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1. Introduction

Speaker recognition (SRE), also called as voiceprint recognition, is the problem of determining
the identity of the speaker from a sample of speech signal. It is an important branch of speech
signal processing and has many potential applications such as in telephone banking, access
control, information security, law enforcement and other forensic applications (Bimbot et al.,
2004; Campbell Jr., 1997; Cole et al., 1997; Kinnunen & Li, 2010; Reynolds, 2002).
Compared with other biometrics techniques, speaker recognition has its own advantages: (1)
It is very convenient, natural and low-cost to acquire the speech sample: it does not need
the special devices; the telephone, mobile phone or ordinary microphone is adequate. (2) It
can be used remotely: with the ubiquitous telecommunications networks and the Internet,
the speech sample can be easily transferred through telephone or VoIP, which makes the
remote recognition possible. (3) The speech sample contains many inborn characters: from
the speech, we can extract some information about vocal tract, mouth, tongue, soft palate,
nasal cavity, and etc. (4) The speech sample also contains some acquired characters, such as
tone, volume, pace, rhythm, rhetoric, which reflect speaker’s place of living, education level,
and some personal habits information.
In speaker recognition, the Gaussian mixture model - universal background model
(GMM-UBM) is a classical yet widely used method for text-independent speaker verification
(Reynolds et al., 2000). In this method, the target speaker is modeled as a GMM and the
imposters are modeled as a UBM. When testing, the speech sample is scored as likelihood
by the GMM and UBM respectively, and then the likelihood ratio hypothesis test is used for
speaker verification. Besides the GMM-UBM, several other methods are developed recently.
The most successful ones include the support vector machine using GMM supper vector
(GSV-SVM) (Campbell et al., 2006), which concatenate the GMM mean vectors as the input
for SVM training and test, and joint factor analysis (JFA) (Kenny et al., 2007), which jointly
models the channel subspace and the speaker subspace. Although other methods achieve
rapid progress, GMM-UBM is still the basis for their developments.
As the meanwhile, the discriminative technologies, such as minimum classification error
(MCE), maximum mutual information (MMI), minimum phone error (MPE), feature domain
MPE (fMPE), have been achieved great success in speech recognition and language
recognition (Burget et al., 2006; Juang & Katagiri, 1992; Povey & Kingsbury, 2007; Woodland
& Povey, 2002).
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In speaker recognition, many discriminative approaches have been reported. As for the
GMM-UBM method, the approaches can be divided into two catalogs. (1) Some approaches
aim to jointly train the target speaker model and corresponding anti-model. For example, In
(Korkmazskiy & Juang, 1996), the MCE criterion is used to adapt talker model (i.e., speaker
model) parameters and the corresponding anti-talker model parameters. In (Rosenberg
et al., 1998), the minimum verification error (MVE) criterion is used to train the speaker and
anti-speaker models and also the decision threshold. In (Ma & Chang, 2003), MMI, MCE,
figure of merit (FOM) criteria are used to train the target speaker model and corresponding
imposter model. In (Angkititrakul & Hansen, 2007), the training process is divided into two
stages: in the first stage, the MCE is used minimize the classification error among the in-set
speaker models; in the second stage, the MVE is used to minimize the verification error
between the in-set and background models. In (Chao et al., 2008; 2009), the MVE methods
are used to reinforce the discriminability between the target speaker model and the target
speaker dependent anti-model. (2) Other approaches attempt to discriminatively adapt the
target speaker model from the UBM, which can be viewed as the modification of the classical
maximum a posteriori (MAP) adaptation (Gauvain & Lee, 1994). For example, In (Zhao
et al., 2006), a new speaker adaptation method which combines MAP and reference speaker
weighting (RSW) adaptation is presented in a hierarchical multigrained mode. In (Longworth
& Gales, 2006), an MMI based adaptation method is reported.
From the discriminative approaches mentioned above, we can find that the UBM is either
unchanged or adapted to the target speaker dependent anti-model. If the anti-model is target
speaker dependent, it will not be the universal background model anymore. But sometimes
we have to use the UBM. For example, for fast scoring in GMM-UBM method, we need
UBM to determine the orders of mixtures; in the state-of-the-art JFA and GSV-SVM methods,
we need UBM to calculate the statistics or the GMM mean vectors. So herein, we want to
discriminatively train the UBM to improve its performance.
In order to improve the quality of UBM, many researchers try to select suitable data. For
example, in (Hasan et al., 2010; Huang & Li, 2010; Zhang et al., 2010), the data selection based
on sub-sampling, maximum entropy and vocal tract length methods are introduced. But as
the authors known, there is little report on training the UBM discriminately.
In this chapter, we will discuss the discriminative UBM training method. Firstly we will
give a brief review of the GMM-UBM method. After that, we propose our discriminative
UBM training method. We will discuss its principle and implementation details. At last, the
presented method will be evaluated through large-scale experiments. The results on NIST
speaker recognition evaluation dataset will be reported.

