
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Stefano Cavagnetto
School of Computing and Prague College Research Centre, Prague College

Polská 10, Prague
Czech Republic

1. Introduction

Two fields connected with computers, automated theorem proving on one side and
computational complexity theory on the other side, gave the birth to the field of propositional
proof complexity in the late ’60s and ’70s. In this chapter we consider how classic
propositional logic and in particular Propositional Proof Complexity can be combined with
the study of Cellular Automata. It is organized as follows: in the next section we recall some
of the basic definitions in computational complexity theory 1. In the same section we introduce
some basic definitions from propositional proof complexity2 and we recall an important
result by Cook and Reckhow (20) which gives an interesting link between complexity
of propositional proofs and one of the most beautiful open problem in contemporary
mathematics3 . Section 3 deals with cellular automata and on how Propositional Logic and
techniques from Propositional Proof Complexity can be employed in order to give a new
proof of a famous theorem in the field known as Richardson’s Theorem4. In the chapter some
complexity results regarding Cellular Automata are considered and described. The ending
section of the chapter deals with a new proof system based on cellular automata and also it
outlines some of the open problems related to it.

2. Some technical preliminaries

In 1936 Alan Turing (63) introduced the standard computer model in computability theory,
the Turing machine. A Turing machine M consists of a finite state control (a finite program)
attached to read/write head which moves on an infinite tape. The tape is divided into squares.
Each square is capable of storing one symbol from a finite alphabet Γ. b ∈ Γ, where b is the
blank symbol. Each machine has a specified input alphabet Σ ⊆ Γ where b /∈ Σ. M is in some
finite state q (in a specified finite set Q of possible states), at each step in a computation. At
the beginning a finite input string over Σ is written on adjacent squares of the tape and all

1 For a self-contained exposition of the field the interested reader can see (56), (49).
2 There are many survey papers on propositional proof complexity offering different emphasis; the

interested reader can see (64), (17)and (51).
3 The famous P versus NP problem, (22), (50), (57), (65), (58).). In this chapter, the next section regarding

computational complexity follows in detail Cook’s paper (22)
4 This new proof was given by the present author in (14); section 3 follows in detail this work.

Propositional Proof Complexity
and Cellular Automata

22

www.intechopen.com

2 Will-be-set-by-IN-TECH

other squares are blank. The head scans the left-most symbol of the input string, and M is in
the initial state q0. At every step M is in some state q and the head is scanning a square on
the tape containing some symbol s, and the action performed depends on the pair (q, s) and is
specified by the machine’s transaction function (or program) δ. The action consists of printing
a symbol on the scanned square, moving the head left or right of one square, and taking a new
state.
Formally the model introduced by Turing can be presented as follows. It is a tuple 〈Σ, Γ, Q, δ〉
where Σ, Γ, Q are nonempty sets with Σ ⊆ Γ and b ∈ Γ − Σ. The state set Q contains three
special states q0, qaccept and qreject. The transition function δ satisfies:

δ : (Q − {qaccept, qreject})× Γ → Q × Γ × {−1, 1}.

δ(q, s) = (q′, s′, h) is interpreted as: if M is in the state q scanning the symbol s then q′ is the
new state, s′ is the new symbol printed on the tape, and the tape head moves left or right of
one square (this depends whether h is −1 or 1). We assume Q ∩ Γ = ∅. A configuration of M
is a string xqy with x, y ∈ Γ∗, y is not the empty string, q ∈ Q. We interpret the configuration
xqy as follows: M is in state q with xy on its tape, with its head scanning the left-most symbol
of y.

Definition 2.1. If C and C′ are configurations, then C
M
→ C′ if C = xqsy and δ(q, s) = (q′, s′, h)

and one of the following holds:

1. C′ = xs′q′y and h = 1 and y is nonempty.

2. C′ = xs′q′b and h = 1 and y is nonempty.

3. C′ = x′q′as′y and h = −1 and x = x′a for some a ∈ Γ.

4. C′ = q′bs′y and h = −1 and x is empty.

A configuration xqy is halting if q ∈ {qaccept, qreject}.

Definition 2.2. A computation of M on input w ∈ Σ∗, where Σ∗ is the set of all finite string over Σ,
is the unique sequence C0, C1, . . . of configurations such that C0 = q0w (or C0 = q0b if w is empty)

and Ci
M
→ Ci+1 for each i with Ci+1 in the computation, and either the sequence is infinite or it ends

in a halting configuration.

If the computation is finite, then the number of steps is one less than the number of
configurations; otherwise the number of steps is infinite.

Definition 2.3. M accepts w if and only if the computation is finite and the final configuration
contains the state qaccept.

The elements belonging to the class P are languages. Let Σ be a finite alphabet with at least
two elements, and Σ∗, as above, the set of all finite strings over Σ. A language over Σ is
L ⊆ Σ∗. Each Turing machine M has an associated input alphabet Σ. For each string w ∈ Σ∗

there exists a computation associated with M and with input w. We said above5 that M accepts
w if this computation terminates in the accepting state.6 The language accepted by M that we
denote by L(M) has associated alphabet Σ and is defined by

5 See Definition 2.3.
6 Notice that M fails to accept w if this computation ends in the rejecting state, or if the computation fails

to terminate.

458 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 3

L(M) = {w ∈ Σ∗| M accepts w}.

Let tM(w) be the number of steps in the computation of M on input w. If this computation
never halts then tM(w) = ∞. For n ∈ N we denote by TM(n) the worst case run time of M;
i.e.

TM(n) = max{tM(w)| w ∈ Σn}

where Σn is the set of all strings over Σ of length n. Thus, we say that M runs in polynomial

time if there exists k such that for all n, TM(n) ≤ nk + k. Then the class P of languages can be
defined by the condition that a language L is in P if L = L(M) for some Turing machine M
which runs in polynomial time.
The complexity class NP can be defined as follows using the notion of a checking relation,
which is a binary relation R ⊆ Σ∗ × Σ∗

1 for some finite alphabets Σ and Σ1. We associate with
each such relation R a language LR over Σ ∪ Σ1 ∪ {#} defined by LR = {w#y| R(w, y)}, where
the symbol # /∈ Σ. R is polynomial time if and only if LR ∈ P . The class NP of languages
can be defined by the condition that a language L over Σ is in NP if there is k ∈ N and a
polynomial time checking relation R such that for all w ∈ Σ∗,

w ∈ L ⇐⇒ ∃y(|y| ≤ |w|k ∧ R(w, y))

where |w| and |y| denote the lengths of w and y, respectively.
The question of whether P = NP is one of the greatest unsolved problem in theoretical
computer science and in contemporary mathematics. Most researchers believe that the two
classes are not equal (of course, it is easy to see that P ⊆ NP). At the beginning of the
’70s Cook and Levin, independently, pointed out that the individual complexity of certain
problems in NP is related to that of the entire class. If a polynomial time algorithm exists
for any of these problems then all problems in NP would be polynomially solvable. These
problems are called NP-complete problems. Since that time thousands of NP -complete
problems have been discovered. We recall here only the first and probably one of the most
famous of them, the satisfiability problem. For a collection of these problems the interested
reader can see (29).
Let φ be a Boolean formula in the De Morgan language with constants 0, 1 (the truth values
FALSE and TRUE) and propositional connectives: unary ¬ (the negation) and binary ∧
and ∨ (the conjunction and the disjunction, respectively). A Boolean formula is said to be
satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.
The satisfiability problem is to test whether a Boolean formula φ is satisfiable; this problem is
denoted by SAT. Let SAT = {〈φ〉 |φ is a satisfiable Boolean formula}.

Theorem 2.4 (Cook (19), Levin (42)). SAT ∈ P if and only if P = NP .

Suppose that Li is a language over Σi, i = 1, 2. Then L1 ≤p L2 (L1 is polynomially reducible
to L2) if and only if there is a polynomial time computable function f : Σ∗

1 → Σ∗
2 such that

x ∈ L1 ⇐⇒ f (x) ∈ L2,

for all x ∈ Σ∗
1 .

Definition 2.5. A language L is NP-complete if L ∈ NP and every language L′ ∈ NP is
polynomial time reducible to L.

459Propositional Proof Complexity and Cellular Automata

www.intechopen.com

4 Will-be-set-by-IN-TECH

A language L is said NP-hard if all languages in NP are polynomial time reducible to it,
even though it may not be in NP itself.
The heart of Theorem 2.4 is the following one.

Theorem 2.6. SAT is NP -complete.

Consider the complement of SAT. Verifying that something is not present seems more difficult
than verifying that it is present, thus it seems not obviously a member of NP . There is a
special complexity class, coNP , containing the languages that are complements of languages
of NP . This new class leads to another open problem in computational complexity theory.
The problem is the following: is coNP different from NP? Intuitively the answer to this
problem, as in the case of the P versus NP problem, is positive. But again we do not have a
proof of this.
Notice that the complexity class P is closed under complementation. It follows that if P =
NP then NP = coNP . Since we believe that P �= NP the previous implication suggests
that we might attack the problem by trying to prove that the class NP is different from its
complement. In the next section we will see that this is deeply connected with the study of
the complexity of propositional proofs in mathematical logic.
We conclude this introductory section by recalling some basic definitions from circuit
complexity which will be used afterwards and the classical notation for the estimate of the
running time of algorithms, the so called Big-O and Small-o notation for time complexity.

Definition 2.7. A Boolean Circuit C with n inputs variables x1, . . . , xn and m outputs variables y1,
. . . , xm and basis of connectives Ω = {g1, . . . , gk} is a labelled acyclic directed graph whose out-degree
0 nodes are labelled by yj’s, in-degree 0 nodes are labeled by xi’s or by constants from Ω, and whose
in-degree ℓ ≥ 1 nodes are labeled by functions from Ω of arity ℓ.

