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1. Introduction

The theory of stability of periodic traveling waves associated with evolution partial
differential equations of dispersive type has increased significantly in the last five years. A
good number of researchers are interested in solving a rich variety of new mathematical
problems due to physical importance related to them. This subject is often studied in relation
to perturbations of symmetric classes, e.g., the class of periodic functions with the same
minimal period as the underlying wave. However, it is possible to consider a stability study
with general non-periodic perturbations, e.g., by the class of spatially localized perturbations
L2(R) or by the class of bounded uniformly continuous perturbations Cb(R) ( see Mielke
(1997), Gardner (1993)-(1997) and Gallay&Hărăguş (2007)).
Here our purpose is to consider the nonlinear stability and linear instability of periodic
traveling waveforms. From our experience with nonlinear dispersive equations we know
that traveling waves, when they exist, are of fundamental importance in the development of
a broad range of disturbance. Then we expect the issue of stability of periodic waves to be of
interest and it inspires future developments in this fascinating subject.
It is well known that such theory has started with the pioneering work of Benjamin (1972)
regarding the periodic steady solutions called cnoidal waves. Its waveform profile was found
first by Korteweg&de-Vries (1895) for the currently called Korteweg-de Vries equation (KdV
henceforth)

ut + uux + uxxx = 0, (1)

where u = u(x, t) is a real-valued function of two variables x, t ∈ R. The cnoidal traveling
wave solution, u(x, t) = ϕc(x − ct), has a profile determined in the form

ϕc(ξ) = β2 + (β3 − β2)cn2

(√
β3 − β1

12
ξ; k

)
, (2)

where βi’s are real constants and cn represents the Jacobi elliptic function cnoidal. Among
the physical application associated with equation (1) we can mention the propagation of
shallow-water waves with weakly non-linear restoring forces, long internal waves in a
density-stratified ocean, ion-acoustic waves in a plasma, acoustic waves on a crystal lattice,
and so on. Thus, the study of qualitative properties of these nonlinear periodic waves
represents a fundamental piece for the understanding of the dynamic associated to this
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equation. A first stability approach for the cnoidal wave profile as in (2) was determined
by Benjamin in (1972). But only years later a complete study was carry out by Angulo et al.
(2006). Indeed, by extending the general stability theory due to Grillakis et al. (1987) to the
periodic case it was obtained that the orbit generated by the solution ϕc,

Ωϕc = {ϕc(·+ y) : y ∈ R}, (3)

remains stable by the periodic flow of the KdV equation, more specifically, for initial data
close enough to Ωϕc the solution of the KdV starting in this point will remain close enough to
to Ωϕc for all time. Many ingredients are basic for obtaining this remarkable behavior of the
cnoidal waves. One of the cornerstones is the spectral structure associated to the self-adjoint
operator on L2

per([0, L]) (here L represents the minimal period of ϕc)

Lkdv = − d2

dx2
+ c − ϕc, (4)

which is a Schrödinger operator with a periodic potential.
In this case, the existence of a unique negative eigenvalue and simple and the non-degeneracy
of the eigenvalue zero is required. We recall that Lkdv has a compact resolvent and so zero is
an isolated eigenvalue. It is well known that the determination of these spectral informations
in the periodic case is not an easy task. By taking advantage of the cnoidal profile of ϕc, the
eigenvalue problem for Lkdv is reduced to study the classical Lamé problem

d2

dx2
ψ + [ρ − n(n + 1)k2sn2(x; k)]ψ = 0, (5)

on the space L2
per([0, 2K(k)]), for n ∈ N, sn(·; k) denoting the Jacobi elliptic function snoidal

and K representing the complete elliptic integral of first kind. Therefore the Floquet theory
arises in a crucial form in the stability analysis. The existence of a finite number of instability
intervals associated to (5) and an oscillation Sturm analysis will imply the required spectral
structure for Lkdv. Next, by supposing that ϕc has mean zero property we consider the

manifold M = { f :
∫

f 2dx =
∫

ϕ2
c dx,

∫
f dx = 0}. Then the condition d

dc

∫
ϕ2

c (x)dx > 0
will imply that

〈Lkdv f , f 〉 ≧ β‖ f ‖2
H1

per
for every f ∈ Tϕc M ∩ [

d

dx
ϕc]

⊥, (6)

where Tϕc M represents the tangent space to M in ϕc and β > 0. Then, from the continuity

of the functional E( f ) =
∫
( f ′)2 − 1

3 f 3dx and from the Taylor theorem we have the following
stability property of Ωϕc : there is η > 0 and D > 0 such that

E(u)− E(ϕc) ≧ D inf
g∈Ωϕc

‖u − g‖2
H1

per
(7)

for u satisfying that infg∈Ωϕc
‖u − g‖H1

per
< η and F(u) ≡ 1

2

∫
u2dx = 1

2

∫
ϕ2

c dx,
∫

udx = 0.

In other words, ϕc is a constraint local minimum of E. Then, since E and F are conserved
quantities by the continuous KdV-flow, t → u(t), we obtain from (7) that the orbit Ωϕc is
stable by initial perturbation in the manifold M. For general perturbations of Ωϕc we need to
have the existence of a smooth curve of traveling waves, c → ϕc, and to use the triangular
inequality. We call attention that mean zero constraint can be eliminated in the definition of
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the manifold M, because the KdV equation is invariant under the Galilean transformation
v(x, t) = u(x + γt, t)− γ, where γ is any real number. That is, if u solves (1), then so does v.
In this point some comments on the speed-wave associated to the cnoidal wave solution ϕc

deserves to be hold. If we are looking for ϕc having mean zero, we obtain a curve c ∈ (0, ∞) →
ϕc ∈ H1

per([0, L]). But, for instance, if ϕc is positive we obtain a curve c ∈ (4π2/L2, ∞) → ϕc ∈
H1

per([0, L]) for any L > 0 (see Angulo (2009)).
From analysis above we see that spectral information about the operator in (4) is fundamental
for a stability study. Indeed, the second order differential operator appearing in equation
(4) is the key to apply the Floquet theory, but from our experience with nonlinear dispersive
evolution equations we know that depending of the periodic potential the study can be tricky.
Moreover, the Floquet theory is not useful for more general linear operators that arise in the
study of nonlinear dispersive equations. For instance, a general kind of dispersive equations
can be

ut + upux − (Mu)x = 0, (8)

where p ∈ N and M is a Fourier multiplier operator defined by

M̂ f (n) = β(n) f̂ (n), n ∈ Z, (9)

with β being a measurable, locally bounded, even function on R, and satisfying the conditions,
A1|n|m1 ≤ β(n) ≤ A2(1 + |n|)m2 , for m1 ≤ m2, |n| ≥ k0, β(n) > b for all n ∈ Z, and Ai > 0.
Then, the following unbounded linear self-adjoint operator LM : D(LM) → L2

per([0, L])

LM = (M+ c)− ϕ
p
c , (10)

arises in the study of traveling wave solutions of the form u(x, t) = ϕc(x − ct) for equation
(8). Here the profile ϕ = ϕc must satisfy the following nonlinear equation

(M+ c)ϕ − 1

p + 1
ϕp+1 = Aϕ, (11)

where Aϕ is a constant of integration which can be assumed to be zero and the wave-speed
c is chosen such that M + c is a positive operator. Equation (8) with p = 1, contains
two important models in internal water-wave research: The Benjamin-Ono equation (BO
henceforth), M = H∂x, where H denotes the periodic Hilbert transform defined via the

Fourier transform as Ĥ f (n) = −isgn(n) f̂ (n), n ∈ Z. So, we have that M has associated
the symbol β(n) = |n|. The other model is the Intermediate Long Wave equation (ILW
henceforth), where the pseudo-differential operator M has associated the symbol βh(n) =
n coth(nh)− 1

h , h ∈ (0,+∞).
Recently, Angulo&Natali (2008) established a new approach for studying the general linear
operator LM in (10) within the framework of the theory of stability for even and positive
periodic traveling waves (see Section 3). Indeed, by using Fourier techniques associated to
positive linear operators was obtained that the positivity of the Fourier coefficients associated
to ϕc together with a specific positivity property called PF(2) for the Fourier coefficients
of the power function ϕ

p
c , will imply the existence of a unique negative eigenvalue and

simple and the non-degeneracy of the eigenvalue zero. Therefore, one of the advantage of
Angulo&Natali’s approach is the possibility of studying non-local linear operators such as
that associated to the BO equation (see Section 5)

Lbo = H∂x + c − ϕc. (12)
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We also note that in the case of the critical KdV equation (p = 4 and M = −∂2
x in (8))

Angulo&Natali’s approach was applied successfully for obtaining the relevant result that
there is a family of periodic traveling waves, c → ϕc, such that they are stable if the
wave-speed c ∈ (π2/L2, r0/L2) and unstable if c ∈ (r0/L2,+∞), where r0 > 0 does not
depend on L ( see Angulo&Natali (2009)). In the case of operators of type Schrödinger,

L = − d2

dx2
+ c − ϕ

p
c , (13)

Neves (2009) (see Section 6) and Johnson (2009) have obtained other criterium for obtaining
the required spectral information in a stability study. Their approach are different from
those ones that we shall establish in this chapter. For instance, Johnson uses tools from
ordinary differential equations and Evans function methods. Its stability approach works
for perturbations restricted to the manifold of initial data u0 such that

