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1. Introduction

One of the most widely used methodology for the passive localization of acoustic sources is
based on the measurement of the time delay of arrival (TDOA) of the source signal to receptors
pairs. In 2D, two pairs of receptors are necessary, implying the need of 3 receptors. In 3D,
three pairs are needed, and a minimum of 4 receptors. The only data available to solve for the
source spatial coordinates are the receptors spatial position and the best possible computation
of TDOA between receptors pairs. In a 2D problem if we have two receptors and we compute
a TDOA between them, it is a well known fact that the source capable to produce that delay
must be placed over one of two symmetric hyperbolas, Figure 1. Because this is true for each
pair, becomes clear that the source must be placed in the intersection of the hyperbolas of two
different pairs. That is why this method is known as hyperbolic localization. HL for short.
The resulting system of equations is non linear. In 3D the hyperbolas become hyperboloids,
a third coordinate appears as unknown, and one more pair of receptors is needed. This
reasoning justifies the minimum number of receptors mentioned above. Of course, although
the mathematical minimum is correct, in finite computations the pairs available can provide
a numerically inadequate set of equations. To provide more pairs, and receptors, than
necessary made available an ample set of equations from where to choose the adequate ones.
Nevertheless, non linearity and equation redundancy are different issues that should not be
confused.
For the sake of self consistency the equations of the HL problem are developed.
Be s = {x, y, z} the unknown spatial position of the source. For each receptor mi we have
its position {xi, yi, zi} and the vector �ri = �s − �mi that points from the receptor to the source.
Assuming spherical sound propagation the following relationship is satisfied by each receptor
pair:

ri − rj = dij = vτij (1)

where dij, a signed quantity, is the difference between the distances of each receptor to the
source, v is the sound propagation speed in the medium and τij is the TDOA computed from
the receptors registers. The τij s are signed quantities too. Working over Equation 1, the

Sergio R. Buenafuente and Carmelo M. Militello
University of La Laguna (ULL)

Spain

 

The Linear Method for Acoustical 
Source Localization (Constant Speed 

Localization Method) - A Discussion of 
Receptor Geometries and Time Delay 

Accuracy for Robust Localization 

1

www.intechopen.com



Fig. 1. A source positioned over the hyperbolas, irrespective of the distance, will produce the
same TDOA absolute value. Which one is the involved hyperbola is determined by the
TDOA sign.

following expression is obtained:

(xi − xj)x + (yi − yj)y + (zi − zj)z + dijrj =
m2

i − m2
j − d2

ij

2
(2)

The same equation can be written for other two pairs. Assuming that the three pairs are
constructed from three receptors the resulting system of equations is:

(xi − xj)x + (yi − yj)y + (zi − zj)z + dijrj = 0.5(m2
i − m2

j − d2
ij)

(xk − xl)x + (yk − yl)y + (zk − zl)z + dklrl = 0.5(m2
k − m2

l − d2
kl) (3)

(xi − xk)x + (yi − yk)y + (zi − zk)z + dikrk = 0.5(m2
i − m2

k − d2
ik)

where

rq =
√

(xq − x)2 + (yq − y)2 + (zq − z)2

mq =
√

x2
q + y2

q + z2
q ; for q = j, k, l (4)

Equations 3 constitute a nonlinear system of equations and can be solved, iteratively, by
traditional numerical methods. In 1987 many authors, in closely sequenced papers, presented
a different way to obtain Equation 3 (Abel & Smith, 1987; Friedlander, 1987; H.C.Schau &
Robinson, 1987). First they choose one of the receptors, for example receptor j, as a master
receptor. This allows computing all the receptor-source distances as a function of the distance
of the master receptor to the source. The values of dij are computed from the τij and the
medium propagation speed.

djl = rj − rl =⇒ rl = rj − djl (5)
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Second, receptor mj is renamed m0 and rj as r0, obtaining

(xi − xj)x + (yi − yj)y + (zi − zj)z + dijr0 =
m2

i − m2
j − d2

ij

2
+ dijd0j (6)

where r0 is now the distance between the master receptor and the source, the so called range,
computed as

r0 =
√

(x − x0)2 + (y − y0)2) + (z − z0)2 (7)

