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1. Introduction

The Riemann integral was designed to solve different problems in different areas of
mathematics. Unfortunately, the Riemann integral has some shortcomings: the derivative of
a function is not necessarily Riemann integrable, it lacks of “good" convergence theorems,. . . .
To correct these defects, in the year 1902, H. Lebesgue designed an integral (Lebesgue integral)
which is more general than Riemann’s, it has better convergence theorems, and it allows
integration over other type of sets different from intervals. However, the derivative of a
function does not need to be Lebesgue-integrable. On the other hand, every function which is
Improper-Riemann-Integrable is not necessarily Lebesgue-integrable.
A. Denjoy (1912) and O. Perron (1914) developed more general integrals than Lebesgue’s.
In both integrals, any derivative of a differentiable function is integrable. Both integrals are
equivalent but they are difficult to construct. (Gordon, 1994)
Jaroslav Kurzweil (1957), a Czech mathematician, and Ralph Henstock built independently
equivalent integrals (Gordon, 1994) which generalize the Lebesgue integral, and it has as
“good" convergence theorems as Lebesgue and the derivative of a differentiable function
is Henstock-Kurzweil integrable, including the improper Riemann integral. In addition, the
construction follows the same pattern as the construction of the Riemann integral. This also
facilitates its teaching.
This new integral provided new research lines:

• Construction of new types of integrals by following the Riemann approach.

• Generalization of this concept for functions of several variables, and for functions with
values within a Banach space.

In addition, this integral (Henstock-Kurzweil) can be applied to the differential equations
theory, integral equations theory, Fourier analysis, probability, statistics, etc.
In the Lebesgue-integrable functions space, we can define a norm with which this space
becomes a Banach space with good properties.
Today, Lebesgue integral is the main integral used in various areas of mathematics, for
example Fourier analysis. However, many functions (e.g. functions that have a “bad"
oscillatory behavior) which are not Lebesgue-integrable are Henstock-Kurzweil-integrable.
Therefore, it seems a natural way to study Fourier analysis by using this integral.
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Recall that if f is integrable “in some sense", on R, its Fourier transform in s ∈ R, is defined
as

f̂ (s) =
∫ ∞

−∞
e−ixs f (x)dx. (1)

In the Lebesgue space on R, L(R), the Fourier transform is a bounded linear transformation,
whose codomain is the space of continuous functions on R which “vanish at infinity". It has
good algebraic and analytical properties, which have wide applications in mathematics and
other sciences.
Four important properties of the Fourier transform in space L(R) are:

i For all s ∈ R, the Fourier transform exists , because the function exp(−ixs) is a bounded
measurable function.

ii f̂ is continuous on R.

iii Riemann-Lebesgue Lemma: lims→±∞ f̂ (s) = 0.

iv The Dirichlet-Jordan theorem is valid. This theorem provides us the pointwise inversion
for functions of bounded variation on R.

The first study of the Fourier transform using the Henstock-Kurzweil integral was made by
E. Talvila in 2002, (Talvila, 2002). He shows important properties of the Fourier transform in
the space of Henstock-Kurzweil integrable functions on R, HK(R). However, this study is
incomplete, our purpose is to study other properties. We will call Henstock-Fourier transform
to the Fourier transform definite on HK(R).
Two important differences between the Henstock-Fourier transform and the Fourier transform
are:

• This transform does not always exist. For example, the function f : R → R defined as

f (x) =

⎧
⎨
⎩

sin x

x
, x �= 0,

1, x = 0

belongs to HK(R), but its Henstock-Fourier transform is not defined in s = 1.

• The Riemann-Lebesgue Lemma is not always valid. For example, the function
g(x) = exp(ix2) (Talvila, 2002) is such that ĝ(s) =

√
π exp(i(π − s2)/4), however, this

later function is not tend to zero when s tend to infinity.

We begin the chapter exposing some fundamental concepts concerning the
Henstock-Kurzweil integral, after we show that the intersection of HK(R) and the
space of bounded variation functions over R, HK(R) ∩ BV(R), does not have inclusion
relations with L(R), for this, we exhibit a wide family of functions in HK(R) ∩ BV(R),
which is not in L(R). This makes the study of the Henstock-Fourier transform in this space
interesting. Subsequently, in base of HK(R)∩ BV(R), we prove fundamental properties such
as continuity, the Riemann-Lebesgue Lemma, and the Dirichlet-Jordan Theorem.
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2. The Henstock-Kurzweil integral

For compact intervals in R, the Henstock-Kurzweil integral is defined in the following way:

Definition 2.1. Let f : [a, b] → R be a function, we will say that f is Henstock-Kurzweil
integrable if there exists A ∈ R, which satisfies the following:
for each ε > 0 exists a function γε : [a, b] → (0, ∞) such that for every partition labeled as P =
{( [xi−1, xi], ti)}n

i=1, where ti ∈ [xi−1, xi], if

[xi−1, xi] ⊂ [ti − γε(ti), ti + γε(ti) ] for i = 1, 2, ..., n, (2)

then
|Σn

i=1 f (ti)(xi − xi−1)− A| < ε.

