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1. Introduction 

On the eve of the new, 21st century a paradigm shift began in biology and biomedical research. 
After decades of meticulous studies of individual genes and proteins, and their biological 
functions, time was ripe for the contours of the forest to start emerging behind the trees. 
Failures with some new drugs showing unsuspected harmful side effects, along with similar 
cases in gene engineering, have signaled that the old reductionist approach has its limits. It has 
been overoptimistic to expect to cure a sickness by curing a single defective gene or a single 
incapacitated protein, because genes and proteins do not exist and act in isolation; they are 
part of a system. The new systemic approach in biology and medicine requires to account for 
the environment in which biomolecules act within the living cell and intercellular space. This 
environment is organized in complexes, pathways, and networks, containing hundreds and 
thousands of biomolecules. The essence of the new science of systems biology (Kitano, 2002; 
Ideker, 2004; Alon, 2006; Palsson, 2006; Choi, 2007) and systems medicine (Nadeau & 
Subramanian, 2010) had to be expressed in the language of networks, which are the best 
means of defining a system as a whole and explaining its features and functions.  
Could this postgenomic era start earlier? The answer is: "Yes and No". Yes, because facts for 
the limitations and pitfalls of the reigning paradigm have been accumulating for a long time, 
although genomics had still to wait to reach its peak with the advent of the new sequencing 
technologies and the flood of genetic data that followed. No, because the theoretical 
foundation and the computational tools were still lacking. Network theory was known for a 
century and a half since the theory of electrical systems has been proposed by Kirchhoff in 
1845. Kirchhoff's work is considered as one of the three pillars of graph theory, along with 
the Oiler’famous Königsberg bridges problem (1736), and the problem with calculating the 
number of isomeric compounds in chemistry, investigated first by Cayley in 1874. The  
second part of the 20th century in graph theory has been marked by the great authority of 
Erdös (Hoffman, 1998) and Bollobás (2001), which also developed the basics of the theory of 
random networks. Unfortunately, working within the framework of pure mathematics, 
these brilliant mathematicians have not been interested in the complex dynamic networks of 
the real world. There has been a considerable development of theory in social networks 
(Scott, 1987; Borgatti et al., 2009), however, the point of no return in network theory was 
reached only at the end of the 1990s (Neuman et al., 2006).      
Watts & Strogatz established an important property of complex nonrandom networks - their 
small diameter - and termed such networks "small-world" ones (Watts & Strogatz, 1998, 
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Strogatz, 2002, Watts, 1999, 2003). The meaning of this finding is that genes and proteins in 
the living cell are only few steps away; they are much more strongly intertwined than 
previously supposed. It was soon confirmed for almost any type of complex networks that 
they share this property of smallworldness (Neuman, 2003). A major contribution of Barabási 
and coworkers (Barabási & Albert, 1999; Albert et al., 2000; Albert & Barabási, 2000; 
Barabási, 2002; Barabási & Oltvaj, 2004) summarized other common properties of these 
networks. It was shown that the node degrees in them are distributed in a specific way 
characterized with a presence of a few highly connected nodes, whereas the great majority 
of nodes are of low degree. As a whole the degree distribution is scale-free, and follows a 
power law with a negative exponent within the -2.0 to -2.5 range. The highly connected 
nodes, called hubs, were found to play important role in network stability (resilience against 
random attacks), while on the negative side being also responsible for spreading attacks 
directed to them through the network in events like epidemics in social networks, 
vulnerability of ecosystems, etc. The existence of this specific degree distribution in complex 
networks of different nature was derived from models of network evolution in which new 
nodes are preferentially attached to nodes with high degrees. Later work (Dorogovtsev et 
al., 2000; Dorogovtsev & Mendes, 2001) has shown that laws other than the power law could 
also take place in complex networks, and other patterns of network evolution also play 
important role.    
The specificity of the complex dynamic networks was also extended to their overall modular 
structure (Rives & Galitski, 2003; Neumann & Girwan, 2004, Guimera & Amaral, 2005; 
Newman, 2006) and their local topology as characterized by high degree of clustering 
(Friedkin, 1984, 1990;) and specific network motifs (R. Milo et al., 2002; Wernicke & Rasche, 
2006; Alon, 2007). Modularity is also called network's community structure. A high degree of 
modularity implies high degree of connectivity within the modules, while considerably less 
degree of intermodular connectivity (Reichardt & Bornholdt, 2006). Clustering coefficient 
measures the degree to which nodes in a network tend to cluster together. In complex 
dynamic networks, this likelihood tends to be considerably greater than that in random 
networks of the same size and the same node degree distribution (Watts & Strogatz, 1998; 
Barrat, 2004; Opsahl, T. & Panzarasa, 2009).  Network motifs are subgraphs that occur in real-
world networks more frequently than expected in random graphs of comparable size and 
connectivity. Different types of networks are characterized by their specific motif signature - a 
preferred small set of subgraphs. The question of whether the motif signature is related to 
function is still a subject of controversy (Knabe et al., 2008; Konagurthu & Lesk, 2008).  
Despite of the young age, the network analysis of complex systems has demonstrated its 
capacity to produce valuable information in the fields of molecular biology and medicine. 
Patterns of evolution have been captured studying the evolution of network structure and 
complexity (Weitz et al., 2007; Hinze & Adami, 2008; Knabe et al., 2008; Mazurie et al., 2010). 
The detailed characterization of network structure by topological and information-theoretic 
descriptors provided means for successful phylogenetic reconstruction (Mazurie et al., 
2008). The networks of gene, protein and metabolic interactions of model organisms like 
yeast, fruit fly, and the nematode C. elegans, became invaluable resource for modeling 
human biology, pathology and longevity (Managbanag et al., 2008), and helped in 
identifying protein markers for cancer and other diseases. The building of the human 
protein-protein interaction network (the unfinished yet Human Proteome Organization 
project (HUPO, 2002)) has already help to trace down the effect of drugs on different 
molecular pathways, raising the hopes for improved drug discovery methods (Butcher et al., 
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2004; Hopkins, 2008). All these endeavours have been greatly helped by high level 
professional software tools (Thomas & Bonchev, 2010) like Ingenuity Pathway Analysis 
(Ingenuity Systems), Pathway Studio (Ariadnegenomics), Cytoscape (The Cytoscape 
Software), Fanmod (Wernicke & Rasche), and others, along with publicly available 
databases for all kinds of biomolecular interactions (KEGG, 
http://www.genome.jp/kegg/kegg1.html; PINA, http://csbi.ltdk.helsinki.fi/pina/; Gene 
Ontology, http://www.geneontology.org/GO.databa se.shtml).   
Yet, this explosive development of network theory concerns mainly network structure, 
rather than network dynamics; networks are static. Many of molecular biology level 
networks, like protein-protein interactions ones, incorporate all possible interactions, but not 
only those which are active at a given moment in time. Dynamics of the processes down the 
numerous network pathways remains largely untouched. The modeling of this dynamics by 
differential equations (ODE) marked certain success in several specific intracellular 
processes. The regulation of cell cycle (the sequence of steps by which a cell replicates its 
genome and distributes the copies between the two daughter cells) received a considerable 
attention (Tyson, 2001, Csikasz-Nagy et al., 2006). Another series of elaborate models  has 
been focused on regulation in network motifs (the small building blocks of networks, 
containing several nodes), (Milo et al., 2002) in gene regulatory networks (Mangan & Alon, 
2003; Alon, 2006, 2007; Longabaugh & Bolouri, 2006).  The high complexity of real-life 
networks and the lack of experimental kinetic data make constructing of this type of models 
impractical not only computationally, but even at the stage of defining the very set of 
equations.                                                                                                                                                  
Related to the above mentioned, the aim of this chapter is to show that cellular automata  
(CA) modeling technique could partially fill the gap in describing the dynamics of 
biomolecular networks. While not able to provide exact quantitative results, it will be shown 
that the CA models capture essential dynamic patterns, which can be used to control the 
dynamics of networks and pathways. CA models of human diseases can help in the fight 
against cancer and HIV by simulating different strategies of this fight. Another field of 
application presented is the performance rate of network motifs with different topology, 
which might have evolutionary and biomedical importance. 

