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1. Introduction 

Underwater sound signals classification, localization and tracking of sound sources, are 

challenging tasks due to the multi-path nature of sound propagation, the mutual effects that 

exist between different sound signals and the large number of non-linear effects that reduces 

substantially the signal to noise ratio (SNR) of sound signals. In the region under 

observation, the Sado estuary, dolphins’ sounds and anthropogenic noises are those that are 

mainly present. Referring to the dolphins’ sounds, they can be classified in different types: 

narrow-band-frequency-modulated continuous tonal sounds, referred to as whistles, 

broadband sonar clicks and broadband burst pulse sounds.  

The system used to acquire the underwater sound signals is based on a set of hydrophones. 

The hydrophones are usually associated with pre-amplifying blocks followed by data 

acquisition systems with data logging and advanced signal processing capabilities for sound 

recognition, underwater sound source localization and motion tracking. For the particular 

case of dolphin’s sound recognition, dolphin localization and tracking, different practical 

approaches are reported in the literature that combine time-frequency representation and 

intelligent signal processing based on neural networks (Au et al., 2000; Wright, 2002; Carter, 

1981). 

This paper presents a distributed virtual system that includes a sound acquisition 

component expressed by 3 hydrophones array, a sound generation device, expressed by a 

sound projector, and two acquisition, data logging, data processing and data 

communication units, expressed by a laptop PC, a personal digital assistant (PDA) and a 

multifunction acquisition board. A water quality multiparameter measurement unit and two 

GPS devices are also included in the measurement system.  

Several filtering blocks were designed and incorporated in the measurement system to 

improve the SNR ratio of the captured sound signals and a special attention was dedicated 

to present two techniques, one to locate sound signals’ sources, based on triangulation, and 

other to identify and classify different signal types by using a wavelet packet based 

technique. 
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2. Main principles of acoustics’ propagation 

Sound is a mechanical oscillating pressure that causes particles of matter to vibrate as they 
transfer their energy from one to the next. These vibrations produce relatively small changes in 
pressure that are propagated through a material medium. Compared with the atmospheric 
pressure, those pressure variations are very small but can still be detected if their amplitudes 
are above the hearing threshold of the receiver that is about a few tenths of micro Pascal.  
Sound is characterized by its amplitude (i.e., relative pressure level), intensity (the power of 
the wave transmitted in a particular direction in  watts  per  square  meter), frequency and 
propagation speed. 
This section includes a short review of the basic sound propagation modes, namely, planar 
and spherical modes, and a few remarks about underwater sound propagation. 

2.1 Plane sound waves 
Considering an homogeneous medium and static conditions, i.e. a constant sound pressure 
over time, a stimulation force applied in YoZ plane, originates a plane sound wave traveling 
in the positive x direction whose pressure value, according to Hooke’s law, is given by, 

 εYp(x) ⋅−=  (1) 

where p represents the differential pressure caused the sound wave, Y represents the elastic 

modulus of the medium and ε represents the relative value of its mechanical deformation 
caused by sound pressure. 
For time-varying conditions, there will be a differential pressure across an elementary 
volume, with a unitary transversal area and an elementary length dx, given by, 

 dx
x

t)p(x,
dp ⋅

∂
∂

=  (2) 

Using Newton’s second law and the relationships (1) and (2), it is possible to obtain the 
relation between time pressure variation and the particle speed caused by the sound pressure, 
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where ρ represents the density of the medium and u(x,t) represents the particle speed at a 
given point (x) and a given time instant (t). 
Considering expressions (1), (2) and (3), it is possible to obtain the differential equation of 
sound plane waves that is expressed by, 
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where Y represents the elastic modulus of the medium and ρ represents its density. 

2.2 Spherical sound waves 
This approximation still considers a homogeneous and lossless propagation medium but, in 
this case, it is assumed that the sound intensity decreases with the square value of the 
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distance from sound source (1/r2), that means, the sound pressure is inversely proportional 
to that distance (1/r). 
In this case, for static conditions, the spatial pressure variation is given by (Burdic, 1991), 
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where ˆ
xu , ˆ

yu  and ˆ
zu represent the Cartesian unit vectors and ∇ represents the gradient 

operator. 
Using  spherical polar coordinates, the sound pressure (p) dependents only on the distance 

between a generic point in the space (r, θ, φ) and the sound source coordinates that is located 
in the origin of the coordinates’ system. In this case, for time variable conditions, the 
incremental variation of pressure is given by, 
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where r represents the radial distance between a generic point and the sound source. 
Concerning sound intensity, for spherical waves in homogeneous and lossless mediums, its 
value decreases with the square value of the distance (r) since the total acoustic power 
remains constant across spherical surfaces. 
It is important to underline that this approximation is still valid for mediums with low 
power losses as long as the distance from the sound source is higher than ten times the 
sound wavelength (r>10⋅λ). 