2. Overview of GMM-UBM

The GMM-UBM can be viewed as a likelihood-ratio detector: the UBM is trained to represent
the speaker-independent distribution of features while the GMM is adapted from the UBM
to depict the individual speaker characteristics. In GMM-UBM system, as shown in Fig. 1,
a UBM is firstly trained to capture the general characteristics of all the speakers, so it is
called universal background model. The UBM parameters include weights, mean vectors
and covariance matrices, usually denoted by λ = {wm,µm, Σm}M

m=1, where M is the number
of Gaussian mixtures. In speaker recognition, usually the value of M is large, varied from
several hundred to several thousand, and the covariance matrices are often set in diagonal
form, which facilitates the fast computation.
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(a) Speaker enrollment

WDO

IOO
NNT

Vjtgujqnf

Tguwnv

Xgtkhkecvkqp"Fcvc

(b) Speaker verification

Fig. 1. The basic framework of GMM-UBM system

For the t-th frame of feature vector xt, the UBM gives the likelihood as

p(xt|λ) =
M

∑
m=1

wmN (xt;µm, Σm) (1)

For a T-frame segment x = {xt}T
t=1, the likelihood is approximated via frame independent

assumption as

p(x|λ) =
T

∏
t=1

p(xt|λ) (2)

Usually, the logarithm form of likelihood is used for calculation.
The UBM is usually trained by using the Baum-Welch algorithm (Huang et al., 2000) based
on a maximum likelihood (ML) criterion. The Baum-Welch algorithm is in fact a type of
expectation-maximization (EM) algorithm and can be implemented iteratively. Suppose the
current parameters are obtained, then the new parameters can be updated as

wnew
m =

nm

T
(3)

µnew
m =

fm

nm
(4)

Σ
new
m =

Sm

nm
(5)

where nm, fm and Sm are the zero-th order, first order and second order statistics

nm =
T

∑
t=1

γm(xt) (6)

fm =
T

∑
t=1

γm(xt)xt (7)

Sm =
T

∑
t=1

γm(xt)xtx
T
t (8)
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γm(xt) is m-th mixture of occupation probability

γm(xt) =
wmN (xt;µm, Σm)

∑
M
m′=1 wm′N (xt;µm′ , Σm′ )

(9)

The initial parameters can be set as: wm = 1/M, Σm = I and each µm can be randomly
selected from the training samples or use the finer Lind-Buzo-Gray (LBG) algorithm to get
the initial values. Through enough iterations, the local maximum of the likelihood can be
achieved and the parameters become stable.
After the UBM is trained, in the enrollment stage, the mean vectors of UBM is adapted by
using enrollment data xs of speaker s under MAP criterion (Gauvain & Lee, 1994).

µs
m =

nm

nm + γ

fm

nm
+

γ

nm + γ
µm (10)

where nm and fm are calculated by using enrollment segment xs, γ is the relevance factor, and
usually set as 16 (Reynolds et al., 2000). Note that, the weights and covariance matrices are
not updated. Thus, the parameters for GMM of speaker s are λs = {wm,µs

m, Σm}M
m=1.