∫
u2

0(x)dx =
∫

ϕ2
c(x)dx

and
∫

u0(x)dx =
∫

ϕc(x)dx.
Other important piece of information in a stability study is the existence of solutions for the
nonlinear equation (11). For M = −∂2

x is obvious that the quadrature method is the most
natural tool to be used (see subsection 5.2). Therefore, the theory of elliptic integrals and
Jacobian elliptic functions arise in a very natural way. For M being a non-local operator the
existence problem is not an easy task. In this point the use of Fourier methods can be very
useful. Indeed, suppose that ϕc represents a solitary wave solution for equation (11) (Aϕ = 0)

with ϕ̂c
R representing its Fourier transform on the line, then the Poisson Summation Theorem

produces a periodic function ψ given by formula

ψ(ξ) = ∑
n∈Z

ϕc(ξ + Ln) =
1

L ∑
n∈Z

ϕ̂c
R
( n

L

)
e

2πinξ
L . (14)

Note that ψ has a minimal period L. Now, from our experience with dispersive evolution
equations we know that the profile ψ does not give for every c a solution for equation (11).
Indeed, we have only that for a specific range of the solitary wave-speed, c, it will produce
that ψ is in fact a periodic traveling wave solution. In other words, there are an interval
I and a smooth wave-speed mapping, c ∈ I → v(c), such that ψ satisfies (M + v(c))ψ −

1
p+1 ψp+1 = 0. An example where equality (14) can be used is in obtaining the well-know

Benjamin’s periodic traveling wave solution for the BO equation (see subsection 5.1). We

note from formula (14) that a good knowledge of the Fourier transform ϕ̂c
R is necessary for

obtaining an explicit profile of ψ and that the Fourier coefficients of ψ are depending of the

discretization of ϕ̂c
R to the enumerable set {n/L}n∈Z.

We note that in our approach we consider the minimal period associated to the periodic
traveling wave solutions completely arbitrary. Our analysis is not restricted to small or large
wavelength. We also note that the stability theory to be established here it can be applied to
a sufficiently wide range of non-linear dispersive models, such as the nonlinear Schrödinger
equation

iut + uxx + |u|pu = 0 (15)

with u = u(x, t) ∈ C and p = 2, 3, 4, ..., and for the generalized Benjamin-Bona-Mahony
equations

ut + ux + upux +Mut = 0, (16)

for p ≧ 1, p ∈ N, and M given by (9) (see Angulo et al. (2010)).
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We will also be interested in this chapter in the linear instability of periodic traveling wave
solutions. By using the theoretical framework of Weinstein (1986) and Grillakis (1988) we
show that there is a family of periodic traveling wave for the cubic Schrödinger equation
(p = 2 in (15)) with a minimal period L which are orbitally stable in H1

per([0, L]) but linearly

unstable in H1
per([0, jL]), for j ≧ 2 (see subsection 5.3.1). In the general case of equations in (8)

we establish a criterium of linear instability developed recently by Angulo&Natali (2010) (see
Section 7).
In the last section of this chapter, we establish some results about the existence and stability
of periodic-peakon for the following nonlinear Schrödinger equation (NLS-δ equation),

iut + uxx + γδ(x)u + |u|2u = 0, (17)

defined for functions on the torus T = R/2πZ. Here the symbol δ denotes the Dirac delta
distribution, (δ, ψ) = ψ(0), and γ ∈ R is denominated the coupling constant or strength
attached to the point source located at x = 0.

2. Notation

For any complex number z ∈ C, we denote by ℜ(z) and ℑ(z) the real part and imaginary part
of z, respectively. For s ∈ R, the Sobolev space Hs

per([0, L]) consists of all periodic distributions

f such that ‖ f ‖2
Hs = L

∞

∑
k=−∞

(1+ n2)s| f̂ (n)|2 < ∞. For simplicity, we will use the notation Hs
per

and H0
per = L2

per. The Fourier transform of a periodic distribution Ψ is the function Ψ̂ : Z → C

defined by the formula Ψ̂(n) = 1
L 〈Ψ, Θ−n〉, n ∈ Z, for Θn(x) = exp(2πinx/L). So, if Ψ is

a periodic function with period L, we have Ψ̂(n) = 1
L

∫ L
0 Ψ(x)e−

2nπxi
L dx. The normal elliptic

integral of first type (see Byrd&Friedman (1971)) is defined by

y∫

0

dt√
(1 − t2)(1 − k2t2)

=

φ∫

0

dθ√
1 − k2 sin2 θ

= F(φ, k)

where y = sin φ and k ∈ (0, 1). k is called the modulus and φ the argument. When y = 1,
we denote F(π/2, k) by K = K(k). The Jacobian elliptic functions are denoted by sn(u; k),
cn(u; k) and dn(u; k) (called, snoidal, cnoidal and dnoidal, respectively), and are defined via
the previous elliptic integral. More precisely, let u(y; k) := u = F(φ, k), then y = sinφ :=

sn(u; k), cn(u; k) =
√

1 − sn2(u; k) and dn(u; k) =
√

1 − k2sn2(u; k). We have the following
asymptotic formulas: sn(x; 1) = tanh(x), cn(x; 1) = sech(x) and dn(x; 1) = sech(x).

3. Positivity properties of the Fourier transform in the nonlinear stability theory

The approach contained in Angulo& Natali (2008) introduces a new criterium for obtaining
that the self-adjoint operator LM in (10) possesses exactly one negative eigenvalue which

is simple and the eigenvalue zero is simple with eigenfunction d
dx ϕ. These specific spectral

properties are obtained provided that ϕ is an even positive periodic function with a priori

minimal period, and such that ϕ̂(n) > 0 for every n ∈ Z and (ϕ̂p(n))n∈Z ∈ PF(2)-discrete
class which we shall define below.
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We start our approach by defining for all θ ≥ 0, the convolution operator Sθ : ℓ2(Z) → ℓ2(Z)
by

Sθα(n) =
1

ωθ(n)

∞

∑
j=−∞

K(n − j)αj =
1

ωθ(n)
(K ∗ α)n ,

where ωθ(n) = β(n) + θ + c, K(n) = ϕ̂
p
c (n), n ∈ Z. Here we have chosen c such that c > −b

where b ∈ R satisfies β(n) > b for all n ∈ Z. Then we have ωθ(n) > 0 for all n ∈ Z. It follows
that the space X defined by

X = {α ∈ ℓ
2(Z); ||α||X,θ := (

∞

∑
n=−∞

|αn|2ωθ(n))
1
2 < ∞},

is a Hilbert space with norm ||α||X,θ and inner product < α1, α2 >X,θ= ∑
∞
n=−∞ α1

nα2
nωθ(n).

The next Proposition is a consequence of the theory of self-adjoint operators with a compact
resolvent.

Proposition 3.1. For every θ ≥ 0, we have the following

(a) If α ∈ ℓ2 is an eigensequence of Sθ for a non-zero eigenvalue, then α ∈ X.

(b) The restriction of Sθ to X is a compact, self-adjoint operator with respect to the norm || · ||X,θ.

(c) 1 is an eigenvalue of Sθ (as an operator of X) if and only if −θ is an eigenvalue of LM (as an
operator of L2

per). Furthermore, both eigenvalues have the same multiplicity.

(d) Sθ has a family of eigensequences (ψi,θ)
∞
i=0 forming an orthonormal basis of X with respect to the

norm || · ||X,θ. The eigensequences correspond to real eigenvalues (λi(θ))
∞
i=0 whose only possible

accumulation point is zero. Moreover, |λ0(θ)| ≥ |λ1(θ)| ≥ |λ2(θ)| ≥ · · ·.

Proof. See Angulo & Natali (2008).

Definition 3.1. We say that a sequence α = (αn)n∈Z ⊆ R is in the class PF(2) discrete if

i) αn > 0, for all n ∈ Z,

ii) αn1−m1 αn2−m2 − αn1−m2 αn2−m1 ≧ 0, for n1 < n2 and m1 < m2,

iii) αn1−m1 αn2−m2 − αn1−m2 αn2−m1 > 0, if n1 < n2, m1 < m2, n2 > m1, and n1 < m2.

Example: The sequence an = e−η|n|, n ∈ Z, η > 0, belongs to PF(2) discrete class. Indeed, the
conditions ii) and iii) in Definition 3.1 are equivalents to

1) |n1 − m1|+ |n2 − m2| ≦ |n1 − m2|+ |n2 − m1|, if n1 < n2 and m1 < m2, and
2) |n1 − m1|+ |n2 − m2| < |n1 − m2|+ |n2 − m1|, if n1 < n2, m1 < m2,

n2 > m1 and n1 < m2,
(18)

which are immediately verified. In section 4 we will use this example in the stability theory
of periodic traveling wave solutions for the BO equation.

The next result will also be useful in section 4.

Theorem 3.1. Let α1 and α2 be two even sequences in the class PF(2) discrete, then the convolution
α1 ∗ α2 ∈ PF(2) discrete (if the convolution makes sense).
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Proof. See Karlin (1968).

We present the main result of this section.