2.3 Definition of some sound parameters 
There are a very large number of sound parameters. However, according the aim of the 
present chapter, only a few parameters and definitions will be reviewed, namely, the 
concepts of sound impedance, transmission and reflection coefficients and sound intensity.  
The transmission of sound waves, through two different mediums, is determined by the 
sound impedance of each medium. The acoustic impedance of a medium represents the 
ratio between the sound pressure (p) and the particle velocity (u) and is given by, 

 cZm ⋅ρ=  (7) 

where, as previously, ρ represents the density of the medium and c represents the 
propagation speed of the acoustic wave  that is, by its turn, equal to the product of the 
acoustic wavelength by its frequency (c=λ⋅f). 
Sound propagation across two different mediums depends on the sound impedance of each 
one, namely, on  the transmission and reflection coefficients. For the normal component of 
the acoustic wave, relatively to the separation plane of the mediums, the sound reflection 
and transmission coefficients are defined by, 
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where ΓR and ΓT represent the refection and transmission coefficients, and, Zm1 and Zm2, 
represent the acoustic impedance of medium 1 and 2, respectively. 
For spherical waves, the acoustic intensity that represents the power of sound signals is 
defined by, 

 
( )
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where (p2)av is the mean square value of the acoustic pressure for r=1 m and the others 
variables have the meaning previously defined. The total acoustic power at a distance r, 
from the sound source, is obtained by multiplying the previous result by the area of a 
sphere with radius equal r. The results that is obtained is given by, 
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This constant value of sound intensity was expected since it is assumed a sound 
propagation in a homogenous lossless propagation medium.  
In which concerns the sound pressure level, it is important to underline that this parameter 
represents, not acoustic energy per time unit, but acoustic strength per unit area. The sound 
pressure level (SPL) is defined by, 

 ) (p/plog20SPL ref10⋅=  (11) 

where the reference power (pref) is equal to 1 μPa for sound propagation in water or others 
liquids. Similarly, the logarithmic expression of sound intensity level (SIL) and sound power 
level (SL) are defined by, 
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where the reference values of intensity and power are given by Iref=10-12 W/m2 and  
Wref=10-12 W, respectively. 

2.4 A few remarks about underwater sound propagation 
It should be noted that the speed of sound in water, particularly seawater, is not the same 
for all frequencies, but varies with aspects of the local marine environment such as density, 
temperature and salinity. Due mainly to the greater “stiffness” of seawater relative to air, 
sound travels approximately with a velocity (c) about 1500 m/s in seawater while in air it 
travels with a velocity about 340 m/s. In a simplified way it is possible to say that 
underwater sound propagation velocity is mainly affected by water temperature (T), depth 
(D) and salinity (S). A simple and empirical relationship that can be used to determine the 
sound velocity in salt water is given by (Hodges, 2010), 
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where temperature is expressed in ºC, salinity in expressed in parts per thousand and depth 
in m. 
The sensitivity of sound velocity depends mainly on water temperature. However, the 
variation of temperature in low depth waters, that sometimes is lower than 2 m in river 
estuaries, is very small and salinity is the main parameter that affects sound velocity in 
estuarine salt waters. Moreover, salinity is estuarine zones depends strongly on tides and 
each sound monitoring measuring node must include at least a conductivity/salinity 
transducer to compensate underwater sound propagation velocity from its dependence on 
salinity (Mackenzi, 1981). As a summary it must be underlined that underwater sound 
transmission is a very complex issue, besides the effects previously referred, the ocean 
surface and bottom reflects, refracts and scatters the sound in a random fashion causing 
interference and attenuation that exhibit variations over time. Moreover, there are a large 
number of non-linear effects, namely temperature and salinity gradients, that causes 
complex time-variable and non-linear effects. 

3. Spectral characterization of acoustic signals 

Several MATLAB scripts were developed to identify and to classify acoustic signals. Using a 
given dolphin sound signal as a reference signal, different time to frequency conversion 
methods (TFCM) were applied to test the main characteristics of each one. 

3.1 Dolphin sounds 
In which concerns dolphin sounds (Evans, 1973; Podos et al., 2002), there are different types 
with different spectral characteristics. Between these different sound types we can refer 
whistles, clicks, bursts, pops and mews, between others. 
Dolphin whistles, also called signature sounds, appear to be an identification sound since 

they are unique for each dolphin. The frequency range of these sounds is mainly contained 

in the interval between 200 Hz and 20 kHz (Reynolds et al., 1999). Clicks sounds are though 

to be used exclusively for echolocation (Evans, 1973). These sounds contains mainly high 

frequency spectral components and they require data acquisition systems with high analog 

to digital conversion rates. The frequency range for echolocation clicks includes the interval 

between 200 Hz and 150 kHz (Reynolds et al., 1999).  Usually, low frequency clicks are used 

for long distance targets and high frequency clicks are used for short distance targets.  When 

dolphins are closer to an object, they increase the frequency used for echolocation to obtain a 

more detailed information about the object characteristics, like shape, speed, moving 

direction, and object density, between others. For long distance objects low frequency 

acoustic signals are used because their attenuation is lower than the attenuation that is 

obtained with high frequency acoustic signals. By its turn, burst pulse sounds that include, 

mainly, pops, mews, chirps and barks, seem to be used when dolphins are angry or upset. 

