
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

19

Reduced Logic and Low-Power FFT
Architectures for Embedded Systems

Erdal Oruklu, Jafar Saniie and Xin Xiao
Illinois Institute of Technology

USA

1. Introduction

Discrete Fourier Transform (DFT) is one of the core operations in digital signal processing
and communication systems. Many fundamental algorithms can be realized by DFT, such as
convolution, spectrum estimation, and correlation. Furthermore, DFT is widely used in
standard embedded system applications such as wireless communication protocols
requiring Orthogonal Frequency Division Multiplexing (Wey et al., 2007), and radar image
processing using Synthetic Aperture Radar (Fanucci et al., 1999). In practice, DFT is difficult
to implement directly due to its computational complexity. To reduce the degree of
computation, Cooley and Tukey proposed the well-known Fast Fourier Transform (FFT)
algorithm, which reduces the calculation of N-point DFT from O(N2) to O(N/2log2N).
(Proakis & Manolakis, 2006). Nevertheless, for embedded systems, in particular portable
devices; efficient hardware realization of FFT with small area, low-power dissipation and
real-time computation is a significant challenge. The challenge is even more pronounced
when FFTs with large transform lengths (>1024 points) need to be realized in embedded
hardware. Therefore, the objective of this research is to investigate hardware efficient FFT
architectures, emphasizing compact, low-power embedded realizations.
As VLSI technology evolves, different architectures have been proposed for improving the
performance and efficiency of the FFT hardware. Pipelined architectures are widely used in
FFT realization (Li & Wanhammar, 1999; He & Torkelson, 1996; Hopkinson & Butler, 1992;
Yang et al., 2006) due to their speed advantages. Higher radix (Hopkinson & Butler, 1992;
Yang et al., 2006) and multi-butterfly (Bouguezel et al., 2004; X. Li et al., 2007) structures can
also improve the performance of the FFT processor significantly, but these structures require
substantially more hardware resources. Alternatively, shared memory based schemes with a
single butterfly calculation unit (Cohen, 1976; Ma, 1994, 1999; Ma & Wanhammar, 2000; Wang
et al., 2007) are preferred in many embedded FFT processors since they require least amount of
hardware resources. Furthermore, “in-place” addressing strategy is a practical choice to
minimize the amount of data memory. With “in-place” strategy, the two outputs of the
butterfly unit can be written back to the same memory locations of the two inputs, and replace
the old data. For in-place FFT processing, two data read and two data write operations occur at
every clock cycle. Multiple memory banks and conflict-free addressing logic are required to
realize four data accesses in one clock cycle. Consequently, a typical FFT processor is
composed of three major components: i) butterfly calculation units, ii) conflict free address
generators for both data and coefficient accesses and iii) multi-bank memory units.

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

382

In this study, several techniques are developed for reducing the hardware logic and power
requirements for these three components:
1. In order to optimize the conflict free addressing logic, a modified butterfly structure

with input/output exchange circuits is presented in Section 2.
2. CORDIC based FFT algorithms are presented for multiplier-less and coefficient

memory-less implementation of the butterfly unit in Section 3.
3. Memory bank partitioning and bitline segmentation techniques are presented for

dynamic power reduction of data memory accesses. Furthermore, a special coefficient
memory addressing logic which reduces the switching activity is proposed in Section 4.

Case studies with ASIC and FPGA synthesis results demonstrate the performance gains and
feasibility of these FFT implementations on embedded systems.

2. Hardware efficient realization of fast Fourier transform

There is an ongoing interest in hardware efficient FFT architectures. Cohen (Cohen, 1976)

introduced a simplified control logic for FFT address generation, which is composed of

parity checks, barrel shifters and counters based on the fact that two data addresses of every

butterfly operations differ in their parity. Ma (Ma, 1999) proposed a method to realize the

radix-2 addressing logic which reduces the address generation delay by avoiding parity

check (XOR operations), but barrel shifters are still needed. Furthermore, Ma’s approach is

not “in-place”, so more registers and related control logic are needed to buffer the interim

data to avoid the memory conflict. Yang (Yang et al., 2006) proposed a locally pipelined

radix-16 FFT realized by two radix-2 deep feedback (R2SD2F) butterflies. This architecture

can improve the throughput of the FFT processing and reduce the complex multipliers and

adders compared to other pipelined methods, but it needs extra memory and there is

significantly more coefficient access due to radix-16 implementation. Li (X. Li et al., 2007)

proposed a mixed radix FFT architecture, which contains one radix-2 butterfly and one

radix-4 butterfly. The two butterflies share the multipliers, which reduce the hardware

consumption, but the address generation is based on XOR logic, and similar to Cohen's

design. Next section describes in detail addressing schemes that emphasize reduced

hardware.

2.1 Conflict-free addressing for FFT

The N-point discrete Fourier transform is defined by

21

0

() () 0,1,..., 1,
N j nk

nk nk N
N N

n

X k x n W k N W e
π− −

=
= = − =∑ (1)

Fig. 1 shows the signal flow graph of 16-point decimation-in-frequency (DIF) radix-2 FFT
(Proakis & Manolakis, 2006). FFT algorithm is composed of butterfly calculation units:

 1() () ()m m mx p x p x q+ = + (2)

 1() [() ()] r
m m m Nx q x p x q W+ = − (3)

Equations (2), (3) describe the radix-2 butterfly calculation at Stage m as shown in Fig. 2.

Parallel and “in-place” butterfly operation using two memory banks of two-port memory

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

383

units requires that the two inputs of any butterfly are read from different banks of memory
and the two outputs are written to the same address locations as the inputs. As shown in
Fig. 1, in the conventional FFT addressing scheme, only the butterflies in the first stage
satisfy this requirement. Two inputs and two outputs of butterfly operations in all other
stages are originating from and sinking to the same memory bank. Therefore, a special
addressing scheme is required to prevent the conflicting addresses.
Cohen (Cohen, 1976) used parity check to separate the data into two memory banks. Fig. 3
is the signal flow graph of Cohen’s approach and it shows that inputs and outputs of any
butterfly stage utilize separate memory banks. The addresses of butterfly operations are “in-
place” located. The drawback of Cohen’s method is the address generation delay. In order to
reduce the delay of the address generation, Ma (Ma, 1999) proposed an alternative
addressing scheme which avoids using parity check. The signal flow graph of Ma’s scheme
is shown in Fig. 4. In Ma’s scheme, two inputs of a butterfly unit originate from two separate
memory banks but two outputs of the butterfly unit utilize the same memory bank. The
inputs and outputs of a butterfly unit are not “in-place”. Therefore, extra registers and
related control logic are needed to buffer the outputs of the butterfly until next butterfly
calculation is finished in order to realize the “in place” operation. Compared to Cohen’s
approach which uses both parity check and barrel shifters, Ma’s method needs only barrel
shifters and avoids parity check, resulting in a reduced address generation delay. However,
Ma’s approach consumes more hardware resources to realize the “in-place” operation.
In the following section, a hardware efficient FFT engine with reduced critical path delay is
proposed. Addressing logic is reduced by using a butterfly structure which modifies the
conventional one by adding exchange circuits at the input and output of the butterfly (Xiao,
et al., 2008]. With this butterfly structure, the two inputs and two outputs of any butterfly
can be exchanged; hence all data addresses in FFT processing can be reordered. Using this
flexible input and output ordering, addressing logic is designed to be “in-place” and it does
not need barrel shifters.