In the speaker verification stage, the log-likelihood-ratio (LLR) of the test segment xr is
calculated by using the GMM and the UBM, and compared with threshold to give the last
acceptance or rejection decision.

s(xr,λs,λ) =
1

Tr
(log p(xr|λs)− log p(xr|λ)) ≷ sth (11)

where Tr is the number of frames of verification segment xr. This equation can be expanded
as

s(xr,λs,λ) =
1

Tr

Tr

∑
t=1

(log
M

∑
m=1

ws
mN (xr

t ;µs
m, Σ

s
m)− log

M

∑
m=1

wmN (xr
t ;µm, Σm)) (12)

Note that in our case, ws
m = wm, Σ

s
m = Σm, and µs

m is adapted from µm. This means that
the scores calculated by the corresponding mixtures of GMM and UBM are approximately
equal. According to the property of GMM, we know that each feature frame is located at a
local region, that is to say, most mixtures will give very small scores for each frame. So we can
neglect these mixtures and only calculate top N mixtures for LLR scoring.

s(xr,λs,λ) =
1

Tr

Tr

∑
t=1

(log
N

∑
n=1

ws
mn(t)

N (xr
t ;µs

mn(t)
, Σ

s
mn(t)

)− log
N

∑
n=1

wmn(t)N (xr
t ;µmn(t), Σmn(t)))

(13)
where {mn(t)}N

n=1 are the top N scoring mixture indices calculated by UBM for the frame xt.
This fast scoring strategy is introduced in (Reynolds et al., 2000) and widely used in
GMM-UBM method and other similar circumstances.

3. Discriminative UBM training

From the above section, we can see that the UBM is trained under ML criterion. This criterion
is asymptotically optimal, in another word, it is optimal if there are infinite amount of training
data. In practice, this condition can not be satisfied. The available training data is always
limited. As a consequence, likelihood based training can not guarantee optimal performance.
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For speaker verification systems, the most important performance measure is the verification
errors. So we borrow the minimum verification error (MVE) criterion (Rosenberg et al., 1998)
to develop a discriminative UBM training method.
Note that our motivation is different to other discriminative approaches for speaker
recognition: we only want to obtain a high quality UBM. The flowchart is showed in Fig. 2.
We can observed that, the enrollment data and verification data are all our training data.

WDO

IOO

NNT
Vjtgujqnf

TguwnvXgtkhkecvkqp"Fcvc

Gptqnnogpv Fcvc

OCR

Fig. 2. The flowchart for discriminative UBM training

3.1 Discriminative framework

Similar to MCE criterion (Juang & Katagiri, 1992), the MVE criterion also can optimized by
using generalized probabilistic descent (GPD) framework. To implement it, a smoothed loss
function should be defined first and then the gradient descent method is used to obtain the
(local) minimum of the loss function.
Firstly, we define the false verification function (similar to discriminant function in MCE) as

d(i,λ) = [log p(xr|λs)− log p(xr|λ)− sth] sign(i) (14)

where i denotes the i-th trial which involves s-th speaker model and r-th verification segment,
and

sign(i) =

{

−1 if i is target trial

1 if i is non-target trial
(15)

From (14), we can see that d(i,λ) > 0 indicates trial i is a false verification and d(i,λ) < 0
implies a correct verification. The value of the false verification function indicates the
distortion between the models and the corresponding training data. The larger the false
verification function is, the more adjustment of the model parameters is required to improve
the verification performance.
Next, we will define the loss function. In general, the loss function is a function of the false
verification function. Obviously, the loss function and the false verification function can be
defined individually. Loss function is used to show the cost of mis-verification a trial. It is
required that the loss function should be a differentiable, and monotonically non-decreasing
function. Usually, sigmoid function is a good choice. The gradients of this function are easy
to be obtained. The loss function is defined as

l(i,λ) =
cost(i)

1 + exp{−αd(i,λ)}
(16)

where α is the slop parameter of sigmoid function. cost(i) is the cost of false verification of
i-th trial.
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Then, the objective function (total loss) need to be minimized is

L(λ) =
I

∑
i=1

l(i,λ)u(l(i,λ) + δ) (17)

where u(·) is a unit function

u(x) =

{

1 if x ≥ 0

0 if x < 0
(18)

and δ is a small positive number.
From (17), it is clear that the incorrectly verified trials (for the trials such that l(i,λ) > 0)
and the correctly verified but near the decision boundary trials (for the trials such that 0 ≥
l(i,λ) ≥ −δ) are used for training.
We can use the gradient descent algorithm to optimize this objective function. Note that herein
we only discuss the mean vectors. Other parameters can be obtained similarly. The update
formula is

µm(n + 1) = µm(n)− εn
∂L(λ)

∂µm
(19)

where εn is the step factor.
In practise, we can use Baum-Welch algorithm to obtain the parameters of UBM initially, then
use (19) to update its mean vectors discriminatively.