Theorem 3.2. Let ϕc be an even positive solution of (11) with Aϕ = 0. Suppose that ϕ̂c(n) > 0

for every n ∈ Z, and (ϕ̂
p
c (n))n∈Z ∈ PF(2) discrete. Then LM in (10) possesses exactly a unique

negative eigenvalue which is simple, and zero is a simple eigenvalue with eigenfunction d
dx ϕc.

Proof. The complete proof of this theorem is very technical and long (see Angulo&Natali (2008)
for details), so we only give a sketch of it divided in three basic steps as follows.

I- Since Sθ is a compact-self-adjoint operator on X, it follows that

λ0(θ) = ± sup
||α||X=1

| < Sθα, α >X |. (19)

Let ψ(θ) := ψ be an eigensequence of Sθ corresponding to λ0(θ) := λ0. We will show that
ψ is one-signed, that is, either ψ(n) ≤ 0 or ψ(n) ≥ 0. By contradiction, suppose ψ takes

both negative and positive values. By hypotheses the kernel K = (K(n)) = (ϕ̂
p
c (n)) is

positive, then

Sθ|ψ|(n) = 1
ωθ(n) ∑

∞
j=−∞ K(n − j)ψ+(j) + 1

ωθ(n) ∑
∞
j=−∞ K(n − j)ψ−(j)

>

∣∣∣ 1
ωθ(n) ∑

∞
j=−∞ K(n − j)ψ+(j)− 1

ωθ(n) ∑
∞
j=−∞ K(n − j)ψ−(j)

∣∣∣ ,

where ψ+ e ψ− are the positive and negative parts of ψ respectively. It follows that

< Sθ(|ψ|), |ψ| >X,θ>

∞

∑
n=−∞

|λ0||ψ(n)|2ωθ(n) = |λ0|‖ψ‖2
X,θ.

Hence, if we assume that ||ψ||X = 1, we obtain < Sθ(|ψ|), |ψ| >X> |λ0|, which contradicts
(19). Then, there is an eigensequence ψ0 which is nonnegative. Now, since K is a positive
sequence and Sθ(ψ0) = λ0ψ0, we have ψ0(n) > 0, ∀n ∈ Z. Therefore, ψ0 can not be
orthogonal to any non-trivial one-signed eigensequence in X, which implies that λ0 is a
simple eigenvalue. Notice that the preceding argument also shows that −λ0 can not be an
eigenvalue of Sθ , therefore it follows that |λ1| < λ0.

II- The next step will be to study the behavior of the eigenvalue λ1(θ). In fact, it considers the
following set of indices,

△ = {(n1, n2) ∈ Z × Z; n1 < n2}.

Denoting n = (n1, n2) and m = (m1, m2), we define for n, m ∈ △ the following sequence

K2(n, m) := K(n1 − m1)K(n2 − m2)−K(n1 − m2)K(n2 − m1).

By hypothesis K ∈ PF(2) discrete, hence K2 > 0. Let ℓ2(△) be defined as

ℓ
2(△) =

⎧
⎪⎨
⎪⎩

α = (αn)n∈△; ∑ ∑△|αn|2 := ∑
n1∈Z

∑
n1<n2
n2∈Z

|α(n1, n2)|2 < +∞

⎫
⎪⎬
⎪⎭

,
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and define the operator S2,θ : ℓ2(△) → ℓ2(△) by

S2,θg(n) = ∑ ∑△G2,θ(n, m)g(m),

where G2,θ(n, m) = K2(n,m)
ωθ(n1)ωθ(n2)

. It also consider, the space

W =

{
α ∈ ℓ

2(△); ||α||W,θ :=
(
∑ ∑△|α(n)|2ωθ(n1)ωθ(n2)

) 1
2
< ∞

}
.

Then W is a Hilbert space with norm || · ||W,θ given above and with inner product

< α1, α2
>W,θ= ∑ ∑△α1(n)α2(n)ωθ(n1)ωθ(n2).

Remark 3.1. 1) We can show, analogous to Proposition 3.1, that S2,θ

∣∣
W

is a self-adjoint, compact
operator. Therefore, the eigenvalues associated to it operator can be enumerated in order of
decreasing absolute value, that is, |μ0(θ)| ≥ |μ1(θ)| ≥ |μ2(θ)| ≥ · · ·.
2) We also obtain that μ0(θ) := μ0 is positive, simple and |μ1| < μ0.

Definition 3.2. Let α1, α2 ∈ ℓ2(Z), we define the wedge product α1 ∧ α2 in △ by (α1 ∧
α2)(n1, n2) = α1(n1)α

2(n2)− α1(n2)α
2(n1).

We have the following results from Definition 3.2.

Lemma 3.1. 1) Let A =
{

α1 ∧ α2; for α1, α2 ∈ X, α1 ∧ α2 ∈ ℓ2(△)
}

. Then A is dense in W.

2) Let α1, α2 ∈ ℓ2(Z). Then S2,θ(α
1 ∧ α2) = Sθα1 ∧ Sθα2.

Proof. See Karlin (1964), Karlin (1968) and Albert (1992) .

The following Lemma is the key to characterize the second eigenvalue λ1.

Lemma 3.2. For all θ ≧ 0 we have:

a) μ0(θ) = λ0(θ)λ1(θ), and then λ1(θ) > 0.

b) λ1(θ) is simple.

Proof. See Angulo&Natali (2008).

III- Final step. For i = 0, 1, we have that the differentiable curve θ → λi(θ) satisfies d
dθ λi(θ) <

0 and limθ→∞ λ0(θ) = 0. From ϕ̂c(n) > 0 for all n ∈ Z, it follows λ1(0) = 1. Since
λ0(0) > λ1(0) = 1, there is a unique θ0 ∈ (0,+∞) such that λ0(θ0) = 1. From Proposition
3.1, we obtain that κ ≡ −θ0 is a negative eigenvalue of LM which is simple. For i ≥ 2
and θ > 0 we have that λi(θ) ≤ λ1(θ) < λ1(0) = 1, so 1 can not be eigenvalue of Sθ for
all θ ∈ (0,+∞) \ {θ0}, since 1 is an eigenvalue only for θ = 0 and θ = θ0. Then LM has
a unique negative eigenvalue which is simple. Finally, since λ1(0) = 1 and λ1 is a simple
eigenvalue it follows that θ = 0 is a simple eigenvalue of LM by Proposition 3.1. This
shows the theorem. �

Remark 3.2. In Theorem 3.2 the Fourier transform of ϕc and ϕ
p
c must be calculated in the minimal

period L of ϕc.
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3.1 Construction of periodic functions in PF(2) discrete class

In this subsection we show a method for building non-trivial periodic functions such that its
Fourier transform belongs to the PF(2) discrete class. We start with the PF(2) continuous
class.

Definition 3.3. We say that a function K : R → R is in the PF(2) continuous class if

i) K(x) > 0 for x ∈ R,

ii) K(x1 − y1)K(x2 − y2)−K(x1 − y2)K(x2 − y1) ≧ 0, for x1 < x2 and y1 < y2; and

iii) strict inequality holds in ii) whenever the intervals (x1, x2) and (y1, y2) intersect.

The following result is immediate.

Proposition 3.2. Suposse K is in the PF(2) continuous class. Then for α(n) ≡ K(n) we have that
the sequence (α(n))n∈Z is in the PF(2) discrete class.

Next, we have the following Theorem (see Albert&Bona (1991)).

Theorem 3.3. Suppose f is a positive, twice-differentiable function on R satisfying

d2

dx2
(log f (x)) < 0 for x �= 0, (logarithmically concave) (20)

then f ∈ PF(2).

Now we illustrate Theorem 3.3. Indeed, let us consider the solitary wave solution associated
to the KdV and modified KdV equation (p = 2 and M = −∂2

x in (8)),

φc,p(ξ) =
[ (p + 1)(p + 2)c

2

]1/p
sech2/p

( p
√

c

2
ξ
)

, c > 0, p = 1, 2. (21)

Then the Fourier transforms are given by

φ̂c,1(ξ) = 12π
ξ

sinh(πξ/
√

c)
, φ̂c,2(ξ) =

√
3

2
π sech

( πξ

2
√

c

)
. (22)

Hence, since φ̂c,i, i = 1, 2, are logarithmically concave functions it follows from Theorem
3.3 that they belong to PF(2). Moreover, from Proposition 3.2 we have that the sequences
(φ̂c,i(n))n∈Z, i = 1, 2, belong to PF(2) discrete class.

Next, for one better convenience of the reader, we establish the Poisson Summation Theorem.

Theorem 3.4. Let f̂ R(ξ) =
∫ ∞

−∞
f (x)e−2πixξdx and f (x) =

∫ ∞

−∞
f̂ R(ξ)e2πixξdξ satisfy

| f (x)| ≤ A

(1 + |x|)1+δ
and | f̂ R(ξ)| ≤ A

(1 + |ξ|)1+δ
,

where A > 0 and δ > 0 (then f and f̂ can be assumed continuous functions). Thus, for L > 0

∞

∑
n=−∞

f (x + Ln) =
1

L

∞

∑
n=−∞

f̂ R
( n

L

)
e

2πinx
L .

The two series above converge absolutely.
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Proof. See for example Stein&Weiss (1971).