In Equation 6, the unknowns still are {x, y, z}. One way to overcome the non linearity of the
system was to introduce r0 as a new unknown or parameter (Friedlander, 1987). The new
unknown required the introduction of one more equation, expanding the original equations
system. At that time nobody believed that the values of r0 and {x, y, z} obtained from the
expanded system would satisfy Equation 7. It seems that nobody checked it either in the last
20 years. Because the clear non linear nature of Equation 7 many authors developed ways to
solve the new expanded system by iterative methods (Chan & Ho, 1994).
The use of redundant pairs made it necessary to combine iterative methods with least square
procedures, increasing the difficulty. In 2000, (Huang et al., 2000) found that the redundant
system can be solved correctly in only one iteration. It was not noticed that it only can happen
if the system is linear or if the initial guess in the nonlinear system is always coincident with
the right solution.

2. The constant speed localization method, CSLM

Fig. 2. Straight front propagation

In 2007 the authors (Militello & Buenafuente, 2007) presented a new way of interpreting the
source localization problem, from now on CSLM (Constant Speed Localization Method). This
allowed demonstrating that the problem could be transformed into a linear one by the mere
fact of adding an additional receiver to the minimum required in the hyperbolic localization
method. It was also shown that the work of Friedlander et al. and methods derived from it
are special cases of the general case presented, making clear the linearity of the method. To
explain the CSLM the receptors are considered to act as sources, each one emitting sound. But
each one starts emitting in the inverse order they capture the sound from the source. In this
way, all the wave fronts emitted will intersect the source at the same time.
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Two receptors at a distance 2c from each other received the signal with a time delay ta. For
a sound speed v a spatial delay is defined as 2a = tav. Now the two receptors start emitting
with a time delay ta. Both circles will intersect, and the successive intersections will describe a
hyperbola. The hyperbola is symmetric with respect to the line joining the receptors and one
of the branches will contain the source. But, if we join the successive intersection points with
a straight line, as in Figure 2, a straight front can be identified. In (Militello & Buenafuente,
2007) it was proved that this front propagates with a constant speed vl = va/c. Because of the
straight front speed property the method is called Constant Speed Localization.
Each receptor pairs will produce one straight front propagating at a constant speed, and all
the fronts will reach the source at the same time, i.e. all the constant speed traveling straight
lines will intersect at the source position. In this way, a linear system of equations having as
unknowns the source coordinates and the time of arrival can be constructed. The unknowns
are clearly independent, and there is neither preferred coordinate system nor time origin. If
one receptor position is considered as the coordinate centre, and the distance from this point to
the source is called the range, the values of vt appearing in the equation can be substituted by

r0 and Friedlandert’s equations are recovered. This is the only case where R = vt =
√

x2 + y2.
A detailed development of CSLM for 2D and 3D problems in its general form is presented in
(Militello & Buenafuente, 2007). Here, for the sake of comparison, the equations are developed
taking into account Friedlander’s methodology and the following particular form is obtained:

(xi − xj)x + (yi − yj)y + (zi − zj)z + dijvt =
m2

i − m2
j − d2

ij

2
+ dijd0j (8)

To reach (8) the time origin is established as the time when receptor m0 starts emitting. In the
original CSLM method the time origin is the time when the furthest receptor starts emitting.
Because the problem is linear in time and space, a time or a coordinate shift do not introduces
changes in the solution nature.
Equations 6 and 8 are almost identical. The difference is that r0 is replaced by vt. This
replacement is consistent with the meaning of r0 in Friedlandert’s formulation and the
meaning of the independent variable t in the CSLM formulation. Then r0 is an independent
variable because it can be obtained as the product of the independent variable t by the sound
speed in the medium.
Now the linear nature of both methods and their equivalence has been established. Because
a new independent variable appears, r0 or t, one more equation is needed. The linear system
can be solved by using a minimum of four sensors instead of three in a 2D problem and five
sensors instead of four in a 3D problem. But the use of the correct number of sensors does not
preclude the appearance of numerical errors when solving the system.
Something worth noting: in the CSLM method it is necessary to create a common time axis.
It can only be done if the TDOA are not only computed between the active receptor pairs
but also among one receptor, lets say a master one, and one of the receptors of each active
pair. This is totally equivalent to Friedlandert’s method when all the receptors positions are
computed as a function of the position of the master receptor. Then, the computational work
load involved in both methods is the same.