The circuit computes a function C : 2n → 2m in an obvious way, where we identify {0, 1}n =
2n .

Definition 2.8. The size of a circuit is the number of its nodes. Circuit complexity C(f) of a function
f : 2n → 2m is the minimal size of a circuit computing f .

In one form of estimation of the running time of algorithms, called the asymptotic analysis, we
look for understanding the running time of the algorithm when large inputs are considered.
In this case we consider just the highest order term of the expression of the running time,
disregarding both coefficient of that term and any other lower term. Throughout this work
we will use the asymptotic notation to give the estimate of the running time of algorithms and
procedures. Thus we think that for a self-contained presentation it is perhaps worth to recall
the Big-O and Small-o notation for time complexity. Let R+ be the set of real numbers greater
than 0. Let f and g be two functions f , g : N → R+. Then f (n) = O(g(n)) if positive integers
c and n0 exist so that for every integer n ≥ n0, f (n) ≥ cg(n).7 In other words, this definition
points out that if f (n) = O(g(n)) then f is less than or equal to g if we do not consider
differences up to a constant factor. The Big-O notation gives a way to say that one function
is asymptotically no more than another. The Small-o gives a way to say that one function is
asymptotically less than another. Formally, let f and g be two functions f , g : N → R+. Then
f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0.

7 When f (n) = O(g(n)) we say that g(n) is an asymptotic upper bound for f (n).

460 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 5

2.1 The complexity of propositional proofs

The complexity of propositional proofs has been investigated systematically since late ’60s.8

Cook and Reckhow in (20), (21) gave the general definition of propositional proof system. To
be able to introduce their definition that plays a central role in our work and is foundamental
in the theory of complexity of the propositional proofs, we start from an example that must be
familiar to anyone who has some basic knowledge of mathematical logic.
Let TAUT be the set of tautologies in the De Morgan language9 with constants 0, 1 (the truth
values FALSE and TRUE) and propositional connectives: unary ¬ (the negation) and binary ∧
and ∨ (the conjunction and the disjunction, respectively). The language also contains auxiliary
symbols such as brackets and commas. The formulas are built up using the constants,
the atoms (propositional variables) p0,. . . , pn, and the connectives. Consider the following
example of set of axioms taken from Hilbert’s and Ackermann’s work (31), where A → B is
just the abbreviation of ¬A ∨ B,

1. A ∨ (A → A)

2. A → (A ∨ B)

3. (A ∨ B) → (B ∨ A)

4. (B → C) → ((A ∨ B) → A ∨ C))

The only inference rule is modus (ponendo) ponens10 (MP), A → B, A/B (i.e. A,¬A ∨ B/B).
The literature of mathematical logic contains a wide variety of propositional proof systems
formalized with a finite number of axiom schemes and a finite number of inference rules. The
example above is just one of many possible different formalizations. Any of such systems is
called a Frege System and denoted by F. A more general definition for Frege systems can be
given using the concept of a Frege rule.

Definition 2.9. A Frege rule is a pair ({φ1(p0, ..., pn), ..., φk(p0, ..., pn)}, φ(p0, ...,pn)), such that
the implication

φ1 ∧ ... ∧ φk → φ

is a tautology. We use p0,. . . , pn for propositional variables and usually we write the rule as

φ1, . . . , φk

φ
.

Notice that a Frege rule can have zero premises and in which case it is called an axiom schema
(as the example above for the axioms (1) to (4)).

Definition 2.10. A Frege system F is determined by a finite complete set of connectives and a finite
set of Frege rules. A formula φ has a proof in F if and only if φ ∈ TAUT.11 F is implicationally
complete.12

As consequence of the schematic formalization we have that, the relation “w is a proof of φ in
F” is a polynomial time relation of w and φ.

8 The earliest paper on the subject is an article by Tseitin (62).
9 Introduced in the previous section when we defined the problem SAT.

10 In Latin, the mode that affirms by affirming.
11 The “if” direction is the completeness and the “only” direction is the soundness of F.
12 Recall that F is implicationally complete if and only if any φ can be proved in F from any set {δ1, · · · , δn}

if every truth assignment satisfying all δi’s satisfies also φ.

461Propositional Proof Complexity and Cellular Automata

www.intechopen.com

6 Will-be-set-by-IN-TECH

We consider all finite objects in our proofs as encoded in the binary alphabet {0, 1}. In
particular, we consider TAUT as a subset of {0, 1}∗. The length of a formula φ is denoted
|φ|. The properties above lead to a more abstract definition of proof system (20),

Definition 2.11 (Cook Reckhow (20)). A propositional proof system is any polynomial time
computable function P : {0, 1}∗ → {0, 1}∗ such that Rng(P) = TAUT. Any w ∈ {0, 1} such
that P(w) = φ is called a proof of φ in P.

Any Frege system can be seen as a propositional proof system in this abstract perspective. In
fact, consider the following function PF,

PF(w) =

{

φ if w is a proof of φ in P

1 otherwise

Definition 2.12. A propositional proof system P is polynomially bounded if there exists a polynomial
p(x) such that any φ ∈ TAUT has a proof w in P of size |w| ≤ p(|φ|).

In other words, any propositional proof system P that proves all tautologies in polynomial
size is polynomially bounded. In (20) has been proved the following fundamental theorem
relating propositional proof complexity to computational complexity theory. We report the
theorem and the sketch of the proof.

Theorem 2.13 (Cook Reckhow (20)). NP = coNP if and only if there exists a polynomially
bounded proof system P.

Proof. Notice that since SAT is NP -complete and for all ¬φ, ¬φ /∈ TAUT if and only if
φ ∈ SAT, TAUT must be coNP-complete. Assume NP = coNP . Then by hypothesis
TAUT ∈ NP . Hence there exists a polynomial p(x) and a polynomial time relation R such
that for all φ,

φ ∈ TAUT if and only if ∃y(R(φ, y) ∧ |y| ≤ p(|φ|)).

Now define the propositional proof system as follows:

P(w) =

{

φ if ∃y(R(φ, y) and w = (φ, y)

1 otherwise

It is clear that P is polynomially bounded.
For the opposite direction assume that P is a polynomially bounded propositional proof
system for TAUT. Let p(x) be a polynomial satisfying Definition 2.12. Since for all φ,

φ ∈ TAUT if and only if ∃w(P(w) = φ ∧ |w| ≤ p(|φ|),

we get that TAUT ∈ NP . Let R ∈ coNP . By the coNP -completeness of TAUT, R
is polynomially reducible to TAUT. Since TAUT ∈ NP then so is R. This shows that
coNP ⊆ NP and consequently also that coNP = NP .

�

Hence, if we believe that NP �= coNP then there is no polynomially bounded propositional
proof system for classical tautologies. Recall from the previous section that if NP �= coNP
then P �= NP . To prove that NP �= coNP is equivalent, by Theorem 2.13, to prove that
there is no propositional proof system that proves all classical tautologies in polynomial size.

462 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 7

This line of research gave rise to the program of proving lower bounds for many propositional
proof systems. As mentioned in (38) it would be unlikely to prove that NP �= coNP in this
incremental manner by showing exponential lower bounds for all the proof systems known.13

This is like trying to prove a universal statement by proving all its instances. Despite that, we
may hope to uncover some hidden computational aspect in these lower bounds and thus to
reduce the conjecture to some intuitively more rudimentary one. For more discussion on this
the reader can see (38).
We conclude this section with the notion of polynomial simulation introduced in (20). The
definition 2.14 is simply a natural notion of quasi-ordering of propositional proof systems by
their strength.

Definition 2.14. Let P and Q be two propositional proof systems. The system P polynomially
simulates Q, P ≥p Q in symbols, if and only if there is polynomial time computable function
g : {0, 1}∗ → {0, 1}∗ such that for all w ∈ {0, 1}∗, P(g(w)) = Q(w).

The function g translates proofs in Q into proofs in P of the same formula. Since in the
definition above g is a polynomial time function, then the length of the proofs in P will be
at most polynomially longer than the length of the original proofs in the system Q.

2.2 Resolution

The logical calculus Resolution R is a refutation system for formulas in conjunctive normal
form. This calculus is popularly credited to Robinson (55) but it was already contained in
Blake’s thesis (9) and is an immediate consequence of Davis and Putnam work (26).
A literal ℓ is either a variable p or its negation p̄. The basic object is a clause, that is a finite
or empty set of literals, C = {ℓ1, . . . , ℓn} and is interpreted as the disjunction

∨n
i=1 ℓi. A

truth assignment α : {p1, p2, . . . } → {0, 1} satisfies a clause C if and only if it satisfies at
least one literal li in C. It follows that no assignment satisfies the empty clause, which it is
usually denoted by {}. A formula φ in conjunctive normal form is written as the collection
C = {C1,. . . , Cm} of clauses, where each Ci corresponds to a conjunct of φ. The only inference
rule is the resolution rule, which allows us to derive a new clause C ∪ D from two clauses
C ∪ {p} and D ∪ { p̄}

C ∪ {p} D ∪ { p̄}

C ∪ D

where p is a propositional variable. C does not contain p (it may contain p̄) and D does
not contain p̄ (it may contain p). The resolution rule is sound: if a truth assignment α :
{p1, p2, . . . } → {0, 1} satisfies both upper clauses of the rule then it also satisfies the lower
clause.
A resolution refutation of φ is a sequence of clauses π = D1,. . . ,Dk where each Di is either a
clause from φ or is inferred from earlier clauses Du , Dv, u, v < i by the resolution rule and the
last clause Dk = {}. Resolution is sound and complete refutation system; this means that a
refutation does exist if and only if the formula φ is unsatisfiable.

