensitivity function constraint of equation (23) 
for a specific return disturbance level. With reference to the axial dynamics of equations (24) 
and (25) define the following Proportional-Integrator (PI) control law with enough degrees 
of freedom to allow for arbitrary closed loop pole placement, 

 c A W E AT K A K E= − −  (28) 

 
RA W WE A A= −$  (29) 

where 
RWA  is the reference axial specific acceleration command. The integrator in the 

controller is essential for robustness towards uncertain steady state drag and thrust actuator 

offsets. It is straightforward to show that given the desired closed loop characteristic 

equation, 

 2
1 0( )c s s sα α α= + +  (30) 

the feedback gains that will fix the closed loop poles are, 

 ( )1 1A TK m τ α= −  (31) 
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 0E TK mτ α=  (32) 

These simple, closed form solution gains will ensure an invariant closed loop axial specific 
acceleration dynamic response as desired. The controller design freedom is reduced to that 
of selecting appropriate closed loop poles bearing in mind factors such as actuator 
saturation and the sensitivity function constraint of the previous section. Investigation of the 
closed loop sensitivity function for this particular control law yields the following result, 

 0
2

0 1 0

1
( )

1
T

D

T

s s
S s

s s

τ α
τ α α α

⎛ ⎞+
= − ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (33) 

For actuator saturation reasons the closed loop axial dynamics bandwidth is typically 
limited to being close to that of the open loop thrust actuator and thus for reasonable closed 
loop damping ratios the second order term in parenthesis above can be well approximated 
by a first order model to simplify the sensitivity function as follows, 

 
0

1
( )

1
D

T A

s
S s

sτ α τ
≈ −

+
 (34) 

Here, ( )01A Tτ τ α=  is the approximating time constant calculated to match the high 

frequency sensitivity function asymptotes. Substituting equation (34) into equation (23) 

yields the return disturbance transfer function, 

 
0

1
( ) 2

1W

W
C

ALD T

C
S s

sVR ττ α
=

+
 (35) 

Given the maximum allowable gain of the return disturbance transfer function γ , a lower 

bound constraint on the natural frequency ( nω ) of the closed loop axial control system is 

calculated by satisfying the inequality 

 
max

2n W T

T LD

C

VR

ω τ
ω γ

⎡ ⎤
≥ ⎢ ⎥

⎣ ⎦
 (36) 

where, 1T Tω τ=  is the open loop bandwidth of the thrust actuator and the subscript max 

denotes the maximum value of the term in parenthesis. The following example illustrates 

the practical feasibility of adhering to the sensitivity function constraint. Consider a UAV 

that is to fly with a minimum velocity of 20 m/s, with a maximum normal specific 

acceleration of 4 g  and a minimum lift to drag ratio of 10. Then, for more than 20 dB of 

return disturbance rejection, the natural frequency of the closed loop system should have 

the following relationship to the open loop thrust bandwidth, 

 2n T Tω ω τ≥  (37) 

For this specific example, thrust actuators with a bandwidth of below 4 rad/s (time constant 
of greater than 0.25 s) will require that the closed loop natural frequency is greater than that 
of the thrust actuator. Despite the fairly extreme nature of this example (low velocity 
magnitude, high  acceleration and low lift to drag ratio), thrust time constants on the order 

www.intechopen.com



Acceleration-based 3D Flight Control for UAVs: Strategy and Longitudinal Design   

 

183 

of 0.25 s are still practically feasible for UAVs. The deduction is thus that the axial specific 
acceleration controller will be practically applicable to most UAVs. 

6. Normal specific acceleration controller 

This section presents the design and associated analysis of a closed form normal specific 
acceleration controller that yields an invariant dynamic response for all point mass 
kinematics states. The design is based on the linear normal dynamics of equations (26) and 
(27) with the velocity magnitude and air density considered parameters and the flight path 
angle coupling rejected using dynamic inversion. To consider the velocity magnitude and 
air density as parameters requires a timescale separation to exist between these two 
quantities and the normal dynamics. Therefore, it is important to investigate any upper 
limits on the allowable bandwidth of the normal dynamics as this will in turn clamp the 
upper bandwidth of the velocity magnitude and the air density (altitude) dynamics. 
Furthermore, it is important to investigate the eligibility of the normal dynamics for 
effective dynamic inversion of the flight path angle coupling term. Thus, before continuing 
with the normal specific acceleration controller design, the natural normal dynamics are 
analyzed in detail. 