The function γε is commonly called gauge, and if the partition P complies with the condition
(2), we will say that it is γε-fine. The number A is named as the integral of f over [a, b] and it
is denoted as

A =
∫ b

a
f =

∫ b

a
f (x) dx.

If f is defined over an interval of the way [a, ∞], we condition it to f (∞) = 0. In this case,
given a gauge function γε : [a, ∞] → (0, ∞), where γε(∞) ∈ R

+, we will say that the labeled

partition P = {( [xi−1, xi], ti)}n+1
i=1 is γε-fine if:

a) x0 = a, xn+1 = ∞.

b) [xi−1, xi] ⊂ [ti − γε(ti), ti + γε(ti) ], for i = 1, 2, ..., n

c) [xn, ∞] ⊂ [1/γε(∞), ∞].

Thus, the function will be integrable if it satisfies Definition 2.1, and also the condition of
that the partition P be γε-fine according to the previous incises. In addition, these conditions

cause that the last term of Σn+1
i=1 f (ti)(xi − xi−1) is zero and thus this sum is finite. For functions

defined over intervals [−∞, a] and [−∞,+∞] we do similar considerations.
Through the theory of this integral we have that f : [−∞, ∞] → R is an integrable function, if
and only if, f is an integrable function over the intervals [a, ∞] y [−∞, a]. In this case

∫ ∞

−∞
f =

∫ a

−∞
f +

∫ ∞

a
f . (3)

We denote as

HK(I) = { f : I → R | f is Henstock-Kurzweil integrable on I}.

Some features of HK(I) are the following:

1. It is a vector space, i.e.: the sum of functions and the product by scalars of
Henstock-Kurzweil integrable functions are integrable. The integral is a linear functional
over this space.

2. It contains the Riemann and Lebesgue integrable functions. Also, the functions whose
Riemann or Lebesgue improper integrals exist, and their values coincide.

3. It generalizes the Fundamental Theorem of Calculus, in the sense that every derivative
function is integrable. This does not happen with Riemann and Lebesgue integrals. In this
case we have: ∫ b

a
f ′ = f (b)− f (a).
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4. Since we know, in Riemann’s integral, if two functions are integrable, then their product is
also integrable. In the case of the integral of HK, this is not true. Nevertheless, the product
of a HK-integrable function by a bounded variation function, is in fact integrable.

5. The HK integral is not an absolute integral. This asseveration is in the sense that if f is
HK-integrable, it does not imply that | f | is so. When | f | and f are integrable, we say that
f is absolutely HK-integrable.

6. The space of the absolutely HK-integrable lebesgue is L(I), the space of the functions
integrable functions.

As we shall see, the properties (4) and (5) produce important differences in the behavior of the
Henstock-Fourier transform with respect to the Fourier transform.

2.1 Notation and important theorems for Henstock-Kurzweil integral

Let I be a finite or infinite close interval. We work on the following subspaces:

• HK(I) = { f | f is Henstock-Kurzweil integrable on I}.

• HKloc(R) = { f | f ∈ HK(I), for each finite close interval I}.

• BV(I) = { f | f is of bounded variation on I}.

• If f ∈ BV(I), VI f is the total variation of f on I.

• BV( [±∞] ) = { f | f ∈ BV( [a, ∞] ) ∩ BV( [−∞, b] ), for some a, b ∈ R}.

• BV0( [±∞] ) = { f ∈ BV( [±∞] ) | lim|x|→∞ f (x) = 0}.

• L(I) = { f | f is Lebesgue integrable on I}.

Some of the most important theorems of the Henstock-Kurzweil integral will be used in the
proof of our results are as follows.

Theorem 2.1 (Fundamental Theorem I.). (Bartle, 2001) If f : [a, b] → R has a primitive F on
[a, b], then f ∈ HK([a, b]) and ∫ b

a
f = F(b)− F(a).

This theorem guarantees that the derivative of any function on [a, b] is always
Henstock-Kurzweil integrable. This result is not valid for Lebesgue integral.

Theorem 2.2 (Fundamental Theorem II.). (Bartle, 2001) Let a I be a finite o infinite interval. If
f ∈ HK([a, b]) then any indefinite integral F is continuous on I and exists a null Z ⊂ [a, b] such that

F′(x) = f (x) for all x ∈ I − Z.

Theorem 2.3 (Multiplier Theorem.). (Bartle, 2001) Let [a, b] a finite interval, f ∈ HK([a, b]), ϕ ∈
BV([a, b]) and F(x) =

∫ x
a f (t), for x ∈ [a, b], then, the product f ϕ ∈ HK([a, b]) and

∫ b

a
f ϕ =

∫ b

a
ϕ dF = F(b)ϕ(b)−

∫ b

a
F dϕ, (4)

where the second and third integrals are Riemann-Stieltjes integrals.
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If a ∈ R and b = ∞, (4) has the following form

∫ ∞

a
f ϕ = lim

b→∞

[
F(b)ϕ(b)−

∫ b

a
Fdϕ

]
. (5)

Similary, if the integration is over the intervals [−∞, a] or [−∞, ∞], we have the respective limits in
(4).