From Theorem 3.4 and formulas in (22) we have that the periodization of the solitary wave
solutions in (21), p = 1, 2, produces the following periodic functions

ψi(ξ) =
1

L

∞

∑
n=−∞

φ̂c,i

( n

L

)
e

2πinξ
L , i = 1, 2, (23)

such that its Fourier transform belongs to the PF(2) discrete class.

4. Orbital stability definition and main theorem

In this section we establish the definition of stability which we are interested in this chapter
and a general stability theorem for periodic traveling waves.

Definition 4.1. Let ϕ be a periodic traveling wave solution of (11) with minimal period L and consider

τr ϕ(x) = ϕ(x + r), x ∈ R and r ∈ R. We define the set Ωϕ ⊂ H
m2
2

per, the orbit generated by ϕ,

as Ωϕ = {g; g = τr ϕ, for some r ∈ R}. For any η > 0, let us define the set Uη ⊂ H
m2
2

per by

Uη = { f ; inf
g∈Ωϕ

|| f − g||
H

m2
2

per

< η}. With this terminology, we say that ϕ is (orbitally) stable in H
m2
2

per

by the flow generated by equation (8) if,

(i) there is s0 such that Hs0
per ⊆ H

m2
2

per and the initial value problem associated to (8) is globally

well-posed in Hs0
per.

(ii) For every ε > 0, there is δ > 0 such that for all u0 ∈ Uδ ∩ Hs0
per, the solution u of (8) with

u(0, x) = u0(x) satisfies u(t) ∈ Uε for all t ∈ R.

Remark 4.1. We have some comments about Definition 4.1:

1. Definition 4.1 is based on the translation symmetry associated to model (8).

2. In Definition 4.1 we are introducing other space, Hs0
per, because to obtain a global well-posed theory

in the energy space H
m2
2

per can not be an easy task. For instance, in the case of the regularized
Benjamin-Ono equation (equation (16) with p = 1 and M = H∂x) it is possible to have a global

well-posed theory in the space Hs0
per with s0 > 1

2 , but global well-posed in H
1
2
per remains an open

problem (see Angulo et al. (2010)).

3. Definition 4.1 was given for equations in (8), but naturally it is also valid for those ones in (16).
Stability definition for the Schrödinger models (15) and (17) is different to that given in definition
4.1, since we have two symmetries (translations and rotations) and one symmetry (rotations) for
that models, respectively (see Theorem 5.5 and Theorem 8.1 below).

The proof of the following general stability theorem can be shown by using techniques due
to Benjamin (1972), Bona (1975), Weinstein (1986) or Grillakis et al. (1987) (see also Angulo
(2009))

Theorem 4.1. Let ϕc be a periodic traveling wave solution of (11) and suppose that part (i) of the
Definition 4.1 holds. Suppose also that the operator LM in (10) possesses exactly a unique negative

eigenvalue which is simple, and zero is a simple eigenvalue with eigenfunction d
dx ϕc. Choose χ ∈ L2

per

such that LMχ = ϕc, and define I = (χ, ϕc)L2
per

. If I < 0, then ϕc is stable in H
m2
2

per.

54 Fourier Transforms - Approach to Scientific Principles

www.intechopen.com



Remark 4.2. In our cases the function χ in Theorem 4.1 will be chosen as χ = − d
dc ϕc. Then, I < 0

if and only if d
dc

∫
ϕ2

c (ξ)dξ > 0.

5. Stability of periodic traveling wave solutions for some dispersive models

In this section we are interested in applying the theory obtained in Section 3 to obtain the
stability of specific periodic traveling waves associated to the following models: the BO
equation, the modified KdV and the cubic Schrödinger equation.

5.1 Stability for the BO equation

We start by finding a smooth curve c → ϕc of solutions associated with the following non-local
differential equation

Hϕ′
c + cϕc −

1

2
ϕ2

c = 0. (24)

Here we present an approach based on the Poisson Summation Theorem for obtaining an
explicit solution to equation (24). Indeed, it we consider, the solitary wave solution associated

to BO equation, namely, φω(x) =
4ω

1 + ω2x2
, with ω > 0. Since its Fourier transform is given

by φ̂ω
R
(x) = 4πe

−2π
ω |x|, we obtain from Theorem 3.4 the following periodic wave of minimal

period L

ψω(x) =
4π

L

+∞

∑
n=0

εne
−2πn

ωL cos

(
2nπx

L

)
=

4π

L

sinh
(

2π
ωL

)

cosh
(

2π
ωL

)
− cos

(
2πx

L

) , (25)

where εn = 1 for n = 0, and εn = 2 for n ≧ 1. Next we see that the profile ψω represents a
periodic solution for (24) with ω = ω(c) and c > 2π/L. Let ϕc, c > 0, be a smooth periodic
solution of (24) with minimal period L, then ϕc can be expressed as a Fourier series

ϕc(x) =
+∞

∑
n=−∞

ane
2nπix

L . (26)

Now, from (24), we get [
2π|n|

L
+ c

]
an =

1

2

+∞

∑
m=−∞

an−mam.

We consider an ≡ 4πe−γ|n|/L, n ∈ Z, γ ∈ R. Substituting an in the last identity we obtain

+∞

∑
m=−∞

an−mam =
16π2

L2
e−γ|n|

[
|n|+ 1 + 2

+∞

∑
k=1

e−2γk

]
=

16π2

L2
e−γ|n|(|n|+ cothγ).

Then,

c +
2π|n|

L
=

4π

L
· 1

2
(|n|+ cothγ). (27)

Consider γ = 2π/(ωL). Then for c > 2π/L we choose the solitary wave-speed ω = ω(c) > 0
such that

tanh(γ) =
2π

cL
. (28)
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Therefore, from uniqueness of the Fourier series we obtain ϕc = ψω(c). Hence, since the

mapping c → γ(c) = tanh−1(2π/(cL)) is a differentiable function for c > 2π/L, it follows

that c ∈
(

2π
L ,+∞

)
�→ ϕc ∈ Hn

per([0, L]), n ∈ N, is a smooth curve of periodic traveling

wave solutions for the BO equation. From our analysis we have then the following Fourier
expansion for ϕc

ϕc(x) =
4π

L

+∞

∑
n=−∞

e−γ|n|e
2πinx

L , (29)

with γ satisfying (28). Then, we obtain immediately that (ϕ̂c(n))n∈Z ∈ PF(2) discrete class
(see (18)) and from Theorem 3.2, that the operator in (12) possesses exactly a unique negative

eigenvalue which is simple and whose kernel is generated by d
dx ϕc. Next we calculate the sign

of the quantity I = − 1
2

d
dc ||ϕc||2L2

per
. Indeed, from (29) and Parseval Theorem it follows

I = − L

2

d

dc
||ϕ̂c||2ℓ2 = − 8π2

L

d

dc

∞

∑
n=−∞

e−2γ|n| = − 32π3

c2L2

1

1 −
(

2π
cL

)2

∞

∑
n=−∞

|n|e−2γ|n|
< 0. (30)

Hence, from Theorem 4.1 we obtain the orbital stability of the periodic solutions (29) in H
1
2
per

by the periodic flow of the BO equation.

Remark 5.1. The periodic global well-posed theory for the BO in H
1
2
per has been shown by Molinet

(2008) and Molinet&Ribaut (2009).

5.2 Stability for the mKdV equation

Next we study the modified KdV equation written as

ut + 3u2ux + uxxx = 0. (31)

In this case, the periodic traveling wave solution u(x, t) = ϕc(x − ct) satisfies the equation

ϕ′′
c − cϕc + ϕ3

c = 0. (32)

On this time we are going to use the quadrature method to determine a profile for ϕc (see
Angulo et al. (2010) for the use of the Poisson Summation Theorem). Thus, multiplying
equation (32) by ϕ′

c and integrating once we deduce the following differential equation in
quadrature form

[ϕ′
c]

2 =
1

2

[
−ϕ4

c + 2cϕ2
c + 4Bϕc

]
, (33)

where Bϕc is a nonzero constant of integration. The periodic solutions arise of the specific form

of the roots associated with the polynomial F(t) = −t4 + 2ct2 + 4Bϕc . We start by considering
F with four real roots such that −η1 < −η2 < 0 < η2 < η1, then we obtain

[ϕ′
c]

2 =
1

2
(η2

1 − ϕ2
c )(ϕ2

c − η2
2). (34)

By looking for positive solutions we have η2 ≦ ϕc ≦ η1 and from (34), 2c = η2
1 + η2

2 and

4Bϕc = −η2
1η2

2 . Next, for φc ≡ ϕc/η1 and φ2
c = 1 − k2 sin2 ψ we obtain from (34) the following

elliptic integral equation F(ψ(ξ), k) = η1ξ/
√

2, with k2 = (η2
1 − η2

2)/η2
1 . Therefore, from the
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definition of the Jacobi elliptic function snoidal, sn, it follows that for l = η1/
√

2, sin(ψ(ξ)) =

sn(lξ; k), and hence φc(ξ) =
√

1 − k2sn2(lξ; k) = dn(lξ; k). Then if we return back to the
initial variable ϕc, we obtain the so-called dnoidal wave solutions:

ϕc(ξ) ≡ ϕc(ξ; η1, η2) = η1 dn
( η1√

2
ξ; k

)
(35)

with

k2 =
η2

1 − η2
2

η2
1

, η2
1 + η2

2 = 2c, 0 < η2 < η1. (36)

Next we study the fundamental period associated to ϕc. Indeed, since dn(u + 2K) = dn u, it
follows that ϕc has the fundamental period (wavelength) Tϕc , given by

Tϕc ≡
2
√

2

η1
K(k). (37)

Now, by using (36) we have for c > 0 that 0 < η2 <
√

c < η1 <
√

2c. Hence one can consider
(37) as a function of η2, namely

Tϕc (η2) =
2
√

2√
2c − η2

2

K(k(η2)) with k2(η2) =
2c − 2η2

2

2c − η2
2

. (38)

Then, since for η2 → 0 we have K(k(η2)) → +∞, it follows that Tϕc (η2) → +∞ as η2 → 0.