Theorem 2.15. A set of clauses C is unsatisfiable if and only if there is a resolution refutation of the
set.

Proof. The “only-if part” follows easily from the soundness of the resolution rule. Now,
for the opposite direction, assume that C is unsatisfiable and such that only the literals p1,

13 Unless there is an optimal proof system.

463Propositional Proof Complexity and Cellular Automata

www.intechopen.com

8 Will-be-set-by-IN-TECH

¬p1,. . . , pn, ¬pn appear in C. We prove by induction on n that for any such C there is a
resolution refutation of C.

Basis Case: If n = 1 there is nothing to prove: the set C must contain {p1} and {¬p1} and
then by the resolution rule we have {}.

Induction Step: Assume that n > 1. Partition C in four disjoint sets:

C00 ∪ C01 ∪ C10 ∪ C11

of those clauses which contain no pn and no ¬pn, no pn but do contain ¬pn, do contain pn

but not ¬pn and contain both pn and ¬pn, respectively. Produce a new set of clauses C ′ by:

(1) Delete all clauses from C11.

(2) Replace C01 ∪ C10 by the set of clauses that are obtained by the application of the resolution
rule to all pairs of clauses C1 ∪ {¬pn} from C01 and to C2 ∪ {pn} from C10.

The new set of clauses do not contain either pn or ¬pn. It is easy to see that the new set of
clauses C ′ is also satisfiable. Any assignment α′ : {p1, . . . , pn−1} → {0, 1} satisfies all clauses
C1 such that C1 ∪ {¬pn} ∈ C01, or all clauses C2 such that C2 ∪ {pn} ∈ C01. Hence α′ can
be extended to a truth assignment α satisfying C, which is a contradiction because by our
hypothesis C is unsatisfiable.

�

A resolution refutation π = D1,. . . , Dk can be represented as a directed acyclic graph (dag-like)
in which the clauses are the vertices, and if two clauses C ∪ {p} and D ∪ { p̄} are resolved by
the resolution rule, than there exists a direct edge going from each of the two clauses to the
resolvent C ∪ D. A resolution refutation π = D1,. . . , Dk is tree-like if and only if each Di is
used at most once as a hypothesis of an inference in the proof. The underlying graph of π
is a tree. The proof system allowing exactly tree-like proofs is called tree-like resolution and
denoted by R∗.
In propositional proof complexity, perhaps the most important relation between dag-like
refutations and refutations in R∗ is that the former can produce exponentially shorter
refutations then the latter. A simple remark on this is that in a tree-like proof anything which
is needed more than once in the refutation must be derived again each time from the initial
clauses. A superpolynomial separation between R∗ and R was given in (64), and later by
others in (16) and (32). Later on, in (10) has been presented a family of clauses for which R∗

suffers an exponential blow-up with respect to R. For an improvement of the exponential
separation the reader can see (6).

2.3 Interpolation and effective interpolation

A basic result in mathematical logic is the Craig interpolation theorem (24). The theorem
says that whenever an implication A → B is valid then there exists a formula I, called an
interpolant, which contains only those symbols of the language occurring in A and B and
such that the two implications A → I and I → B are both valid formulas. Craig’s interpolation
theorem is a fundamental result in propositional logic and in predicate logic as well.14

14 Throghout all this work by Craig interpolation’s theorem we mean the propositional version of it.

464 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 9

Finding an interpolant for the implication is a problem of some relevance with respect to
computational complexity theory. Mundici in (45) pointed out the following. Let U and
V be two disjoints NP-sets, subsets of {0, 1}∗. By the proof of the NP-completeness of
satisfiability (19) there are sequences of propositional formulas An(p1,. . . , pn, q1,. . . , qsn) and

Bn(p1,. . . , pn, r1,. . . , rtn
) such that the size of An and Bn is nO(1) and such that

Un := U ∩ {0, 1}n = {(δ1, . . . , δn ∈ {0, 1}n|∃α1, . . . , αsn An(δ̄, ᾱ) holds}

and
Vn := V ∩ {0, 1}n = {(δ1, . . . , δn ∈ {0, 1}n|∃β1, . . . , βtn

An(δ̄, β̄) holds}.

Assuming that the sets U and V are disjoint sets is equivalent to the statement that the
implications An → ¬Bn are all tautologies. Craig’s interpolation theorem guarantees there
is a formula In(p̄) constructed only using atoms p̄ such that

An → In

and
In → ¬Bn

are both tautologies. Thus the set

W :=
⋃

n
{δ̄ ∈ {0, 1}n|In(δ̄) holds}

defined by the interpolant In separates U from V: U ⊆ W and W ∩ V = ∅. Hence an estimate
of the complexity of propositional interpolation formulas in terms of the complexity of an
implication yields an estimate to the computational complexity of a set separating U from
V. In particular, a lower bound to a complexity of interpolating formulas gives also a lower
bound on the complexity of sets separating disjoint NP -sets. Of course, we cannot really
expect to polynomially bound the size of a formula or a circuit defining a suitable W from the
length of the implication An → ¬Bn. This is because, as remarked by Mundici (45), it would
imply that NP ∩ coNP ⊆ P/poly. In fact, for U ∈ NP ∩ coNP we can take V to be the
complement of U and hence it must hold that W = U. In (39), Krajíček formulated the idea of
effective interpolation as follows:

For a given propositional proof system, try to estimate the circuit-size of an interpolant of an implication
in terms of the size of the shortest proof of the implication.

In other words, for a given propositional proof system establish an upper bound on the
computational complexity of an interpolant of A and B in terms of the size of a proof of the
validity of An → ¬Bn. Then any pair A and B which is hard to interpolate yields a formula
which must have large proofs of validity. This fact can be exploited in proving lower bounds,
and indeed several new lower bounds came out from its application, see (41), (52). Besides
lower bounds, effective interpolation revealad to be an excellent idea in other areas in proving
results of independence in bounded arithmetic (53) and in establishing links between proof
complexity and modern cryptography.The footnote 15 can stay.15

Definition 2.16. A propositional proof system P admits effective interpolation if and only if there is a
polynomial p(x) such that any implication A → B with a proof in P of size m has an interpolant of a
circuit size ≤ p(m).

15 A general overview of these applications has been given in (38) and (51).

465Propositional Proof Complexity and Cellular Automata

www.intechopen.com

10 Will-be-set-by-IN-TECH

The main point of the effective interpolation method is that by establishing a good upper
bound for a proof system P in the form of the effective interpolation we prove lower bounds
on the size of the proofs in P. That is,

Theorem 2.17. Assume that U and V are two disjoints NP -sets such that Un and Vn are inseparable
by a set of circuit complexity ≤ s(n), all n ≥ 1. Assume that P admits effective interpolation. Then
the implications An → ¬Bn require proofs in P of size ≥ s(n)ǫ, for some ǫ > 0.

The system Resolution admits feasible interpolation, as it was proven in (41). In fact,

Theorem 2.18 (Krajíček (41)). Assume that the set of clauses

{A1, ..., Am, B1, ..., Bl}

where

1. Ai ⊆ {p1,¬p1, ..., pn,¬pn, q1,¬q1, ..., qs,¬qs}, all i ≤ m

2. Bj ⊆ {p1,¬p1, ..., pn ,¬pn, r1,¬r1, ..., rt,¬rt}, all j ≤ l

has a resolution refutation with k clauses.
Then the implication

∧

i≤m

(
∨

Ai) → ¬
∧

i≤l

(
∨

Bj)

has an interpolant I whose circuit-size is knO(1).

The key idea of the proof of the previous theorem is that the structure of a resolution
refutation allows one easily to decide which clauses cause the unsatisfiability under a specific
assignment. Furthermore, it should be noticed that the interpolant can be computed by a
polynomial time algorithm having an access to the resolution refutation. Theorem 2.18 is
important because it is a theorem used later on in the next section.

2.4 “Mathematical” proof systems

The set of propositional tautologies TAUT is a coNP -complete set. In general a proof system
is a relation R(x, y) computable in polynomial time such that

x ∈ TAUT if and only if ∃y(R(x, y)).

A proof of x is a y such that R(x, y) holds. Thus one can take an coNP -complete set
and a suitable relation R over it and investigate the complexity of such proofs. In this
section we recall a few proof systems (only one in some detail) “mathematically” based on
coNP -complete sets.
A nice example of a well-known “mathematical16 ” proof system is the proof system Cutting
Plane CP. The Cutting Plane proof system (CP) is a refutation system based on showing the
non-existence of solutions for a family of linear equalities. A line in a proof in th system CP is
an expression of the form

∑ ai · xi ≥ B

where a1,..., an, B are integers. Then for a given clause C, and the variables xi, i ∈ P, occur
positively in C, and variables xi , i ∈ N, occur negatively in C, then C is represented by the
linear inequality

∑
i∈P

xi − ∑
i∈N

xi ≥ 1 − |N|.

16 This expression is taken from Pudlák (51).

466 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 11

A CNF formula is represented by the family of linear inequalities corresponding to its clauses.
Thus for example the formula (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x3 ∨ x4 ∨ x̄5) is represented by the
inequalities x1 − x2 + x3 ≥ 0 and −x1 + x3 + x4 − x5 ≥ −1. The axioms of the proof system
are xi ≥ 0, −xi ≥ −1. The rules of inference are:

(a)
∑ ai · xi ≥ A ∑ bi · xi ≥ B

∑ (ai + bi) · xi ≥ A + B

(b)
∑ ai · xi ≥ A

∑ (c · ai) · xi ≥ c · A

where c ≥ 1 is an arbitrary integer;

(c)
∑ (c · ai) · xi ≥ A

∑ ai · xi ≥
⌈

A
c

⌉

where c > 1 is an arbitrary integer.