6.1 Natural normal specific acceleration dynamics 

Consider the dynamics from the elevator control input to the normal specific acceleration 

output. The direct feed-through term in the normal specific acceleration output implies that 

the associated transfer function has as many zeros as it does poles. The approximate 

characteristic equation for the poles is easily be shown to be, 

 2( ) Q Q

yy yy yy

M ML L M
p s s s

I I ImV mV
α α α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + − − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (38) 

where use has been made of the commonly used simplifying assumption (Etkin & Reid, 

1995), 

 1QL mV 2  (39) 

Considering equation (38) it is important to note that the normal dynamics poles are not 

influenced by the lift due to pitch rate or elevator deflection. The importance of this will be 

made clear later on in this section. The zeros from the elevator input to the normal specific 

acceleration output can be shown, after some manipulation, to be well approximated by the 

roots of the characteristic equation, 

 ( ) ( )2 0Q T D yy T N yys L l l I s L l l Iα− − − − =  (40) 

with the following characteristic lengths defined, 

 Nl M Lα α≡ −  (41) 

 
E ETl M Lδ δ≡ −  (42) 
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 D Q Ql M L≡ −  (43) 

where, Nl  is the length to the neutral point, Tl  is the effective length to the tail-plane and Dl  

is the effective damping arm length. Note that only the simplifying assumption of equation 

(39) has been used in obtaining the novel characteristic equation for the zeros above. 

Completing the square to find the roots of equation (40) gives, 

 ( ) ( ) ( )
2 2

2 2Q T D yy Q T D yy T N yys L l l I L l l I L l l Iα⎡ ⎤ ⎡ ⎤− − = − + −⎣ ⎦ ⎣ ⎦  (44) 

For most aircraft the effective length to the tail-plane and effective damping arm lengths are 
very similar. This is because most of the damping arises from the tail-plane which is also 
typically home to the elevator control surface. Thus the moment arm lengths for pitch rate 
and elevator deflection induced forces are very similar. As a result, the first term on the 
right hand side of equation (44) is most often negligibly small and to a good approximation, 
the zeros from elevator to normal specific acceleration are, 

 ( ) ( )1,2 2Q T D yy T N yyz L l l I L l l Iα≈ − ± −  (45) 

Analysis of equation (45) reveals that the only significant effect of the lift due to pitch rate 

derivative on the zeros is that of producing an offset along the real axis. As previously 

argued, the effective tail-plane and damping arm lengths are typically very similar and as a 

result, even this effect is usually small. Thus, it can be seen that to a good approximation, 

the lift due to pitch rate plays no role in determining the elevator to normal specific 

acceleration dynamics. 

On the other hand, the effective length to the tail-plane and the length to the neutral point 

typically differ significantly. With this difference scaled by the lift due to angle of attack 

(which is usually far greater than the lift due to pitch rate) it can be seen that the second 

term in equation (45) will dominate the first in determining the zero positions. Thus al-

though the lift due to elevator deflection played no role in determining the system poles, it 

plays a large role in deter-mining the zeros. Knowing the position of the zeros is important 

from a controller design point of view because not only do they affect the dynamic response 

of the system but they also impose controller independent limitations on the system’s 

practically achievable dynamic response. These limitations are mathematically described by 

Bode’s sensitivity and complementary sensitivity integrals as discussed in (Freudenberg & 

Looze, 1985); (Goodwin et al., 2001). 

Expanding on the above point, it is noted that for most aircraft the effective length to the 

tail-plane is far greater than the length to the neutral point and so the zeros are real and of 

opposite sign. The result, as intuitively expected, is that the dynamics from the elevator to 

normal specific acceleration are NMP since a Right Half Plane (RHP) zero exists. A RHP 

zero places severe, controller independent restrictions on the practically attainable upper 

bandwidth of the closed loop normal specific acceleration dynamics. Furthermore, 

designing a dynamic inversion control law in a system with NMP dynamics, particularly 

when the NMP nature of the system is weak, tends to lead to an impractical solution with 

internal dynamics that may or may not be stable (Hauser et al., 1992); (Hough, 2007). 