3. The design of the reception system

There are many variables and uncertainties in the design of a receptor system. To mention
some of them the following list is proposed:
Uncertainties:
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1. The error in TDOA estimations. This error depends on the ability to identify a specific
perturbation introduced by the source in each sensor register and to assign a time to it. Or
in the ability to compute the TDOA for a receptor pair.

2. The geometrical position of the receptor. Nowadays receptors are small in size and
the pressure centre of a microphone can be determined with an error of the order of
millimetres.

Design variables:

1. The spatial distribution of receptors.

2. The receptors chosen to constitute active pairs.

As it will be shown, the design variables will be responsible of the system performance. It will
govern the way the effects of uncertainties are amplified in some detection scenarios and the
quality of detection when the relative position of the source changes respect to our detection
system.

3.1 Selecting the active pairs and the master receptor (time origin)

The study is focused in the way the design variables affects the source localization through
the inevitable TDOA uncertainties. The superscript ◦ is used to indicate the correct or exact
values. They will be affected by an uncertainty value so that τij = τ◦

ij ± eij. By replacing it in

(8) and rearranging terms:

(xi − xj)x◦ + (yi − yj)y
◦ + (zi − zj)z

◦ + vτ
◦
ij vt◦ − 0.5(m2

i − m2
j − v2(d◦ij)

2) = 0 (9)

±v2eijt
◦ − 0.5e2

ij ± vτ
◦
ij eij + v2(τ◦

ij τ
◦
0j ± τ

◦
ij e0j ± τ

◦
0jeij ± eijeoj) = ǫij (10)

Equation 9 recasts Equation 8. Equation 10 is an error and can be seen as a contribution to
the uncertainty value of the left hand side of the original equation system. Neglecting second
order terms and adding up uncertainties an upper bound can be computed.

ǫij = v2
(

eij(t
◦ + τ

◦
ij + τ

◦
0j) + τ

◦
ij τ

◦
0j + τ

◦
ij e0j

)

(11)

This upper bound can be reduced if all the active pairs include the master receptor. In doing
so τ◦

00 = 0. In this case Equation 11 can be further simplified to:

ǫi0 = vei0(vt◦ + d◦i0) (12)

From this equation many conclusions can be drawn about the amplification of the TDOA
inaccuracies. The main factors are:

1. The speed of sound in the medium.

2. The distance from the source.

3. The TDOA uncertainty.

In other words, for a given medium, the further the source the higher is the error. And, for
a given set of receptors, it seems that the active pairs should be chosen so that one of the
receptors appears in all the pairs and the distance between receptors is kept to a minimum.
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4. Error propagation

Although the rules extracted in the preceding sections seems logical, they are not conclusive.
This is due to the fact that in a linear problem the quality of the solution depends on the
conditioning of the system of equations. In 3D the number of unknowns is four so that four
pairs are needed. The system of equations gets the form Mx = b, where

M =

⎡

⎢

⎢

⎣

xi − xj yi − yj zi − zj dij

xk − xl yk − yl zk − zl dkl

xm − xn ym − yn zm − zn dmn

xp − xq yp − yq zp − zq dpq

⎤

⎥

⎥

⎦

(13)

x =
[

x y z vt
]T

(14)

b =
1

2

⎡

⎢

⎢

⎢

⎣

m2
i − m2

j − d2
ij + 2dijd0j

m2
k − m2

l − d2
kl + 2dkld0l

m2
m − m2

n − d2
mn + 2dmnd0n

m2
p − m2

q − d2
pq + 2dpqd0q

⎤

⎥

⎥

⎥

⎦

(15)

and the solution is
x = M

−1
b (16)

provided that the inverse of M exists. Notice the use of eight different sensors, which is the
most general case to construct the system. But, as one sensor can be part of many pairs, this
number can be reduced to five. Because of the uncertainties pointed up before matrices M

and b are perturbed. As before only TDOA uncertainties are considered. The real equation
system becomes