Theorem 2.4 (Dominated Convergence Theorem.). (Bartle, 2001) Let [a, b] a interval (finite or
infinite), let { fn} be sequence in HK([a, b]) such that f (x) = limn→∞ fn(x) a.e. on [a, b]. Suppose
that there exist functions α, ω ∈ HK([a, b]) such that

α(x) ≤ fn(x) ≤ ω(x) a.e. on [a, b], and for all n ∈ N.

Then f ∈ HK([a, b]) and ∫ b

a
f (x) dx = lim

n→∞

∫ b

a
fn(x) dx.

This theorem is an extension to the Henstock Kurzweil integral of a Dominated Convergence
Theorem (DCT) for the Lebesgue integral.

Theorem 2.5 (Hake Theorem.). (Bartle, 2001) f ∈ HK([a, ∞]), if and only if, f ∈ HK([a, c]) for
every compac interval [a, c] with c ∈ [a, ∞), and there exist A ∈ R such that lim

c→∞

∫ c
a f (t)dt = A. In

this case,
∫ ∞

a f (t)dt = A.

There are versions of the Hake’s Theorem for functions on [−∞, ∞] and [−∞, a].

Theorem 2.6 (Chartier-Dirichlet’s Test.). (Bartle, 2001) Let f , ϕ : [a, ∞] → R and suppose that:

• f ∈ HK([a, c]) for all c ≥ a and F(x) :=
∫ x

a f is bounded on [a, ∞).

• ϕ is monotone on [a, ∞] and limx→∞ ϕ(x) = 0.

Then f ϕ ∈ HK([a, ∞]).

Theorem 2.7 (Characterization of Absolute Integrability.). (Bartle, 2001) Let f ∈ HK([a, b]).
Then | f | is Henstock-Kurzweil integrable, if and only if, the indefinite integral F(x) =

∫ x
a f has

bounded variation on [a, b], in this case,

∫ b

a
| f | = V[a,b]F.

Theorem 2.8 (Comparison Test for Absolute Integrability.). (Bartle, 2001) If f , g ∈ HK([a, b])
and | f (x)| ≤ g(x) for x ∈ [a, b], then f ∈ L([a, b]). More over, we have

∣∣∣∣
∫ b

a
f

∣∣∣∣ ≤
∫ b

a
| f | ≤

∫ b

a
g.
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3. The HK(I) ∩ BV(I) subspace

If I is a finite interval, we know that:

BV(I) ⊂ L(I) ⊂ HK(I),

and consequently HK(I)∩ BV(I) ⊂ L(I).
Now, if I is unbounded, the first two observations which we have are

BV(I) � L(I), (6)

and
L(I) � HK(I)∩ BV(I). (7)

Really it is easy to demonstrate that the function f (x) = 1/x defined in [1, ∞], is of bounded
variation, with

V[1,∞] f = 1,

and ∫ ∞

1

1

x
dx = ∞.

This implies that (6) is true.
To verify (7), we consider the function f : [0, ∞] → R defined like

f (x) =

{ √
x sin(1/x), si x ∈ (0, 1],

0, si x = 0, x ∈ (1, ∞]

which is in L( [0, ∞] ) \ BV( [0, ∞] ).

Next, we will prove that: HK(I)∩ BV(I) � L(I).

Proposition 3.1. (Mendoza et al., 2008) [Theorem 2.1] Let ϕ : [a, ∞] → R be a non-negative
function, which is decreasing to zero when x → ∞. If ϕ /∈ HK([a, ∞] ), then the functions: ϕ(t) sin(t)
and ϕ(t) cos(t) are in HK( [a, ∞] ) \ L( [a, ∞] ).

Proof: We will demonstrate that ϕ(t) sin(t) /∈ L( [a, ∞] ). The proof that ϕ(t) cos(t) �∈
L( [a, ∞] ) can be done in a similar way.
Suppose that n0 is the first natural number for which a < (1 + 4n0)π/4. For t ∈ [a, ∞] we
have

| sin t| ≥ 1√
2

if and only if t ∈ ∪∞
k=n0

[ (1 + 4k)π/4, (3 + 4k)π/4].