Since this NMP dynamics case is by far the most common for aircraft, the limits imposed by it 

shall be investigated further in the following subsection. The goal of the investigation is to seek 
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a set of conditions under which the effects of a RHP zero become negligible, equivalently 

allowing the NMP nature of a system to be ignored. With these conditions identified and 

satisfied, the design of the normal specific acceleration controller can continue based on a set of 

simplified dynamics that do not capture the NMP nature of the system. 

6.2 Analysis of the NMP dynamics case 

Ignoring the typically negligible real axis offset term in equation (45), the transfer function 
from the elevator to normal specific acceleration is of the form, 

 
2

0
2 2

0

( )
2

n

n n

z s
G s k

s s z

ω
ζω ω

−
=

+ +
 (46) 

where 0z  is the RHP zero position. Note that the effect of the left half plane zero has been 

neglected because it is most often largely negated through pole-zero cancellation by un-

modelled dynamics such as those introduced through servo lag. The transfer function of 

equation (46) can be written as follows, 

 0( ) ( ) ( )n nG s G s G s s z= −  (47) 

where, 

 
2

2 2
( )

2
n

n

n n

G s k
s s

ω
ζω ω

=
+ +

 (48) 

is a nominal second order system with no zeros. Equation (48) makes it clear that as the 

position of the zero tends towards infinity, so the total system transfer function converges 

towards ( )nG s . The purpose of the analysis to follow is to investigate more precisely, the 

conditions under which ( )G s  can be well approximated by ( )nG s . To this end, a time 

response analysis method is employed. Consider the Laplace transform of the system’s step 

response, 

 0( ) ( ) ( )n nY s G s s G s z= −  (49) 

 

Equation (49) makes it clear that the total step response is the nominal system step response 
less the impulse response of the system scaled by the inverse of the RHP zero frequency. 
Since the nominal response gradient is always zero at the time of the step, the system must 
exhibit undershoot. The level of undershoot will depend of the damping, speed of response 
of the system and the zero frequency. If the level of undershoot is small relative to unity 
then it is equivalent to saying that the second term of equation (47) has a negligible effect. 
Thus, by investigating the undershoot further, conditions can be developed under which the 
total system response is well approximated by the nominal system response. 
A closed form solution for the exact level of undershoot experienced in response to a step 
command for a system of the form presented in equation (46) is provided below, 

 ( ) ( ) tan

min 1 sin siny k e
θ φ θθ φ − −⎡ ⎤= −⎣ ⎦  (50) 

where, 
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 ( )1cosθ ζ−=  (51) 

 ( )( )1 2tan 1 rφ ζ ζ−= − +  (52) 

 0nr zω=  (53) 

Derivation of this novel result involves inverse Laplace transforming equation (49) and 

finding the time response minima through calculus. The above equations make it clear that 

the undershoot is only a function of the ratio between the system’s natural frequency and 

the zero frequency ( r ) and the system’s damping ratio (ζ ). Figure 2 below provides a plot 

of the maximum percentage undershoot as a function of 1r−  for various damping ratios. 
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Fig. 2. Maximum undershoot of a 2nd order system as a function of normalized RHP zero 
frequency for various damping ratios. 

It is clear from Figure 2 that for low percentage undershoots, the damping ratio has little 
influence. Thus, the primary factor determining the level of undershoot is the ratio of the 
system’s natural frequency to that of the zero frequency. Furthermore, it is clear that for less 
than 5% maximum undershoot, the natural frequency should be at least three times lower 
than that of the zero. With only 5% undershoot the response of the total system will be well 
approximated by the response of the nominal system with no zero. Thus by making use of 
the maximum undershoot as a measure of the NMP nature of a system the following novel 
frequency domain design rule is developed, 

 0 3n zω <  (54) 
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for the NMP nature of the system to be considered negligible. This rule implies that the 

system poles must lie within a circle of radius 0 3z  in the s-plane. Thus, an upper bound is 

placed on the natural frequency of the system if its NMP nature is to be ignored. 