Memory

Bank0

Memory

Bank1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

W0

W1

W2

W3

W4

W5

W6

W7

W0

W2

W4

W6

W0

W2

W4

W6

W0

W4

W0

W4

W0

W4

W0

W4

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

0Stage 0 Stage 1 Stage 2 Stage 3
Input x(n) Output X(k)

Fig. 1. Signal flow graph of 16-point FFT

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

384

r

NW

)(pxm

)(qxm

)(1 pxm+

)(1 qxm+

Fig. 2. Butterfly unit at stage m

12

5

9

6

10

3

15

4

8

1

13

2

14

7

11

0

3

10

9

6

5

12

15

2

1

8

11

4

7

14

13

Stage 0 Stage 1 Stage 2 Stage 3 0

Memory Bank0

(Parity even)

Memory Bank1

(Parity odd)

Input x(n) Output X(k)

Fig. 3. Signal flow graph of 16-point FFT using Cohen’s method (Cohen, 1976)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4

2

6

8

12

10

14

1

5

3

7

9

13

11

15

Stage 0 Stage 1 Stage 2 Stage 30 0

Memory

Bank0

Memory

Bank1

Input x(n) Output X(k)

Fig. 4. Signal flow graph of 16-point FFT using Ma’s method (Ma, 1999)

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

385

2.2 Reduced address generation logic with the modified butterfly FFT (mbFFT)

This addressing scheme is based on a modified butterfly FFT (mbFFT) structure, which is
shown in Fig. 5. The main difference between the modified butterfly structure and the
conventional one is the addition of two exchange circuits that are placed at both the input
and the output of the butterfly unit. Each exchange circuit is composed of two (2:1)
multiplexers; when the exchange control signal C1 or C2 is 1, the data will be exchanged,
otherwise they keep their locations.

r

NW

)(pxm

)(qxm

)(1 pxm+

)(1 qxm+

)(1 pym+

)(1 qym+

)(pym

)(qym

C2

2:1
M

U
X

0
1

2
:1

M
U

X
0

1

2
:1

M
U

X
0

1
2
:1

M
U

X
0

1

C1

Fig. 5. Modified butterfly structure

Equation (4) shows the function:

If C1=1:
);()(),()(pyqxqypx mmmm ==

Else:
);()(),()(qyqxpypx mmmm ==

If C2=1:
);()(),()(1111 pxqyqxpy mmmm ++++ ==

else:
);()(),()(1111 qxqypxpy mmmm ++++ ==

 (4)

Based on this butterfly structure, all data within the FFT processing can be reordered by
setting the different values of the exchange control signals C1 and C2. The control signals are
chosen such that the input data always originate from two separate memory banks and
output data are written to the same memory location in order to achieve in-place operation.

2.2.1 16-point mbFFT implementation

For 16-point mbFFT, the signal flow graph is shown in Fig. 6. In the figure, the butterfly
inputs or outputs indicated by broken lines denote that the data have been exchanged. Fig.
7 shows the complete address generation architecture and components for 16-point FFT
implementation. The address generation logic is composed of a 5-bit counter D, three

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

386

inverters, a 3-bit shifter, three (2:1) multiplexers, two (4:1) multiplexers, four multi-bit (2:1)
multiplexers and delay elements. Stage Counter S indicates which stage of FFT is currently
in progress and controls the two (4:1) multiplexers to generate the correct exchange control
signals C1 and C2 for the butterfly operation. The 3-bit shifter shifts one bit at each stage and
it controls three (2:1) multiplexers to generate the correct M1 address. Since this technique is
“in-place”, the addresses for read and write are same with the exception of a delay
introduced for compensating the butterfly computation time. Table I presents the counter
values (control logic) which are used to generate the addresses for M0 and M1 memory
banks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4

2

6

1

5

3

7

15

11

13

9

14

10

12

8

0 0Stage 0 Stage 1 Stage 2 Stage 3

Memory

Bank0

Memory

Bank1

Input x(n) Output X(k)

Fig. 6. Signal flow graph of 16-point mbFFT

Stage 0
(exchange

control signal:
C1=0,C2=b2)

Stage 1
(exchange

control signal:
C1= b2,C2= b1)

Stage 2
(exchange

control signal:
C1= b1,C2= b0)

Stage 3
(exchange

control signal:
C1= b0,C2=0)

Counter

2 1 0()B b b b

Counter

2 1 0()B b b b
Bank0

address

2 1 0b b b

Bank1
address

2 1 0b b b

Bank0
address

2 1 0b b b

Bank1
address

2 1 0b b b

Bank0
address

2 1 0b b b

Bank1
address

2 1 0b b b

Bank0
address

2 1 0b b b

Bank1
address

2 1 0b b b

000 111 000 000 000 100 000 110 000 111

001 110 001 001 001 101 001 111 001 110

010 101 010 010 010 110 010 100 010 101

011 100 011 011 011 111 011 101 011 100

100 011 100 100 100 000 100 010 100 011

101 010 101 101 101 001 101 011 101 010

110 001 110 110 110 010 110 000 110 001

111 000 111 111 111 011 111 001 111 000

Table 1. Address generation table for the 16-point mbFFT

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

387

Stage Counter S Butterfly Counter B

2b 1b 0b3b4b

2b 1b 0b

)(pxm)(qxm

)(pym)(qym

)(1 pxm+)(1 qxm+

)(1 pym+)(1 qym+

2:1MUX

D D D
1

0 1
2:1MUX

0 1
2:1MUX

0 1

Memory Bank

M1

Memory Bank

M0
Delay

Delay

Delay

3-bit Shifter

3-bit Inverter

Counter D

Butterfly

2:1MUX
0 1

2:1MUX
0 1

4:1MUX

00 01 10 11

C1 Delay

Delay

Delay

4:1MUX

00 01 10 11

C2

0 0

2:1MUX
0 1

2:1MUX
0 1

Data In

Data Out Read Address

Write Address Data In

Data Out Read Address

Write Address

Fig. 7. Address generation circuits for 16-point mbFFT

2.2.2 N-point mbFFT implementation

In order to generalize the addressing scheme for 2nN = - point FFT, the necessary circuit

components of the addressing and control logic can be listed as follows:

• (n-1)-bit Butterfly Counter 2 3 1 0...n nB b b b b− −= ,

• (n-1) inverters which generate the complement of the Butterfly Counter

2 3 1 0...n nB b b b b− −= from counter B ,

• 2log n⎡ ⎤⎢ ⎥ - bit Stage Counter (1),...,2,1,0S n= − .