Now, for η2 → √
c we obtain K(k(η2)) → π/2. Therefore, Tϕc(η2) → π

√
2/

√
c as η2 → √

c.

Finally, since η2 → Tϕc(η2) is a strictly decreasing function we obtain Tϕc >
π
√

2√
c

. Then the

implicit function theorem implies the following result (see Angulo (2007)).

Theorem 5.1. Let L > 0 be arbitrary but fixed. Then there exists a smooth mapping curve c ∈ J0 =(
2π2

L2 ,+∞
)
→ ϕc ∈ Hn

per([0, L]), such that ϕc satisfies equation (32) and it has the dnoidal profile

ϕc(ξ) = η1 dn
( η1√

2
ξ; k

)
, ξ ∈ [0, L]. (39)

Here, c ∈ J0 → η1 (c) ∈ (
√

c,
√

2c), c ∈ J0 → k(c) ∈ (0, 1) are smooth.

Our next step is the study of the following periodic eigenvalue problem,

⎧
⎪⎨
⎪⎩

Lmkdvψ ≡
(
− d2

dx2
+ c − 3ϕ2

c

)
ψ = λψ

ψ(0) = ψ(L), ψ′(0) = ψ′(L).

(40)

Then, we have the following theorem.

Theorem 5.2. Let ϕc be the dnoidal wave solution given by Theorem 5.1. Then problem (40) defined
on H2

per([0, L]) has exactly its three first eigenvalues simple, being the eigenvalue zero, the second one

with eigenfunction ϕ′
c. Moreover, the remainder of the spectrum is constituted by a discrete set of

eigenvalues which are double.
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Remark 5.2. The periodic global well-posed theory for the mKdV in H1
per can be found in Colliander

et al. (2003).

The proof of Theorem 5.2 is based on the Floquet theory. So, we have the following classical
theorem (see Magnus&Winkler (1976))

Theorem 5.3. Consider the Lamé’s equation

− χ′′ + m(m + 1)k2sn2(x; k)χ = ρχ, (41)

where m is a real parameter. Then we guarantee the existence of two linearly independent periodic
solutions to (41) with period 2K or 4K if and only if m is an integer. By letting l = m if m is a
non-negative integer and l = −m − 1 if m is a negative integer then Lamé’s equation (41) has, at
most, l + 1 intervals of instability (including the interval (−∞, ρ0) with ρ0 being the first eigenvalue).
In addition, if m is a non-negative integer then (41) has exactly m + 1 intervals of instability.

Proof. (Theorem 5.2) Since operator Lmkdv has a compact resolvent its spectrum is a countable
infinity set of eigenvalues {λn; n = 0, 1, 2, ...}, with

λ0 < λ1 ≦ λ2 < λ3 ≦ λ4 < · · ·. (42)

We denote by ψn the eigenfunction associated to the eigenvalue λn. The eigenvalue
distribution in (42) is a consequence of the following Oscillation Sturm-Liouville result:

i) ψ0 has no zeros in [0, L],

ii) ψ2n+1 and ψ2n+2 have exactly 2n + 2 zeros in [0, L).

Next, since Lmkdvϕ′
c = 0 and ϕ′

c has two zeros in [0, L) we have that the eigenvalue zero is
either λ1 or λ2. For determining that 0 = λ1 < λ2 we will use Theorem 5.3. Indeed, the

transformation Q(x) = ψ(x
√

2/η1) implies from (40) the following Lamé problem for Q,

{
Q′′ + [ρ − 6k2sn2(x, k)]Q = 0

Q(0) = Q(2K(k)), Q′(0) = Q′(2K(k)),
(43)

with
ρ = 2(λ + 3η2

1 − c)/η2
1 . (44)

Therefore, since problem (43) has exactly 3 intervals of instability we have that the eigenvalues
{ρn; n = 0, 1, 2, ...} will satisfy that ρ0, ρ1 and ρ2 are simples and ρ3 = ρ4, ρ5 = ρ6, · · ·. Next,

we establish the values of the eigenvalues ρi, i = 1, 2, 3. Indeed, ρ0 = 2[1+ k2 −
√

1 − k2 + k4],

ρ1 = 4+ k2, ρ2 = 2[1+ k2 +
√

1 − k2 + k4]. Therefore relation (44) implies that for i = 1, 2, 3, ρi

determine the eigenvalues λi, respectively. Hence, zero is the second eigenvalue for (40) and
it is simple. This shows the theorem.

Remark 5.3. We note that a part of the conclusion of Theorem 5.2 can be also obtained via Theorem

3.2. Indeed, the Fourier transform of the dnoidal profile ϕc is given by ϕ̂c(n) =
√

2π
L sech

(
πn√
ω(c)L

)
,

where for c >
2π2

L2 we have ω(c) = c/(16(2 − k2)K2(
√

1 − k2)). Then since the function f (x) =
μsech(νx) belongs to PF(2) continuous for μ, ν positive (see (22)), it follows (ϕ̂c(n))n∈Z ∈ PF(2)
discrete. Finally, since the convolution of even sequences in PF(2) discrete is in PF(2) discrete (see

Theorem 3.1) we obtain that ϕ̂2
c ∈ PF(2) discrete.
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Finally, we calculate the sign of the quantity D = 1
2

d
dc ||ϕc||2L2

per
. From integral elliptic theory

we have

||ϕc||2L2
per

=
√

2η1

∫ η1√
2

L

0
dn2(x; k)dx =

8K(k)

L

∫ K

0
dn2(x; k)dx =

8

L
K(k)E(k). (45)

Then, since the maps k ∈ (0, 1) → K(k)E(k) and c → k(c) are strictly increasing functions, it
follows immediately from (45) that D > 0. Hence, Theorem 4.1 implies stability in H1

per([0, L])
of the dnoidal solutions (39) by the periodic flow of the mkdV equation.

Remark 5.4. Recently Johnson (2009) has proposed an approach to determine the nonlinear stability
of periodic traveling wave for models of KdV type. Next, we would like to show that this theory can
not be applied to the smooth curve of dnoidal wave, c → ϕc, established by Theorem 5.1. Indeed,

from analysis in subsection 5.2 we have for L > 0 fixed that B := Bϕc (c) = −−16(1−k(c)2)K2(k(c))
L2 .

Now, we note that dB
dc > 0 and so ϕc can be seen as a function of the parameter B. In the proof of

Lemma 4.2 in Johnson (2009) is deduced that d
dB ϕc is a periodic function if and only if the kernel of the

operator Lmkdv is double. So, from the equality d
dB ϕc =

dc
dB

dϕc

dc , we deduce that d
dB ϕc is periodic since

dc
dB > 0 and

dϕc

dc is a periodic function by construction. Therefore from Johnson’s Lemma we obtain that
ker(Lmkdv) is double which is a contradiction.

5.3 Stability and instability for the cubic Schrödinger equation

In this subsection we are interested in studying stability properties of two specific families de
traveling wave solutions for the cubic Schrödinger equation (NLS henceforth)

iut + uxx + |u|2u = 0, (46)

namely, the dnoidal and cnoidal solutions.

5.3.1 The dnoidal case

The stability analysis associated to the mKdV equation (31) gives us the basic information to
study the stability of periodic standing-wave solutions for the NLS equation (46) in the form
u(x, t) = eict ϕc(x). Indeed, Theorem 5.1 implies the existence of a smooth curve c → eictϕc

of periodic traveling wave solutions for the NLS with a profile given by the dnoidal function.
Now, since the NLS has two basic symmetries, rotations and translations, we have that the
orbit to be studied here will be Oϕc = {eiθ ϕc(· + y) : y ∈ R, θ ∈ [0, 2π)}. Therefore, from
Weinstein (1986) and Grillakis et. al (1987) we need to study the spectrum of the following
linear operators: Lmkdv in (40), which henceforth we denote by L−, and the operator L+

defined by

L+ = − d2

dx2
+ c − ϕ2

c . (47)

The following theorem is related to the specific structure of L+.

Theorem 5.4. The self-adjoint operator L+ defined on H2
per([0, L]) is a nonnegative operator. The

eigenvalue zero is simple with eigenfunction associated ϕc and the remainder of the eigenvalues are
double.

Proof. Since ϕc > 0 and L+ϕc = 0, it follows from the theory of self-adjoint operators that
zero is simple and it is the first eigenvalue. Now, by Theorem 5.3 we obtain that L+ has
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exactly two instability intervals and so the remainder of the spectrum of L+ is constituted by
eigenvalues which are double. This finishes the Theorem.