2. Cellular automata 

2.1 Previous work on CA models of biological systems  

The early attempts to model biological systems by cellular automata (CA) have included 
developmental biology, population biology and neurobiology, along with blast aggregation, 
neuronal maps, and branching networks, as well as several classical cases of pattern 
formation (Ermentrout & Edelstein-Keshet, 1993). Quantitative spatial and temporal 
correlations in sequences of chlorophyll fluorescence images from leaves of Xanthium 
strumarium have been reproduced by cellular automata models with a high statistical 
significance (Peak et al., 2004). Dynamics of biological networks was investigated by 
Kauffman who proposed models of random genetic regulatory networks (Kauffman 1969, 
1993). These discrete random Boolean networks (RBNs) are named after him as Kauffman 
(or NK) networks. The models have been used as a basis for the concept of self-organization 
and emergence of life from randomness, viewing life as a state intermediate between chaos 
and complete order (Kauffmann, 1993). A step toward more realistic models of Boolean 
dynamics of biological networks has been to use random networks with scale-free topology 
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(Aldana, 2003; Kauffman, 2003). The dynamical property of stability or robustness to small 
perturbations has been found to correlate highly with the relative abundance of specific 
network motifs in several biological networks (Prill et al., 2005). Such findings support the 
views for system dynamics strong dependence on network structure.   
Networks of biomolecules in the living cell have most frequently elementary steps of 
enzymatic chemical reactions. The first CA model of an enzymatic reaction has been 
proposed in 1996 (Kier et al., 1996) and, being prematurely born, remained unnoticed for 
some time. With the "phase transition" in network theory from random to complex real-life 
network such a CA approach to “enzymatic reactions networks" was independently 
proposed in the beginning of the new century (Weimar, 2002). These ideas were developed 
extensively in the following years in the Center for the Study of Biological Complexity at 
VCU in Richmond, Virginia (Kier & Witten, 2005; Kier et al., 2005; Bonchev et al., 2006; 2010; 
Apte et al., 2008, 2010; Taylor et al., 2010).   