6.3 Frequency bounds on the normal specific acceleration controller 

Given the results of the previous two subsections, the upper bound on the natural frequency 
of the normal specific acceleration controller becomes, 

 ( ) 3n T N yyL l l Iαω < −  (55) 

where the typically negligible offset in the zero positions in equation (45) has been ignored. 
Adhering to this upper bound will allow the NMP nature of the system to be ignored and 
will thus ensure both practically feasible dynamic inversion of the flight path angle coupling 
and no large sensitivity function peaks (Goodwin et al., 2001) in the closed loop system. 
Note that given the physical meaning of the characteristic lengths defined in equations (41) 
through (43), the approximate zero positions and thus upper frequency bound can easily be 
determined by hand for a specific aircraft. 
It is important to note that the upper bound applies to both the open loop and closed loop 
normal specific acceleration dynamics. If the open loop poles violate the condition of 
equation (55) then moving them through control application to within the acceptable 
frequency region will require taking into account the effect of the system zeros. Thus, for an 
aircraft to be eligible for the normal specific acceleration controller of the next subsection, its 
open loop normal dynamics poles must at least satisfy the bound of equation (55). If they do 
not then an aircraft specific normal specific acceleration controller would have to be 
designed. However, most aircraft tend to satisfy this bound in the open loop because open 
loop poles outside the frequency bound of equation (55) would yield an aircraft with poor 
natural flying qualities i.e. the aircraft would be too statically stable and display significant 
undershoot and lag when performing elevator based manoeuvres. Interestingly, the 
frequency bound can thus also be utilized as a design rule for determining the most forward 
centre of mass position of an aircraft for good handling qualities. 
In term of lower bounds, the normal dynamics must be timescale separated from the 
velocity magnitude and air density (altitude) dynamics. Of these two signals, the velocity 
magnitude typically has the highest bandwidth and is thus considered the limiting factor. 
Given the desired velocity magnitude bandwidth (where it is assumed here that the given 
bandwidth is achievable with the available axial actuator), then as a practical design rule the 
normal dynamics bandwidth should be at least five times greater than this for sufficient 
timescale separation. Note that unlike in the upper bound case, only the closed loop poles 
need satisfy the lower bound constraint. However, if the open loop poles are particularly 
slow, then it will require a large amount of control effort to meet the lower bound constraint 
in the closed loop. This may result in actuator saturation and thus a practically infeasible 
controller. However, for typical aircraft parameters the open loop poles tend to already 
satisfy the timescale separation lower bound. 
With the timescale separation lower bound and the NMP zero upper bound, the natural 
frequency of the normal specific acceleration controller is constrained to lying within a 
circular band in the s-plane as shown in Figure 3 (poles would obviously not be selected in 
the RHP for stability reasons). The width of the circular band in Figure 3 is an indication of 
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the eligibility of a particular airframe for the application of the normal specific acceleration 
controller to be designed in the following subsection. 
For most aircraft this band is acceptably wide and the control system to be presented can be 
directly applied. For less conventional aircraft, the band can become very narrow and the 
two constraint boundaries may even cross. In this case, the generic control system to be 
presented cannot be directly applied. One solution to this problem is to design an aircraft 
specific normal specific acceleration controller. However, this solution is typically not 
desirable since the closeness of the bounds suggests that the desired performance of the 
particular airframe will not easily be achieved practically. Instead, redesign of the airframe 
and/or reconsideration of the outer loop performance bandwidths will constitute a more 
practical solution. 

s-plane

Timescale separation

lower bound

NMP upper bound

Feasible pole

placement region

Re(s)

Im(s)

 

Fig. 3. NMP upper bound and timescale separation lower bound outlining feasible pole 
placement region. 