Now, from Angulo (2007) we have the following stability theorem for the NLS equation.

Theorem 5.5. Let ϕc be the dnoidal wave solution given by Theorem 5.1. Then the orbit Oϕc is stable

in H1
per([0, L]) by the periodic flow of the NLS equation. Indeed, for every ǫ > 0 there exists δ(ǫ) > 0

such that if the initial data u0 satisfies

inf
(y,θ)∈R×[0,2π)

‖u0 − eiθ ϕc(·+ y)‖1 < δ,

then the solution u(t) of the NLS equation with u(0) = u0 satisfies

inf
(y,θ)∈R×[0,2π)

‖u(t)− eiθ ϕc(·+ y)‖1 < ǫ,

for all t ∈ R, θ = θ(t) and y = y(t).

Remark 5.5. The periodic global well-posed theory for the NLS equation in H1
per has been shown by

Bourgain (1999).

Theorem 5.5 establishes that the dnoidal solutions are stable by periodic perturbations of the
same minimal period L in H1

per([0, L]). Now, since ϕc is also a periodic traveling wave solution

for the NLS equation in every interval [0, jL], for j ∈ N and j ≧ 2, it is natural to ask about its
stability in H1

per([0, jL]). As we see below they will be nonlinearly unstable (in fact, they are
linearly unstable). We start our analysis with the following elementary result.

Lemma 5.1. Define Pj and Qj as the number of negatives eigenvalues of L− and L+, respectively,
with periodic boundary condition in [0, jL] and j ≧ 2. Then Qj = 0 and Pj = 2j or Pj = 2j − 1.

Proof. Since ϕc > 0 and L+ϕc(x) = 0, x ∈ [0, jL], by the Oscillation Sturm-Liouville result for
Hill equations, we obtain that zero must be the first eigenvalue and therefore for all j ≧ 2, Qj =

0. Next, since L−ϕ′
c(x) = 0, x ∈ [0, jL], and the number of zeros (nodes) of ϕ′

c in the semi-open
interval [0, jL) is 2j, the Oscillation Theorem implies that the eigenvalues corresponding to the
zero eigenvalue are λ2j or λ2j−1. Therefore, we have Pj = 2j or Pj = 2j − 1. This finishes the
Lemma.

A theoretical framework for proving nonlinear instability from a linear instability result for
nonlinear Schrödinger type’s equation was developed in Grillakis (1988), Jones (1988) and
Grillakis et al. (1990). In those approach one deduces instability when the number of negative
eigenvalues of L− exceeds the number of negative eigenvalues of L+ by more than one (see
Theorem 5.8 below). The parts of the instability theorems in Grillakis (1988) that are needed
for obtaining a linear instability of ϕc, connect Pj, Qj and the existence of real eigenvalues of
the operator (the linearized Hamiltonian)

N =

(
0 L+

−L− 0

)
. (48)

First, define: 1)Kj - the orthogonal projection on (kerL−)⊥; 2) Rj - the operator Rj = KjL−Kj;
3) Sj - the number of negative eigenvalues of Rj; 4) Ireal(Nj) - the number of pairs of nonzero
real eigenvalues of N considered on [0, jL].
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Theorem 5.6. [Grillakis (1988), Jones (1988)] For j ≧ 1 we have

1) If |Sj − Qj| = mj > 0, then Ireal(Nj) ≧ mj.

2) If Sj = Qj and { f ∈ L2
per([0, jL]) : (Ri f , f ) < 0 and ((L+)−1 f , f ) < 0} = ∅, then Ireal(Nj) ≧

1.

The following result gives a condition for obtaining the number Sj.

Theorem 5.7. [Grillakis (1988)] If d
dc

∫ jL
0 ϕ2

c(x)dx > 0 then Sj = Pj − 1.

The following theorem is the main result of this section.

Theorem 5.8. [Instability] Consider the dnoidal solution ϕc given by Theorem 5.1. Then the orbit
Rϕc = {eiy ϕc : y ∈ R} is H1

per([0, jL])-unstable for all j ≧ 2, by the flow of the periodic NLS
equation.

Proof. The strategy of the proof is initially to show that the orbit Rϕc is linearly unstable. For
this, we rewrite equation (15) in the Hamiltonian form

d

dt
u(t) = JG′(u(t)), (49)

where u = (ℜ(u),ℑ(u))t, J is the skew-symmetric, one-one and onto matrix given by

J =

(
0 1
−1 0

)
, (50)

and

G(u) =
∫ [1

2
|u′|2 − 1

4
|u|4

]
dx, (51)

which is a conservation law to (46). Next, for the linearization of (49) around the orbit Rϕc we

proceed as follows: we write Ψc = (0, ϕc)t and define

v(t) = Tp(−ct)u(t)− Ψc. (52)

Here Tp(s) acts as a rotation matrix. Hence, if T′
p(0) denotes the infinitesimal generator

of Tp(s), from the properties: Tp(s)T′
p(0) = T′

p(0)Tp(s), Tp(−s)JTp(s) = J, G′(Tp(s)u) =

Tp(s)H′(u), J−1T′
p(0)u = −F′(u) (F(u) = 1

2

∫
|u|2dx) we obtain, via Taylor Theorem,

dv

dt
= J[G′(v + Ψc) + cF′(v + Ψc)]

= J[G′′(Ψc)v + cF′′(Ψc)v + G′(Ψc) + cF′(Ψc) + O(‖v‖2)] = Nv + O(‖v‖2),
(53)

where in the last equality we are taking into account that Ψc is a critical point of G + cF and
J is a bounded linear operator. Here, N is the linear operator defined in (48). Therefore, we
are interested in the problem of determining a growing mode solution v(t) = eλtΦ(x) with
ℜ(λ) > 0 of the linearized problem

dv

dt
= Nv. (54)

We note that the eigenvalues of N appear in conjugate pairs. Now, since d
dc

∫ L
0 ϕ2

c (x)dx > 0
(see (45)) it follows from Lemma 5.1, Theorem 5.6 and Theorem 5.7 that mj = 2j − 1, or, 2j − 2.
Therefore for j ≧ 2, the number Ireal(Nj) ≧ mj > 0. Then the zero solution of (54) is unstable,
which implies that the orbit Rϕc is nonlinearly unstable (see Grillakis (1988) and Grillakis et
al. (1990)).
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Remark 5.6. 1. The Instability criterium in Grillakis et al. (1990) can not be used for studying the
instability of the orbit Rϕc . In fact, we denote by n(Hc) the number of negative eigenvalues of

the diagonal linear operator Hc ≡ J−1 N. Since the kernel of Hc is generated by ϕc and d
dx ϕc,

and d
dc

∫ jL
0 ϕ2

c (x)dx > 0, we have that if n(Hc) − 1 is odd then the orbit Rϕc is nonlinearly

unstable in H1
per([0, jL]). Now, from Lemma 5.1 we have for j ≧ 2 that n(Hc)− 1 = Pj − 1 =

2j− 1, or, 2j− 2. But as we will see latter Pj = 2j− 1 (see Section 6), therefore we have that n(Hc)
is always even.

2. The analysis in this subsection can be applied to study the following forced periodic nonlinear
Schrödinger equation

iut − uxx − γ|u|2u = εexp(−iΩ2t + iα)− iδu,

where ε is the small forcing amplitude, δ is the small damping coefficient, Ω2 is the forcing frequency
and α is an arbitrary phase (see Shlizerman&Rom-Kedar (2010)) .

5.3.2 The cnoidal case

Equation (32) has other family of periodic solutions determined by the Jacobi elliptic function
cnoidal. Indeed, now supposse that equation (33) now is written in the quadrature form

[ϕ′
c]

2 =
1

2
(a2 + ϕ2

c)(b
2 − ϕ2

c).

For b > 0 we have that −b ≦ ϕc ≦ b and so 2c = b2 − a2 and 4Bϕc = a2b2 > 0. Therefore, it is
possible to obtain (see Angulo (2007)) that the profile

ϕc(ξ) = bcn(βξ; k) (55)

is a solution of (32) with k2 = b2/(a2 + b2) and β =
√
(a2 + b2)/2. Then by using the implicit

function theorem we have the following result (see Angulo (2007)).

Theorem 5.9. Let L > 0 arbitrary but fixed. Then we have two branches of cnoidal wave solutions for
the NLS equation. Indeed,

1) there are a strictly increasing smooth function c ∈ (0,+∞) → b(c) ∈ (
√

2c,+∞) and a smooth
curve c ∈ (0,+∞) → ϕc,1 ∈ H1

per([0, L]) of solutions for equation (32) with

ϕc,1(ξ) = b cn
(√

b2 − c ξ; k
)

. (56)

Here the modulus k = k(c) satisfies k2 = b2/(2b2 − 2c) and k′(c) > 0,

2) there are a strictly decreasing smooth function c ∈ (− 4π2

L2 , 0) → a(c) ∈ (
√
−2c,+∞) and a

smooth curve c ∈
(
− 4π2

L2 , 0
)
→ ϕc,2 ∈ H1

per([0, L]) of solutions for equation (32) with

ϕc,2(ξ) =
√

a2 + 2c cn
(√

a2 + c ξ; k
)

. (57)

Here the modulus k = k(c) satisfies k2 = (a2 + 2c)/(2a2 + 2c) and k′(c) > 0.
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Now, for the cnoidal case it makes necessary to study the behavior of the first eigenvalues
related to the following self-adjoint operators

L−
i = − d2

dx2
+ c − 3ϕ2

c,i, L+
i = − d2

dx2
+ c − ϕ2

c,i, i = 1, 2. (58)

The next theorem gives the specific structure for L±
i .