A derivation D of the inequality I from inequalities I1, ..., Im is a sequence D1,...,Dn such that
I = Dn and for all i < n either Di is an axiom, or one of Ii, ..., Im or inferred from Dj, Dk for
j, k < i by means of a rule of inference. A CP refutation of I1,...,Im is a derivation of 0 ≥ 1 from
I1, ..., Im.
We have seen above the soundness and the completeness of Resolution for CNF formulas,
see Theorem 2.15. Soundness in the sense that given any formula φ which has a resolution
refutation π, φ is not satisfiable and completeness in the sense that given any unsatisfiable
formula φ, there is a resolution refutation π of φ. Theorem 2.19 can be proved exploiting the
completeness of R, since CP easily simulates resolution as observed in (23).

Theorem 2.19. The proof system CP is sound and complete with respect to CNF formulas.

For the soundness part we can argue as follows. Let φ be a CNF formula with a CP refutation
γ. Suppose φ is satisfied by the assignment α. Instantiate each inequality in γ of φ by assigning
the boolean variables their value under α. By induction on the length of γ we can prove that
each instantiated inequality in the refutation γ holds. This is contradiction, because we cannot
have the inequality 0 ≥ 1 as the last element of the refutation. Goerdt (30) proved that Frege
systems polynomially simulate the CP proof system.
Other examples of mathematical proof systems are for instance the Nullstellensatz system
introduced in (4), the Polynomial Calculus (15) and the Gaussian Calculus first defined in (5).
At the end of this chapter a new mathematical proof system using cellular automata will be
proposed.

3. Applications of propositional logic to cellular automata

Cellular automata can be described as large collections of simple objects locally interacting
with each other. A d-dimensional cellular automaton consists of an infinite d-dimensional
array of identical cells. Each cell is always in one state from a finite state set. The cells change
their states synchronously in discrete time steps according to a local rule. The rule gives the

467Propositional Proof Complexity and Cellular Automata

www.intechopen.com

12 Will-be-set-by-IN-TECH

new state of each cell as a function of the old states of some finitely many nearby cells, its
neighbours. In the literature one can find different types of neighbourods depening upon
which group of cells are taken into consideration during the application of the local rule. In
the figure below the Von Neumann, Moore and Simth neighbourods are displayed in Figure
1.

Fig. 1. The Moore neighborhood of the cell c, the von Neumann neighborhood of the cell c
′

and the Smith neighborhood of the cell c
′′
.

The automaton is homogeneous so that all its cells operate under the same local rule. The
states of the cells in the array are described by a configuration. A configuration can be
considered as the state of the whole array. The local rule of the automaton induces a global
function that tells how each configuration is changed in one time step. 17 In literature cellular
automata take various names according to the way they are used. They can be employed
as computation models (27) or models of natural phenomena (61), but also as tessellations
structures, iterative circuits (12), or iterative arrays (18). The study of this computation
model was initiated by von Neumann in the ’40s (46), (47). He introduced cellular automata
as possible universal computing devices capable of mechanically reproducing themselves.
Since that time cellular automata have also aquired some popularity as models for massively
parallel computations.
Cellular automata have been extensively studied as discrete models for natural system they
have several basic properties of the physical world: they are massively parallel, homogeneous
and all interactions are local. Other physical properties such as reversibility and conservation
laws can be programmed by selecting the local rule suitably. They provide very simple models
of complex natural systems encountered in physics and biology. As natural systems they
consists of large numbers of very simple basic components that together produce the complex
behaviour of the system. Then, in some sense, it is not surprising that several physical systems

17 For surveys on cellular automata the interested reader can see (35), (36).

468 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 13

(spin systems, crystal growth process, lattice gasses, . . .) have been modelled using these
devices, see (61).
In this section we show how the study of propositional proof complexity and some of its
techniques can be exploited in order to investigate cellular automata and their properties. In
this section we focus on a new proof of a foundamental theorem in the field, the Richardson
theorem (54), given in (14). Then application of feasible interpolation shows how to find
computational description of inverse cellular automata. Then we consider in some detail two
complexity problems formulated in (28) and solved in (14) as well.

3.1 Cellular Automata: definitions and some basic results

From a formal point of view a cellular automaton is an infinite lattice of finite automata, called
cells. The cells are located at the integer lattice points of the d-dimensional Euclidean space.

In general any Abelian group G in place of Zd can be used. In particular, we may consider

(Z/m)d, a toroidal space, where Z/m is the additive group of integers modulo m. In Zd we
identify the cells by their coordinates. This means that the cells are adressed by the elements

of Zd.

Definition 3.1. Let S be a finite set of states and S �= ∅. A configuration of the cellular automaton is
a function c : Zd → S. The set of all configurations is denoted by C.

At discrete time steps the cells change their states synchronously. Simply the next state of each
cell depends on the current states of the neighboring cells according to an update rule. All the
cells use the same rule, and the rule is applied to all cells in the same time. The neighboring
cells may be the nearest cells surrounding the cell, but more general neighborhoods can be
specified by giving the relative offsets of the neighbors.

Definition 3.2. Let N = (�x1, ..., �xn) be a vector of n elements of Zd. Then the neighbors of a cell at
location �x ∈ Zd are the n cells at locations �x + �xi , for i = 1, ..., n.

The local transformation rule (transition function) is a function f : Sn → S where n is the
size of the neighborhood. State f (a1, ..., an) is the new state of a cell at time t + 1 whose n
neighbours were at states a1, ..., an at time t.

Definition 3.3. A local transition function defines a global function G : C → C as follows,

G(c)(�x) := f (c(�x + �x1), . . . , c(�x + �xn)).

The cellular automataton evolves from a starting configuration c0 (at time 0), where the configuration
ct+1 at time (t + 1) is determined by ct (at time t) by,

ct+1 := G(ct).

Thus, cellular automata are dynamical systems that are updated locally and are homogeneous
and discrete in time and space. Often in literature cellular automata are specified by a
quadruple

A = (d, S, N, f),

where d is a positive integer, S is the set of states (finite), N ∈ (Zd)n is the neighborhood
vector, and f : Sn → S is the local transformation rule.

Definition 3.4. A cellular automaton A is said to be injective if and only if its global function GA is
one-to-one. A cellular automaton A is said to be surjective if and only if its global function GA is onto.
A cellular automaton A is bijective if its global function GA is one-to-one and onto.

469Propositional Proof Complexity and Cellular Automata

www.intechopen.com

14 Will-be-set-by-IN-TECH

Let A and B be cellular automata. Let GA and GB the two global functions. Suppose that d is
the same for A and B and that they have in common also S. We may compose A with B as
follows: first run A and then run B. Denoting the resulting cellular automaton by B ◦ A we
have

GB◦A = GB ◦ GA .

Notice that this composition can be formed effectively. If NA and NB are neighborhoods of
A and B, and GA and GB the global functions, then a neighborhood of GB ◦ GA consists of
vectors �x +�y for all �x ∈ NA and �y ∈ NB .
The reader can see that the problem of establishing whether or not two given cellular automata
A and B, with GA and GB, are equivalent is decidable. To see this it is enough to observe that:

(i) if NA = NB then the local transformation rules, fA and fB, are identical;

(ii) if NA �= NB then one can take NA ∪ NB and to test whether A and B agree on the
expanded neighborhood.

Intuitively, the shift functions translate the configurations one cell down in one of the
coordinate direction. Formally, for each dimension i = 1, ..., d there is a corresponding shift
function σi whose neighborhood contains only the unit coordinate vector �ei whose rule is the
identity function id.18 Translations are compositions of shift functions.
In the literature quite often a particular state q ∈ S is specified as a quiescent state (which
usually simulates empty cells). The state must be stable, i.e. f (q, q, ..., q) = q. Thus a
configuration c is said to be quiescent if all its cells are quiescent, c(x̄) = q.

Definition 3.5. A configuration c ∈ SZd
is finite if only a finite number of cells are non-quiescent,

i.e. the set (support),

{�x ∈ Z
d| c(�x) �= q}

is finite.

Let CF be the subset of C that contains only the finite configurations. Finite configurations
remain finite in the evolution of the cellular automaton, because of the stability of q, hence the
restriction GF of G on the finite configurations is a function GF : CF → CF .

Definition 3.6. A spatially periodic configuration is a configuration that is invariant under d linearly
independent translations.

This is equivalent to the existence of d positive integers t1, ..., td such that c = σti

i (c) for every

i = 1, ..., d. We denote the set of periodic configurations by CP. The restriction of GP of G on
the periodic configurations is hence a function GP : CP → CP.
Finite and periodic configurations are used in effective simulations of cellular automata on
computers. Periodic configuarations are referred to as the periodic boundary conditions on
a finite cellular array. For instance, when d = 2, this is equivalent to running the cellular
automaton on a torus (see Figure 2) that is obtained by joining together the opposite sides of
a rectangle. The relevant group is (Z/t1)× (Z/t2).

Definition 3.7. Let A be a cellular automaton. A configuration c is called a Garden of Eden
configuration of A, if c is not in the range of the global function GA .

18 The one-dimensional shift function is the left shift σ = σ1

470 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 15

Fig. 2. A toroidal arrangement: when one goes off the top, one comes in at the corresponding
position on the bottom, and when one goes off the left, one comes in on the right.