2.2 The Cellular automata method as applied to network dynamics analysis  

Cellular automata (CA) are mathematical machines, which describe the behavior of discrete 
systems in space, time, and state. CA are a powerful modeling technique with a broad field 
of applications including mathematics, chemistry, physics, biology, complexity and systems 
science, computer sciences, social sciences, etc. It has been developed by the mathematical 
physicist John von Neumann in the mid 1940s, in collaboration with Stanislaw Ulam (von 
Neumann, 1966). Their pioneering work on self-reproducing automata opened the door to 
the fascinating area of artificial life. The method became popular in the 1970s with the 
"Game of Life" of John Conway, popularized by Martin Gardner in Scientific American 
(Gardner, 1970). A general theory of cellular automata as models of the complex world was 
proposed by Steven Wolfram, who later advocated   cellular automata as an alternative way 
of making science, an approach that can reproduce not only the known scientific truths, but 
also open the door to new discoveries (Wolfram, 1986; 2002). A further generalization of the 
simple CA rules that produce complex behavior was offered by Rücker in his theory of the 
universal automatism (Rücker, 2005). 
Cellular automata have five fundamental features (von Neumann, 1966):  
1. They consist of a discrete lattice of cells (1D, 2D or 3D). 
2. They evolve in discrete time steps (iterations), beginning with an initial state at time t = 0. 
3. Each site takes on a finite number of possible values, the simplest being "occupied" and 

"unoccupied". 
4. The value of each site evolves according to the same rules (deterministic or probabilistic 

ones). 
5. The rules for the evolution of a site depend only on the local neighborhood of sites 

around it. 
Each cell in the most commonly used square lattice has four neighbor sites (von Neumann 
neighborhood) and four extended neighbor sites located next to the cell corners (extended 
von Neumann neighborhood). To avoid "edge effects", the lattice is usually embedded on 
the surface of a torus. The cell is the basic model of each of the system elements. Its state 
may change at the next iteration. The contents of a cell may either break away or move to 
join an occupied neighboring cell. The question which movement will be chosen depends 
upon the modeled system. The movement of the cells may be simultaneous (synchronous), 
or the rules may be applied to each cell at random, until all cells have computed their states 
and trajectories (asynchronous movement). This constitutes one iteration, a unit of time in 
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the cellular automata simulation. The initial state of the system is random and, thus, does 
not determine subsequent configurations at any iteration. The same set of rules does not 
yield the same configurations, except in average. The configurations after many iterations 
reach a collective organization that possesses relative constancy in appearance and in 
reportable counts of cells. These are the emergent characteristics of a complex system.  
In simulating enzymatic reactions organized in a network it usually suffices to use a 2D-

square lattice, with cells partially occupied by molecules and controlled by several simple 

rules. These are rules describing the probabilities of two adjacent cells to separate, to join, or 

to change their state after joining. The first rule defines the movement probability, Pm, as a 

probability that an occupant  in an unbound cell will move to one of the four adjacent cells, 

if that space is unoccupied.  If it moves to a cell whose neighbor is an occupied cell, then a 

bond will form between these cells.  The second rule describes the probability for molecule 

at cell A, to join with a molecule at cell B, when an intermediate cell is vacant.  The joined 

cells can separate again, depending on the breaking probability, PB.  When molecule A is 

bonded to two molecules, B and C, the simultaneous probability of a breaking away event 

from both B and C is PB(AB)*PB(AC). 

In this chapter we follow the general approach used by Kier and Cheng (Kier et al. 1996, 

2005a, 2005b) in setting up a CA model of enzyme activity. The mechanism of the enzymatic 

reaction is assumed to start with an interaction between the substrate S and enzyme E, 

which form a SE complex. The latter is rearranged to a complex PE between the enzyme E 

and the product P, which are then separated and the enzyme molecule E is free to take part 

in another interaction: 

 S + E → SE → PE → P + E (1)  

Focusing more on identifying patterns characterizing the (quasi-) steady state reached after 

many iterations, rather than on the temporal changes, our models are spatial ones. A 

network to be studied is represented by groups of CA cells, each group including one of the 

network species: enzymes, substrates, or products. The number of cells in each group is 

selected so as to reflect the relative concentrations of each network species. Each group of 

cells moves freely in the grid. The only cell encounters that change the CA configuration are 

those between a specific substrate and a specific enzyme. When such an encounter occurs, 

an enzyme-substrate complex is formed. The complex has an assigned probability of 

changing to a new complex (enzymatic product). Following this, another probability is 

assigned for the separation of the product from the enzyme. The movement probability, Pm, 

determines the extent of any movement. Thus, for an enzyme cell, Pm = 0 would designate a 

stationary enzyme. The CA model selected is asynchronous. Cells compute their states one 

at a time. In our study, all three types of probabilities were assumed equal to unity: Pm = Pb 

= Pj = 1. This means that all cells may interact, join, and break apart with equal probability. 

Only the cells involved in a specific state change, i.e., enzyme - substrate (ES) or enzyme - 

product (EP), are endowed with a state-changing probability rule, defined by the transition 

probability Pc, which describes the probability of an ES pair of cells changing to an EP pair 

of cells. It may be regarded as a measure for enzyme activity or efficiency. The collection of 

rules associated with a network species thus represents a profile of the structure of that 

species and its relationship with other species. By systematically varying the rules, one can 

arrive at a profile of configurations reflecting the influences of different species.                                                 
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In modeling the dynamics of a signaling pathway the first goal is to show whether the 
model reproduces the amplification of the signal through the pathway. The next goal is to 
examine the pathway sensitivity to a variety of initial conditions, and to reproduce 
experimentally found patterns of substrate and product variations. Analyzing the findings 
the ultimate goal is to define the ways to control the pathway dynamics toward a desirable 
outcome. In what follows we present evidences that the CA method is capable of providing 
an answer to all these questions.  