• Two memory banks, Bank 0 (M0) and Bank 1 (M1).

In practice, Stage Counter S and Butterfly Counter B can be combined to a single counter D,

where B is the least significant (n-1) bits of counter D, and S is the most significant 2log n⎡ ⎤⎢ ⎥

bits of counter D. At any time, the read and write addresses of M0 is exactly same as the

value of Butterfly Counter B. For M1, the read and write address at Stage s is

2 3 1 2 1 0... ...n n n s n sb b b b b b− − − − − − , which is a combination of counters B and B . The exchange

control signal C1 is equal to 1n sb − − (assume 1 0nb − ≡), and C2 is equal to 2n sb − − (assume

1 0b− ≡). The address of twiddle factors at stage s is given by 2 3 0... 0...0n s n sb b b− − − − (s ‘0’s).

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

388

2.3 VLSI synthesis results

The mbFFT architecture is synthesized using TSMC CMOS 0.18µm technology. Synthesis is
performed with Cadence Build Gates and Encounter tools. The synthesis results for 16-point
FFT with 32-bit complex number input show a maximum clock frequency of 280MHz with
0.665mm2 area and 0.645mW total power consumption for the complete FFT operation
including butterfly unit, address generation unit, and memory circuits.
In order to compare different FFT addressing methods, the logic complexity can be
evaluated similar to (Ma, 1999), based on gate counts. The sizes of some basic circuits and
gates are listed in Table 2. Estimated gate count comparison for 1024-point FFT of 32-bit
complex data (16-bit each for the real part and imaginary part) is shown in the Table 3. In
terms of area, mbFFT scheme requires 24% fewer number of transistors. This reduction is
mainly due to the difference in logic complexity of the multiplexers and barrel shifters.
Based on the gate counts in Table 2 (and confirmed by synthesis results), r-input (r:1)
multiplexer is approximately 4 times smaller than (r-1) barrel shifter in terms of area.
The delay of address generation for both read and write operations in the mbFFT addressing
scheme is determined by two stages of multiplexers, where the first stage uses an r-input
(r:1) multiplexer and the second stage uses a 2-input (2:1) multiplexer for a 2r-point FFT
operation (see Fig 7). In (Ma, 1999), worst-case address generation delay is dominated by an
(r-1)-bit barrel shifter and a (2:1)-multiplexer. An (r-1)-bit barrel shifter requires

2log (1)r −⎡ ⎤⎢ ⎥ stages of (2:1) multiplexers in the critical path. Cohen’s address generation

method (Cohen, 1976) uses an r-bit parity check unit, an (r-1)-bit barrel shifter, and two (2:1)
multiplexers in the critical path. Standard cell synthesis results in Table 4 show that the
proposed mbFFT address generation scheme is faster compared to (Cohen, 1976) and (Ma,
1999) for large FFTs, due to the complex wiring and parasitic capacitances in barrel shifters
and elimination of the parity-check operation.
Compared to a pipelined FFT architecture such as R2SD2F given in (Yang et al., 2006), the
shared memory architectures such as mbFFT offer significantly reduced hardware cost and
power consumption at the expense of (slower) throughput. R2SD2F requires log4N-1
multipliers, 2log4N adders and 10log4N multiplexers for the butterfly operations in an N-
point FFT. In contrast, only one multiplier, two adders and four multiplexers are used in the
mbFFT architecture datapath. The latency (total clock cycles) of a pipelined FFT architecture

is faster by a factor of N22
1 log . However, the maximum achievable clock frequency would

be less than the mbFFT design due the increased complexity of the R2SD2F datapath and
address generation. Hence, for embedded applications, the proposed reduced logic, shared
memory FFT approach with modified butterfly units presents a more viable solution.

Types of Gates and Circuits No. of. Transistors

2-Input XOR 10

2-1 Multiplexer 6

10-1 Multiplexer 42

1-bit Register/Latch 10

9-bit Counter 182

13-bit Counter 270

9-bit Barrel Shifter 152

10-bit Barrel Shifter 168

Table 2. Transistor counts for CMOS cells (Ma, 1999)

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

389

Components
Design Schemes

Quantity Type

Transistor
Counts

1 13-bit Counter

9 Inverters

1 9-bit Shifter

9 1-bit 2:1 Multiplexer

2 1-bit 10:1 Multiplexer

4 32-bit 2:1 Multiplexer

Proposed mbFFT
Design

2 9-bit Latches

1562

1 13-bit Counter

2 9-bit Barrel Shifters

4 9-bit Latches

2 32-bit Latches

2 9-bit 2:1 Multiplexers

(Ma, 1999)

2 32-bit 2:1 Multiplexers

2066

1 13-bit Counter

1 9-bit Counter

2 9-bit Latch

2 10-bit Barrel Shifter

2 9-bit 2:1 Multiplexer

4 32-bit 2:1Multiplexer

(Cohen, 1976)

1 9-bit Address Parity Generator

1924

Table 3. Address generation logic comparison for 1024-point FFT with 32-bit complex data

FFT size =2n Proposed mbFFT (Ma, 1999) (Cohen,1976)

n=4 1.28 ns 1.28 ns 1.82 ns

n=8 1.40 ns 1.53 ns 2.50 ns

n=10 1.47 ns 1.71 ns 2.61 ns

n=16 1.59 ns 1.85 ns 2.87 ns

Table 4. Delay comparison of address generation circuits

3. Multiplierless FFT architectures using CORDIC algorithm

In FFT processors, butterfly operation is the most computationally demanding stage.
Traditionally, a butterfly unit is composed of complex adders and multipliers. A complex
multiplier can be very large and it is usually the speed bottleneck in the pipeline of the FFT
processor. The Coordinate Rotation Digital Computer (CORDIC) (Volder, 1959) algorithm is
an alternative method to realize the butterfly operation without using any dedicated
multiplier hardware. CORDIC algorithm is versatile and hardware efficient since it requires
only add and shift operations, making it suitable for the butterfly operations in FFT
(Despain, 1974). Instead of storing actual twiddle factors in a ROM, the CORDIC-based FFT
processor needs to store only the twiddle factor angles in a ROM for the butterfly operation.
In recent years, several CORDIC-based FFT designs have been proposed for different
applications (Abdullah et al., 2009; Lin & Wu, 2005; Jiang, 2007; Garrido & Grajal, 2007). In
(Abdullah et al., 2009), non-recursive CORDIC-based FFT was proposed by replacing the