Theorem 5.10. Let L > 0 and ϕc,i, i = 1, 2, the cnoidal wave solution given by Theorem 5.9. Then,

1) The operators L+
i defined on H2

per([0, L]) have exactly one negative eigenvalue which is simple, the
eigenvalue zero is also simple with eigenfunction ϕc,i. Moreover, the remainder of the spectrum is a
discrete set of eigenvalues converging to infinity.

2) The operators L−
i defined on H2

per([0, L]) have exactly two negative eigenvalue which are simple.

The eigenvalue zero is the third one, which is simple with eigenfunction ϕ′
c,i. Moreover, the

remainder of the eigenvalues are double and converging to infinity.

Proof. The proof is a consequence of Theorem 5.3 and the Oscillation Sturm-Liouville Theorem
(see Angulo (2007)).

We note that the stability or instability of the cnoidal solutions ϕc,i can not be determined
by using the same techniques mentioned above for the case of dnoidal solution (see Angulo

(2007) for discussion). Indeed, since d
dc‖ϕc,i‖2 > 0 and for

Hc,i =

(L−
i 0

0 L+
i

)
(59)

we have n(Hc,i) − 1 = 2, it follows that the Grillakis et. al (1990) stability approach is not
applicable in this case. A similar situation occurs with Grillakis (1988) and Jones (1988)
instability theories.

Remark 5.7. Recently, Natali&Pastor (2008) have determined that the cnoidal wave solution in (55)
is orbitally unstable by the periodic flow of the Klein-Gordon equation

utt − uxx + u − |u|2u = 0, (60)

by using the abstract theory due to Grillakis et al. (1990). In fact, if one considers a standing wave
solution for (60) of the form u(x, t) = eict ϕc(x), |c| < 1, we conclude from Theorem 5.10 that the
operator

Lkg =

(
L−

kg 0

0 L+
kg

)
(61)

has three negative eigenvalues which are simple and the eigenvalue zero is double. Here, L−
kg =(

− d2

dx2 + 1 − 3ϕ2
c −c

−c 1

)
and L+

kg =

(
− d2

dx2 + 1 − ϕ2
c c

c 1

)
. So, since D = − d

dc

(
c
∫ L

0 ϕc(x)2dx
)

is negative it follows that n(Lkg) − 0 = 3 is an odd number. Then, the approach in Grillakis et al.
(1990) can be applied in order to conclude the instability result.

In Section 7 we establish a new criterium for the instability of periodic traveling wave
solutions for general nonlinear dispersive equations. An application of this technique shows
that the cnoidal wave profile associated to the mKdV is actually unstable.

63Orbital Stability of Periodic Traveling Wave Solutions

www.intechopen.com



6. Hill’s operators and the stability of periodic waves.

As we have seen in previous sections the study of the spectrum associated to the Hill operator

LQ = − d2

dx2
+ Q(x), (62)

with Q being a periodic potential, is of relevance in the stability’s study of periodic traveling
wave solutions for nonlinear evolution equations. Recently, Neves (2009), have presented
a new technique to establish a characterization of the nonpositive eigenvalues of LQ by
knowing one of its eigenfunctions. Next, we will give the main points of his theory and we
apply it to a specific situation. Indeed, let us consider the Hill equation related to the operator
in (62),

y′′(x) + Q(x)y(x) = 0, (63)

where we assume that the potential Q is a π−periodic function. Denote by y1 and y2 two
normalized solutions of (63), that is, solutions uniquely determined by the initial conditions
y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1. The characteristic equation associated with (63) is
given by

ρ2 − [y1(π) + y′2(π)]ρ + 1 = 0, (64)

and the characteristic exponent is a number α which satisfies the equation eiαπ = ρ1, e−iαπ =
ρ2, where ρ1 and ρ2 are the roots of the characteristic equation (64). It is well known from
Floquet’s Theorem (see Magnus&Winkler (1976)) that if ρ1 = ρ2 = 1 equation (63) has a
nontrivial π−periodic smooth solution. So, if one considers p such periodic solution and y
be another solution which is linearly independent of p, then y(x + π) = ρ1y(x) + θp(x), for
θ constant. The case θ = 0 is equivalent to say that y is also a π−periodic solution. Next,
suppose that z1 < z2 < · · · < z2n are the simple zeros of p in the interval [0, π). Then from
Taylor’s formula, p can be written as

p(x) = (x − zi)p′(zi) + O((x − zi)
3), (65)

and therefore, for x near zi we deduce, x−zi

p(x)
= 1

p′(zi)+O((x−zi)2)
. Next, we choose in each

interval (zi−1, zi) one point xi such that p′(xi) = 0. Thus, the zeros zi of p and xi of p′

intercalated as follows z1 < x1 < z2 < x2 < · · · < z2n < x2n and, of course, they shall
repeat to the right and to the left by the periodicity of the functions.
Define, for [x1, x1 + π)

q(x) =
x − zi

p(x)
=

1

p′(zi) + O((x − zi)3)
, x ∈ [xi−1, x1), (66)

where i = 2, · · ·, 2n + 1, z2n+1 = z1 + π and x2n+1 = x1 + π. Next, it is possible to extend q
to whole line by periodicity. Moreover we guarantee that function q is a piecewise smooth
with jump discontinuities in the points xi, q is continuous to the right and π−periodic with
q′(zi) = 0, q′(xi) =

1
p(xi)

, that is, q′ is continuous on whole real line.

Then, we can state the following result which is a new version of the Floquet Theorem for the
case ρ1 = ρ2 = 1.
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Theorem 6.1. If p is a π−periodic solution of (63), q is the function defined in (66) and

j(xi) =
q(x+i )− q(x−i )

p(xi)
= − zi+1 − zi

p2(xi)
.

Then, the solution y linearly independent with p such that the Wronskian W(p, y) = 1 satisfies

y(x + π) = y(x) + θp(x), (67)

where θ is given by

θ = ∑
xi∈(0,π]

j(xi) + 2
∫ π

0

q′(x)
p(x)

dx. (68)

In particular, y is π−periodic if and only if θ = 0.

Proof. See Neves (2009).

Now, we turn back to the linear operator in (62). We have from Oscillation Theorem (see
Magnus&Winkler (1976)) that the spectrum of LQ under periodic conditions is formed by an
unbounded sequence of real numbers, λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 · ·· < λ2n−1 ≤ λ2n · ··, where
λ′

ns are the roots of the characteristic equation

∆(λ) = y1(π, λ) + y′2(π, λ) = 2, (69)

and y1(·, λ) and y2(·, λ) are the solutions of the differential equation −y′′ + (Q(x)− λ)y = 0
determined by the initial conditions y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0 and y′2(0, λ) = 1.
We recall that the mapping λ → ∆(λ) is an analytic function.

Now, we know that the spectrum of LQ is also characterized by the number of zeros of the
eigenfunctions. So, if p is an eigenfunction associated to the eigenvalues λ2n−1 or λ2n, then p
has exactly 2n zeros in the interval [0, π). We can enunciate the converse of the previous result
with the following statement.

Theorem 6.2. If p is the eigenfunction of LQ associated with the eigenvalue λk, k ≥ 1, and θ is the
constant given by Theorem 6.1, then λk is simple if and only if θ �= 0. In addition, if p has 2n zeros in
the interval [0, π), then λk = λ2n−1 if θ < 0, and λk = λ2n if θ > 0.

Proof. See Neves (2009).

Remark 6.1. We note that the main idea in the proof of Theorem 6.2 is to determine the sign of ∆′(λk),
this fact can be obtained from the equality

∆′(λk) = −θ
[
‖y1‖2 p2(0) + 2 < y1, y2 > p(0)p′(0) + ‖y2‖2(p′(0))2

]
.

Indeed, since ∆′(λk)θ < 0 we have for θ < 0 that λk = λ2n−1 and for θ > 0 that λk = λ2n.

As an application of Theorem 6.2 we obtain the spectral information for the linear operator
Lmkdv in (40) with ϕc being the dnoidal profile determined by Theorem 5.1. Initially, we write

Lmkdv = − d2

dx2 + c − 3ϕ2
c = − d2

dx2 + Q(x, c), then for this kind of operators we already know
that the nonpositive spectrum is invariant with respect to parameter c (see Neves (2008)), so,
it is sufficient to establish the spectral condition contained in Theorem 4.1 for a fixed value of
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c ∈ I = (2π2/L2,+∞). Then, if one considers L = π and the unique value of c ∈ I such that
k(c) = 1

2 , the value of θ in Theorem 6.1 will be θ ≈ −0.5905625. Now, we known that ϕ′
c is an

eigenfunction of Lmkdv with eigenvalue λ = 0 and such that it has two zeros in the interval
[0, π). We conclude from Theorem 6.2 that Lmkdv possesses one negative eigenvalue which is
simple. Moreover, since θ �= 0 it follows that λ = 0 is a simple eigenvalue.