3. The EGF-induced MAPK signaling pathway as a case study for applying 
cellular automata to pathways and networks  (Kier et al., 2005c)                                             

Mitogen-activated protein kinase (MAPK) pathways are major signaling cascade controlling 
complex programs such as embryogenesis, differentiation, and cell death, in addition to 
short-term changes required for homeostasis and hormonal response, gene transcription 
and cell cycle progression. The molecular mechanism of this pathway has been studied 
intensively by different numerical methods (differential equations, stochastic approaches, 
etc.) based on reaction-rate equations (Huang & Ferell, 1996; Bhalla & Iyengar, 1999; 
Kholodenko, 2000, McCullagh et al., 2010). Our cellular automata modeling was limited to 
the major cascade part of the pathway, which has been incorporated in all biochemical 
models proposed so far. The cascade is shown in Figure 1. The detailed reaction mechanism 
of the MAPK cascade is shown below in terms of the elementary enzyme reactions:  

A + E1   →  AE1  →  BE1   →   B + E1                                                                           

B  + E2   →  BE2  →  AE2  →   A + E2 

C + B     →  CB    →  DB    →   D + B  

D + B     →  DB    →  EB    →    E + B 

D + E3   →  DE3  →  CE3  →   C + E3 

E  + E3   →  EE3  →  DE3  →   D + E3 

F  + E     →  EF     →  EG    →   G + E 

G + E     →  EG    →  EH    →   H + E 

G + E4   →  GE4  →  FE4   →    F + E4 

H + E4   →  HE4  →  GE4  →   G + E4 

The 2D-CA models were built from the above reaction mechanisms using a 100 x 100 grid. 
The probabilities of joining and breaking away cells were assumed to be equal to unity. Each 
of the models was obtained as the average of 50 runs, each of which included 5000 to 15000 
iterations, a number sufficiently large to enable reproducing the steady state (or nearly 
steady state) of the set of reactions examined. The three substrates MAPKKK, MAPKK, and 
MAPK, and the four enzymes involved, have some prescribed initial concentrations (a 
number of CA cells). We have systematically altered the initial concentrations of the above  
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Fig. 1. The MAPK signaling cascade. The catalytic reactions of phosphorylation (P) and 
diphosphorylation (PP) are helped by enzymes E1-E4, as well as by the activated MAPKKK 
and MAPK-PP kinases. (Courtesy of “Chemistry and Biodiversity” journal (Kier et al., 2005)). 

substrates, as well as the efficiencies of the enzymes. The basic variable was the initial 
concentration of MAPKKK, which was varied within a 25-fold range from 20 to 500 cells, 
matching thus the 25-fold range of variation of E1 used as an initial stimulus in (Huang & 
Ferrell, 1996). The concentrations of MAPKK and MAPK were kept constant (500 or 250 
cells) in most of the models. The four enzymes, denoted by E1, E2, E3, and E4, were 
represented in the CA grid by 50 cells each. In one series of models, we kept the MAPKKK 
initial concentration equal to 50 cells, and varied the transition probabilities of one of the 
enzymes within the 0 to 1 range, while keeping constant (Pc = 0.1) those of the other three 
enzymes.  In another series, all enzyme transition probabilities were kept constant (Pc = 0.1), 
whereas the concentrations of substrates were varied.  A third series varied both substrate 
concentrations and enzyme propensities. The variations in the concentrations of all eight 
species (the three substrates MAPKKK, MAPKK, and MAPK, and the five products 
MAPKKK*, MAPKK-P, MAPKK-PP, MAPK-P, and MAPK-PP, denoted in the set of 
equations as A, C, F, B, D, E, G, and H, respectively) were recorded. 
The simulation produced temporal plots, which express the changes in the substrates and 
products concentrations up to reaching a steady state. The steady-state concentrations of all 
species were then used to construct spatial models of concentration dependence on the 
enzyme propensity and other variables of the process. The enzymes activity is controlled by 
inhibitors, a process that is simulated by cellular automata for the entire probability range of 
0 to 1. An example with the concentration profile of the MAPK cascade at variable 
propensity of enzyme E3 is shown in Fig. 2. 
It was found that the maximum amplification of the cascade signal (the largest production of 
the doubly phosphorylated MAPK, denoted as species H) occurs at a narrow range of 
intermediate propensity of enzyme E3, due to the reversing of the second row phosphorylation 
reactions. This result confirms the expectations that the CA models can predict dynamic 
patterns and help in finding optimum conditions for the input signal amplification. 
Better results in the search for optimal ranges of parameters can be obtained by using 3D- or 
contour plots. Such a plot in Fig. 3 provides optimal ranges of the initial concentration of the 
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Fig. 2. A spatial model of the concentration dependence of the eight MAPK proteases on the  
propensity of enzyme E3. A narrow range of the enzyme propensity defines the optimal 
concentration of the cascade product H and the intermediate E. (Courtesy of “Chemistry 
and Biodiversity” journal (Kier et al., 2005)). 
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Fig. 3. A contour plot defining the optimal ranges of the MAPKKK initial concentration and 
the enzyme E3 activity needed to reach the maximum amplification of the cascade outgoing 
chemical signal MAPK-PP (the contour line of 400 cells). (Courtesy of “Chemistry and 
Biodiversity” journal (Kier et al., 2005)). 
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cascade input substrate A (MAPKKK) and the propensity of enzyme E3, needed for reaching a 
maximal amount of the cascade target product H (MAPK-PP). More specifically, the contour 
line with MAPK-PP concentration of 400 cells indicates that such optimal conditions can be 
realized with MAPKKK initial concentration of at least 50 cells and the enzyme E3 activity 
should be a moderate one (corresponding to the logarithmic range of -1.5 to -1.8). 
An important outcome of our CA modeling of the MAPK signaling cascade is the possibility 
to summarize the patterns of network dynamics in a set of recommendations how to 
manipulate the network variables in order to achieve  a  certain result  (Table 1).  Such a 
method for pathway control could be of particular importance for the field of drug 
discovery. Searching to design can also reveal specific mechanistic details of the system 
studied. Such a conclusion can be drawn from Figs. 4a,b, which show a sigmoid curve of the 
cascade product H dependence on the initial concentration of the source substrate A.  Such 
curves deviating from Michaelis-Menten kinetics are a characteristic fingerprint of 
cooperative effect of cascade  enzymes. Our finding confirmed the result obtained in (Huang 
and Ferell, 1996) by numerically solutions of the differential rate equations. 
 