Let n ∈ N with n ≥ n0, since (3 + 4n)π/4 < (1 + n)π, we have that:

∫ (1+n)π

a
ϕ(t)| sin t|dt ≥ 1√

2

n

∑
k=n0

∫ (3+4k)π/4

(1+4k)π/4
ϕ(t) dt

≥ 1√
2

n

∑
k=n0

∫ (3+4k)π/4

(1+4k)π/4
ϕ((3 + 4k)π/4) dt

=
π

2
√

2

n

∑
k=n0

ϕ((3 + 4k)π/4)

≥ π

2
√

2

n

∑
k=n0

ϕ((1 + k)π). (8)
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On the other hand,

∫ (1+n)π

a
ϕ(t) dt =

∫ n0π

a
ϕ(t) dt +

∫ (1+n)π

n0π
ϕ(t) dt

=
∫ n0π

a
ϕ(t) dt +

n

∑
k=n0

∫ (1+k)π

kπ
ϕ(t) dt

≤
∫ n0π

a
ϕ(t) dt + π

n

∑
k=n0

ϕ(kπ). (9)

Since ϕ /∈ HK( [a, ∞] ), then
∫ ∞

a ϕ(t) dt = ∞ and from (9) it follows

∞

∑
k=n0

ϕ(kπ) = ∞. (10)

Using (10) and approaching n → ∞ in (8), we conclude that ϕ(t) sin(t) /∈ L( [a, ∞] ).
For any x ∈ [a, ∞), ∣∣∣∣

∫ x

a
sin(t) dt

∣∣∣∣ ≤ 2 and

∣∣∣∣
∫ x

a
cos(t) dt

∣∣∣∣ ≤ 2.

Then according to Chartier-Dirichlet Test (2.6), we have that: ϕ(t) sin(t) and ϕ(t) cos(t) are in
HK[a, ∞]. �

Example 3.1. For any a > 0,

sin(t)

t
∈ HK( [a, ∞] ) \ L( [a, ∞] ).

Proposition 3.2. (Mendoza et al., 2008) [Corollary 2.2,Theorem 2.2] Let 1 > α > 0. The function
fα : [π1/α, ∞] → R defined as

fα(t) =
sin(tα)

t

satisfies:

(a) fα ∈ HK[π1/α, ∞] \ L( [π1/α, ∞] ).

(b) fα ∈ BV( [π1/α, ∞] ).

Proof: (a) Let c > π1/α. Doing a change of variable u = tα we have that

∫ c

π1/α

sin(tα)

t
dt =

1

α

∫ cα

π

sin(u)

u
du.

Since sin(u)/u ∈ HK[π, ∞], we have that:

lim
c→∞

∫ c

π1/α

sin(tα)

t
dt exists,

thus fα ∈ HK[π1/α, ∞]. Moreover since

∫ c

π1/α

∣∣∣∣
sin(tα)

t

∣∣∣∣ dt =
1

α

∫ cα

π

∣∣∣∣
sin(u)

u

∣∣∣∣ du.
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and sin(u)/u �∈ L( [π, ∞] ), then fα �∈ L[π1/α, ∞].
(b) Let x ∈ (π1/α, ∞). We know that f ′α ∈ HK( [π1/α, x] ). Now since

f ′α(t) =
α cos(tα)

t2−α
− sin(tα)

t2
,

we have that

| f ′α(t)| ≤
α

t2−α
+

1

t2
. (11)

The function g(t) =
α

t2−α
+

1

t2
∈ HK( [π1/α, x] ), then by (11) and Theorem 2.8, we conclude

that: f ′α ∈ L( [π1/α, x] ) and

∫ x

π1/α
| f ′α| ≤

∫ x

π1/α

(
α

t2−α
+

1

t2

)
dt

=

(
1

α − 1

) [
xα−1 − π

α−1
α

]
− 1

x
+

1

π1/α
.

Consequently by Theorem 2.7,

V[π1/α, x] fα ≤
(

1

α − 1

) [
xα−1 − π

α−1
α

]
− 1

x
+

1

π1/α
.

Therefore, as 1 − α > 0 we have that

V[π1/α, ∞] f ≤ 1

(1 − α)π(1−α)/α
+

1

π1/α
.

Thus, fα ∈ BV( [π1/α, ∞] ). �

Analogy, we can to prove that for 1 > α > 0, the function gα : [−∞,−π1/α] → R defined as

gα(t) =
sin(−t)α

−t

belongs to HK([−∞,−π1/α]) ∩ BV([−∞,−π1/α]) \ L([−∞,−π1/α]).
Let h ∈ BV([−π1/α, π1/α]). For 1 > α > 0, the function f : R → R defined by

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

h(x), if x ∈ (−π1/α, π1/α),

sin |t|α
|t| , if x ∈ (−∞, −π1/α] ∪ [π1/α, ∞)

is in HK(R) ∩ BV(R) \ L(R). With this example and Proposition 3.1, we have the following
theorem.

Theorem 3.1. (Mendoza et al., 2009) [Theorem 2.4] There exists a function f in HK(R)∩ BV(R) \
L(R).

Now, since BV(R) ⊂ BV( [±∞] ), we have immediately the next corollary.