(M + δM) x̂ = (b + δb) (17)

being x̂ an approximation to the exact solution.

x̂ = x
◦ + δx (18)

Because the system is linear, perturbation theory can be applied in order to obtain a bound to
the expected error in the system solution. The relative solution error will satisfy:

‖δx‖
‖x◦‖ ≤ cond(M)

1 − cond(M) ‖δM‖
‖M‖

( ‖δM‖
‖M‖ +

‖δb‖
‖b‖

)

(19)

where cond(M) is the matrix condition number defined as:

cond(M) = ‖M‖
∥

∥

∥
M

−1
∥

∥

∥
≥ 1 (20)

where ‖·‖ is a matrix norm, usually the l2 norm. In a badly conditioned system the cond(M)
is bigger than 1. If it is assumed that the perturbed matrices have a small norm and cond(M)
is not a big number, (Moon & Stirling, 2000), the relative error in system solution can be
approximated by

‖δx‖
‖x◦‖ ≤ cond(M)

( ‖δM‖
‖M‖ +

‖δb‖
‖b‖

)

+ O(e2) (21)

Being e the order of magnitude of the TDOA uncertainty. From Equation 21 it can be seen that
the relative error in the system solution can be approximated as the sum of the relative error in
the matrix plus the relative error in the independent term, amplified by the condition number.
In order to clarify the effect of this equation in the results two examples are presented.
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4.1 Directivity of a given sensor configuration

In this context the term "directivity" is defined as 1/cond(M), having a maximum value of 1,
and is used to point how a given sensor configuration will amplify the uncertainties from a
source placed over a circle around the designed master receptor. Matrix M has three columns
that can be evaluated from the receptors coordinates, but the fourth one depends on the
relative positions of source and receptors pairs, the TDOA. Matrix M can be easily constructed
from any expected source position and its condition evaluated. Following Equation 21 the
value 1/cond(M) can be seen as a directivity property. A high value in a given direction
indicates that direction as a preferred one with small uncertainty amplification.

Simulation A.

Fig. 3. Simulación A. (a) A starting receptors configuration and range computation with
CSLM. (b) Matrix M condition showing the lobes responsible of error amplification. (c)
Receptors array directivity, minimum directivity in the maximum error propagation
direction.

A set of receptors are positioned: m0{0, 0}, m1{−5, 8}, m2{4, 6}, and m3{−2, 4}. The receptors
pairs are {m0, m1}, {m0, m3} and {m0, m2}. It must be noticed that receptors m0, m1 and
m3 seems to be over a straight line at 120◦ from the X axis but they are not. If they are
over the same line the system is singular and can not be inverted. A circle of radius 40 m
centered at m0 is drawn and 1000 sources uniformly distributed over it. For each source
exact, within machine precision, quantities are computed. The exact TDOAs are computed
and perturbed with a random Gaussian error distribution. The error standard deviation is set
to 10us. The values of vt computed for each source are plotted in Figure 3(a). Figure 3(b) plots
the computed matrix condition and clearly shows the coincidence of big condition values
with high source localization error. An amplification factor of 800 can be seen at 300◦. Figure
3(c) is the directivity, showing a big value in the directions where the computed error will be
low. From the traveling straight front point of view a wrong selection of receptors pairs will
produce almost parallel lines, making it difficult to compute their intersection. Why the 120◦

direction produces less dispersion than the 300◦ one? It will be explained latter.

Simulation B

A robust configuration is defined as the one with not pronounced directivity lobes. Under
this point of view the best one will be the one with no lobes and a directivity value near one.
In order to achieve this receptors are placed in the vertex of an equilateral triangle and the

master receptor is placed at the triangle centre of gravity, Figure 4. The triangle side is 4
√

3
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Fig. 4. Simulación B. A centred triangle configuration. a)Computed range with CSLM.
b)Matrix M condition. c) Directivity.

m. The TDOA uncertainties are computed in exactly the same manner as in Simulation A.
It can be seen that three lobes appear with a very uniform shape. The directivity is uniform
too. It should be noticed that a directivity number better than 0.02 is not achieved for this
configuration. Simulation B shows how with the same computational and hardware costs a
better system can be constructed. The matrix condition number increases as the distance to
the source increases. The ideal number of 1 is hard to get. For the triangular configuration
of SIMULATION B a condition number of 1.4 is obtained for a source placed at the triangle
centre, in top of the master receptor.