These signals are frequency modulated and their frequency range includes the interval 

between 15 kHz and 150 kHz. 

3.2 Time to frequency conversion methods 
As previously referred, in order to compare the performance of different TFCM, that can be 
used to identify and classify dolphin sounds a dolphin whistle sound will be considered as 
reference. In which concerns signals’ amplitudes, it makes only sense, for classification 
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purposes, to used normalized amplitudes. Sound signals’ amplitudes depend on many 
factors, namely on the distance between sound sources and the measurement system, being 
this distance variable for moving objects, for example dolphins and ships. A data acquisition 
sample rate equal to 44.1 kS/s was used to digitize sound signals and the acquisition period 
was equal to 1 s. Figure 1 represents the time variation of the whistle sound signal under 
analysis.  
 

 

Fig. 1. Time variation of the dolphin whistle sound signal under analysis 

Fourier time to frequency conversion method  

The first TFCM that will be considered is the Fourier transform method (Körner, 1996). The 
complex version of this time to frequency operator is defined by, 

 dte)t(x)f(X tf2j ⋅⋅π−
+∞

∞−
∫ ⋅=   (14) 

where x(t) and X(f) represent the signal and its Fourier transform, respectively.  
The results that are obtained with this FTCM don’t give any information about the 
frequency contents of the signal over time. However, some information about the signal 
bandwidth and its spectral energy distribution can be accessed. Figure 2 represents the 
power spectral density (PSD) of the sound signal represented in figure 1.  As it is clearly 
shown, the PSD of the signal exhibits two peaks, one around 2.8 kHz and the other, with 
higher amplitude, is a spectral component whose frequency is approximately equal to 50 
Hz. This spectral component is caused by the mains power supply and can be strongly 
attenuated, almost removed, by hardware or digital filtering. 
It is important to underline that this FTCM is not suitable for non-stationary signals, like the 
ones generated by dolphins.  

Short time Fourier transform method  

Short time Fourier transform (STFT) is a TFCM that can be used to access the variation of the 
spectral components of a non-stationary signal over time. This TFCM is defined by, 
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PSD peak 
(50 Hz) 

PSD peak 
2.8 kHz 

 

Fig. 2. Power spectral density of the dolphin whistle sound signal 

 ℜ∈⋅−⋅= ⋅⋅−
+∞

∞−
∫ t   dteǕ)w(tx(t)f)X(t, tfj2Ǒ   (15) 

where x(t) and X(t,f) presents the signal and its STFT, respectively, and w(t) represents the 
time window function that is used the evaluate the STFT. With this TFCM it is possible to 
obtain the variation of the frequency contents of the signal over time. Figure 3 represents the 
spectrogram of the whistle sound signal when the STFT method is used. The spectogram 
considers a window length of 1024 samples, an overlap length of 128 samples and a number 
of points that are used for FFT evaluation, in each time window, equal to 1024. 
However, the STFT of a given signal depends significantly on the parameters that are used 

for its evaluation. Confirming this statement, figure 4 represents the spectrogram of the 

whistle signal obtained with a different window length, in this case equal to 64 samples, an 

overlap length equal to 16 samples and a number of points used for FFT evaluation, in each 

time interval, equal to 64. In this case, it is clearly shown that different time and frequency 

resolutions are obtained. The STFT parameters previously referred, namely, time window 

length, number of overlapping points, and the number of points used for FFT evaluation in 

each time window, together with the time window function, affect the time and frequency 

resolution that are obtained. Essentially, if a large time window is used, spectral resolution 

is improved but time resolution gets worst. This is the main drawback of the STFT method, 

there is a compromise between time and frequency resolutions. It is possible to demonstrate 

(Allen & Rabiner, 1997; Flandrin, 1984) that the constraint between time and frequency 

resolutions is given by, 

 
Δt4Ǒ

1Δf
⋅

≥  (16) 

where Δf and Δt represent the frequency and time resolutions, respectively. 
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Fig. 3. Spectogram of the whistle sound signal (window length equal to1024 samples, 
overlap length equal to 128 samples and a number of points used for FFT evaluation equal 
to 1024) 

 