 
 

Fig. 4. a) Steady-state concentrations of substrates and products dependence on the initial 
concentration of MAPKKK. Model parameters used : Enzymes E1-E4 transitional 
probabilities equal to 0.1; initial concentrations of substrates C and F - 500 cells; b) Relative 
stimulus/response (MAPKKK0/MAPK-PP) plot with MAPKKK0 expressed in multiples of 
EC50. The slope of the H and MAPK-PP curves in the figures evidences for the significant 
cascade-signal amplification, while the S-shape of the curves confirms the hypothesis for 
enzymes cooperative action.  (Courtesy of “Chemistry and Biodiversity” journal (Kier et al., 
2005)).   
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       Objectives                            Action needed                  Propensity Range 

Decrease [MAPK]            →         Inhibit E2, E3, E4               P = 0.9 → P = 0.02   

Increase  [MAPK]            →         Inhibit E1                            P = 0.9 → P = 0 

Decrease [MAPK-PP]      →         Inhibit E1                            P = 0.9 → P = 0 

Increase  [MAPK-PP]      →         Inhibit E3, E4                      P = 0.9 → P = 0.02    

Decrease [MAPKK]         →         Inhibit E3                            P = 0.9 → P = 0.02   

Increase  [MAPKK]         →         Inhibit E1                            P = 0.9 → P = 0 

Table 1. Inhibiting enzymes E1 to E4 as a tool for controlling the MAPK pathway CA 
simulations  

4.  CA models of Apoptosis pathway as a tool for developing strategies to 
fight cancer 

4.1. Cellular automata modeling of the FASL- Activated Apoptosis pathway 

Apoptosis is a process of programmed cell death, the most common mechanism by which 
the body eliminates damaged or unneeded cells such that threaten the organism survival 
(Wajant, 2002). A number of diseases, including cancer and HIV, are associated with 
abnormal functioning of apoptosis (Fadeel & Orrenius 2005; Eils et al., 2009). Devising 
strategies for manipulating apoptosis would have a major impact on drug discovery 
process, which explains the considerable interest to this topic (Brajušković, 2005; Fulda & 
Debatin, 2004; Hanahan & Weinberg, 2000; Lowe et al., 2004; Marek et al., 2003; Reed, 2006). 
Apoptosis can be induced by two types of signaling cascades, intrinsic and extrinsic ones, the 
proteins from which are of considerable interest as drug targets. The intrinsic pathways are 
activated by developmental signals or severe cell stress caused by different environmental 
factors. The extrinsic signaling is initiated by different chemical signals, such as FAS ligand 
(FASL). The latter binds to the death receptor FAS (CD95), which induces the formation of 
the death-inducing signaling complex (DISC) by attracting the FAS-associated death domain 
protein (FADD) and the initiator caspases 8 or 10 (Fig. 1). The recruitment of the two caspases 
is favored by the formation of a FAS homodimer and a lattice with ordered FAS-FADD 
pairs. The spatial proximity of CASP8 and CASP10 in the complex triggers their 
autocatalytic activation and their release into the cytoplasm where they activate CASP3, 
CASP6, and CASP7 termed effector caspases. The activated CASP3 and CASP7 split the 
heterodimer DFF (DNA Fragmentation Factor), and the released DFF40 starts the DNA 
fragmentation. CASP6 cleaves the caspase substrates, contributing further to the cell 
distraction. The pathway is regulated by c-FLIP (FADD-like apoptosis regulator) protein 
and the IAP (Inhibitor of APoptosis) protein family, from which XIAP is the most potent 
inhibitor (Salvesen et al., 2009; Scott et al., 2009). 
Using cellular automata we simulated two strategies to fight cancer by modulating the 
FASL-induced apoptosis. The first strategy builds on recent publications elucidating 
important details of the role of T-cells in the immune response to fight cancerous and HIV-
infected cells (Ferguson & Griffith, 2006). Tumors counterattack the immune system by 
inducing apoptosis in T-cells using overexpression of FASL, while preventing their own 
destruction by the same apoptotic mechanism (Igney & Krammer, 2005). In our study (Apte 
et al., 2010) we simulated a strategy to fight cancer and HIV by blocking the apoptosis in T-
cells via maximizing the effect of FLIP and IAP inhibitors (Fig. 5).   
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Fig. 5. The apoptosis pathway activated by the FASL protein (Bonchev et al., 2006). A 
cascade of activations of caspase (CASP) proteases releases the DNA Fragmentation Factor 
DFF40, which starts the DNA fragmentation, while CASP6 cleaves caspase substrates. The 
apoptosis performance can be widely modulated using inhibitors FLIP and XIAP (Wilson et 
al., 2009; Irmler et al., 2009). 
(Cellular Automata (CA) Modeling of Biomolecular Networks Dynamics, D. Bonchev, S. 
Thomas, A. Apte, L. B. Kier, SAR & QSAR in Environmental Research, 2010, reprinted by 
permission of Taylor & Francis Ltd) http://www.informaworld.com).      