5. An upper bound for the solution error

When designing a reception system the effect of TDOA error in system performance is capital.
All the electronics and computational effort used in reducing this uncertainty will have a
direct impact in localization. Equation 21 provides an easy way to predict the value of
uncertainty necessary for a desired performance. Assuming no error in receptors positions
the perturbed matrix can be written as

δM =

⎡

⎢

⎢

⎣

0 0 0 eijv

0 0 0 eklv
0 0 0 emnv
0 0 0 epqv

⎤

⎥

⎥

⎦

(22)

where eij is the error in computing the TDOA for each receptors pair. The maximum value for
eij is set to emax. The l1 norm is computed for this matrix obtaining a bound for the perturbed
matrix:

‖δM‖ < nvemax (23)

In Equation 23 n is the number of receptor pairs.
To compute an upper bound to ‖δb‖ it must be recalled that dij = d◦ij + veij. The perturbed b

can be written as:

δb = − v2

2

⎡

⎢

⎢

⎢

⎣

e2
ij + 2τijeij

e2
kl + 2τklekl

e2
mn + 2τmnemn

e2
pq + 2τpqepq

⎤

⎥

⎥

⎥

⎦

(24)
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Now, if eij is neglected with respect to τij (remember that τij is the TDOA and eij the error in
computing it. It is assumed that eij << τij ), eij is bounded by emax and dij is bounded by
D = dmax

ij , :

v2eij(eij+2τij
) ≈ v2eij2τij

< 2vemaxdij

< 2vemaxD (25)

Then, an upper bound for the perturbation is

‖δb‖1 < nvemaxD (26)

From (25) and (26) the relative error in source positioning can be bounded:

‖δx‖
‖x◦‖ < nvemax

(

1

‖M‖ +
D

‖b‖

)

cond(M) (27)

Finally the value of emax can be computed from it:

emax =
∆R

Rnv
(

1
‖M‖ + D

‖b‖

)

cond(M)
(28)

The values of the range R and its allowed uncertainty ∆R must be introduced and matrices M

and b must be computed. The following examples will show how Equation 28 can be used.

Simulation C

Fig. 5. Simulation C. 1000 sources are localized around the receptors. The red circles show
the allowed error bound of ±5 m.

For the examples the two configurations studied in simulations A and B are used. The range
was 40 m and an uncertainty of ± 5 m (∆R = 5) is introduced. From (28) the values of emax

are computed for the 1000 sources equally spaced. The smallest value, emin
max, imposes the

hardware and software quality. Now the TDOAs are perturbed with a random Gaussian error
with a standard deviation equal to emin

max. The source position is computed. The results for
both configurations are depicted in Figure 5. Configuration A needs an emin

max equal to 1.242 μs
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to keep positioning for the worst conditions within bounds. Configuration B can do the job
with emin

max equal to 8.742 μs. All the sources are localized within bounds. It should be noticed
the low values of emin

max needed to ensure an error of ± 5m in a 40 m range. To the best of the
authors’ knowledge is the first time this kind of quantification can be done a priori.

Simulation D

Fig. 6. Simulación D. Ascertaining whether the acquisition frequency is adequate or not. a)
The acquisition frequency of 44100 Hz is not enough. b) 44100 Hz is enough.