Fig. 4. Spectogram of the whistle sound signal (window length equal to 64 samples, overlap 
length equal to 16 samples and a number of points used for FFT evaluation equal to 64) 
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Time to frequency conversion methods based on time-frequency distributions  

When the signal exhibits slow variations in time, and there is no hard requirements of time 
and frequency resolutions, the STFT, previously described, gives acceptable results. 
Otherwise, time-frequency distributions can be used to obtain a better spectral power 
characterization of the signal over time (Claasen & Mecklenbrauker, 1980; Choi & Williams, 
1989). A well know case of these methods is the Choi-Williams time to frequency transform 
that is defined by, 

 dǕdμǕ/2)(μx  Ǖ/2)x(μeǕǔ/4Ǒef)X(t, *4Ǖ
t)ǔ(μ

2j2Ǒ2Ǒ 2

2

⋅⋅−⋅+⋅⋅⋅=

−
−∞+

∞−

∞+

∞−

− ∫∫  (17) 

where x(μ+τ/2) represents the signal amplitude for a generic time t equal to μ+τ/2 and the 

exponential term is the distribution kernel function that depends on the value of σ 
coefficient. The Wigner-Ville distribution (WVD) time to frequency transform is a particular 

case of the Choi-Williams TFCM that is obtained when σ→∞, and its time to frequency 
transform operator is defined by, 

 Ǖ/2)dǕ(μx  Ǖ/2)x(μef)X(t, *j2Ǒ2Ǒ −⋅+⋅= ∫
+∞

∞−

−  (18) 

These TFCM could give better results in which concerns the evaluation of the main spectral 
components of non-stationary signals. They can minimize the spectral interference between 
adjacent frequency components as long as the distributions kernel function parameters’ are 
properly selected. These TFCM provide a joint function of time and frequency that describes 
the energy density of the signal simultaneously in time and frequency. However, Choi-
Williams and WVD TCFM based on time-frequency distributions depends on non-linear 
quadratic terms that introduce cross-terms in the time-frequency plane. It is even possible to 
obtain non-sense results, namely, negative values of the energy of the signal in some regions 
of the time-frequency plane. Figure 5 represents the spectrogram of the whistle sound signal 
calculated using the Choi-Williams distribution. The graphical representation considers a 

time window of 1 s, a unitary default Kernel coefficient (σ=1), a time smoothing window 
(Lg) equal to 17, a smoothing width (Lh) equal to 43 and a representation threshold equal to 
5 %.  

Wavelets time to scale conversion method  

Conversely to others TFCM that are based on Fourier transforms, in this case, the signal is 
decomposed is multiple components that are obtained by using different scales and time 
shifts of a base function, usually known as the mother wavelet function. The time to scale 
wavelet operator is defined by, 

  ( ) dtǕ)α(tψαx(t)α)X(Ǖ(
l~

0.5∫
+∞

∞−
⋅−⋅⋅=  (19) 

where ψ is the  mother wavelet function, α and τ are the wavelet scaling and time shift 
coefficients, respectively. 
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Fig. 5. Spectrogram of the whistle sound signal using the Choi-Williams distribution (time 
window=1 s, a unitary default Kernel coefficient, time smoothing window=17, a smoothing 
width=43) 

It is important to underline that the frequency contents of the signal is not directly obtained 
from its wavelet transform (WT). However, as the scale of the mother wavelet gets lower, a 
lower number of signal’s samples are contained in each scaled mother wavelet, and there 
the WT gives an increased knowledge of the high frequency components of the signal.  
In this case, there is no compromise between time and frequency resolutions. Moreover, 

wavelets are particularly interesting to detect signals’ trends, breakdowns and sharp peaks 

variations, and also to perform signals’ compressing and de-noising with minimal 

distortion. 

Figure 6 represents the scalogram of the whistle sound signal when a Morlet mother wavelet 

with a bandwidth parameter equal to 10 is used (Cristi, 2004; Donoho & Johnstone, 1994). 

The contour plot uses time and frequency linear scales and a logarithmic  scale, with a 

dynamic range equal to 60 dB, to represent scalogram values. The scalogram was evaluated 

with 132 scales values, 90 scales between 1 and 45.5 with 0,5 units’ increments, an 42 scales 

between 46 and 128 with 2 units’ increments.  

The scalogram shows clearly that the main frequency components of the whistle sound 

signal are centered on the amplitude peaks of the signal, confirming the results previously 

obtained with the Fourier based TFCM.  

3.3 Anthropogenic sound signals  
In which concerns underwater sound analysis it is important to analyze anthropogenic 

sound signals because they can disturb deeply the sounds generated by dolphins’ sounds.  

Anthropogenic noises are ubiquitous, they exist everywhere there is human activities. The 

powerful anthropogenic power sources come from sonars, ships and seismic survey pulses. 