6.4 Normal specific acceleration controller design 

Assuming that the frequency bounds of the previous section are met, the design of a 
practically feasible normal specific acceleration controller can proceed based on the 
following reduced normal dynamics, 
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 (57) 

The simplifications in the dynamics above arise from the analysis of subsection 6.1 where it 
was shown that to a good approximation, the lift due to pitch rate and elevator deflection 
only play a role in determining the zeros from elevator to normal specific acceleration. 
Under the assumption that the upper bound of equation (55) is satisfied, the zeros 
effectively move to infinity and correspondingly these two terms become zero. Thus, the 
simplified normal dynamics above will yield identical approximated poles to those of 
equation (38), but will display no finite zeros from elevator to normal specific acceleration. 
To dynamically invert the effect of the flight path angle coupling on the normal specific 
acceleration dynamics requires differentiating the output of interest until the control input 
appears in the same equation. The control can then be used to directly cancel the 
undesirable terms. Differentiating the normal specific acceleration output of equation (57) 
once with respect to time yields, 

 
cos W

W W

L gL L
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$  (58) 

where the angle of attack dynamics of equation (6) have been used in the result above. 
Differentiating the normal specific acceleration a second time gives, 
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 (59) 

where use has been made of equations (56) to (58) in obtaining the result above. The elevator 
control input could now be used to cancel the effect of the flight path angle coupling terms 
on the normal specific acceleration dynamics. However, the output feedback control law to 
be implemented will make use of pitch rate feedback. Upon analysis of equation (6), it is 
clear that pitch rate feedback will reintroduce flight path angle coupling terms into the 
normal specific acceleration dynamics. Thus, the feedback control law is first defined and 
substituted into the dynamics, and then the dynamic inversion is carried out. A PI control 
law with enough degrees of freedom to place the closed loop poles arbitrarily and allow for 

dynamic inversion (through 
DIEδ ) is defined below, 

 
DIE Q C W E C EK Q K C K Eδ δ= − − − +  (60) 

 
RC W WE C C= −$  (61) 

with 
RWC  the reference normal specific acceleration command. The integral action of the 

control law is introduced to ensure that the normal specific acceleration is robustly tracked 
with zero steady state error. Offset disturbance terms such as those due to static lift and 
pitching moment can thus be ignored in the design to follow. It is best to remove the effect 
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of terms such as these with integral control since they are not typically known to a high 
degree of accuracy and thus cannot practically be inverted along with the flight path angle 
coupling. Upon substitution of the control law above into the normal specific acceleration 
dynamics of equation (59), the closed loop normal dynamics become, 
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RC W WE C C= −$  (63) 

when, 
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and the static offset terms are ignored. Note that the dynamic inversion part of the control 
law is still a function of the yet to be determined pitch rate feedback gain. Given the desired 
closed loop characteristic equation for the normal dynamics, 

 ( ) 3 2
2 1 0c s s s sα α α α= + + +  (65) 

the closed form solution feedback gains can be calculated by matching characteristic 
equation coefficients to yield, 

 2

E

yy Q

Q

yy

I M L
K

M I mV
α

δ

α
⎛ ⎞
⎜ ⎟= + −
⎜ ⎟
⎝ ⎠

 (66) 

 
1 2

E

yy

C

yy

mI M L L
K

L M I mV mV
α α α

α δ

α α
⎛ ⎞⎛ ⎞⎜ ⎟= − + − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (67) 

 0

E

yy

E

mI
K

L Mα δ

α= −  (68) 

Substituting the pitch rate feedback gain into equation (64) gives, 

 2

cos
cos sin

DI

E

yy W W
E W W

Ig C gL

MV mV V
α

δ

δ α
⎡ ⎤+ Θ⎛ ⎞⎛ ⎞= − Θ − Θ⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 (69) 

where use has been made of equation (1) to remove the flight path angle derivative. The 
controller design freedom is reduced to that of placing the three poles that govern the closed 
loop normal dynamics. The control system will work to keep these poles fixed for all point 
mass kinematics states and in so doing yield a dynamically invariant normal specific 
acceleration response at all times. 
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7. Simulation 

To verify the controller designs of the previous subsections, they are applied to an off-the-
shelf scale model aerobatic aircraft, the 0.90 size CAP232, used for research purposes at 
Stellenbosch University. In the simulations and analysis to follow, the aircraft is operated 
about a nominal velocity magnitude of 30 m/s and a nominal sea level air density of 1.225 
kg/m3. The modelling parameters for the aircraft are listed in the table below and were 
obtained from (Hough, 2007). 
 