When one deals with finate sets a basic property that holds is the following: a function from a
finite set into itself is injective if and only if the function is surjective. This property is partially
tru for cellular automata. In fact, an injective cellular automaton is always surjective, but
the converse does not hold. When we consider finite configurations the behaviour is more
analogous to finite sets. Theorem 3.9, a combination, a combination of two results proved by
Moore (43) and by Myhill (44) respectively, shows out exaclty this fact.

Definition 3.8. A pattern α is a function α : P → S, where P ⊆ Zd is a finite set. Pattern α agrees
with a configuration c if and only if c(x) = α(x) for all x ∈ P.

Theorem 3.9 (Moore (43), Myhill (44)). Let A be a cellular automaton. Then GF
A

is injective if and

only if GF
A

has the property that for any given pattern α there exists a configuration c in the range of

GF
A

such that α agrees with c.

The proof of the theorem is combinatorial and holds for any dimension d. The following
theorem summarizes the situation regarding the injectivity and the surjectivity of cellular
automata.

Theorem 3.10 (Richardson (54)). Let A be a cellular a automaton. Let GA be its global function
and GF

A
be GA restricted to the finite configurations. Then the following implications hold:

1. If GA is one-to-one then GF
A

is onto.

2. If GF
A

is onto then GF
A

is one-to-one.

3. GF
A

is one-to-one if and only if GA is onto.

Definition 3.11. A cellular automaton A with global function GA is invertible if there exists a cellular
automaton B with global function GB , such that GB ◦ GA = id, where id is the identity function on
C.

471Propositional Proof Complexity and Cellular Automata

www.intechopen.com

16 Will-be-set-by-IN-TECH

It is decidable whether two given cellular automata A and B are inverses of each other. This is
a consequence of the effectiveness of the composition and the decidability of the equivalence.
In 1972 Richardson proved the following important theorem about cellular automata:19

Theorem 3.12 (Richardson (54)). Let A be an injective cellular automaton. Then A is bijective and

the inverse of GA, G−1
A

, is the global function of a cellular automaton.

The same year of Richardson’s result Amoroso and Patt proved the following theorem:

Theorem 3.13 (Amoroso and Patt (1)). Let d = 1. Then there exists an algorithm that determines,
given a cellular automaton A = (1, S, N, f), if A is invertible or not.

In the same paper they also provided an algorithm in order to determine if a given cellular
automaton is surjective.20 In higher spaces the problem of showing if a given cellular
automaton is surjective or not, has been shown undecidable by Kari (34). Kari proved also
that the reversibility of cellular automata is undecidable too,

Theorem 3.14 (Kari (34)). Let d > 1. Then there is no an algorithm that determines, given A =
(d > 1, S, N, f), if A is invertible or not.

The proof of Theorem 3.14 is based on the transformation of the tiling problem shown to
be undecidable by Berger (8), into the invertibility problem on a suitable class of cellular
automata.

3.2 A new proof of the Richardson theorem based on propositional logic

Theorem 3.12 was proven using a topological argument in combination with the Garden of
Eden theorem. Richardson’s proof was non-constructive (it used compactness of a certain
topological space) and the new proof is formally non-constructive too (becaue of the use
of compactness of propositional logic). One should notice that this non-constructivity
is unavoidable because of the undecidibility theorem proved by Kari; see Theorem 3.14.
The new proof given in (14) offers a technical simplification: only basic logic is involved
requiring straightforward formalism, and it allows us to apply an interpolation theorem. It is
important to point out that the proof can be made fully constructive, if we consider periodic
configurations; considering d = 2 the working space becomes a torus.21

The proof use as a dimension d = 2 and on the binary alphabet. This simplifies the notation
but displays the idea of the proof in full generality which works d > 2 and extended alphabets
as well. We report below the statement of Richardson’s theorem and the proof in some detail.
The reader can see (14) for the complete one.

Theorem 3.15. Let A be a cellular automata over Z2 (with 0, 1 alphabet) whose global function GA

is injective. Then there is a cellular automata B (with 0, 1 alphabet) with global function GB such that
GB ◦ GA = id.

The new proof given by the present author in (14) goes as follows. For an n-tuple of
Z

2-points N = ((u1, v1),. . . ,(un, vn)) defining the neighborhood of A denoted by

(i, j) + N

19 Recall that on finite configurations the global function may be onto and one-to-one even if the cellular
automaton is not reversible.

20 Later Sutner designed elegant decision algorithms based on de Bruijn graphs, see (60).
21 After Theorem 3.15 this point will be discussed in some detail.

472 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 17

the n-tuple (i + u1, j + v1), . . . , (i + un, j + vn). Then we define a suitable embedding into
propositional logic as follows: For each i, j let pi,j be a propositional variable. Denote by
p(i,j)+N the n-tuple of variables

pi+u1,j+v1
, . . . , pi+un,j+vn

.

This embedding has the consequence of characterizing the transformation function of the
cellular automata a as a boolean function of n-variables

pt+1
(i,j)

= f (pt
(i,j)+N)

where the superscript t and t + 1 denote the discrete time. An array

(r(i,j))(i,j)∈Z2

(we shall skip the indices and write simply�r) of 0 and 1 describes the configurations obtained
by GA from an array

(p(i,j))(i,j)∈Z2

if and only if conditions
r(i,j) = f (p(i,j)+N),

for all (i, j) are satisfied.
Denote the infinite set of all these conditions TA(�p,�r).
Then the next step is to define f by a CNF (or DNF) formula. In this manner we can think of
TA(�p,�r) as of a propositional theory consisting of clauses.
A basic observation is that the injectivity of GA is equivalent to the fact that the theory

T(�p,�r) ∪ T(�q,�r)

(where �p, �q and �r are disjoints arrays of variables) logically implies all equivalences of the
form:

p(i,j) ≡ q(i,j)

for all (i, j) ∈ Z2. Since the theory is unaltered if we replace all indices (i, j), by (i, j) + (i0, j0),
(any fixed (i0, j0) ∈ Z2) this is equivalent to the fact that

T(�p,�r) ∪ T(�q,�r)

implies that
p(0,0) ≡ q(0,0).

This can be reformulated in the following manner:

T(�p,�r) ∪ {p(0,0)} ∪ T(�q,�r) ∪ {¬q(0,0)}

is unsatisfiable.
By applying the compactness theorem for propositional logic to deduce that there are finite
theories

T0(�p,�r) ⊆ T(�p,�r)

and
T0(�q,�r) ⊆ T(�q,�r)

473Propositional Proof Complexity and Cellular Automata

www.intechopen.com

18 Will-be-set-by-IN-TECH

such that
T0(�p,�r) ∪ {p(0,0)} ∪ T0(�q,�r) ∪ {¬q(0,0)}

is unsatisfiable. At this point in the proof we can use the Craig interpolation theorem. This
result guarantees the existence of a formula I(�r), such that:

T0(�p,�r) + p(0,0) ⊢ I(�r)

and
I(�r) ⊢ T0(�q,�r) → q(0,0).

Although we write the whole array �r in I(�r), the formula obviously contains only finitely
many r variables.
Thus by application of the deuction theorem we have that:

T0(�p,�r) ⊢ p(0,0) → I(�r)

and
T0(�q,�r) ⊢ I(�r) → q(0,0).

Then after suitably renaming the propositional variables we see that the the second
implication gives:

T0(�p,�r) ⊢ I(�r) → p(0,0)

i.e. together
T0(�p,�r) ⊢ I(�r) ≡ p(0,0).

The interpolant I(�r) computes the symbol of cell (0,0) in the configuration prior to�r. This it
defines the inverse to A. Let M ⊆ Z2 be the finite set of (s, t) ∈ Z2 such that r(s,t) appears in

I(�r). Finally the inverse cellular automaton B as follows:

1. Alphabet is 0,1;

2. The neighborhood is M;

3. The transition function is given by I(�r),

This concludes the proof.
We conclude this part about the Richardson theorem with a few remarks about the proof
sketched above.

1. The construction of the inverse cellular automaton carried out in the proof given in (14)
has two key moments. First the application of the compactness theorem after a suitable
embedding into propositional logic. In a second moment the interpolation theorem is
applied leading to some kind of effectiveness. Of course, the application of compactness
leads to a non-recursive procedure but as we previously noticed this fact is unavoidable
because of theorem 3.14.

2. The construction guarantees that

GB(GA(�p)) = �p

but it does not - a priori - imply that also

GA(GB(�r)) =�r.

474 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 19

This is a consequence of Theorem 3.9 (Garden of Eden Theorem).

3. If the interpolant I(�r) contains M variables (i.e. the neighborood of B has size |M|) then

the size of B (as defined in (28), see Definition 3.16 below) is O(2|M|). This also bounds the
size |I| of any formulas defining the interpolant, but the interpolant I could be in principle
defined by a substantially smaller formula (e.g. of size O(|M|).)

It is interesting to notice that the same argument works for the version of the previous theorem

with (Z/m)2 in place of Z2. In this case, the starting theory T(�p,�r) is finite: of size O(m2 2n)
where m2 is the size of (Z/m)2 and O(2n) bound the sizes of CNFs/DNFs formulas for the
transition function of A. In this case we can avoid the use of the compactness theorem and
the interpolation can be directly applied.
In (14) is also given a constructive way how to to find the interpolant and the inverse
automaton as well.