3.2 Gradients

For the gradient descent algorithm, the most important step is to obtain the gradients of the
objective function. It is not easy but straightforward. We will solve this problem step by step.
The gradient of the objective function w.r.t the mean vector is

∂L(λ)

∂µm
=

I

∑
i=1

∂l(i,λ)

∂µm

=
I

∑
i=1

∂l(i,λ)

∂d(i)

∂d(i,λ)

∂µm

=
I

∑
i=1

α

cost(i)
l(i,λ) [cost(i)− l(i,λ)]

∂s(i,λ)

∂µm
sign(i) (20)

where ∂s(i,λ)/∂µm consists of two items

∂s(i,λ)

∂µm
=

1

Tr

(

∂log p(xr|λs)

∂µm
−

∂log p(xr|λ)

∂µm

)

(21)

For the first item, because

log p(xr|λ) =
Tr

∑
t=1

log p(xr
t |λ)

=
Tr

∑
t=1

log
M

∑
m=1

wmN (xr
t ;µm, Σm) (22)
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thus, we can obtain

∂log p(xr|λ)

∂µm
=

Tr

∑
t=1

1

p(xr
t |λ)

∂wmN (xr
t ;µm, Σm)

∂µm

=
Tr

∑
t=1

−2γm(x
r
t )Σ

−1
m (xr

t −µm) (23)

For the second item, according to (10), we know that {µs
m}

M
m=1 is a function of {µm}M

m=1.
Based on the chain rule for derivation, we have

∂log p(xr
t |λ

s)

∂µm
=

Tr

∑
t=1

1

p(xr|λs)

M

∑
m′=1

∂(µs
m′ )T

∂µm

∂ws
m′N (xr

t ;µs
m′ , Σ

s
m′ )

∂µs
m′

(24)

Similar to (23), we can obtain

1

p(xr
t |λ

s)

∂ws
m′N (xr

t ;µs
m′ , Σ

s
m′ )

∂µs
m′

= −2γs
m′ (xr

t )(Σ
s
m′ )−1(xr

t −µs
m′ ) (25)

where γs
m′ (xr

t ) is the m′-th mixture occupation of xr
t calculated by GMM of speaker s.

Substitute (25) to (24), we get

∂log p(xr
t |λ

s)

∂µm
=

Tr

∑
t=1

M

∑
m′=1

−2γs
m′ (xr

t )
∂(µs

m′ )T

∂µm
(Σs

m′ )−1(xr
t −µs

m′ ) (26)

Next, we will get ∂(µs
m′ )T/∂µm. This can be divided into two cases. When m′ = m

∂(µs
m)

T

∂µm
=

(∑
Ts

t=1
∂γm(xs

t )
∂µm

(xs
t )

T + γI)(nm + γ)− ∂nm
∂µm

(∑
Ts

t=1 γm(xs
t )x

s
t + γµm)T

(nm + γ)2

=
∑

Ts

t=1
∂γm(xs

t )
∂µm

(xs
t)

T + γI

nm + γ
−

∂nm

∂µm

(µs
m)

T

nm + γ

=
∑

Ts

t=1
∂γm(xs

t )
∂µm

(xs
t −µs

m)
T + γI

nm + γ
(27)

where Ts is the number of frames of enrollment segment xs and

∂γm(xs
t)

∂µm
= 2(γm(x

s
t )− γ2

m(x
s
t ))Σ

−1
m (xs

t −µm) (28)

When m′ �= m

∂(µs
m′ )T

∂µm
=

(∑
Ts

t=1
∂γm′ (xs

t )
∂µm

(xs
t )

T)(nm′ + γ)− ∂nm′

∂µm
(∑

Ts

t=1 γm′ (xs
t )x

s
t + γµm′ )T

(nm′ + γ)2

=
∑

Ts

t=1
∂γm′ (xs

t )
∂µm

(xs
t)

T

nm′ + γ
−

∂nm′

∂µm

(µs
m′ )T

nm′ + γ

=
∑

Ts

t=1
∂γm′ (xs

t )
∂µm

(xs
t −µs

m′ )T

nm′ + γ
(29)
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where

∂γm′ (xs
t )