5.0 kgm =  5.97A =  
0

0.0LC =  
0

0.0mC =  

20.36 kgmyyI =  0.25 sTτ =  5.1309LC
α
=  0.2954mC

α
= −  

0.30 mc =  0.85e =  7.7330
QLC =  10.281

QmC = −  

20.50 mS =  0
0.02DC =  0.7126

E
LC
δ
=  1.5852

E
mC
δ
= −  

Table 1. Model parameters for the Stellenbosch University aerobatic UAV 

Given that the scenario described in the example at the end of section 5 applies to the aerobatic 
UAV in question, the closed loop natural frequency of the axial specific acceleration controller 
should be greater than or equal to the bandwidth of the thrust actuator (4 rad/s) for a return 
disturbance of -20 dB. Selecting the closed loop poles at {-4±3i}, provides a small buffer for 
uncertainty in the actuator lag, without overstressing the thrust actuator. Figure 4 provides a 
Bode plot of the actual and approximated return disturbance transfer functions for this design, 
i.e. equation (23), with the actual and approximated sensitivity functions of equations (33) and 
(34) substituted respectively. Also plotted are the actual and approximated sensitivity 
functions themselves as well as the term in parenthesis in equation (23), i.e. the normalized 
drag to normalized velocity perturbation transfer function. Figure 4 clearly illustrates the 
greater than 20 dB of return disturbance rejection obtained over the entire frequency band due 
to the appropriate selection of the closed loop poles. The figure also shows how the return 
disturbance rejection is contributed towards by the controller at low frequencies and the 
natural velocity magnitude dynamics at high frequencies. The plot thus verifies the 
mathematics of the decoupling analysis done in section 4. 
Open loop analysis of the aircraft’s normal dynamics reveals the actual and approximated 
poles (shown as crosses) in Figure 5 and the actual and approximated elevator to normal 
specific acceleration zeros of {54.7, -46.7} and {54.5, -46.6} respectively. The closeness of the 
poles in Figure 5 and the similarity of the numerical values above verify equations (38) and 
(40). The approximate zero positions are used in equation (55) to determine the upper NMP 
frequency bound shown in Figure 5. The lower timescale separation bound arises as a result 
of a desired velocity magnitude bandwidth of 1 rad/s (a feasible user selected value). Notice 
both the large feasible pole placement region and the fact that the open loop poles naturally 
satisfy the NMP frequency constraint, implying good open loop handling qualities. 
The controller of subsection 6.4 is then applied to the system with desired closed loop 
complex poles selected to have a constant damping ratio of 0.7 as shown in Figure 5. The 
desired closed loop real pole is selected equal to the real value of the complex poles. The 
corresponding actual closed loop poles are illustrated in Figure 5. Importantly, the locus of 
actual closed loop poles is seen to remain similar to that of the desired poles while the upper 
NMP frequency bound is adhered to. Outside the bound the actual poles are seen to diverge 
quickly from the desired values. 
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Fig. 4. NMP upper bound and timescale separation lower bound outlining feasible pole 
placement region. 
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Fig. 5. Actual and approximated open loop (CL) poles, actual and desired closed loop poles 
and upper and lower frequency bounds. 

The controller of subsection 6.4 is then applied to the system with desired closed loop 
complex poles selected to have a constant damping ratio of 0.7 as shown in Figure 5. The 
desired closed loop real pole is selected equal to the real value of the complex poles. The 
corresponding actual closed loop poles are illustrated in Figure 5. Importantly, the locus of 
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actual closed loop poles is seen to remain similar to that of the desired poles while the upper 
NMP frequency bound is adhered to. Outside the bound the actual poles are seen to diverge 
quickly from the desired values. 