3.3 Some new complexity results

In this paper Durand (28) proved the first complexity results concerning a global property
of cellular automata of dimension ≥ 2 (see Theorem 3.17). By Kari’s result (33) the
reversibility of a cellular automaton with d ≥ 2 is not decidable. This implies that the
inverse of a given cellular automaton cannot be found by an algorithm: its size can be greater
than any computable function of the size of the reversible cellular automaton. Durand’s
result shows that even if we restrain the field of action of cellular automata (with d =
2) to finite configuration bounded in size, it is still very hard to prove that the cellular
automaton is invertible or not: the set of cellular automata invertible on finite configurations
is coNP -complete (see below). Nevertheless ome open problems are left from Durand’ work
in (28). A solution to two of the open problems stated in (28) has been offered in (14) by the
present author. Below we give in some detail a summary of Durand’s theorem and of the two
solution. For more details the reader can see (28) and (14). In (28) it is assumed that the size of
a cellular automaton corresponds to the size of the table of its local function and of the size of
its neighborhood. More precisely:

Definition 3.16. If s is the number of states of a cellular automaton A and N = (x1, ..., xn) then the
size of a string necessary to code the table of the local function plus the vector N of A is sn · log(s) +
o(sn · log(s)).

Durand proved that the decision problem concerning invertibility of cellular automata of
dimension 2 belongs to the class of coNP-hard problems or to the class of coNP -complete
problems if some bound is introduced on the size of the finite configurations considered.22

For the coNP-completeness we assume that the size of the neighborhood is lower than the
size of the transition table of the cellular automaton, i.e. ∀x ∈ N, |x| ≤ sn.
Now, consider the following problem:

PROBLEM (CA-FINITE-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neighborhood. Two
integers p and q less than the size of A.
Question: Is A injective when restricted to all finite configurations ≤ p × q?
The theorem below is the main result in (28),

22 Notice that result is obtained for a 2-dimensional cellular automata with von Neumann neighborhood,
see Figure 1.

475Propositional Proof Complexity and Cellular Automata

www.intechopen.com

20 Will-be-set-by-IN-TECH

Theorem 3.17 (Durand (28)). The problem CA-FINITE-INJECTIVE is coNP -complete.

The proof is based on tiling. A tile is a square and its sides are colored. The colors belong to a
finite set called the color set. All tiles have the same size. A plane tiling is valid if and only if
all pairs of adjacent sides have the same color.23 A finite tiling can be defined as follows. We
assume that the set of colors contains a special “blank color” and that the set of tiles contains a
‘’blank tile” (a tile whose sides are blank.) A finite tiling is an almost everywhere blank tiling
of the plane. If there exist two integers i and j such that all the nonblank tiles of the tiling are
located inside a square of size i × j, then we say that the size of the finite tiling is lower than
i × j. Inside the i × j square, there can be blank and nonblank tiles. If we have at least one
nonblank tile, then the tiling is called nontrivial.
Durand in its proof introduces a special tile set δ. The sides contain a color (“blank”, “border”,
“odd”, “even”, or “the-end”), a label (N, S, E, W, N+, S+, E+ W+, or ω), and possibly an
arrow. A tiling is valid with respect to δ if and only if all pairs of adjacent sides have the same
color, the same label, and for each arrow of the plane, its head points out the tail of an arrow
in the adjacent cell. A basic rectangle of size p × q is a finite valid tiling of the plane of size
p × q with no size labeled “blank” or “border” inside the rectangle.
Then, given a finite set of colors B with a blank color and a collection τ ∈ B4 of tiles including a
blank tile, Durand constructs a cellular automaton Aτ and proves the following basic theorem
which provides a link between tilings and cellular automata:

Theorem 3.18 (Durand (28)). Let n ≥ 3 be an integer and τ be a set of tiles. The cellular automaton
Aτ is not injective restricted to finite configurations of size smaller than 2n × 2n if and only if the tile
set τ can be used to form a finite nontrivial tiling of the plane of size smaller than (2n − 4)× (2n − 4).

Then using Theorem 3.18 he proves that PROBLEM (CA-FINITE-INJECTIVE) is
coNP -complete, i.e. Theorem 3.17.
Notice that if one drops the restriction on the bound of the size of the neighborhood then a
proof of the coNP-hardness of CA-INFINITE-INJECTIVE can be obtained; for more details on
this the reader can see (28).
What is assumed in the previous result is basically that the size of the representation of a
cellular automaton corresponds to the size of its transition table. Durand (28) asked if the
coNP -completeness result can be true also if we define the size of a cellular automaton as the
length of the smallest program (circuit) which computes its transition table. A second question
formulated in (28) is the following: suppose that we have an invertible cellular automaton
given by a simple algorithm and that we restrict ourself to finite bounded configurations.
Then is the inverse given by a simple algorithm too? In (14) both problem got a solution. Let
us see in some detail the solutions. The second problem is solved for succintness on d = 1 it

is fairly simple to get obtain examples for Z2 or (Z/m)2.
Let f : {0, 1}n → {0, 1}n be a Boolean function having the following properties:

1. f is a permutation;

2. f is computed by a polynomial size circuit.

3. The inverse function f−1 requires an exponential size circuit, exp(Ω(n)).

As an example of these type of functions one could take one-way permutations (e.g.
conjecturally based on factoring or discrete logarithm). Now define a cellular automaton A f

as follows:

23 Notice that is not allowed to turn tiles.

476 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 21

1. Alphabet: 0, 1, #.

2. Neighborhood of i ∈ Z:

N = 〈i − n, i − n + 1, . . . , i, i + 1, . . . , i + n〉

i.e. |N| = 2n + 1.

3. Transition function:

(i) pt
i = # → pt+1

i = #

(ii) If pt
i ∈ {0, 1} and there are j, k such that:

(a) j < i < k and k − j = n + 1;

(b) pt
j = pt

k = #

(c) pt
r ∈ {0, 1} for r = j + 1, j + 2,. . . ,i,. . . , k − 1

define
pt+1

i = (f (pt
j+1, . . . , pt

k−1))i

where (f (pt
j+1, . . . , pt

k−1))i is the i-th bit of f (pt
j+1, . . . , pt

k−1).

(iii) If pt
i ∈ {0, 1} and there are no j, k satisfying (ii) then put

pt+1
i = pt

i .

Informally the automaton A f can be summarized as follows: every 0 − 1 segment between
two consecutives #’s that does not have the length exactly n is left unchanged. Segments of
length n are trasformed according to the permutation f .
The inverse automaton B is defined in the same manner using f −1 in place of f (B = A f−1).

Theorem 3.19. Assume that f : 2n → 2n is a permutation computable by a size poly(n) circuit

such that any circuit computing the inverse function f −1 must have size at least exp(nΩ(1)). Then
the cellular automaton A f is invertible but has an exponentially smaller circuit-size than its inverse
cellular automaton.

The proof is based on the fact that by the construction the inverse cellular automaton has a
transition table which defines a boolean function which has a circuit-size exponential in n.
The hypothesis of Theorem 3.19 follows from the existence of cryptographic one-way
functions. In particular, it follows from the exponential hardness of factoring or of discrete
logarithm.
Thus Theorem 3.19 solves negatively one of the open problem formulated by Durand (28) that
we have described above: a very “simple” algorithm giving a reversible cellular automaton
(even if restricted to finite configurations) can have an inverse which is given by an algorithm
which is exponentially bigger and then not “simple”.24

The second problem stated in (28) and solved in (14) asks asks about coNP-completeness of
the injectivity of cellular automata when it is represented by a program (circuit) rather than
by a transition table.
Consider the following problem:

PROBLEM (P1):
Input: A circuit C(x1, ..., xn) defining the transition table function of 0 − 1 cellular automaton

24 Where “simple” algorithm means polynomial time algorithm.

477Propositional Proof Complexity and Cellular Automata

www.intechopen.com

22 Will-be-set-by-IN-TECH

AC with a neighborhood N of size |N| = n.
Question:Is AC injective on Z1?

Theorem 3.20. Problem (P1) is coNP -hard.

The proof offered in (14) describes a polynomial reduction from TAUT to (P1). Let φ(x1, ..., xn)
be a propositional formula. A sketch of the proof can be the following. Let the alphabet be 0,1
and the neighborhood N be 〈0, ..., n〉. Now define the cellular automaton A as follows:

pt+1
i :=

{

pt
i , if φ(pt

i+1, ..., pt
i+n)

0, otherwise.

Clearly the circuit defining A is
pt

i ∧ φ(pt
i+1, ..., pt

i+n)

and has size O(|φ|). This means that the map φ → A is polynomial time.

If φ ∈ TAUT then always pt+1
i = pt

i . In this case A is a cellular automaton doing nothing, i.e.
its global map is the identity and, in particular, it is invertible. Assume φ /∈ TAUT. Then two
different configurations mapped by A to the same configuration have been constructed. Let
i0 ≥ 1 be minimal i0 such that there is a truth assignment ā = (a1, ..., an) ∈ {0, 1}n satisfying:
(i) ¬φ(ā);
(ii) ai0

= . . . = an = 0;
(iii) either i0 = 1 or ai0−1 = 1.
Informally, ā has the longest segment of 0’s on the right hand side that is possible for
assignments falsifying φ. Define two configurations as follows:

C0 : 〈..., 0, 0, 0, a1, ..., an, 0, 0, ...〉

and
C1 : 〈..., 0, 0, 1, a1, ..., an, 0, 0, ...〉.

The two configurations differ only in the position 0. Easily the theorem follows from the
following lemma.

Lemma 3.21. The two configurations C0 and C1 are both mapped by A to C0.