Particularly in estuarine zones, noises from ships, ferries, winches and motorbikes, interfere 

with marine life in many ways (Holt et al., 2009). 
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Fig. 6. Scalogram of the whistle sound signal when a Morlet mother wavelet with a 
bandwidth parameter equal to 10 is used 

Since the communication between dolphins is based on underwater sounds, anthropogenic 
noises can originate an increase of dolphin sounds’ amplitudes, durations and repetition 
rates. These negative effects happen, particularly, whenever anthropogenic noises 
frequencies overlap the frequency bandwidth of the acoustic signals used by dolphins. It is 
generally accepted that anthropogenic noises can affect dolphins’ survival, reproduction 
and also divert them from their original habitat (NRC, 2003; Oherveger & Goller, 2001).  
Assuming equal amplitudes of dolphin and anthropogenic sounds, it is important to know 
their spectral components. Two examples of the time variations and scalograms of 
anthropogenic sounds signals will be presented. Figures 7 and 8 represent the time 
variations and the scalograms of a ship-harbor and submarine sonar sound signals, 
respectively. As it is clearly shown, both signals contain spectral components that overlap 
the frequency bandwidth of dolphin sound signals, thus, affecting dolphins’ communication 
and sound signals’ analysis. 
 

  

Fig. 7. Ship-harbour signal: (a) time variation and (b) scalogram 

   
                            (a)       (b)                              
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Fig. 8. Submarine sonar signal: (a) time variation and (b) scalogram 

4. Measurement system 

The measurement system includes several measurement units than can, by its turn, be 
integrated in a distributed measurement network, with wireless communication capabilities 
(Postoloche et al., 2006). Each measurement unit, whose description will be considered in 
the present section, includes the acoustic devices that establish the interface between the 
electrical devices and the underwater medium, a water quality measurement unit that is 
used for environmental assessment purposes, and the signal conditioning, data acquisition 
and data processing units. 

4.1 Hardware 
Figure 9 represents the intelligent distributed virtual measurement system that was 
implemented for underwater sound monitoring and sound source localization. The system 
includes two main units: a base unit, where the acoustic signals are detected and digitized, 
and a remote unit that generates testing underwater acoustic signals used to validate the 
implemented algorithms for time delay measurement (Carter, 1981; Chan & Ho, 1994), 
acoustic signal classification and underwater acoustic source localization. 
A set of three hydrophones (Sensor Technology, model SS03) are mounted on a 20m 
structure with 6 buoys that assure a linear distribution of the hydrophones. The number and 
the linear distribution of the hydrophones permit to implement a hyperbolic algorithm 
(Mattos & Grant, 2004; Glegg et al., 2001) for underwater acoustic source localization, and 
also to perform underwater sound monitoring tasks including sound detection and 
classification. The main characteristics of the hydrophones includes a frequency range 

between 200 Hz and 20 kHz, a sensitivity of -169 dB relatively to 1 V/μPa and a maximum 
operating depth of 100 m.  

The azimuth angle (ϕ) obtained from hydrophone array structure, together with the 
information obtained from the GPS1 (Garmin 75GPSMAP) device, installed on the base unit, 
and the information obtained from the fluxgate compass (SIMRAD RFC35NS) device, are 
used to calculate the absolute position of the remote underwater acoustic source. After the 
estimation of the underwater acoustic source localization, a comparison with the values 

  
(a)                      (b) 
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given by the GPS2 is carried out to validate the performance of the algorithms that are used 
for sound source localization.  
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Fig. 9. The architecture of the distributed virtual system for underwater acoustic signal 
acquisition, underwater sound source localization and sound analysis (H1,H2,H3- 
hydrophones, H-CC-3- channels’ conditioning circuits, WQMU– water quality measurement 
unit, NI DAQCard-6024 – multifunction DAQCard, GPS1 and GPS2- remote and base GPS 
units). 

As it is presented in figure 9, a three-channel hydrophones’ conditioning circuit (H-CC) 
provides the analog voltage signals associated with the captured sounds. These signals are 
acquired using three analog channels’ inputs (ACH0, ACH1 and ACH2) of the DAQCard 
using a data acquisition rate equal to 44.1S/s. The azimuth angle information, expressed by 

V⋅sinϕ and V⋅cosϕ voltages delivered by the electronic compass, is acquired using ACH3 
and ACH4 channels of the DAQCard. 
The water quality parameters, temperature and salinity, are acquired using a 
multiparameter Quanta Hydrolab unit (Eco Environmental Inc.) that is controlled by the 
laptop PC trough a RS232 connection. During system’s testing phase, acoustic signals 
generation is triggered through a Wi-Fi communication link that exists between the PC and 
the PDA, or by a start-up table that is stored in the PDA and in the PC. Thus, at pre-defined 
time instants, a specific sound signal is generated by the sound projector (Lubell LL9816) 
and it is acquired by the hydrophones. The acquisition time delays are then evaluated and 
localization algorithms, based on the time difference of arrivals (TDOA), are used to locate 
sound sources. The main characteristics of the sound projector includes a frequency range 

(±3 dB) between 200 Hz and 20 kHz, a maximum SPL of 180 dB/μPa/m at a frequency equal 
to 1 kHz and a maximum cable voltage-to-current ratio equal to 20 Vrms/3 A. 
Temperature and salinity measurements, obtained for the WQMU (Postolache et al, 2002; 
Postolache et al., 2006; Postolache et al., 2010) are used to compensate sound source 
localization errors caused by underwater sound velocity variations (13). 