The detailed set of equations used as an input for the CA simulation is shown below. It 
matches the mechanistic information on the FASL-triggered apoptosis discussed in the 
foregoing. The abbreviation used read as follows:  An asterisk* stands for "activated"; A-B 
means complex of A and B; DISC1 and DISC2 stand for the FAS/FADD/CASP8* and 
FAS/FADD/CASP10* complexes, respectively. 

                FAS + FAS-L   å FAS* + FAS-L                    (Ligand attachment) 

 FAS* + FAS*  å FAS*-FAS*                           (DISC recruitment) 

 (FAS*)2 + FADD å FAS-FADD*                   (DISC recruitment) 

 FAS-FADD* + CASP8 å DISC1*                   (DISC complex formation) 

 FAS-FADD* + CASP10 å DISC2*                 (DISC complex formation) 

 DISC1* + FLIP å FLIP-DISC1                        (Inhibition) 

 DISC2* + FLIP å FLIP-DISC2                        (Inhibition) 

 CASP8* + CASP10 å CASP10* + Casp8*     (CASP activation) 

 CASP8* + CASP3 å CASP3* + CASP8*        (CASP activation) 

 Executor   
Caspases  

  FASL    FAS FADD 

CASP10

 CASP8 

CASP6 

CASP3 

CASP7 

DFF45  DFF40   Death 
activator 

DISC 

Death-Inducing Signaling Complex 

Heterodimer DFF 

  Initiator 
Caspases 

   Start DNA   
Fragmentation 

Cleavage of Caspase   
         Substrates 

Membrane 
   protein 

 

 

 FLIP XIAP 

Apoptosis Inhibitors 

www.intechopen.com



 Cellular Automata - Simplicity Behind Complexity 

 

286 

 CASP8* + CASP6 å CASP6* + CASP8*        (CASP activation) 

 CASP8* + CASP7 å CASP7* + CASP8*        (CASP activation) 

 CASP10 + CASP3 å CASP3* + CASP10*      (CASP activation) 

 CASP10 + CASP6 å CASP6* + CASP10*      (CASP activation) 

 CASP10 + CASP7 å CASP7* + CASP10*      (CASP activation) 

 CASP3* + CASP6 å CASP6* + CASP3*        (CASP activation) 

 CASP3* + CASP7 å CASP7* + CASP3*        (CASP activation) 

 CASP7* + CASP6 å CASP6* + CASP7*        (CASP activation) 

 CASP3* + DFF å DFF45-CASP3* + DFF40   (DNA decomposition activation) 

 CASP7* + DFF å DFF45-CASP7* + DFF40   (DNA decomposition activation) 

 CASP3* + IAP å IAP-CASP3                          (Inhibition) 

 CASP6* + IAP å IAP-CASP6                          (Inhibition) 

 CASP7* + IAP å IAP-CASP7                          (Inhibition) 

Our simulation (Apte et al., 2010) has shown neither FLIP, nor XIAP could save the T-cells 
when acting alone. However, as shown in Fig. 6, when used together these inhibitors act 
synergistically, and could suppress the apoptosis almost entirely. A similar synergy trend 
shown to suppress apoptosis in type II colorectal cancer cells (Wilson et al., 2009) may be 
regarded as an indirect validation of our model.  
An alternative, common strategy in fighting cancer is to use apoptosis to directly attack  
cancer cells. One of the way toward such a goal is to maximize the concentration of the 
"DNA killer" DFF40 by suppressing the apoptosis inhibitors FLIP and IAP. We simulated 
such a strategy by varying the transitional probability of the inhibitor suppressors siRNA 
and SMAC, respectively (Apte et al., 2010). Fig. 7 demonstrates that silencing FLIP, which is 
stronger inhibitor than IAP, does not suffice since the achieved active concentration of 
DFF40 does not exceed 60% of the theoretical maximum of 500 cells. The synergistic 
suppression of FLIP and IAP by siRNA and SMAC, respectively, raises this percentage to 
90% and enables a full-scale apoptosis to kill the cancer cells. 
We proceeded further from a more complete model of apoptosis by integrating the 
exogenous pathway of FASL-induced apoptosis with the endogenous pathway of 
mitochondria-activated apoptosis (Fig. 8). Cells undergoing apoptosis by these two 
mechanisms are called type I and type II, respectively (Chang et al., 2002; Wilson and al., 
2009). The FASL-induced mechanism takes place at high levels of caspase-8, while low 
levels of this kinase result in expression of the protein BID, which activates the 
mitochondrial mechanism. The mitochondria releases cytochrome C into the cytoplasm, 
which in turn activates caspase-9. The cascade is closed with caspase-9 activating caspase-3. 
In addition, a feedback loop from caspase 3 to caspase 9 to IAP has been hypothesized to 
deactivate IAP (Creagh & Seamus, 2001; Zhou et al., 2005; Okazaki et al., 2009).  
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Fig. 6. The concentration of the DNA “killer” DFF-40 reduces with the increase of the 
inhibitor activity. Acting individually, FLIP and XIAP inhibitors cannot prevent the killing 
of the immune system T-cells by cancer cells and HIV infection. However, the CA 
simulation predicts a synergistic effect of the joint use of inhibitors that could save the T-
cells, and restore the immune system potency. 
(Cellular Automata (CA) Modeling of Biomolecular Networks Dynamics, D. Bonchev, S. 
Thomas, A. Apte, L. B. Kier, SAR & QSAR in Environmental Research, 2010, reprinted by 
permission of Taylor & Francis Ltd) http://www.informaworld.com).      
   