∂µm
= 2γm′ (xs

t )γm(x
s
t )Σ

−1
m (xs

t −µm) (30)

Until now, we have obtained all the gradients through manual derivation. The computation
of these gradients are not easy to implement, so we only consider the diagonal elements of
∂(µs

m′ )T/∂µm. We define

D = diag

{

∑
Ts

t=1 2(γm(xs
t )− γ2

m(x
s
t ))Σ

−1
m (xs

t −µm)(xs
t −µs

m)
T + γI

nm + γ

}

(31)

Using this diagonal matrix, (21) will become

∂s(i,λ)

∂µm
= −

2

Tr

{

Tr

∑
t=1

[

γs
m(x

r
t )D(Σs

m)
−1(xr

t −µs
m)− γm(x

r
t )Σ

−1
m (xr

t −µm)
]

}

(32)

Substitute (32) to (20), we can get the simplified version of gradients.

4. Squared loss function

In the gradient-type descent algorithms, the loss function decrease as the false verification
function decreases. However, if the loss function is defined improperly, the verification
performance will not be improved through discriminative training.
Besides the sigmoid loss function, the squared loss function (Chao et al., 2008) is also used. It
can be expressed as

l(i,λ) =

{

cost(i)α(d(i,λ) + δ)2 if d(i,λ) ≥ δ

0 otherwise
(33)

where α and δ are control parameters. Unlike sigmoid function, the squared loss function
has greater gradient for large d, which gives more penalty for the severe false verification
segments. To give an intuitive illustration, we borrow a figure from (Chao et al., 2009) and
show it in Fig. 3.

f

ukioqkf"nquu

3

(a) sigmoid loss function

f

uswctgf"nquu

/h
(b) squared loss function

Fig. 3. Comparison of sigmoid loss function and squared loss function (Chao et al., 2009)
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Using this squared loss function, the gradient of the objective function w.r.t the mean vector
will be

∂L(λ)

∂µm
=

I

∑
i=1

2αcost(i)(d(i,λ) + δ)
∂s(i,λ)

∂µm
sign(i) (34)

Other derivations are the same as that in Section 3.

5. Approximate conjugate gradient algorithm

To decrease the object function, gradient descent algorithms in Section 3. In fact, in
optimization, other methods, such as conjugate gradient algorithm, are usually used.
The gradient descent algorithm is simple to implement, since it only requires first-order
derivatives. But its convergent rate is slow. In contrast, the conjugate gradient algorithm has
good convergent property, but unfortunately it requires second-order derivatives. In Section
3, we can see that the first-order derivatives are very difficult to deal with, not to mention
the second-order derivatives. Herein, we introduce another optimization method, namely,
approximate conjugate gradient algorithm (Dixon, 1972), which only needs the first-order
derivatives but with fast convergent rate. For convenient expressing, we first define

g =
∂L(λ)

∂µm
(35)

By using the approximate conjugate gradient algorithm, the update formula will be

µm(n + 1) = µm(n)− εnpn (36)

where εn is the step factor and pn can be viewed as modified gradient, which can be expressed

as
pn = gn − βpn−1 (37)

where

β =
gT

n (gn − gn−1)

‖gn‖2
2

(38)

and ‖ · ‖2
2 is the squared 2-norm.

6. Experimental results

6.1 Experimental setup

In this section, the experiments are carried out on NIST speaker recognition evaluation
corpora (NIST, 2010). The UBM training (i.e., ML traing) data are selected from SRE04
1-side training set. The discriminative UBM training data come from SRE05 core test
condition (1conv4w-1conv4w) dataset. The test data come from SRE06 core test condition
(1conv4w-1conv4w) dataset. The numbers of trials of SRE05 and SRE06 are summarized in
Table 1.
For the frontend, speech/silence segmentation is performed by a G.723.1 VAD detector. 12
MFCC coefficients plus C0 are computed using 20 ms window and 10ms shift. Cepstral
mean subtraction and feature warping (Pelecanos & Sridharan, 2001) with a 3 s window are
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Dataset Target trial Non-target trial