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

390

twiddle factors in FFT architecture by non-iterative CORDIC micro-rotations. It reduces the
ROM size, however, it does not eliminate it completely. (Lin & Wu, 2005) proposed a
“mixed-scaling-rotation” CORDIC algorithm to reduce the total iterations, but it increases
the hardware complexity. (Jiang, 2007) introduced Distributed Arithmetic (DA) to the
CORDIC-based FFT algorithms, but the DA look-up tables are costly in implementation.
(Garrido & Grajal, 2007) proposed a memory-less CORDIC algorithm to reduce the memory
requirements for a CORDIC-based FFT processor by using only shift operations for
multiplication.
Conventionally, a CORDIC-based FFT processor needs a dedicated memory bank to store
the necessary twiddle factor angles for the rotation. In our earlier work (Xiao et al., 2010), a
modified CORDIC algorithm for FFT processors is proposed which eliminates the need for
storing the twiddle factor angles. The algorithm generates the twiddle factor angles
successively by an accumulator. With this approach, memory requirements of an FFT
processor can be reduced by more than 20%. Memory reduction improves with the
increasing radix size. Furthermore, the angle generation circuit consumes less power
consumption than angle memory accesses. Hence, the dynamic power consumption of the
FFT processor can be reduced by as much as 15%. Since the critical path is not modified with
the CORDIC angle calculation, system throughput does not change.
In the following sections, CORDIC algorithm fundamentals and the design of the proposed
memory efficient CORDIC-based FFT processor are described.

3.1 CORDIC algorithm

CORDIC algorithm was proposed by J.E. Volder (Volder, 1959). It is an iterative algorithm
to calculate the rotation of a vector by using only additions and shifts. Fig. 8 shows an
example for rotation of a vector Vi.

α
φ

),(iii yxV

),(111 +++ iii yxV

x

y

Fig. 8. Rotate vector (,)i i iV x y to 1 1 1(,)i i iV x y+ + +

The following equations illustrate the steps for calculating the rotation:

 1 cos cos cos sin sin

cos sin
i

i i

x r () r()

x y

α φ α φ α φ
φ φ

+ = + = −
= −

 (5)

 1 sin() (sin cos cos sin)

cos sin
i

i i

y r r

y x

α φ α φ α φ
φ φ

+ = + = +
= +

 (6)

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

391

If each rotate angle φ is equal to arctan 2 i− , then:

 1 cos (2)i
i i ix x yφ −
+ = − ⋅ (7)

 1 cos (2)i
i i iy y xφ −
+ = + ⋅ (8)

Since arctan 2 iφ −= , cosφ can be simplified to a constant with fixed number of iterations:

 1 (2)i
i i i i ix K x y d −
+ = − ⋅ ⋅ (9)

 1 (2)i
i i i i iy K y x d −
+ = + ⋅ ⋅ (10)

where cos(arctan(2))i
iK −= and 1id = ± . Product of Ki's can be represented by the K factor

which can be applied as a single constant multiplication either at the beginning or end of the

iterations. Then, (9) and (10) can be simplified to:

 1 2 i
i i i ix x y d −
+ = − ⋅ ⋅ (10)

 1 2 i
i i i iy y x d −
+ = + ⋅ ⋅ (11)

The direction of each rotation is defined by di and the sequence of all di 's determines the
final vector. di is given as:

 i

i

1 if z 0

1 if z 0id
− <⎧ ⎫

= ⎨ ⎬+ ≥⎩ ⎭
 (12)

where zi is called angle accumulator and given by

 1 (arctan 2)i
i i iz z d −
+ = − ⋅ (13)

All operations described through equations (10)-(13) can be realized with only additions and

shifts; therefore, CORDIC algorithm does not require dedicated multipliers. CORDIC

algorithm is often realized by pipeline structures, leading to high processing speed. Fig. 9

shows the basic structure of a pipelined CORDIC unit.

As shown in equation (1), the key operation of FFT is () nk
Nx n W⋅ , (

2
j nk

nk N
NW e

π
−

=). This is

equivalent to "Rotate ()x n by angle
2

nk
N

π
− " operation which can be realized easily by the

CORDIC algorithm. Without any complex multiplications, CORDIC-based butterfly can be
fast. An FFT processor needs to store the twiddle factors in memory. CORDIC-based FFT
doesn’t have twiddle factors but needs a memory bank to store the rotation angles. For

radix-2, N-point, m-bit FFT,
2

mN
 bits memory needed to store

2

N
 angles. In the next

section, a new CORDIC based FFT design which does not require any twiddle factor or
angle memory units is presented. This design uses a single accumulator for generating all
the necessary angles instantly and does not have any precision loss.

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

392

3.2 Reduced memory CORDIC based FFT

Although several multi-bank addressing schemes have been used to realize parallel and
pipelined FFT processing (Ma, 1999; Xiao et al., 2008), these methods are not suitable for the
reduced memory CORDIC FFT. In these schemes, the twiddle factor angles are not in
regular increasing order (see Table 5), resulting in a more complex design for angle
generators. As shown in Table 6, using a special addressing scheme first proposed in (Xiao
et al., 2009), the twiddle factor angles follow a regular, increasing order, which can be

Register

>>0

+/- +/- +/-

Register Register

>>0

Register

>>1

+/- +/- +/-

Register Register

>>1

Register

>>n

+/- +/- +/-

Register Register

>>n

0φ

nφ

1φ

0x 0y 0z

nx ny nz

Fig. 9. Basic structure of a pipelined CORDIC unit

generated by a simple accumulator. Table 6 shows the address generation table of the 16-
point radix-2 FFT. It can be seen that twiddle factor angles are sequentially increasing, and

every angle is a multiple of the basic angle 2
N

π , which is
8

π for 16-point FFT. For

different FFT stages, the angles increase always one step per clock cycle. Hence, an angle

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

393

generator circuit composed of an accumulator, and an output latch can realize this function,
as shown in Fig. 10. Control signal for the latch that enables or disables the accumulator
output is simple and it is based on the current FFT butterfly stage and RAM address bits
b2b1b0 (see Table 6).