4.2 Software 
System’s software includes two mains parts. One is related with dolphin sounds 
classification and the other is related with the GIS (Postolache et al., 2007). Both software 
parts are integrated in a common application that simultaneously identify sound sources 
and locate them in the geographical area under assessment. In this way, it is possible to 
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locate and pursue the trajectory of moving sound sources, particularly dolphins in a river 
estuary. 

4.2.1 Dolphin sounds classification based on wavelets packets 
This software part performs basically the following tasks: hydrophone channel voltage 
acquisition and processing, fluxgate compass voltage data acquisition and processing, noise 
filtering, using wavelet threshold denoising (Mallat, 1999; Guo et al., 2000), digital filtering, 
detection and classification of sound signals.  Additional software routines were developed 
to perform data logging of the acquired signals, to implement the GIS and to perform 
geographic coordinates’ analysis based on historical data. The laptop PC software was 
developed in LabVIEW (National Instruments) that, by its turn, includes some embedded 
MATLAB scripts. 
The generation of the acoustic signals, at the remote unit, is controlled by the distributed 
LabVIEW software (laptop PC software and PDA software). The laptop software component 
triggers the sound generation by sending to the PDA a command using the TCP/IP client-
server communication’s protocol. The sound type (e.g. dolphin’s whistle) and its time 
duration are defined using a specific command code. 
In which concerns the underwater acoustic analysis, the hydrophones’ data is processed in 

order to extract the information about the type of underwater sound source by using a 

wavelet packet (WP) signal decomposition and a set of neural network processing blocks.  

Features’ extraction of sound signals is performed using the root mean square (RMS) values 

of the coefficients that are obtained after WP decomposition (Chang & Wang, 2003). Based 

on the WP decomposition it is possible to obtain a reduced set of features parameters that 

characterize the main type of underwater sounds detected in the monitored area.  

It is important to underline that conversely to the traditional wavelet decomposition 

method, where only the approximation portion of the original signal is split into successive 

approximation and details, the proposed WP decomposition method extends the capabilities 

of the traditional wavelet decomposition method by decomposing the detail part as well. 

The complete decomposition tree for a three level WP decomposition is represented in Fig. 10.  
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Fig. 10. Decomposition tree for a three level WP decomposition (D-details associated with 
the high-pass decimation filter, A-approximations associated with the low pass decimation 
filter) 

4.2.2  Geographic Information System: their application to locate sound sources 
This software part implements the GIS and provides a flexible solution to locate and pursue 
moving sound sources. The main components, included in this software part, are the 
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hyperbolic bearing angle and range algorithms, both related with the estimation of sound 
sources’ localizations. 
In order to transform the relative position coordinates, determined by the system of 

hydrophones (Hurell & Duck, 2000), into absolute position coordinates, it is necessary to 

transform the GPS data, obtained from Garmin GPSMAP76, into a cartographic 

representation system. The mapping scale used to represent the geographical data is equal 

to 1/25000. This scale value was selected taking into account the accuracy of the GPS device 

that was used for testing purposes. The conversion from relative to absolute coordinates is 

performed in three steps: Molodensky (Clynch, 2006) three-dimensional transformation, 

Gauss-Krüger (Grafarend & Ardalan, 1993) projection and, finally, absolute positioning 

calculation. In the last step, a polar to Cartesian coordinates’ conversion is performed 

considering the water surface as a reference plane (XoY), and defining the direction of X-axis 

by using the data provided by the electronic compass. 

Figure 11 is a pictorial representation of the geometrical parameters that are used to locate 

underwater acoustic sources.   

 

Dolphin sound 
source

Hydrophones’ 
array 

 

Fig. 11. Geometrical parameters that are used to locate underwater acoustic sources 

The main software tasks performed by the measurement system are represented in  

figure 12. 

Finally, it is also important to refer that the underwater sound source localization is 

calculated and displayed on the user interface together with some water quality parameters, 

namely, temperature, turbidity and conductivity, that are provided by the WQMU. 