One of the methods used for TDOA computation is the Generalized Cross Correlation, GCC
(Knapp & Carter, 1976). In this method the uncertainty is bounded by the acquisition
frequency used for the signal. For a given acquisition frequency a lower uncertainty can be
achieved by the use of interpolation techniques (Tervo & Lokki, 2008), or regressive techniques
(Brandstein & Silverman, 1997). With Equation 28 it can be established if interpolation is
needed or not. For SIMULATION C the signal sampling frequency is 44100 Hz. A Gaussian
noise with standard deviation equal to 1

2 ∆t = 1
2∗44100 is added to the TDOA exact values. The

resulting system is solved for each source position. The results can be seen in Figure 6. For
configuration A, in order to keep the error within bounds it is necessary to use interpolation
algorithms. Configuration B will do the job using the GCC algorithm alone.
It should be noticed that configuration A do not present noticeable differences at 120◦ and
300◦ as it did before. The only change is that receptor m3 is used as coordinate centre instead
of m0.

6. 3D examples

If uniform directivity is considered a desirable property for a detection system the goal must
be to achieve it with the minimum hardware and computational work, i.e: receptors and
receptors pairs involved. A tetrahedron with a receptor at the geometrical centre is proposed
as a guess, Figure 7(a). It is not a blind guess because of the properties shown by the centred
equilateral triangle array (see Figure 4). The tetrahedron is a five receptors array, the minimum
required. The receptor at the centre is designed as the master. All pairs include the master
receptor. The distance from the centre to the corner is 1m. Figure 7(b) shows the directivity

12 Advances in Sound Localization
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Fig. 7. 3D examples. (a) Receptors spatial configuration. All receptors pairs include the
master receptor m0 (b) System directivity

pattern for sources located in a surrounding sphere of radius 10m. The maximum directivity
value is 0.017.
The system is perturbed by changing the receptors pairs. The centre receptor is still used as the
master. The receptors pairs are depicted by the solid lines in Figure 8(a–c). The corresponding
computed directivity pattern is shown in Figure 9(a–c). The results are astonishing.

Fig. 8. Three detection systems made from the same receptors but choosing different pairs.
The master receptor is always the one in the tetrahedron centre.

Fig. 9. Directivities computed for the three receptor systems from Figure 8.

The conclusion is that for the same hardware configuration receptors pairs are paramount to
determine system directivity.
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An alternative is the six receptors arrays of Figure 10(a). The distance of each receptor to the
centre is 1 m. The master receptor is the one on top. Three pairs are constructed from the
obvious on axis locations. A fourth pair is constructed with two corners from different axes.
One more receptor is used. Eight directivity lobes in the axis direction can be seen, Figure
10(b). The maximum directivity is 0.01. Although the fourth receptor pair selection breaks
symmetry the directivity pattern is symmetric.

Fig. 10. Six receptors arrangement. a) Selected pairs, b) Computed directivities.

7. Experiment dimensions and effectiveness forecast

7.1 Localization errors as a function of TDOA uncertainties

Fig. 11. Relative localization error for a 1 meter tetrahedron array side. TDOA uncertainties
of 0.01, 0.1, 1 and 10 microseconds are considered for source distances of 10, 20, 30 and 40 m.

14 Advances in Sound Localization
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The starting experimental setting is a tetrahedron array with 1m side. For a source position
at r[ 1√

3
, 1√

3
, 1√

3
] with r = 10, 20, 30 and 40 meters and TDOA uncertainties of 0.01, 0.1, 1 and

10 microseconds, by using Equation 28 the relative positioning error is computed. The results
are plotted in Figure 11. For 1μs uncertainty the relative error in localizing a source at 20 m is
30%. That is 6 m. It can be seen that in order to reduce the localization uncertainty one order
of magnitude, the TDOA uncertainty must be reduced one order of magnitude too.

7.2 The effect of receptors arrangement size

Assuming that the arrangement dimensions can be chosen freely Equation 28 is now
computed for the same values of TDOA uncertainties but changing the tetrahedron sides to
0.01, 0.1, 1 and 10 meters. The source is placed at 20 metres. Results are plotted in Figure
12. For the same value of TDOA uncertainties, increasing the side one order of magnitude
reduces the localization error in two orders of magnitude.

Fig. 12. Relative localization error for a 0.01, 0.1, 1 and 10 meters tetrahedron array side.
TDOA uncertainties of 0.01, 0.1, 1 and 10 microseconds are considered for source distance of
10 m.