The proof is given using the definition above and then Theorem 3.20 follows directly from the
application of the lemma.
Now, consider a finite modification of the problem (P1):

PROBLEM (P2):
Input:

1. AC as in (P1);

2. 1(m), such that m > n. (Notice that this condition implies that AC is well-defined on
(Z/m) tori.)

Question: Is AC injective on (Z/m)?

Theorem 3.22. (P2) is coNP -complete.

The proof of Theorem 3.22 is quite similar to the proof of 3.20

478 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 23

4. Inverse Cellular Automata as propositional proofs

In this last section of the chapter we combine the Richardson theorem with the
coNP -completeness result of Durand (28) and we define a new type of a proof system PCA .
This proof system PCA is a proof system for the membership in a coNP-complete language
LD (to be specified below). As the set TAUT of propositional tautologies can be polynomially
reduced to LD, PCA can be thought of also as a propositional proof system in the sense on
Cook and Reckhow (21).
In this conclusive section we show that: there is polynomial time algorithm having a cellular
automaton A with von Neumann neighborhood and a cellular automaton B with an arbitrary
neighborhood and with the same alphabet of A as inputs, it can decide whether or not B is
an inverse to A. Then, we define a “mathematical” proof system for LD satisfiyng the Cook
and Reckhow definition (21). We conclude this chapter with some concluding remarks and
some open questions when we consider our new proof system with respect to polynomial
simulations.
We considered Durand’s result of coNP -completeness in the section 3. Let us recall
the problem because it will be useful below. The problem that has been called
(CA-FINITE-INJECTIVE) goes as follows:

PROBLEM (CA-FINITE-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neighborhood. Two
integers p and q smaller than the size of A.
Question: Is A injective when restricted to all finite configurations ≤ p × q?
We shall also use the name CA-FINITE-INJECTIVE for the language of inputs with an
affirmative answer.
Now we reformulate Durand’s problem a bit in that we consider cellular automata operating

on (Z/m)2 rather than on finite rectangles in Z2. We are replacing rectangles in Z2 by (Z/m)2

in order to be compatible with our treatement of Richardson’s theorem given in the third
chapter.
Consider a variant of the problem CA-FINITE-INJECTIVE in which the cellular automata

operate on (Z/m)2 rather than on “finite configurations”. We call this problem
PROBLEM(CA-TORI-INJECTIVE):

PROBLEM(CA-TORI-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neighborhood and
m ≥ 3, m is smaller than the size of A.
Question: Is A injective when restricted to (Z/m)2?

Definition 4.1. The language LD is the set of pairs (m, A) for which the
PROBLEM(CA-TORI-INJECTIVE) has an affirmative answer.

In terms of languages the problem above will be called LD. Thus, of course Theorem 3.17 by
Durand can be simply stated as follows:

Theorem 4.2. LD is a coNP -complete language.

Now, consider the following lemma which states the existence of a polynomial time algorithm
deciding the inverse:

Lemma 4.3. There is a polynomial time algorithm that on the two inputs:

479Propositional Proof Complexity and Cellular Automata

www.intechopen.com

24 Will-be-set-by-IN-TECH

1. a cellular automaton A with von Neumann neighborhood;

2. a cellular automaton B with an arbitrary neighborhood and the same alphabet as A,

decides whether or not B is an inverse to A.

Proof. The automata A and B are presented to the algorithm by the tables of their local
functions, see Definition 3.16. Assume that the alphabet of A and B has S symbols and that the
size of B neighborhood is N. Hence the size of A and B are O(S5 · log(S)) and O(SN · log(S)),
respectively.
To evaluate a cell (i, j) in B ◦ A we need to look at a von Neumann neighborhood of all N
points in the neighborhood of (i, j) in B, i. e. on at most ≤ 5N cells. Considering all the
possible ≤ S5N patterns on these cells yields in a list of all possible patterns (≤ SN) on the
neighborhood of (i, j) in B, after the action of A. Then we check that in all these patterns B

produces in the cell (i, j) the original symbol.

The time they need is bounded above by O(S5N · (N · S5 · log(S)) · (SN log(S)) = SO(N)),
where S5N bounds the number of patterns to check, N · S5 · log(S) bounds the time need to
compute the pattern on the neighborhood of (i, j) in B after the action of A (for any fixed
pattern), and SN · log(S) bounds the time need to compute the symbol of (i, j) after the action

of B. However, the quantity SO(N) is polynomial in terms of the size of B, i.e. the algorithm is
polynomial time.

�

Let us remark that the restriction on A to a von Neumann neighborhood is essential. If A was

allowed to have an arbitrarily neighborhood M, then the algorithm would need time SO(M·N)

which is only quasi-polynomial in the sizes O(SM · log(S)) and O(SN · log(S)) of the inputs
A and B.

4.1 A proof system based on cellular automata

In this section we define a new proof system PCA based on cellular automata. As far as we
know this is the first proof system based on cellular automata.

Definition 4.4. PCA is a proof system for the language LD. A PCA proof for the pair (m, A) ∈ LD

is cellular automaton B such that:

1. B has the same alphabet as A;

2. B is inverse to A.

Lemma 4.5. PCA is a proof system for the language LD.

Proof. If A ∈ LD , then a suitable cellular automaton B exists by Richardson’s theorem,
Theorem 3.15. On the other hand the existence of B implies that the cellular automaton A is
injective, i.e. A ∈ LD. Hence PCA is complete and sound.
Finally, the provability relation is polynomial time decidable by Lemma 4.3.

�

The statement A ∈ LD can be expressed in a propositional way, same as in the proof of
Richardson’s theorem proved in (14). In particular, a proof of A ∈ LD is a proof of the
unsatisfiability of the formula25:

T0(�p,�r) ∪ {p(0,0)} ∪ T0(�q,�r) ∪ {¬q(0,0)}

25 See top page 66, the formula denoted by (*).

480 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 25

Hence any propositional proof system Q can be thought of also as a proof system for LD: a
proof is a proof in Q of this formula.
We may observe at this place that having in particular a resolution proof of the formula gives
us at least a circuit that describes the transition function of the inverse cellular automaton and
whose size is polynomial in the size of the resolution proof: feasible interpolation allows to
extract a circuit computing the interpolant and the interpolant defines the transition function.
We remark that this leads to an interesting question about feasible interpolation. The size
of the inverse automaton B is O(SN log(S)) where S is the size of the alphabet (common
with the cellular automaton A) and N is the size of the neighborhood of the inverse cellular
automaton B. Hence it is the quantity N that we would like to estimate. For this it would
be very useful to have an estimate on the number of atoms the interpolant (produced by the
feasible interpolation method or by any other specific method) depends on.

4.2 Some concluding remarks regarding the new proof system

The main problems which remain open from this last part are the followings: can we
establish some polynomial simulation between PCA and some existing proof system such
as Resolution? The investigation of this problem is hampered by the convoluted proof of
Durand’s theorem; a good place where to start thus would be to find a simple (or at least
a simpler) proof of the latter. It would be desiderable to have a proof which involves
propositional logic, as the proof of Richardson’s theorem given in (14), since this could give
us a very elegant and unified framework.
Having such a simplified proof one could use the well-known relation between bounded
arithmetic and proof systems (see (37)) and attempt to prove the soundness of PCA in the
theory corresponding to R. Such a soundness proof would imply polynomial simulation of
PCA by R via a universal argument. We remark that the proof of Durand’s theorem appears
to be formalizable in the theory V0, if that is indeed the case this would imply a polynomial
simulation of PCA by a constant-depth Frege system. 26

5. Conclusions

In this chapter we have seen some interactions between the study of cellular automata and the
study of propositional proofs. In some sense the first attempt was made in (14) and the ending
part of the final section constitutes a development in that direction. Nevertheless as pointed
out at the end of the previous section several problems concerning simulations remain open
for the reasons given above.

6. Acknowledgements

I thank Jan Krajíček for helpful discussions.

7. References

[1] S. Amoroso and Y.N. Patt, Decision procedures for surjectivity and injectivity of parallel
maps for tasselation structures, Jour. Comput. System Scie., 6, (1972), 448-464.

[2] E. Berlekamp, J. Conway, R. Elwyn and R. Guy, Winning way for your mathematical plays,
vol. 2, Academic Press, (1982).

26 See (37) for an extensive background on bounded arithmetic.

481Propositional Proof Complexity and Cellular Automata

www.intechopen.com

26 Will-be-set-by-IN-TECH

[3] P. Beame, H. Kautz and A. Sabharwal, Towards Understanding and Harnessing the
Potential of Clause Learning, Journal of Artificial Intelligence Research (JAIR), 22, (2004),
pp. 319-351.

[4] P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák, Lower bounds on Hilbert’s
Nullstellensatz and propositional proofs, in Proc. London Math. Soc., 73(3), (1996), pp.
1-26.

[5] E. Ben-Sasson and R. Impagliazzo, Random CNF’S are hard for the polynomial calculus,
in Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
(1999).

[6] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson, Near-optimal separation of tree-like
and general resolution, ECCC, Report TR02-005, (2000).

[7] E. Ben-Sasson, and A. Wigderson, Short proofs are Narrow–Resolution made Simple,
Journal of the ACM, 48(2), (2001), pp.149-169.

[8] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc., 66, (1966),
pp. 1-72.

[9] A. Blake, Canonical expression in boolean Algebra, Ph.D Thesis, (1937), University of
Chicago.

[10] M.L. Bonet, J.L.Esteban, N. Galesi and J. Johannsen, Exponential separations between
Restricted Resolution and Cutting Planes Proof Systems, In 39th Symposium on
Foundations of Computer Science, (FOCS 1998), pp.638-647.