Future software developments can also provide improved localization accuracy by profiling 
the coverage area into regions where multiple measurements results of reference sound 
sources are stored in an allocation database. The best match between localization 
measurement data and the data that is stored in the localization database is determined and 
then interpolation can be used to improve sound source localization accuracy.  
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Fig. 12. Measurement system software block diagram 

5. Experimental results 

To evaluate de performance of the proposed measurements system two experimental results 
will be presented. The first one is related with the capabilities provided by the sound source 
localization algorithms, and second one is related with the capabilities of wavelet based 
techniques to detect and classify dolphin sounds. 

5.1 Sound source localization 
Several laboratory experiments were done to test the different measuring units including the 
WQMU. Field tests, similar to the ones previously performed in laboratory, were performed 
in Sado estuary. During field test of the measurement system, dolphins were sighted but 
none produced a clear sound signal that could be acquired or traced to the source. In order 
to fill this gap, a number of experiments took place involving pre-recorded dolphin sounds. 
For sound reproduction an underwater sound projector was used, which allowed the testing 
of the sound source localization algorithms. The sound projector, installed in a second boat 
(remote boat), away from the base ship-boat, was moved way from the hydrophones’ 
structure and several pre-recorded sounds were played. This methodology was used to test 
the performance of the hydrophones’ array structure and the TDOA algorithm to measure 
the localization of the sound source for different values of distances and azimuth angles. 
Using the time delay values between the sounds captured by the hydrophones and the data 
obtained from the electronic compass (zero heading), sounds can be traced to their sources. 
Table I represents the localization errors that are expected to estimate the localization of the 
sound source as a function of the angle resolution, that can be defined by the electronic 
compass, and by the distance between the hydrophones’ and the position of the sound 
source. The data contained in the table considers that the distance from the hydrophones to 
sound source is always lower than 500 m. 
As it can be verified, in order to obtain the desired precision, characteristic of a 1/25000 
scale representation, the resolution in the zero heading acquisition angle, for distances lower 

than 500 m, cannot be greater then ±½ degree. Experimental results that were performed 
using GPS1 and GPS2 units gave an absolute error lower 10 m. This value is in accordance 
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with the SimRad RFC35NS electronic compass characteristics whose datasheet specifies an 

accuracy better than 1º and repeatability equal to ±0.5º. 
 

  Distance (m) 

  10 50 100 150 300 500 

0,25 0,04 0,22 0,44 0,65 1,31 2,18 

0,5 0,09 0,44 0,87 1,31 2,62 4,36 

1 0,17 0,87 1,75 2,62 5,24 8,73 

2,5 0,44 2,18 4,36 6,54 13,09 21,81

5 0,87 4,36 8,72 13,07 26,15 43,58A
n

g
le

(º
) 

10 1,74 8,68 17,36 26,05 52,09 86,82

Table 1. Localization errors as a function of the zero heading angle accuracy and of the 
distance between the hydrophones and the sound source 

5.2 Wavelet based classification of dolphin sounds 
The WP based method that was used to identify and classify sound signals enables a large 
flexibility to choice the best combination of the WP features that are used for detection and 
classification purposes. 
During the design of the features extraction algorithm, different levels of decomposition, 
varying between 2 and five, and different sounds’ periods, varying between 30 ms and 1000 
ms, were used. Referring the wavelet packet decomposition, used for underwater sound 
features’ extraction, a practical approach concerning the choice of the best level of 
decomposition and mother wavelet function was carried out. Thus, the capabilities of 
Daubechies, Symlets and Coiflets functions as mother wavelets were tested.  
For the studied cases, the RMS of the WP coefficients for different bands of interests were 
evaluated. As an example, figure 13 represents the features’ values obtained with a three 
level decomposition tree and a db1 mother wavelet, when different sound types are  
 

 

Fig. 13. Wavelet based feature extraction using a three level decomposition tree (green line- 
dolphin chirp, red line- dolphin whistle, blue line- motorbike, black line- ping sonar). 
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considered, namely, a dolphin chirp, a dolphin whistle, and two anthropogenic noises, in 
this case, a water motorbike and a ping sonar sound. As it can be easily verified, the 
features’ values are significantly different for a third level WP decomposition. 
Figure 14 represents the WP coefficients for a dolphin whistle when it is used a six level WP 
decomposition tree. In this case, the number of terminal nodes is higher, 64 instead of 8, but 
the features’ variation profile over packet wavelet terminal nodes have a similar pattern and 
the sound classification performance is better. As expected, there is always a compromise 
between the data processing load and the sounds’ classification performance.   