Figure 6 shows the corresponding feedback gains plotted as a function of the RHP zero 

position normalized to the desired natural frequency ( 1r− ). The feedback gains are 

normalized such that their maximum value shown is unity. Again, it is clear from the plot 

that the feedback gains start to grow very quickly, and consequently start to become 

impractical, when the RHP zero is less than 3 times the desired natural frequency. The 

results of Figures 5 and 6 verify the design and analysis of section 6. 
Given the analysis above, the desired normal specific acceleration closed loop poles are 
selected at {-10±8i, -10}. The desired closed loop natural frequency is selected close to that of 
the open loop system in an attempt to avoid excessive control effort. With the axial and 
normal specific acceleration controllers designed, a simulation based on the full, nonlinear 
dynamics of section 3 was set up to test the controllers. Figure 7 provides the simulation 
results. 

The top two plots on the left hand side of the figure show the commanded (solid black line), 

actual (solid blue line) and expected/desired (dashed red line) axial and normal specific 

acceleration signals during the simulation. The normal specific acceleration was switched 

between -1 and -2  g ’s (negative sign implies ‘pull up’ acceleration) during the simulation 

while the axial specific acceleration was set to ensure the velocity magnitude remained 

within acceptable bounds at all times. 
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Fig. 6. Normalized controller feedback gains as a function of the RHP zero position 
normalized to the desired natural frequency. 

Importantly, note how the axial and normal specific acceleration remain regulated as 
expected regardless of the velocity magnitude and flight path angle, the latter of which 
varies dramatically over the course of the simulation. As desired, the specific acceleration 
controllers are seen to regulate their respective states independently of the aircraft’s velocity 
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magnitude and gross attitude. The angle of attack, pitch rate, elevator deflection and 
normalized thrust command are shown on the right hand side of the figure. The angle of 
attack remains within pre-stall bounds and the control signals are seen to be practically 
feasible.  
Successful practical results of the controllers operating on the aerobatic research aircraft and 
other research aircraft at Stellenbosch University have recently been obtained. These results 
will be made available in future publications. 
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Fig. 7. Simulation results illustrating gross attitude independent regulation of the axial and 
normal specific acceleration. 

8. Conclusion and future work 

An acceleration based control strategy for the design of a manoeuvre autopilot capable of 
guiding an aircraft through the full 3D flight envelope was presented. The core of the 
strategy involved the design of dynamically invariant, gross attitude independent specific 
acceleration controllers. Adoption of the control strategy was argued to provide a practically 
feasible, robust and effective solution to the 3D manoeuvre flight control problem and the 
non-iterative nature of the controllers provides for a computationally efficient solution. 
The analysis and design of the specific acceleration controllers for the case where the 
aircraft’s flight was constrained to the 2D vertical plane was presented in detail. The aircraft 
dynamics were shown to split into aircraft specific rigid body rotational dynamics and 
aircraft independent point mass kinematics. With a timescale separation and a dynamic 
inversion condition in place the rigid body rotational dynamics were shown to be 
dynamically independent of the point mass kinematics, and so provided a mathematical 
foundation for the design of the gross attitude independent specific acceleration controllers. 
Under further mild conditions and a sensitivity function constraint the rigid body rotational 
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dynamics were shown to be linear and decouple into axial and normal dynamics. The 
normal dynamics were seen to correspond to the classical Short Period mode approximation 
dynamics and illustrated the gross attitude independent nature of this mode of motion. 
Feedback based, closed form pole placement control solutions were derived to regulate both 
the axial and normal specific accelerations with invariant dynamic responses. Before 
commencing with the design of the normal specific acceleration controller, the elevator to 
normal specific acceleration dynamics were investigated in detail. Analysis of these 
dynamics yielded a novel approximating equation for the location of the zeros and revealed 
the typically NMP nature of this system. Based on a time domain analysis a novel upper 
frequency bound condition was developed to allow the NMP nature of the system to be 
ignored, thus allowing practically feasible dynamic inversion of the flight path angle 
coupling. 
Analysis and simulation results using example data verified the functionality of the specific 
acceleration controllers and validated the assumptions upon which their designs were 
based. Future research will involve extending the detailed control system design to the full 
3D flight envelope case based on the autopilot design strategy presented in section 2. 
Intelligent selection of the closed loop poles will also be the subject of further research. 
Possibilities include placing the closed loop poles for maximum robustness to parameter 
uncertainty as well as scheduling the closed loop poles with flight condition to avoid 
violation of the NMP frequency bound constraint.  
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