CLK

Angle

Latch

Control Accumulator

RegisterN
π2

Fig. 10. Angle generator for the CORDIC based FFT

Stage 0 Stage 1 Stage 2 Stage 3
Butterfly
Counter

B(b2b1b0)
RAM

address
b0b2b1

Twiddle
factor
angle

RAM
address
b1b0b2

Twiddle
factor
angle

RAM
address
b2b1b0

Twiddle
factor
angle

RAM
address
b0b2b1

Twiddle
factor
angle

000 000 0 000 0 000 0 000 0

001 100 4
8

π 010 4
8

π 001 4
8

π 100 0

010 001 8
π 100 0 010 0 001 0

011 101 5
8

π 110 4
8

π 011 4
8

π 101 0

100 010 2
8

π 001 2
8

π 100 0 010 0

101 110 6
8

π 011 6
8

π 101 4
8

π 110 0

110 011 3
8

π 101 2
8

π 110 0 011 0

111 111 7
8

π 111 6
8

π 111 4
8

π 111 0

Table 5. Address generation table of Ma’s (Ma, 1999) design for 16-point radix-2 FFT

Fig. 11 shows the architecture of the proposed no-twiddle-factor-memory design for radix-2
FFT. Four registers and eight 2-to-1 multiplexers are used. Registers are needed before and
after the butterfly unit to buffer the intermediate data in order to group two sequential
butterfly operations together. Therefore, the conflict-free “in-place” data accessing can be
realized. This register-buffer design can be extended to any radix FFTs. For radix-2, the

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

394

structure can be simplified by using just 4 registers, but for radix-r FFT, 22 r× registers are

needed. Fig. 12 shows the structure for radix-r FFT.

Stage 0 Stage 1 Stage 2 Stage 3
Butterfly
Counter

B(b2b1b0)
RAM

address
b2b1b0

Twiddle
factor
angle

RAM
address
b0b2b1

Twiddle
factor
angle

RAM
address
b1b0b2

Twiddle
factor
angle

RAM
address
b2b1b0

Twiddle
factor
angle

000 000 0 000 0 000 0 000 0

001 001 8
π 100 0 010 0 001 0

010 010 2
8

π 001 2
8

π 100 0 010 0

011 011 3
8

π 101 2
8

π 110 0 011 0

100 100 4
8

π 010 4
8

π 001 4
8

π 100 0

101 101 5
8

π 110 4
8

π 011 4
8

π 101 0

110 110 6
8

π 011 6
8

π 101 4
8

π 110 0

111 111 7
8

π 111 6
8

π 111 4
8

π 111 0

Table 6. Address generation table for 16-point radix-2 FFT with the proposed angle
generator

RAM 1

Data

Out

Data

In

RAM 2

Data

Out

Data

In

Register

1

Register

2

Register

3

Register

4

Butterfly

Angle

Generator

Fig. 11. Radix-2 FFT processor with no-twiddle-factor-memory

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

395

RAM 2

Data

Out

Data

In

2r

2r

2r 2r

2r

2r

2r

2r

2r

2r 2r

2r

2r

2r

In .

1RAM

Data

Out

Data
.

RAM r

Data

Out

Data

In

.

.

.

.

.

.

R1

R2

R3

R4

1
2

....

3
4

1
2

....

3
4

1
2

....

3
4

R

.

.....

.

.....

1
2

....

3
4

1
2

....

3
4

1
2

....

3
4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Angle

Generator

Radix r

Butterfly

.

.....

.

.....

.

..

.

.

. .
.
.
.
.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

R1

R2

R3

R4

1
2

....

3
4

1
2

....

3
4

1
2

....

3
4

R

.

.....

.

.....

1
2

....

3
4

1
2

....

3
4

1
2

....

3
4

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

...

...

..

.

..
...

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

Fig. 12. Proposed radix-r CORDIC-based FFT

For an 2nN = -point FFT, the addressing and control logic are composed of several

components: An (1)n − -bit butterfly counter 2 3 1 0...n nB b b b b− −= will provide the address

sequences and the control logic of the angle generator. In stage S , the memory address is

given by
snnss bbbbbbb 320121 −−−− , which is rotate right S bits of butterfly counter B .

Meanwhile, the control logic of the latch of the angle generator is determined by the

sequence of the pattern; 2 3... 0...0n n sb b b− − (S “0”s).

For radix-2, 2nN = -point, m-bit FFT, (each data is 2m-bit complex number; m-bit each for

the real part and imaginary part) by using the proposed angle generator,
5

2

mN
 bits

memory required by the conventional CORDIC can be reduced to
4

2

mN
 which corresponds

to 20% reduction. For higher radix FFT, the reduction is even more significant. For radix-r

FFT, the saving is
(1)r mN

r

−
bits out of

(3 1)r mN

r

−
, which converges to 33.3% reduction.

Due to finite wordlength, as the accumulator operates, the precision loss will accumulate as
well. In order to address this issue, more bits (wider wordlength) can be used for the
fundamental angle 2π/N and the accumulator logic. For example, for 1024-point FFT, the
accumulator is extended from 16 bits to 21 bits and no precision loss is observed compared
to a conventional angle-stored CORDIC FFT processor.

3.3 FPGA synthesis results

The proposed reduced memory CORDIC based FFT designs for both radix-2 and radix-4
FFT algorithms have been realized by Verilog-HDL and implemented on an FPGA chip
(STRATIX-III EP3SE50C2). Synthesis results shown in Table 7 show that these designs can
reduce memory usage for FFT processors without any tangible increase in the number of
logic elements used when compared against the conventional CORDIC implementation (i.e.,

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

396

angles are stored in memory). Furthermore, dynamic power consumption is reduced (up to
15%) with no delay penalties. The synthesis results match with the theoretical analysis.

Radix-2 Radix-4

Proposed

CORDIC FFT
(angle

generator)

Conventional
CORDIC FFT

(angles
stored)

Proposed
CORDIC FFT

(angle
generator)

Conventional
CORDIC FFT

(angles
stored)

Total logic
elements

1,427
(19-bit accum.)

1,386
5,892

(20-bit accum.)
5,763

Total memory 8,672 10,720 8,728 11,800
256-point

FFT

Dynamic Power 136.87 mW 156.22mW 437.53 mW 495.06 mW

Total logic
elements

1,773
(21-bit accum.)

1,718
5,991

(22-bit accum.)
5,797

Total memory 33,248 41,440 33,304 45,592
1024-point

FFT

Dynamic Power 135.07 mW 175.98 mW 439.40 mW 496.64 mW

Total logic
elements

1,809
(23-bit accum.)