Corollary 3.1. (Mendoza et al., 2009) [Corollary 2.5] HK(R)∩ BV( [±∞] ) �⊆ L(R).
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We observe that BV(R) ⊂ BV( [±∞] ) properly, because instead of the function h in
BV([−π1/α, π1/α]) we can to take a function in HK([−π1/α, π1/α]) \ BV([−π1/α, π1/α]).
Also we observe that if f ∈ BV(R) then, by Multiplier Theorem (2.3), f (t) sin t/t ∈
HK([0, ∞]).
To conclude this section, we know that f ∈ HK(R) implies that f (±∞) = 0, If in addition
f ∈ BV(R) then lim|x|→∞ f (x) exists. Therefore, we have the following lemma.

Lemma 3.1. If f ∈ HK(R)∩ BV(R), then lim|x|→∞ f (x) = 0 and f is bounded.

4. Existence and continuity of f̂ (s)

4.1 Existence

A part from the Proposition 2.1 b) in (Talvila, 2002), say us that: If f ∈ HKloc(R)∩ BV0( [±∞] ),

then f̂ (s) exists for all s ∈ R. If s �= 0, then the result is true. However with these conditions,

it is not necessarily true the existence of f̂ (0). For example, the function f : R → R defined
by

f (x) =

{
1, if x ∈ (−1, 1),
1
x , if x ∈ (−∞, −1]∪ [1, ∞)

is in HKloc(R) ∩ BV0( [±∞] ) but f̂ (0) does not exist.

In order to have the existence of f̂ (0), we need that f ∈ HK(R).
We will demonstrate that the Henstock-Fourier transform exist in HK(R) ∩ BV( [±∞] ), for
every s ∈ R.

Theorem 4.1. (Mendoza et al., 2009) [Theorem 3.1] If f ∈ HK(R) ∩ BV( [±∞] ), then f̂ (s) exists
for all s ∈ R.

Proof: The result is true for s = 0 because f ∈ HK(R). Now let s �= 0, since HK(R) ∩
BV( [±∞] ) ⊂ HKloc(R) ∩ BV0( [±∞] ) then by (Talvila, 2002) [Proposition 2.1 (b)] it follows

that f̂ (s) exists. However for the sake of completes, here we will give proof of it:
The condition f ∈ BV0( [±∞] ) implies that lim|x|→∞ f (x) = 0 and there exists a < 0, b > 0

such that f is of bounded variation on (−∞, a] ∪ [b, ∞).
Let us prove that f (x)e−ixs ∈ HK([b, ∞)). The functions ϕ1, ϕ2 defined as

ϕ1(x) = V[b, x] f − V[b, ∞) f , ϕ2(x) = [V[b, x] f − f (x)]− V[b, ∞) f

are increasing on [b, ∞) and satisfies that limx→∞ ϕ1(x) = limx→∞ ϕ2(x) = 0 and f = ϕ1 −
ϕ2. Therefore, since

∣∣∣∣
∫ x

b
e−iusdu

∣∣∣∣ =

∣∣∣∣
1

is
(e−ibs − e−ixs)

∣∣∣∣ ≤ 2

s
for all x ∈ [b, ∞),

we have by the Chartier-Dirichlet Test (2.6), that ϕ1(x)e
−ixs, ϕ2(x)e

−ixs ∈ HK([b, ∞)). Thus
f (x)e−ixs ∈ HK([b, ∞)).
In the same way we can to prove that f (x)e−ixs ∈ HK((−∞, a]). �
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4.2 Continuity

We know that the continuity of the Lebesgue-Fourier transform, on R, is consequence of the
dominated convergence Theorem and that the Lebesgue integral is absolute. Now for to
prove the continuity of the Henstock-Fourier transform we don’t can use the same arguments,
because the Henstock - Kurzweil integral is not absolute.

Theorem 4.2. (Mendoza et al., 2009) [Theorem 4.1] Let f be a function with support in a compact

interval such that f ∈ HK(R). Then f̂ is continuous on R.

Proof: We consider [a, b] ⊆ R such that f (x) = 0 for all x ∈ R \ [a, b]. Take t ∈ R and let
{tn}n∈N ⊆ (t − 1, t + 1) such that tn → t. For every n ∈ N, define αn(x) = e−ixtn . Then

lim
n→∞

αn(x) = lim
n→∞

e−ixtn = e−ixt for all x ∈ [a, b].

On the other hand, for every n ∈ N, αn is of bounded variation on [a, b] and V[a, b]αn ≤
2max {|t − 1|, |t + 1|}(b − a).
Thus according to (Talvila, 1999) [Corollary 3.2],

lim
n→∞

∫ b

a
f (x)e−ixtndx = lim

n→∞

∫ b

a
f (x)αn(x)dx =

∫ b

a
f (x)e−ixtdx.

Hence limn→∞ f̂ (tn) = f̂ (t). �

Theorem 4.3. (Mendoza et al., 2009) [Theorem 4.2] If f ∈ HK(R) ∩ BV( [±∞] ), then f̂ is
continuous on R \ {0}.

Proof: Let t0 ∈ R \ {0} and consider a < 0 and b > 0 such that f ∈ BV(−∞, a] ∩ BV[b, ∞).