 

Fig. 7. Suppressing the FLIP and IAP inhibitors by siRNA and SMAC, respectively. The DFF40 
steady-state concentration after 25000 cellular automata iterations predicts that a maximal 
FASL-induced apoptosis is achievable only via joint synergistic suppression of FLIP and IAP 
inhibitors.  (Courtesy of “Chemistry and Biodiversity” journal (Apte et al., 2010-12-31)). 
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Our simulation showed that adding the feedback loop CASP3 → CASP9 → IAP to the 
mitochondria-mediated apoptosis pathway does not affect strongly the concentration of 
DFF40. However, the enhanced suppression of the IAP inhibitor and the additional 
activation of CASP9 accelerate considerably the process. We found that under these 
conditions FASL mechanism is 32 % faster than mitochondrial feed-forward mechanism, 
and 12 % faster than the mitochondrial feed-forward with a feed-back. (The number of 
iterations needed for the three mechanisms was 5012±12 vs. 5596±11 vs. 7368±13, 
respectively). The interconnectivity of the two apoptosis cascades thus offers a second, 
redundant mechanism for type-I cell apoptosis in case of failures in the FASL apoptosis 
pathway, such as no DISC formation or mutated membrane bound FAS, etc. Reducing the 
CASP8 concentration in such cases switches apoptosis to the mitochondrial pathway with 
feedback, which is only 12% slower. Complete details of the CA modeling and its 
parameters are given in (Apte et al., 2010). The data presented in this section demonstrate 
the great potential of cellular automata technique for biomedical applications.  
  

 

Fig. 8. Integrated scheme of the exogenous FASL-induced apoptosis and the endogenous 
mitochondrial apoptosis (Apte et al., 2010). At low expression level of CASP8 the 
mitochondria releases cytochrome C in the cytoplasm, activating thus CASP9, which in turn 
activates CASP3. A feedback from CASP3 to CASP9 increases the concentration of CASP9 
active form, which accelerates apoptosis by suppressing the inhibition from IAP via SMAC 
protein. A similar suppression of the FAS apoptotic circuit can be achieved by using siRNA. 
(Courtesy of “Chemistry and Biodiversity” journal (Apte et al., 2010-12-31)). 
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5. CA modeling of network motifs performance 