1,757
5,993

(24-bit accum.)
5,863

Total memory
bits

131,552 164,320 131,608 180,760
4096-point

FFT

Dynamic Power 212.78 mW 242.85 mW 501.11 mW 571.72 mW

Table 7. FPGA implementation results for Radix-2 and Radix-4 FFT

4. Low-power FFT addressing schemes

For embedded applications, power dissipation is often a crucial design goal. (Ma &
Wanhammar, 1999) proposed a new addressing logic to improve the memory accessing
speed and to reduce the power consumption. (Hasan et al., 2003) designed a new coefficient
ordering method to reduce the power consumption of radix-4 short-length FFTs. Gate-level
algorithms have also been proposed (Zainal at al., 2009; Saponara, 2003) to reduce the FFT
processor’s power consumption by lower supply voltage techniques and/or voltage scaling.
Power consumption of FFT processors can be significantly reduced by optimizing both data
and coefficient memory accesses. Dynamic power consumption in CMOS circuits can be
characterized by the following equation:

 2
dynamic total DDP C V fα= ⋅ ⋅ ⋅ (14)

where α is the switching activity, VDD is the supply voltage, f is the frequency and Ctotal is the
total switching capacitance charging and discharging in the circuit. In particular,

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

397

architectural techniques can reduce two parameters in (14), Ctotal and . These techniques are
discussed next: First, a multi-bank memory structure is proposed for data memory accesses,
resulting in reduced overall capacitance load on the SRAM bit-lines. Second, a new butterfly
calculation order reduces the memory access frequency for twiddle factors and minimizes
the switching activity.

4.1 Memory bank partitioning

Since FFT operation largely consists of data and twiddle factor memory accesses, it is
desirable to reduce the power dissipation caused by memory accesses. Memory bank
partitioning and bitline segmentation is an important technique to reduce the power
dissipation in SRAMs. The bitlines (each read and write port is associated with one bitline)
in the SRAM logic are a significant source of energy dissipation due to the large capacitive
load. This capacitance has two components, wire capacitance of the bitlines and the
diffusion capacitance of each pass transistor connecting bitline to bitcells. Hence, the
capacitive load increases linearly with the components attached to the bitline i.e., the
number of words or size of the memory. In order to reduce this large capacitive load, the
data memory can be partitioned into four memory banks instead of two. As a result, the
capacitive loading in each memory bank is lowered since the bitline wire length and the
number of pass transistors connected to the bitline is now only one fourth of the original
bitline. The first two memory banks, bank0 and bank1 are accessed by the upper leg of the
butterfly structure, and bank2 and bank3 are accessed by the lower leg of the butterfly (see
Fig. 13). The most significant bit (MSB) of the addresses determine which two memory
banks will be accessed; the remaining two memory banks will be inactive. Multi-bank
memory structure has been proposed before (Ma & Wanhammar, 2000), but a major
advantage of the proposed addressing scheme is that the memory bank switching occurs
only once in the middle of a stage. In the first half of the stage, same two memory banks are
used and in the second half of the stage, the other two memory banks are accessed. There is
no precharging and discharging of bitlines in the inactive memory banks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

4

2

6

1

5

3

7

15

11

13

9

14

10

12

8

0 0Stage 0 Stage 1 Stage 2 Stage 3

Memory

Bank0

Memory

Bank3

Input x(n) Output X(k)

Memory

Bank1

Memory

Bank2

Fig. 13. Signal flow graph of 16-point FFT using memory partitioning

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

398

4.2 Reordering coefficient access sequence

The mbFFT architecture (see Section 2.2) can be used to generate the addressing scheme for

reducing twiddle factor memory accesses and switching activity power. The twiddle factor

access sequence is optimized for minimizing data bus changes. For all butterfly stages, the

twiddle factor addresses are ordered in such a way that the twiddle factors at the same

address are grouped together and accessed sequentially. This way, the twiddle factor ROM

is not accessed every clock cycle. Reordering of the coefficient access sequences is shown in

Table 8 and Table 9. For example, in stage 1 in Table 9, only 8 accesses are needed instead of

16, and in stage 2, only 4 accesses instead of 8 and so on.

Stage 0 Stage 1

Counter

2 1 0()B b b b
Bank 0,1
address

2 1 0b b b

Twiddle
factor address

1 0b b

Bank 2,3
address

2 1 0b b b

Bank 0,1
address

2 0 1b b b

Twiddle
Factor address

10b

Bank 2,3
address

2 0 1b b b

000 000 00 000 000 00 100

001 001 01 001 010 00 110

010 010 10 010 001 10 101

011 011 11 011 011 10 111

100 100 00 100 100 00 000

101 101 01 101 110 00 010

110 110 10 110 101 10 001

111 111 11 111 111 10 011

Stage 2 Stage 3

Bank0,1
address

2 1 0b b b

Twiddle
factor

address

00

Bank2,3
address

2 1 0b b b

Bank0,1
address

2 1 0b b b

Twiddle factor
address

0 0b

Bank2,3
address

2 1 0b b b

000 00 110 000 00 111

001 00 111 001 00 110

010 00 100 010 00 101

011 00 101 011 00 100

100 00 010 100 00 011

101 00 011 101 00 010

110 00 000 110 00 001

111 00 001 111 00 000

Table 8. Address generation table for the 16-point, reduced memory access FFT

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

399

Stage 0 Stage 1

Counter
)(0123 bbbbB

Bank 0,1
address

0123 bbbb

Twiddle factor
address

012 bbb

Bank 2,3
address

0123 bbbb

Bank 0,1
address

1203 bbbb

Twiddle factor
Address

012bb

Bank 2,3
address

1203 bbbb

0000 0000 000 0000 0000 000 1000

0001 0001 001 0001 0100 000 1100

0010 0010 010 0010 0001 010 1001

0011 0011 011 0011 0101 010 1101

0100 0100 100 0100 0010 100 1010

0101 0101 101 0101 0110 100 1110

0110 0110 110 0110 0011 110 1011

0111 0111 111 0111 0111 110 1111

1000 1000 000 1000 1000 000 0000

1001 1001 001 1001 1100 000 0100

1010 1010 010 1010 1001 010 0001

1011 1011 011 1011 1101 010 0101

1100 1100 100 1100 1010 100 0010

1101 1101 101 1101 1110 100 0110

1110 1110 110 1110 1011 110 0011

1111 1111 111 1111 1111 110 0111

Stage 2 Stage 3 Stage 4

Bank0,1
address

3 1 0 2b b b b

Twiddle
factor

address

2 00b

Bank2,3
address

3 1 0 2b b b b

Bank0,1
address

3 2 1 0b b b b

Twiddle
factor

address
000

Bank2,3
address

3 2 1 0b b b b

Bank0,1
address

3 0 2 1b b b b

Twiddle
factor

Address
000

Bank2,3
address

3 0 2 1b b b b

0000 000 1100 0000 000 1110 0000 000 1111

0010 000 1110 0001 000 1111 0100 000 1011

0100 000 1000 0010 000 1100 0001 000 1110

0110 000 1010 0011 000 1101 0101 000 1010

0001 100 1101 0100 000 1010 0010 000 1101

0011 100 1111 0101 000 1011 0110 000 1001

0101 100 1001 0110 000 1000 0011 000 1100

0111 100 1011 0111 000 1001 0111 000 1000

1000 000 0100 1000 000 0110 1000 000 0111

1010 000 0110 1001 000 0111 1100 000 0011

1100 000 0000 1010 000 0100 1001 000 0110

1110 000 0010 1011 000 0101 1101 000 0010

1001 100 0101 1100 000 0010 1010 000 0101

1011 100 0111 1101 000 0011 1110 000 0001

1101 100 0001 1110 000 0000 1011 000 0100

1111 100 0011 1111 000 0001 1111 000 0000

Table 9. Address generation table for the 32-point, reduced memory access FFT

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

400

Equations (15) and (16) show the twiddle factor memory access frequency for shared
memory methods (Xiao et al., 2008) and the proposed reduced memory access method for

2nN = point FFT.