If we show that f̂ χ(−∞,a], f̂ χ[a,b] and f̂ χ[b,∞) are continuous in t0, then f̂ is continuous in t0,

because
f̂ (t) = f̂ χ(−∞,a](t) + f̂ χ[a,b](t) + f̂ χ[b,∞)(t) for all t ∈ R.

By the Theorem 4.2, f̂ χ[a,b] is continuous in t0. To prove that f̂ χ(−∞,a] and f̂ χ[b,∞) are

continuous in t0 we will use (Talvila, 2002) [Proposition 6(a)]. The conditions f is Henstock
- Kurzweil integrable on R and f is of bounded variation on (−∞, a] ∪ [b, ∞) implies that
lim|x|→∞ f (x) = 0. Now since t0 �= 0, there exists K > 0 and δ > 0 such that if |t − t0| < δ,

then 1
|t| < K. Thus for all |t − t0| < δ,

∣∣∣∣
∫ v

u
e−ixtdx

∣∣∣∣ ≤
2

|t| < 2K for all [u, v] ⊆ R.

Therefore, by (Talvila, 2002) [Proposition 6(a)], f̂ χ(−∞,a] and f̂ χ[b,∞) are continuous in t0. �

5. The Riemann-Lebesgue lemma

A generalization of the Riemann-Lebesgue Lemma was given, still in the context of the
Lebesgue integral, by Bachman (Bachman et al., 1991) [Theorem 4.4.1], assuring that for any
−∞ ≤ a < b ≤ ∞,

lim
|s|→∞

∫ b

a
h(xs) f (x)dx = 0, for each f ∈ L1(R), (12)
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provided h : R → R is a bounded measurable function satisfying

lim
|r|→∞

1

r

∫ r

0
h(s)ds = 0.

In this section, we show a similar generalization for the Henstock-Fourier transform. In the
case of a compact interval, Talvila (Talvila, 2001) showed that the Fourier transform f̂ of a
function f ∈ HK(I) \ L1(I) has the asymptotic behavior:

f̂ (s) = o(s), as |s| → ∞.

Titchmarsh (Titchmarsh, 1999) proved it is the best possible approximation for improper
Riemann integrable functions. Next, we show too a generalization from this result for the
Henstock-Fourier transform.

5.1 The case of a compact interval

The following theorem implies as a corollary the result in (Talvila, 2001).

Theorem 5.1. (Mendoza et al., 2010) Let [a, b] be a compact interval. Suppose ϕ : R → R is
everywhere differentiable with bounded derivative, and such that ϕ(w)− ϕ(0) = o(w), as |w| → ∞.
Then, ∫ b

a
ϕ(wt) f (t)dt = o(w) as |w| → ∞,

for each f ∈ HK([a, b]).

Proof: For w ∈ R, we define ϕw : R → R with ϕw(t) = ϕ(wt). Moreover, F(x) :=
∫ x

a f (t)dt.

Being F continuous and ϕ′ a bounded measurable function, then Fϕ′1([a, b]) ⊂ HK([a, b]).
Also, f ∈ HK([a, b]) and ϕw ∈ BV([a, b]), implying f ϕw ∈ HK([a, b]). Furthermore, from the
Multiplier Theorem (2.3),

∫ b

a
f (t)ϕw(t)dt = F(b)ϕw(b)−

∫ b

a
F(t)

dϕw(t)

dt
dt.

Therefore, for w �= 0,
∣∣∣∣

1

w

∫ b

a
f (t)ϕ(wt)dt

∣∣∣∣≤
∣∣∣∣

F(b)ϕ(wb)

w

∣∣∣∣ +
∣∣∣∣
∫ b

a
F(t)ϕ′(wt)dt

∣∣∣∣ . (13)

The Fundamental Theorem I (2.1), and the hypotheses for ϕ imply

lim
|w|→∞

1

w

∫ w

0
ϕ′(t)dt = lim

|w|→∞

ϕ(w)− ϕ(0)

w
= 0.

In consequence,

lim
|w|→∞

F(b)ϕ(wb)

w
= 0. (14)

Seeing also that F ∈ L1([a, b]), it follows that equation (12) is valid with f and h substituted
for F and ϕ′, respectively. This together with equations (13) and (14) give the result. �

A direct consequence of the previous theorem is the result of Talvila (Talvila, 2001).

Corollary 5.1. Let [a, b] be a compact interval. For each f ∈ HK([a, b]) \ L1([a, b]) the Fourier
transform has the asymptotic behavior f̂ (s) = o(s), as |s| → ∞.
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5.2 The unbounded interval case

Theorem 5.2. (Mendoza et al., 2010) Let ϕ ∈ HKloc(R) be fixed. Suppose in addition that Φ(x) =∫ x
0 ϕ(t)dt is bounded on R. Then, for each f ∈ HK(R)∩ BV(R),

lim
|w|→∞

∫ ∞

−∞
f (t)ϕ(wt)dt = 0.