SRE05 female 1540 16238

SRE05 male 1226 12398

SRE06 female 2712 27913

SRE06 male 2061 21211

Table 1. NIST SRE05 and SRE06 1conv4w-1conv4w trial summary

applied for channel mismatch compensation. Delta, acceleration and triple-delta coefficients
are appended to each feature vector, which results in a dimensionality of 52. After that, 25%
of low energy frames are discarded using a dynamic threshold. Then, HLDA is employed to
decorrelate features and reduce the dimensionality from 52 to 39. Finally, a feature domain
latent factor analysis (fLFA) (Vair et al., 2006) is applied to compensate the channel distortion.
The performance measures are the same as NIST speaker recognition evaluation (NIST, 2010),
using equal error rate (EER) and minimum detection cost function (DCF). DCF is defined as

DCF = 0.1Pmiss + 0.99Pfa (39)

where Pmiss is the miss probability and Pfa is false alarm probability. We vary the decision
threshold, the EER is achieved when Pmiss is equal to Pfa; the min DCF is achieved when DCF
get its minimum.

6.2 Baseline performance

A GMM-UBM system has been built as baseline for contrastive analysis. The
gender-dependant UBMs with 256 mixtures are trained. No score normalization technology
is used.
The performance of GMM-UBM system on SRE06 dataset is listed in Table 2. The EERs for
female is 7.76% and for male is 6.47%. For 256-mixture GMM-UBM system, this is a quite
good baseline.

Gender EER (%) min DCF (×100)

female 7.76 3.63

male 6.47 2.90

Table 2. Performance of baseline GMM-UBM system

6.3 Sigmoid loss function

In this section, discriminative UBM training with sigmoid loss function is tested. We use
SRE05 as training set and SRE06 as test set. The performance on training set and test set are
both given in Fig. 4, and the results on test set are listed in Table 3. We can see that after
discriminative UBM training, the EERs and min DCFs for female and male are all decreased
slightly. This shows that the discriminative UBM training is better than the generative
training.
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Fig. 4. Performance of discriminative UBM training with sigmoid loss function

Gender EER (%) min DCF (×100)

female 7.59 3.61

male 6.37 2.87

Table 3. Performance of discriminative UBM training with sigmoid loss function

6.4 Squared loss function

In this section, we change the sigmoid loss function to squared loss function. The performance
on training set and test set are both given in Fig. 5, and the results on test set are listed in
Table 4. Compared these results with that in Section 6.3, it can be observed that the squared
loss function is better than the sigmoid loss function. This is due to the more penalty for the
falser verification segments.

6.5 Approximate conjugate gradient algorithm

In this section, we change the gradient descent algorithm to approximate conjugate gradient
algorithm. The EERs and min DCFs are showed in Fig. 6 and Table 5. We can see that
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Fig. 5. Performance of discriminative UBM training with squared loss function

Gender EER (%) min DCF (×100)

female 7.45 3.59

male 6.16 2.85

Table 4. Performance of discriminative UBM training with squared loss function

the last female performance of approximate conjugate gradient algorithm is similar to that
of gradient descent algorithm, but with faster convergence speed. For the male gender, the
approximate conjugate gradient algorithm is better than the gradient descent algorithm. This
shows the effectiveness of the approximate conjugate gradient algorithm. At last, we compare
the detection error tradeoff (DET) curves (Martin et al., 1997) of the the baseline system and
discriminative UBM training with approximate conjugate gradient algorithm in Fig. 7. In the
figures, The circles denote the min DCF operating points. From the DET curves, we can see
that our proposed discriminative UBM training method achieves slightly better performance.
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Gender EER (%) min DCF (×100)

female 7.45 3.59

male 5.93 2.84

Table 5. Performance of discriminative UBM training with approximate conjugate gradient
algorithm
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Fig. 6. Performance of discriminative UBM training with approximate conjugate gradient
algorithm
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Fig. 7. The DET curves of baseline system and discriminative UBM system

7. Conclusion

In this chapter, we present a discriminative UBM training method for speaker recognition.
We build the discriminative framework and derive the update formula under minimum

254 Speech and Language Technologies

www.intechopen.com



Discriminative Universal Background Model Training for Speaker Recognition 15

verification error criterion. In this framework, we compare the sigmoid loss function and
squared loss function, the gradient descent algorithm and the approximate conjugate gradient
algorithm. The experimental results show that the our proposed discriminative UBM training
method is better than the prevalent ML training method.
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