Conventional method: ()()2(2) 2 log 2 2
2 2

N N
n N× − + = − + (15)

Reduced memory access method:
1

2

2 2 2 2 2
n

i n

i

N
−

=
+ = − = −∑ (16)

Table 10 shows the twiddle factor memory access frequency for different FFT lengths. As

FFT length increases, the power saving also scales up.

4.3 Implementation

To implement an 2nN = -point FFT with reduced coefficient memory accesses, an (n-1)-bit

Butterfly Counter 2 3 1 0...n nB b b b b− −= , and a 2log n⎡ ⎤⎢ ⎥ -bit Stage Counter (1), ... ,2,1,0S n= − is

needed. In addition, one (n-2)-bit barrel shifter is used: Assume 1 2 1 0(... ,)u u uRR x x x x x v− −

indicates rotate-right counter 1 2 1 0...u u ux x x x x− − by v bit. At stage s, the read and write

addresses of the upper legs of the butterfly is 3 1 0 3 4 1 0(... ,) ...u n n nA RR b b b s a a a a− − −= = , and

2nb − decides if bank0 or bank1 will be accessed.

16-

point
FFT

32-
point
FFT

64-
point
FFT

128-
point
FFT

256-
point
FFT

512-
point
FFT

1024-
point
FFT

2048-
point
FFT

4096-
point
FFT

8192-
point
FFT

Conventional
FFT design

18 50 130 322 770 1794 4098 9218 20482 45058

Reduced memory
access FFT design

14 30 62 126 254 510 1022 2046 4094 8190

Reduction 22% 40% 52% 61% 67% 72% 75% 78% 80% 82%

Table 10. Reduction in twiddle factor memory access frequency

For example, for the 32-point FFT shown in Table 9, at stage 2, the address of the upper legs

of the butterfly is 2 1 0 1 0 2(,2)RR b b b b b b= , and when b3=0, memory bank0 will be accessed,

when b3=1, memory bank1 will be accessed. For the read and write addresses of the lower
legs of the butterfly, (n-2) inverters are needed. The address is given by

3 4 1 2 1 0... ...n n n s n sa a a a a a− − − − − − , and 2rb − decides if bank2 or bank3 will be accessed at stage 0. At

stage 0, when 2 0nb − = , bank2 will be accessed. When 2 1nb − = , bank3 will be accessed. For

other stages 2 0nb − = means bank3 will be accessed, 2 1nb − = means bank4 will be accessed.

The address of twiddle factors is given by 3 0... 0...0n sa a− − (S ‘0’s). Fig 14 shows the

components of the address generation logic using mbFFT and four memory banks.

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

401

Stage Counter S Butterfly Counter B

2b 1b 0b3b4b

)(pxm)(qxm

)(pym

)(1 pxm+)(1 qxm+

)(1 pym+

)(1 qym+

2b

1a

1a

0a

0a

2:1MUX

D D D
1

0 1
2:1MUX

0 1

3-bit Shifter

Counter D

Butterfly

2:1MUX
0 1

2:1MUX
0 1

4:1MUX

00 01 10 11

C1
4:1MUX

00 01 10 11

C2

0 0

2:1MUX
0 1

2:1MUX
0 1

Memory Bank

M0

DataIn

DataOut R_Address

W_Address

2:1MUX
0 1

2:1MUX
0 1

2:1MUX
0 1

W_en

R_en

Delay

Memory Bank

M1

DataIn

DataOut R_Address

W_AddressW_en

R_en

Memory Bank

M3

DataIn

DataOut R_Address

W_AddressW_en

R_en

Memory Bank

M2

DataIn

DataOut R_Address

W_AddressW_en

R_en

Delay

Delay

2:1MUX
0 1

2:1MUX
0 1

Delay

Delay

Delay

)(qym

)(1 pym+

Fig. 14. Address generation circuits for low-power 16-point FFT using mbFFT and four
memory banks

Shared memory design
(Xiao et al., 2008)

Power optimized design

Total

power
Dynamic

power
Static
power

Total
power

Dynamic
power

Static
power

512 point FFT 653.14mw 203.13mw 450.00mw 635.47mw 185.47mw 450.00mw

1024 point FFT 715.79mw 265.79mw 450.00mw 676.79mw 226.78mw 450.00mw

2048point FFT 840.49mw 390.49mw 450.00mw 764.31mw 314.31mw 450.00mw

4096 point FFT 1089.33mw 639.33mw 450.00mw 939.25mw 489.24mw 450.00mw

8192 point FFT 1595.13mw 1145.13mw 450.00mw 1289.17mw 839.17mw 450.00mw

Table 11. FPGA synthesis results – Reduction in dynamic power

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

402

4.4 FPGA synthesis results

The low-power FFT algorithm is implemented on an FPGA chip (ALTERA STRATIX

EP1S25F780C5) with FFT length up to 8192 points as shown in Table 11. The synthesis

results demonstrate that dynamic power reduction grows with the transform size, making

this architecture ideal for applications requiring long FFT operations.

5. Conclusion

This study focused on hardware efficient and low-power realization of FFT algorithms.

Recent novel techniques have been discussed and presented to realize conflict-free memory

addressing of FFT. Proposed methods reorder the data and coefficient address sequences in

order to achieve significant logic reduction (24% less transistors) and delay improvements

within FFT processors. Multiplierless implementation of FFT is shown using a CORDIC

algorithm that does not need any coefficient angle memory, resulting in 33% memory and

15% power reduction. Finally, optimization of FFT dynamic power consumption is

presented through memory partitioning and reducing coefficient memory access frequency

(26% power reduction for 8192 point-FFT).

6. References

Abdullah, S. S.; Nam, H.; McDermot, M. & Abraham, J. A. (2009). A High Throughput FFT

Processor with No Multipliers. IEEE International Conference on Computer Design, pp.

485-490, 2009.

Bouguezel, S.; Ahmad, M. O. & Swamy, M. N. S. (2004). A New Radix-2/8 FFT Algorithm

for Length-Q X 2m DFTs. IEEE Transactions on Circuits and Systems I, vol. 51, no. 9,

pp. 1723-1732, September 2004.