Proof: For ω ∈ R, we define ϕw(t) = ϕ(wt). Since ϕ ∈ HKloc(R) then ϕ and ϕw are in
HK([0, b], for b > 0. Because f ∈ HK(R) ∩ BV(R), f is the sum of two monotone functions
with limit 0 in infinity. As Φ is bounded in [0, ∞), by the above and from the Chartier-Dirichlet
Test (2.6), we have that f ϕw ∈ HK([0, ∞]).
For w �= 0, Φw(t) = (1/w)Φ(wt) is a primitive of ϕw, bounded and continuous on [0, ∞).
Because f ∈ BV([0, b]), for b > 0, it follows from the Multiplier Theorem (2.3) that

∫ b

0
f (t)ϕ(wt)dt =

f (b)

w
Φ(wb)− 1

w

∫ b

0
Φ(wt)d f (t) (15)

The hypotheses for ϕ imply that |Φ(x)| ≤ M, for each x > 0, for some constant M.
Now we use theorems (Rudin, 1987) [Theorem 3.8] and Theorem 2.7 to obtain,

∣∣∣∣
∫ b

0
Φ(wt)d f (t)

∣∣∣∣ ≤ MV( f ; [0, b]),

implying, from (15), that

∣∣∣∣
∫ b

0
f (t) ϕ (ωt) dt

∣∣∣∣ ≤
M

|ω| (| f (b)|+ V ( f ; [0, b])) . (16)

Since f ∈ HK([0, ∞)) ∩ BV([0, ∞)), limb→∞ V( f ; [0, b])) = V( f ; [0, ∞]) and limb→∞ f (b) = 0.
From (16) and Hake’s Theorem (2.5) it follows that

∣∣∣∣
∫ ∞

0
f (t)ϕ(wt)dt

∣∣∣∣ ≤
M

|w|V( f ; [a, ∞].

Taking |w| → ∞, we get

lim
|w|→∞

∫ ∞

0
f (t)ϕ(wt)dt = 0.

A similar argument is valid for the interval [−∞, 0], which yield the result. �

The trigonometric functions sin(t) and cos(t) obeys the hypotheses the Theorem 5.2. Thus,
the result of Mendoza-Escamilla-Sánchez (Mendoza et al., 2009) is a particular case of this
theorem.

Corollary 5.2. For each f ∈ HK(R)∩ BV(R), lim|s|→∞ f̂ (s) = 0.

6. The Dirichlet-Jordan theorem

A fundamental problem for the Fourier Transform is its pointwise inversion, which means
to recover the function at given points from its Fourier transform. As is known, the
Dirichlet-Jordan Theorem in L(R) solves the pointwise inversion for functions of bounded
variation. This theorem tells us that if f ∈ L(R) ∩ BV(R) then, for each x ∈ R,
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lim
M→∞

1

2π

∫ M

−M
eixs f̂ (s)ds =

1

2
{ f (x + 0) + f (x − 0)}. (17)

We demonstrate a similar result to (17) for the Henstock-Fourier transform at HK(R)∩BV(R).
We will use the Sine Integral function, wich is defined as Si(x) = 2

π

∫ x
0

sin t
t dt, and has the

properties:

1. Si(0) = 0, limx→∞ Si(x) = 1 and

2. Si(x) ≤ Si(π) for all x ∈ [0, ∞].

3. If b > a > 0 and M > 0, then
∣∣∣
∫ b

a
sin Mt

t dt
∣∣∣ ≤ 2

M ( 1
a +

1
b ).

Lemma 6.1. (Mendoza, 2011) Let δ > 0. If f ∈ HK([δ, ∞]) ∩ BV([δ, ∞]) then

lim
M→∞

∞∫

δ

f (t)

t
sinMtdt = 0

Proof: By the Multiplier Theorem (2.3) and the property 3 of the Sine Integral function, it is
easy to see that ∣∣∣∣

∫ ∞

δ

sin Mt

t
f (t)dt

∣∣∣∣ ≤
2

Mδ
+

4

Mδ
Vf ([δ, ∞]).

Therefore, making tend M to infinity, we have the result. �

Lemma 6.2. (Mendoza, 2011) Let δ > 0. If f ∈ HK(R)∩ BV(R), then

lim
ε→0

∫ ∞

δ
f (t)

sin εt

t
dt = 0.

Proof: By the Multiplier Theorem 2.3 and by Lemma 3.1, we have

∣∣∣∣
∫ ∞

δ

sin εt

t
f

∣∣∣∣ ≤ lim
b→∞

{∣∣∣∣ f (b)
∫ b

δ

sin εt

t
dt

∣∣∣∣+
∣∣∣∣
∫ b

δ

(∫ u

δ

sin εt

t

)
d f

∣∣∣∣
}

≤
∣∣∣∣
∫ ∞

δ

(∫ uε

δε

sin t

t

)
d f

∣∣∣∣ .