7.3 The experiment

For the experiments a tetrahedron of 4m side has been constructed. The microphones used
are of the ICP type. The signal conditioning is a PCB with a low pass filter set at 10 Khz. A
KHEITLEY USB ®, 16 bits, card attached to a portable PC is used as A/D converter.
An acoustic gun shot is used as the source. Acquisition frequency is set to 100 KHz. TDOA
are computed by using the GCC algorithm.
From Figure 11, to localize a source with an upper bound of 17% relative error, a TDOA
uncertainty of 10μs, approximately, is needed. A GCC method will produce an uncertainty
determined by the acquisition frequency, i.e., 10 us.
The complete experiment is mounted in a football stadium, Figure 13. The sources are placed
over a 20m circle around the receptors arrangement. To install the receptors the following
procedure is followed. One long vertical stick carries the central and the top microphones.
Three short sticks with a microphone at the end are placed around the long one on a circle

15The Linear Method for Acoustical Source Localization (Constant Speed Localization
Method) - A Discussion of Receptor Geometries and Time Delay Accuracy for Robust Localization

www.intechopen.com



Fig. 13. Receptors array and source position for the experimental setting.

of radius 4√
3

. They position the lower microphones at 1m over the floor. The source height

is coincident with the height of the centre receptor. Positioning of the source, end of gun
barrel, with respect to the receptors centre is made with an estimated error of ±5cm, which is
less than 0.6% of the radius. Positioning of the receptors is checked with a theodolite Model
Wild-Leica-T2 of 1 second precision.

Fig. 14. Error computed for three gun shots at each source location. Notice that all of them
are within the prescribed bound of 8%.

For each position the experiment is repeated six times. Figure 14 shows the results. It can be
seen that the relative error remains within the 5% level, which is one third of the upper bound
forecasted of 17%. The safety margin is in agreement with the ones that can be seen in Figure
5 (b).

8. Discussion, conclusions and future research

Nowadays a DSP can carry on thousands of operation per second. At first glance to solve
the localization problem in one step or ten could be considered irrelevant. To add one more

16 Advances in Sound Localization

www.intechopen.com



receptor does not seem a big deal because redundancy is a common practice. To solve the HL
non-linear original problem or the linear expanded one can be a matter of taste. But it is not.
A linear system allows using well known, well established error propagation methods.
Equation 28 is an invaluable tool for the one in charge to design a source localization system.
For a given array a directivity pattern can be computed and observed easily with software
like MATLAB�. Plots like the ones in Figures 9 and 10 will help in designing the acquisition
system. The experiment shows that the upper bound computed is reliable.
Three points, among others, have not been reviewed in this work: the uncertainty in receptors
position, the effect of using redundant pairs and adequate receptor pair selection for a given
receptor geometry.
It is clear from this work that matrix M condition is important. It can be computed if the
receptors pattern, receptors pairs and source position are known. The condition does not
depend on geometrical or TDOA uncertainties. Geometrical uncertainties will add or will
establish the upper bound for the δM matrix norm. A rule of thumb is that receptors position
uncertainties must be in the order of v · emax. For a time uncertainty of 10μs in air, the number
is 0.35 cm. For a high frequency acquisition and very low errors in TDOA the ability to
correctly position the receptors centre will impose the limits.
The use of redundant pairs seems plausible. At first glance it can be imagined that many of the
selected pairs will produce a better problem conditioning or a more robust pseudoinverse for
a given source location. But a meaningful error reduction can be obtained only if the condition
is improved.
It has been shown that pair selection for a given receptors array is paramount. Recently
(Gillette & Silverman, 2008) produced a redundant system by introducing more equations.
The equations do not came from the introduction of more receptors but for arranging new
pairs with the same existing receptors. In the author’s opinion the same reasoning of the
previous paragraph can be done.
This work does not give a guideline on receptors orientation and preferred receptors pairs.
Research is carried on in order to develop a rationale to reduce the conditioning and is a
matter of future research. It is worth noting the work of (Yang & Scheuing, 2005) as an effort
to find a good receptors distribution geometry.
This work do shows a 2D and a 3D robust detection system and a simple way to validate them
or any other configuration.
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