Cohen, D. (1976). Simplified Control of FFT Hardware. IEEE Transactions on Acoustics,

Speech, Signal Processing, vol. 24, pp. 577–579, December 1976.

Despain, A. M. (1974). Fourier Transform Computers Using CORDIC Iterations. IEEE

Transactions on Computers, vol. c-23, no.10, pp. 993-1001, October 1974.

Fanucci, L.; Forliti, M. & Gronchi, F. (1999). Single-Chip Mixed-Radix FFT Processor for

Real-Time On-Board SAR Processing. 6th IEEE International Conference on

Electronics, Circuits and Systems, ICECS '99, vol. 2, pp. 1135-1138, September 1999.

Garrido, M. & Grajal, J. (2007). Efficient Memory-Less CORDIC for FFT Computation. IEEE

International Conference on Acoustics, Speech and Signal Processing, vol. 2, no. 2, pp.

113-116, April 2007.

Hasan, M.; Arslan, T. & Thompson, J. S. (2003). A Novel Coefficient Ordering Based

Low Power Pipelined Radix-4 FFT Processor for Wireless LAN Applications,

IEEE Transactions on Consumer Electronics, vol. 49, no.1, pp. 128-134, February

2003.

He, S. S. & Torkelson, M. (1996). A New Approach to Pipeline FFT Processor. Proceedings of

10th International Parallel Processing Symposium, pp. 766-770, April 1996.

Hopkinson, T. M. & Butler, G. M. (1992). A Pipelined, High-Precision FFT Architecture.

Proceedings of the 35th Midwest Symposium Circuits and Systems, vol. 2, pp. 835-838,

August 1992.

www.intechopen.com

Reduced Logic and Low-Power FFT Architectures for Embedded Systems

403

Jiang, R. M. (2007). An Area-Efficient FFT Architecture for OFDM Digital Video

Broadcasting. IEEE Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1322-

1326, 2007.

Li, W. D. & Wanhammar, L. (1999). A Pipeline FFT Processor. Proceedings of IEEE Workshop

on Signal Processing Systems, pp. 654-662, October 1999.

Li, X.; Lai, Z. & Cui, J. (2007). A Low Power and Small Area FFT Processor for OFDM

Demodulator. IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 274-277,

May 2007.

Lin, C. & Wu, A. (2005). Mixed-Scaling-Rotation CORDIC (MSR-CORDIC) Algorithm and

Architecture for High-Performance Vector Rotational DSP Applications. IEEE

Transactions on Circuits and Systems I, vol. 52, no. 11, pp. 2385-2396, 2005.

Ma, Y. (1994). A Fast Address Generation Scheme for FFT Processors, Chinese Journal

Computers, vol. 17, no. 7, pp. 505-512, July 1994.

Ma, Y. (1999). An Effective Memory Addressing Scheme for FFT Processors. IEEE

Transactions on Signal Processing, vol. 47, no. 3, pp. 907–911, March 1999.

Ma, Y. & Wanhammar, L. (1999). A Coefficient Access Control for Low Power FFT

Processors. IEEE 42nd Midwest Symposium on Circuits and Systems, vol.1, pp. 512-

514, Aug. 1999.

Ma, Y. & Wanhammar, L. (2000). A Hardware Efficient Control of Memory Addressing for

High-Performance FFT Processors. IEEE Transactions on Signal Processing, vol. 48,

no. 3, pp. 917-921, March 2000.

Proakis, J. G.; & Manolakis, D. G. (2006). Digital Signal Processing Principles, Algorithms, and

Applications, Prentice Hall, ISBN 978-0131873742.

Saponara, S.; Serafini, L. & Fanucci, L. (2003). Low-Power FFT/IFFT VLSI Macro Cell for

Scalable Broadband VDSL Modem. The 3rd IEEE International Workshop on System-

on-Chip for Real-Time Applications, pp.161-166, June 2003.

Volder, J. (1959). The CORDIC Trigonometric Computing Technique. IEEE Transactions on

Electronic Computers, vol. EC-8, no. 8, pp. 330-334, September 1959.

Wang, Y.; Tang, Y.; Jiang, Y.; Chung, J.; Song, S. & Lim, M. (2007). Novel Memory Reference

Reduction Methods for FFT Implementations on DSP Processors. IEEE Transactions

on Signal Processing, vol. 55, no. 5, pp. 2338-2349, May 2007.

Wey, C.; Lin, S. & Tang, W. (2007). Efficient Memory-Based FFT Processors For OFDM

Applications. IEEE International Conference on Electro- Information Technology, pp.345

- 350, May 2007.

Xiao, X.; Oruklu, E. & Saniie, J. (2008). An Efficient FFT Engine with Reduced Addressing

Logic. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 11,

pp.1149-1153, November 2008.

Xiao, X.; Oruklu, E. & Saniie, J. (2009). Fast Memory Addressing Scheme for Radix-4 FFT

Implementation. IEEE International Conference on Electro/Information Technology, EIT

2009, pp. 437-440, June 2009.

Xiao, X.; Oruklu, E. & Saniie, J. (2010). Reduced Memory Architecture for CORDIC-

based FFT. IEEE International Symposium on Circuits and Systems (ISCAS), June

2010.

www.intechopen.com

 Fourier Transforms - Approach to Scientific Principles

404

Yang, L.; Zhang, K.; Liu, H.; Huang, J. & Huang, S. (2006). An Efficient Locally Pipelined

FFT Processor. IEEE Transactions on Circuits and Systems II, Exp. Briefs, vol. 53, issue

7, pp. 585-589, July 2006.

Zainal, M. S.; Yoshizawa, S. & Miyanaga, Y. (2009). Low Power FFT Design for Wireless

Communication Systems. International Symposium on Intelligent Signal Processing and

Communications Systems ISPACS 2008, pp. 1-4, February 2009.

www.intechopen.com

Fourier Transforms - Approach to Scientific Principles

Edited by Prof. Goran Nikolic

ISBN 978-953-307-231-9

Hard cover, 468 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book aims to provide information about Fourier transform to those needing to use infrared spectroscopy,

by explaining the fundamental aspects of the Fourier transform, and techniques for analyzing infrared data

obtained for a wide number of materials. It summarizes the theory, instrumentation, methodology, techniques

and application of FTIR spectroscopy, and improves the performance and quality of FTIR spectrophotometers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Erdal Oruklu, Jafar Saniie and Xin Xiao (2011). Reduced Logic and Low-Power FFT Architectures for

Embedded Systems, Fourier Transforms - Approach to Scientific Principles, Prof. Goran Nikolic (Ed.), ISBN:

978-953-307-231-9, InTech, Available from: http://www.intechopen.com/books/fourier-transforms-approach-to-

scientific-principles/reduced-logic-and-low-power-fft-architectures-for-embedded-systems

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