How for each u ∈ [a, ∞) : limε→∞

∫ uε
δε

sin t
t dt = 0 ;

∣∣∣
∫ uε

δε
sin t

t dt
∣∣∣ ≤ πSi(π) for all ε > 0; and

π(Si)(π) ∈ L(d f ), then, by the Lebesgue Dominated Convergence Theorem 2.4, we obtain
the result. �

Lemma 6.3. (Mendoza, 2011) Suppose that f ∈ HK(R) ∩ BV(R) and β, γ ∈ R are such that
[β, γ] ∩ (R \ {0} = [β, γ]. For all s ∈ [β, γ] we have

lim
a→−∞
b→∞

∫ γ

β
eixs

∫ b

a
f (t)e−istdtds =

∫ γ

β
eixs

∫ ∞

−∞
f (t)e−istdt ds. (18)
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Proof: For c fixed, let f̂cb(s) =
∫ b

c f (t)e−istdt, f̂c(s) =
∫ ∞

c f (t)e−istdt, wich are continuous
at R \ {0}. We know that there exists S > 0 such that | f (t)| ≤ S for all t ∈ R and that for any
b > c : (Vf ([c, b]) ≤ (Vf ([c, ∞]) and f ∈ L([c, b]). By the Multiplier Theorem (2.3), for each
s ∈ [β, γ], we have

∣∣∣∣
∫ b

c
f (t)e−istdt

∣∣∣∣ ≤
∣∣∣∣∣ f (b)

{
e−isb − e−isc

−is

}∣∣∣∣∣+
∣∣∣∣∣
∫ b

c

{
e−ist − e−isc

−is

}
d f (t)

∣∣∣∣∣

≤ 2

|β|

{
S +

∣∣∣∣
∫ b

c
d f (t)

∣∣∣∣
}

≤ 2

|β|
{

S + Vf ([c, ∞])
}
= Nc.

The previous inequality tells us that for any b > c and all s ∈ [β, γ] :
∣∣∣eixs f̂cb(s)

∣∣∣ ≤ Nc.

Applying the Theorem of Hake (2.5): limb→∞ f̂cb(s) = f̂c(s). Then, by the Dominated
Convergence Theorem 2.4

lim
b→∞

∫ γ

β
eixs

∫ b

c
f (t)e−istdt ds =

∫ γ

β
eixs

∫ ∞

c
f (t)e−istdt ds.

To get the result, we conducted a similar process, now taking the interval [a, c] and making
tend a to minus infinity. �

Because we do not know if eixs f̂ is integrable around 0, our theorem is as follows:

Theorem 6.1 (Dirichlet-Jordan Theorem for HK(R).). (Mendoza, 2011) If f ∈ HK(R)∩ BV(R)
then, for each x ∈ R

lim
M→∞
ε→0

1

2π

∫

ε<|s|<M

eixs f̂ (s)ds =
1

2
{ f (x + 0) + f (x − 0)}. (19)

In terms of the Henstock-Kurzweil integral, by the Hake’s Theorem (2.5), the above expression
(19), shall be equal to

1

2π

∫ ∞

−∞
eixs f̂ (s)ds =

1

2
{ f (x + 0) + f (x − 0)}.

Proof: Suppose that δ > 0 and let F(x, t) = f (x − t) + f (x + t). By the Fubini Theorem
for the Lebesgue integral (Apostol, 1974) [Theorem 15.7] at [−M,−ε]× [a, b] and [ε, M]× [a, b]
and by Lemma 6.3

∫

ε<|s|<M

eixs
∫ ∞

−∞
f (t)e−istdt ds =

∫ ∞

−∞
f (t)

(∫ −ε

−M
+

∫ M

ε

)
eis(x−t)ds dt

= 2
∫ ∞

0

F(x, t)

t
(sin Mt − sin εt)dt

= 2
∫ ∞

δ

F(x, t)

t
(sin Mt − sin εt)dt

+ 2
∫ δ

0

F(x, t)

t
(sin Mt − sin εt)dt
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In [δ, ∞] by Lemma 6.1 and Lemma 6.2, we obtain

lim
M→∞,

ε→0

∫ ∞

δ

F(x, t)

t
(sin Mt − sin εt)dt = 0. (20)

In [0, δ], the DCT (2.4) implies that

lim
ε→0

∫ δ

0

F(x, t)

t
sin εt dt = 0. (21)

Integrating by parts

∫ δ

0
[F(x, t)]

sin Mt

t
dt = [F(x, δ)]

(∫ δM

0

sin t

t
dt

)

−
∫ δ

0

(∫ tM

0

sin u

u
du

)
d [F(x, t)] .

Since limM→∞

(∫ Mt
0

sin u
u du

)
= π

2 and applying the CDT (2.4) to the last integral, we infer

that

lim
M→∞

∫ δ

0
[F(x, t)]

sin Mt

t
dt =

π

2
F(x, δ)

− π

2
{(F(x, δ))− (F(x, 0))}

= π
[ f (x − 0) + f (x + 0)]

2
.

Combining (20), (21) and the above expression, we obtain the result. �
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