[11] K. Büning, T. Lettman, Aussangenlogik: Deduktion und Algorithmen, (1994), B.G Teubner
Stuttgart.

[12] E. Burks, Theory of Self-reproduction, University of Illinois Press, Chicago, (1966).
[13] S. Buss (ed.), Handbook of Proof Theory, North-Holland, (1998).
[14] S. Cavagnetto, Some Applications of Propositional Logic to Cellular Automata,

Mathematical Logic Quarterly, 55, (2009), pp. 605-616.
[15] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm to find

proofs of unsatisfiability, in Proceedings of 28th Annual ACM Symposium on Theory of
Computing, (1996), pp. 174-183.

[16] P. Clote and A. Setzer, On PHP st-connectivity and odd charged graphs, in P. Beame and
S. Buss, editors,Proof Complexity and Feasible Arithmetics, AMS DIMACS Series Vol. 39,
(1998), pp. 93-117.

[17] P. Clote and E. Kranakis, Boolean Functions and Computation Models, Texts in
Theoretical Computer Science, Springer-Verlag, (2002).

[18] S. Cole, Real-time computation by n-dimensional iterative arrays of finite-state machine,
IEEE Trans. Comput, C(18), (1969), pp. 349-365.

[19] S. A. Cook, The complexity of theorem-proving procedures, in Proc. 3rd Ann. ACM Symp.
on Theory of Computing, (1971), pp. 151-158.

[20] S. A. Cook and A. R. Reckhow, On the lengths of proofs in the propositional calculus, in
Prooceedings of the Sixth Annual ACM Symposium on the Theory of Computing, (1974), pp.
15-22.

[21] S.A Cook and A.R. Reckhow, The relative efficiency of propositional proof systems,
Journal of Symbolic Logic, 44(1), (1979), pp. 36-50.

[22] S. A. Cook, The P versus NP Problem, Manuscript prepared for the Clay Mathematics
Institute for the Millennium Prize Problems, (2000).

[23] W. Cook, C. R. Cullard, and G. Turan, On the complexity of cutting planes proofs, Discrete
Applied mathematics, 18, (1987), pp.25-38.

482 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Propositional Proof Complexity

and Cellular Automata 27

[24] W. Craig, Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory, Journal of Symbolic Logic, 22(3), (1957), pp. 269-285.

[25] M. Davis, Computability and Unsolvability, Dover Pubblications, Inc, New York, (1958).
[26] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the

ACM, 7(3), pp. 210-215.
[27] M. Delorme and J. Mazoyer, editors, Cellular Automata: a parallel model, Mathematics and

its Application, Springer, (1998).
[28] B. Durand, Inversion of 2D cellular automata: some complexity results, Theoretical

Computer Science, 134, (1994), pp.387-401.
[29] M. R. Garey and D.S. Johnson, Computers and Intractability - A guide to the theory of the

NP-completeness, W. H. Freeman, (1979).
[30] A. Goerdt, Cutting planes versus Frege proof systems, in: Computer Science Logic:4th

workshop, CSL ’90, E. borger and et al., eds, Lecture Notes in Computer Science,
Spriger-verlag, (1991), pp.174-194.

[31] D. Hilbert and W. Ackermann, Principles of Mathematical Logic, New York, (1950).
[32] K. Iwama and S. Miyazaki, Tree-like Resolution is superpolinomially slower then

dag-like resolution for the Pigeonhole Principle, in A. Aggarwal and C.P. Rangan,
editors, Proceedings: Algorithms and Computation, 10th International Symposium, ISAAC’99,
Vol. 1741, (1999), pp 133-143.

[33] J. Kari, Reversibility of 2D cellular automata undecidable, Physica, D(45), (1990), 379-385.
[34] J. Kari, Reversibility and surjectivity problems of cellular automata, Jour. Comput. System

Scie., 48, (1994), pp. 149-182.
[35] J. Kari, Reversible Cellular Automata, Proceedings of DLT 2005, Developments in Language

Theory, Lecture Notes in Computer Science,3572, pp. 57-68, Springer-Verlag, (2005).
[36] J. Kari, Theory of cellular automata: A survey, Theoretical Computer Science, 334, (2005),

pp. 3-33.
[37] J. Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of

Mathematics and Its Applications, 60, Cambridge University Press, (1995).
[38] J. Krajíček, Propositional proof complexity I., Lecture notes, available at

http://www.math.cas.cz/krajicek/biblio.html.
[39] J. Krajíček, Dehn function and length of proofs, International Journal of Algebra and

Computation, 13(5),(2003), pp.527-542.
[40] J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, Journal of

Symbolic Logic, 59(1), (1994), pp.73-86.
[41] J. Krajíček, Interpolation theorems, lower bounds for proof systems, and indipendence

results for bounded arithmetic, Journal of Symbolic Logic, 62(2), (1997), pp. 457-486.
[42] L. Levin, Universal search problem (in russian), Problemy Peredachi Informatsii 9, (1973),

115-116.
[43] E.F. Moore, Machine models of self-reproduction, Proc. Symp. Appl. Math. Soc., 14, (1962),

pp. 13-33.
[44] J. Myhill, The converse to Moore’s garden-of-Eden theorem, Proc. Amer. Math. Soc., 14,

(1963), pp.685-686.
[45] D. Mundici, NP and Craig’s interpolation theorem, Proc. Logic Colloquium

1982,North-Holland, (1984), pp. 345-358.
[46] J. von Neumann, The General and Logical Theory of Automata, in Collected Works, vol. 5,

Pergamon Press, New York, (1963), pp. 288-328.
[47] J. von Neumann, Theory of Self-reproducting automata, ed. W. Burks, University of Illinois

Press, Chicago, (1966).

483Propositional Proof Complexity and Cellular Automata

www.intechopen.com

28 Will-be-set-by-IN-TECH

[48] J. von Neumann, Theory of automata: construction, reproduction and homogeneity, unfinished
manuscript edited for pubblication by W. Burks, see (12) pp. 89-250.

[49] C. H. Papadimitriu, Computational Complexity, Addison-Wesley, (1994).
[50] C. H. Papadimitriu, NP-completeness: A Retrospective, in Proceedings of the 24th

International Colloquium on Automata, Languages and Programming 1256, Lecture Notes in
Computer Science, Springer, (1997), pp. 2-6.

[51] P. Pudlák, The Lenghts of Proofs, in Handbook of Proof Theory, ed. S. Buss, North-Holland,
(1998), ch. 8, pp. 547-637.

[52] P. Pudlák, Lower bounds for resolution and cutting plane proofs and monotone
computations, Journal of Symbolic Logic, (1997), pp. 981-998.

[53] A. A. Razborov, Unprovability of lower bounds on the circuits size in certain fragments
of bounded arithmetic, Izvestiya of the R. A. N., 59(1), (1995), pp. 201-224.

[54] D. Richardson, Tesselations with local transformations, Jour. Comput. System Scie.,
6,(1972), pp. 373-388.

[55] J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the
ACM, 12(1), pp. 23-41.

[56] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, Boston,
(1997).

[57] M. Sipser, The history and the status of the P versus NP question, STOC, (1992), pp.
603-618.

[58] S. Smale, Mathematical problems for the next century, in Mathematics: Frontiers and
perspectives, AMS, (2000), pp. 271-294.

[59] A. Smith III, A Simple computatio-universal spaces, Journal of ACM, (1971), 18, pp.
339-353.

[60] K. Sutner, De Bruijn graphs and linear cellular automata, Complex Systems, 5, (1991),
19-31.

[61] T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press, Cambridge MA,
(1987).

[62] G. S. Tseitin, On the complexity of derivation in propositional calculus, in A. Slisenko ed.,
Studies in Constructive Mathematics and Mathematical Logic, (1970), Consultants Bureau,
New York, pp. 115-125.

[63] A. Turing, On computable numbers with an application to the Enthscheidungsproblem,
Proc. London Math. Soc., 42, (1936), pp. 230-265.

[64] A. Urquhart, The Complexity of Propositional Proofs, Bulletin of Symbolic Logic,
1(4),(1996), pp. 425-467.

[65] A. Wigderson, P, NP and Mathematics-a computational complexity perspective,
http://www.math.ias.edu/avi/BOOKS/.

[66] K. Wagner and G. Wechsung, Computational Complexity, Riedel, (1986).

484 Cellular Automata - Simplicity Behind Complexity

www.intechopen.com

Cellular Automata - Simplicity Behind Complexity

Edited by Dr. Alejandro Salcido

ISBN 978-953-307-230-2

Hard cover, 566 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Cellular automata make up a class of completely discrete dynamical systems, which have became a core

subject in the sciences of complexity due to their conceptual simplicity, easiness of implementation for

computer simulation, and their ability to exhibit a wide variety of amazingly complex behavior. The feature of

simplicity behind complexity of cellular automata has attracted the researchers' attention from a wide range of

divergent fields of study of science, which extend from the exact disciplines of mathematical physics up to the

social ones, and beyond. Numerous complex systems containing many discrete elements with local

interactions have been and are being conveniently modelled as cellular automata. In this book, the versatility

of cellular automata as models for a wide diversity of complex systems is underlined through the study of a

number of outstanding problems using these innovative techniques for modelling and simulation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Stefano Cavagnetto (2011). Propositional Proof Complexity and Cellular Automata, Cellular Automata -

Simplicity Behind Complexity, Dr. Alejandro Salcido (Ed.), ISBN: 978-953-307-230-2, InTech, Available from:

http://www.intechopen.com/books/cellular-automata-simplicity-behind-complexity/propositional-proof-

complexity-and-cellular-automata

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