Remark 6.2. Theorem 6.1 and Theorem 6.2 can also be used to show that the operator Lmkdv with
periodic boundary conditions on [0, jL], j ≧ 2, has the zero eigenvalue as being simple and it is the
2j-nth eigenvalue. So, the number of negative eigenvalue of Lmkdv is Pj = 2j − 1.

7. Instability of periodic waves

This section is devoted to establish sufficient conditions for the linear instability of periodic
traveling wave solutions, u(x, t) = ϕc(x − ct), for the general class of dispersive equation in
(8). We shall extend the asymptotic perturbation theories in Vock&Hunziker (1982) and Lin
(2008) (see also Hislop&Sigal (1996)) to the periodic case.

We start by denoting f (u) = up+1/(p + 1), then the linearized equation associated to (8) in
the traveling frame (x + ct, t) is given by

(∂t − c∂x)u + ∂x( f ′(ϕc)u −Mu) = 0. (70)

As mentioned in Subsection 5.3, the central point in this type of problems is the existence of a
growing mode solution eλtu(x), with ℜ(λ) > 0, for (70). Hence, the function u must satisfy

(λ − c∂x)u + ∂x( f ′(ϕc)u −Mu) = 0. (71)

Equation (71) gives us the family of operators Aλ : Hm2
per([0, L]) → L2

per([0, L]) given by,

Aλu = cu +
c∂x

λ − c∂x
( f ′(ϕc)u −Mu). (72)

Hence the existence of a growing mode solution is reduced to find λ > 0 such that Aλ has a
nontrivial kernel. For A0 = M+ c − f ′(ϕc) (see (10)), we have the following results:

1) For λ > 0, Aλ → A0 strongly in L2
per([0, L]) when λ → 0+.

2) The compact embedding Hm2
per([0, L]) ֒→ L2

per([0, L]) give us σess(Aλ) = ∅ for all λ > 0.

3) There exists Λ > 0 such that for all λ > Λ, Aλ has no eigenvalues z ∈ C satisfying
ℜ(z) ≤ 0.

Definition 7.1. An eigenvalue μ0 ∈ σp(A0) is stable with respect to the family of perturbations Aλ

defined in (72) if the following two conditions hold:
(i) there is δ > 0 such that the annular region Qδ := {z ∈ C; 0 < |z − μ0| < δ} is contained in the
ρ(A0) and in the region of boundedness for the family {Aλ}, ∆b, defined by

∆b := {z ∈ C; ||Rλ(z)||B(L2
per)

≤ M, ∀ 0 < λ ≪ 1}.

Here M > 0 does not depend on λ and Rλ(z) = (Aλ − z)−1.
(ii) Let Γ be a simple closed curve about μ0 ∈ σp(Aλ) contained in the resolvent set of Aλ and define

the Riesz projector Pλ = 1
2πi

∫
Γ

Rλ(z)dz. Then

lim
λ→0+

||Pλ − Pμ0 ||B(L2
per)

= 0. (73)
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Remark 7.1. It follows from Definition 7.1 that for all 0 < λ ≪ 1, Aλ has total algebraic multiplicity
equal to the μ0 inside Qδ.

The next lemma is the cornerstone of our analysis.

Lemma 7.1. The following three conditions are equivalent:

(i) the number z ∈ ∆b;

(ii) for all u ∈ C∞
per([0, L]) we have ||(Aλ − z)u||L2

per
≥ ε||u||L2

per
> 0 for all 0 < λ ≪ 1;

(iii) the number z ∈ ρ(A0).

Proof. See Angulo&Natali (2010).

Lemma 7.1 enable us to prove the following result.

Theorem 7.1. Let Aλ be the linear operator defined in (72). Suppose that μ0 is a discrete eigenvalue
of LM. Then μ0 is stable in the sense of the Definition 7.1.

Proof. See Angulo&Natali (2010).

Then, we can enunciate the following instability criteria (see Lin (2008) for the solitary wave
case).

Theorem 7.2. Let ϕc be a periodic traveling wave solution related to equation (11). We assume that
ker(A0) = [ϕ′

c]. Denote by n−(A0) the number (counting multiplicity) of negative eigenvalues of
the operator A0. Then there is a purely growing mode eλtu(x) with λ > 0, u ∈ Hm2

per([0, L]) to the
linearized equation (70), if one of the following two conditions is true:

(i) n−(A0) is even and d
dc

∫ L
0 ϕ2

c (x)dx > 0.

(ii) n−(A0) is odd and d
dc

∫ L
0 ϕ2

c (x)dx < 0.

Proof. See Angulo&Natali (2010).

7.1 Nonlinear instability of cnoidal waves for the mKdV equation.

The arguments presented in Subsection 5.3.2 and from Theorem 7.2 enable us to determine
that the cnoidal wave solutions ϕc,i defined by Theorem 5.9 are linearly unstable for the mKdV
equation. Now, we sketch the proof that linear instability implies nonlinear instability of
cnoidal waves for the mKdV equation. In fact, we have that the linearized equation (70) takes
the form ut = JL−

i u, i = 1, 2, where J = ∂x and L−
i are defined in (58). So, JL−

i has a positive

real eigenvalue. Next, we define S : H1
per([0, L]) → H1

per([0, L]) as S(u) = uφ(1) where uφ(t)
is the solution of the Cauchy problem,

{
ut + 3u2ux − cux + uxxx = 0,
u(x, 0) = φ(x).

(74)

Then, it follows that the cnoidal waves ϕc,i are stationary solutions for (74). Now, from
Colliander et al. (2003) follows that the mapping data-solution related to the mKdV equation
(74), Υc : H1

per([0, L]) → C([0, T]; H1
per([0, L])) is smooth. Furthermore S(ϕc,i) = ϕc,i for

i = 1, 2. Thus, since S is at least a C1,α map defined on a neighborhood of the fixed point
ϕc,i, we have from Henry et al. (1982) that there is an element μ ∈ σ(S′(ϕc,i)) with |μ| > 1

which implies the nonlinear instability in H1
per([0, L]) of the cnoidal wave solutions ϕc,i.

67Orbital Stability of Periodic Traveling Wave Solutions

www.intechopen.com



8. Stability of periodic-peakon waves for the NLS-δ

Recently Angulo&Ponce (2010) have established a theory of existence and stability of
periodic-peakon solutions for the cubic NLS-δ equation in (17) (p = 2). More precisely, it was
shown the existence of a smooth branch of periodic solutions, (ω, Z) → ϕω,Z ∈ H1

per([0, 2L]),
for the semi-linear elliptic equation

− ϕ′′
ω,Z + ωϕω,Z − Zδ(x)ϕω,Z = ϕ3

ω,Z, (75)

such that
(1) − ϕ′′

ω,Z(x) + ωϕω,Z(x) = ϕ3
ω,Z(x) for x �= ±2nL, n ∈ N.

(2) ϕ′
ω,Z(0+)− ϕ′

ω,Z(0−) = −Zϕω,Z(0),

(3) limZ→0 ϕω,Z = ϕω ,

(76)

where ϕω is the dnoidal profile in (39). We note that if ϕω,Z is a solution of (75) then ϕω,Z(·+ y)
is not necessarily a solution of (75). Therefore the stability study for the “periodic-peakon” ϕω,Z

is for the orbit,
Ωϕω,Z = {eiθ ϕω,Z : θ ∈ [0, 2π]}. (77)

The profile of ϕω,Z is based in the Jacobi elliptic function dnoidal and determined for ω > Z2/4
by the patterns:

(1) for Z > 0, ϕω,Z(ξ) = η1,Zdn
(

η1,Z√
2
|ξ|+ a; k

)
,

(2) for Z < 0, ϕω,Z(ξ) = η1,Zdn
(

η1,Z√
2
|ξ| − a; k

)
,

(78)

where η1,Z and k depend of ω and Z. The shift-function a satisfies that limZ→0 a(ω, Z) = 0.
So, since the basic symmetry for the NLS-δ equation is the phase-invariance we have the
following stability definition for Ωϕω,Z .

Definition 8.1. For η > 0 we put Uη = {v ∈ H1
per([0, 2L]); inf

θ∈R

||v − eiθ ϕω,Z||H1
per

< η}. The

periodic standing wave eiωt ϕω,Z is stable if for ǫ > 0 there exists η > 0 such that for u0 ∈ Uη , the
solution u(t) of the NLS-δ equation with u(0) = u0 satisfies u(t) ∈ Uǫ for all t ∈ R. Otherwise,
eiωt ϕω,Z is said to be unstable in H1

per([0, 2L]).

The stability result established in Angulo&Ponce (2010) for the family of periodic-peakon in
(78) is the following;

Theorem 8.1. Let ω >
π2

2L2 , ω >
Z2

4 and ω large. Then we have:

1. For Z > 0 the dnoidal-peakon standing wave eiωt ϕω,Z is stable in H1
per([−L, L]).

2. For Z < 0 the dnoidal-peakon standing wave eiωt ϕω,Z is unstable in H1
per([−L, L]).

3. For Z < 0 the dnoidal-peakon standing wave eiωt ϕω,Z is stable in H1
per,even([−L, L]).
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