 

Fig. 14. Wavelet based feature extraction of a dolphin whistle using a six level 
decomposition tree 

Neural Network Classifier 

The calculated features for different types of sound signals, real or artificially generated by 

the sound projector located in the remote unit, are used to train a neural network sound 

classifier (NN-SC) characterized by a Multilayer Perceptron architecture with 8 neurons in 

the input layer, a set of 10 to 20 neurons in the hidden layer and one or more neurons (nout) 

in the output layer (Haykin, 1994). Each input neuron collects one of the 8 features obtained 

from the WP decomposition. During the training phase of NN-SC the target vector elements 

are defined according the different sound types used for training purposes. For a similar 

sound type, for example dolphin whistles, the target vectors’ values are within a pre-defined 

interval. It is important to underline that all values that are used in NN-SC are normalized 

to its maximum amplitude in order to improve sound identification performance of the 

neural network. 

The number of output neurons (nout) of the NN-SC depends on the number of different 

signal types to identify. Thus, in the simplified case of the detection of dolphins sounds, 

independently of their types, the NN-SC uses a single neuron in the output layer with two 

separated features’ range intervals that corresponds to “dolphin sound” and “no dolphin 

sound” detected, respectively. In order to identify different sound sources and types, it is 

required more than two features’ ranges. This is the case when it is required to classify 

different sound types, like dolphins bursts, whistles and clicks, or other anthropogenic 
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sounds, like water motorbikes, ship sound or other underwater noise sounds. Figure 15 

represents the NN-SC features’ range amplitudes that are used for sound classification.  
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Fig. 15. NN-SC features’ amplitudes that are used for sound classification 

To test the performance of the sound classification algorithm the following features’ 
amplitudes were considered: between 0.1 and 0.3  for anthropogenic noise sounds; between 
0.5 and 0.7 for dolphin whistles and between 0.9 and 1.1 for dolphin chirps. When features’ 
amplitudes are outside the previous intervals there is no sound identification.  This happens 
if the NN-SC gives an erroneous output or if the training set is reduced in which concerns 
the number of different sound types to be identified. 
Figure 16 represents NN-SC normalized output values that are obtained for a third level 
wavelet packet decomposition, a training and validation sets with 16 elements (sound 
signals), each one, a root-mean-square training parameter goal equal to 10-5, a number of 
hidden layer neurons equal to eight and when the Levenberg–Marquardt minimization 
algorithm is used to evaluate the weights and bias of each ANN neuron. 

 

Fig. 16. NN-SC normalized output values that were obtain using a third level wavelet packet 
decomposition ANN classifiers 
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The results that were obtained present a maximum relative error almost equal to 3.23 % and 
the standard deviation of the errors values is almost equal to 1.14 %. Since, in this example, 
all dolphin sounds’ features are in the range between 0.9 and 1.1, we conclude that there is 
no classification error. Different tests were performed with others sound types and it was 
verified a very good performance, higher than 95 % of right classifications, as long as there 
is no NN-SC features’ identification ranges overlapping. 

6. Conclusions 

This chapter includes a review of sound propagation principles, the presentation of different 
TFCM that can be used to represent frequency contents of non-stationary signals and, 
finally, the presentation of a measurement system to acquire and process measurement data. 
In which concerns sound propagation principles, a particular attention was dedicated to the 
characterization of plane and spherical sound propagation modes and to the definition of 
power related acoustic parameters. Some details about underwater sound propagation are 
presented, particularly the ones that affect sound propagation speed. Variations of sound 
propagation speed in estuarine waters, where salinity can exhibit large variations, must be 
accounted to minimize measurement errors of sound sources’ localizations. 
Referring to TFCM a particular attention was dedicated to short time to frequency 
transforms and wavelet characterization of underwater sounds. Several examples of the 
application of these methods to characterize dolphin sounds and anthropogenic noises were 
presented. 
Several field tests of the measurement system were performed to evaluate its performance 
for sound signals’ detection and classification, and to test its capability to locate underwater 
sound sources. To validate triangulation algorithms an underwater sound projector and an 
array of hydrophones were used to obtain a large set of measurement data. Using the GPS 
coordinates of the sound projector, located in a remote  boat, and the GPS coordinates of the 
base ship-boat, where the hydrophones’ array and data acquisition units are located, 
validation of relative and absolute localization of sound sources were performed for 
distances lower than 500 m and for a frequency range between 200 Hz and 20 kHz. The 
measurement system also includes data logging and GIS capabilities. The first capability is 
important to evaluate changes over time in dolphin’s habitats and the second one to locate 
and pursue the trajectory of moving sound sources, particularly dolphins in a river estuary. 
In which concerns the detection and classification of underwater acoustic sounds, a wavelet 
packet technique, based on a third level decomposition and on a RMS features’ extraction of 
the terminal nodes’ coefficients, followed by an ANN classification method, is proposed. 
The classification results that were obtained present a maximum relative error almost equal 
to 3.23 % and a standard deviation, of the error values, almost equal to 1.14 %. 
Further tests are required to evaluate the sound detection and classification algorithms 
when different sound sources interfere mutually, particularly when dolphin sounds are 
mixed with anthropogenic noises.  
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