The cellular automata modeling discussed in the previous sections was directed toward 
identifying dynamic patterns in  networks and pathways, which to provide means for 
control of their dynamics. A different approach was also pioneered in our Center for the 
Study of Biological Complexity (Bonchev et al., 2006, Apte et al., 2008, Taylor et al., 2010). It 
was aimed to search for answers to a fundamental problem: "How structure affects the 
dynamics of processes in networks?". While this question in the general case of networks of 
arbitrary size is too complex to be answered in a simple manner, a guiding idea was to look 
for exact answers for the dynamics of network motifs, the smallest structural units of 
networks (Milo et al., 2002; Alon, 2006, 2007).  Such an approach avoids the computational 
complexity of large systems and, in addition, the CA derived patterns can be verified by 
ODE simulations (solutions of differential equations).  
More specifically, in the search for the best performing structure we compared the same size 
motifs of different topology, and assessed their performance by the overall rate of the 
processes of conversion of the substrate(s) in the source node(s) into the product(s) of the 
motif target (or in terms of graph theory of the subgraph sink) node(s). In order to extract the 
topological factor chemical kinetics parameters (concentrations and rate constants) and 
probabilistic rules (except the transitional probability one), were kept constant. This 
"freezes" the process stochasticity, making our simulations de facto non-stochastic. Different 
classes of motif topology were defined according to the number of source (S) and target (T) 
nodes, with major attention being focused on the S1T1 class having a single source and a 
single target node. Our approach could be of particular interest for signaling pathways in 
biological systems, the overall rate of performance in which measures the effectiveness of 
converting the incoming chemical signal into an outgoing one. While using the language of 
biochemical reactions in describing motifs’ links, and building on the specific CA approach 
to network discussed in the previous sections (Kier et al., 2005), the method can be readily 
applied to networks with different type of node-node relations, including ecological and 
social networks.  
We performed a detailed analysis of the dynamics of different feed-forward (FF) motifs, 
which have been of considerable interest in biological systems. We extended the concept of 
FF motif used in the literature, namely “a subgraph that contains a feed-forward link 
connecting the source and the target nodes”, to more general cases the added link in which 
shortens the distance between the source node and the target one, but not necessarily 
connects them directly. The temporal dynamics  of feed-forward motifs in  gene regulatory 
networks has been studied in detail (Mangan & Alon, 2003; Kashtan et al., 2004; Kashtan & 
Alon, 2005; Alon, 2006, 2007). It was shown that gene evolution depends on the topology of 
gene regulatory network (Cordero & Hogeweg, 2006). The relation between structural 
modules and dynamics of cellular networks, has been considered as a basis for cell 
reprogramming and engineering (Yuan & Hui, 2006). (Chechik et al., 2008) introduced 
activity and timing motifs, which capture patterns in the dynamic use of a network and 
reveal principles of transcriptional control of metabolic networks (Naemi, 2008). More 
generally, relating topology to function lead to a better understanding of dynamic 
properties of network motifs, e.g., their contribution to network stability (Prill et al., 2005).   
Our approach is based on CA spatial models of the dynamics of generalized feed-forward 
motifs, which provide information on the concentrations of all substrates and products at 
the (quasi) steady-state reached after a considerable amount of CA iterations. The overall 
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reaction rate was assessed in parallel by CA and ODE simulations, as the number of 
iterations (respectively time in s) needed for 90% conversion of the input signal into the 
output one. The simulation was performed on a 2D-square lattice, 100 by 100 cells, 
embedded on the surface of a torus, with a lattice density of 3.6%.  Each simulation was run 
100 times, which produced a statistics with a sufficiently low standard deviation. Each 
motif’s arc i was assumed to correspond to an enzymatic reaction: S(i) + E(i) å SE(i) å PE(i) 
å P(i) + E(i), and the probabilistic rules used were the ones for enzymatic reactions (See 
Section 3). The performance of all directed 4-node feed-forward motifs having a single 
source and a single target node (S1T1 class) was evaluated and compared to that of the 
directed linear motif of the same size.  
The parallel ODE simulation was carried out in several approximations (Apte et al., 2008). 
The simplest way to construct an ODE model is to treat each feed-forward link A→B 
without regard to the underlying biochemical processes (e.g., neglecting the formation of 
substrate-enzyme and enzyme-product complex and the subsequent dissociation of the 
latter). In doing so, we neglect any nonlinear interactions of various species. The advantage 
of this linear ODE approach is that with the assumption for constant initial concentrations 
and rate constants, the linear systems of ODEs can be solved explicitly. Taking into account 
the formation of the substrate-enzyme complex SE(i), and assuming that the substrate-
enzyme complex SE(i) converts with a certain transitional probability into the product P(i) 
and a release of the enzyme E(i), produced a nonlinear model (NDE), which can be solved 
only numerically. A second, more detailed nonlinear model (NDE´) has taken into account 
the reversibility of the process of formation of the intermediate SE(i) complex, which is a 
basic assumption in the theory of enzymatic reactions. The results summarized in Fig. 9 
show very good agreement between CA and ODE models.  
The ordering of the ten directed 4-node motifs in Fig. 9 was found to follow several 
topological transformation patterns (Apte et al., 2008). The acceleration of the S → T 
conversion might be predicted in part by conjecturing that every graph transformation that 
reduces the distance or, alternatively reduces the average path length, between the source 
and target vertices S and T, accelerates the process. Counting the distance between two 
neighboring vertices as a unit, one extracts from Fig. 9 a series of topological patterns that 
improve the motif dynamic performance. 
Topodynamic Pattern 1: The shorter the graph distance d(S→T) between the source node and 
the target node in a feed-forward motif, the higher the overall motif dynamic performance: 

 A(d = 3) < B, C (d = 2) < D, E, F, G, H, I (d = 1) (2) 

Notably, the two bi-parallel motifs F and J do not obey this pattern.           
When considering the average path length one arrives at a more distinctive pattern. It 
singles out motif I to perform with the highest rate, due to the lowest average path length 
between nodes S and T (L = (1+2+2)/3 = 5/3): 
Topodynamic Pattern 2: The shorter the average path length L(S→T) between the source node 
and the target node in a feed-forward motif, the higher the overall motif dynamic performance: 

 A (L = 3) < B, C (L = 2.5) < D, E, G, H (L = 2) < I (L = 1.67) (3)  

Topodynamic Pattern 3: Any ring closure of a linear chain of steps converting a source 
substrate S into a target product T accelerates the transformation. Acceleration of the 
process is the strongest when the feed-forward link directly connects the substrate to the 
target and is the smallest when the link connects the substrate to an intermediate product: 
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 A < B < C < D (4) 

 

 

Fig. 9. Performance of 4-node network motifs, evaluated by the rate of converting the source 
node S substrate into the target node T product, as measured by the number of CA 
iterations, and by the time in seconds determined from a linear and two nonlinear 
differential equations models. The motifs from A through J correspond to ID numbers 536, 
2118, 2076, 652, 2126, 2182, 2254, 2204, 2190 and 2140, respectively (Milo et al., 2002). The 
broken lines indicate the manner in which another directed link can be added in a 
subsequent topological transformation. The asterisks in motifs D, E, and J, stand for the 
edge, which changes its direction in a subsequent transformation. (Courtesy of Journal of 
Biological Engineering (Apte et al., 2008)).  
 

                   

                    Iterations  3800±16                  3505±13                         2408±13 

         LDE              3.32                           3.01                                2.17 

                    NDE             6.91                           6.40                                5.26 

                    NDE´          10.44                          9.63                                 7.59 

 

 D                          E                             H 

 

Fig. 10. Adding a second feed-forward edge accelerates the motif performance, particularly 
when the edge is incident to the target node. (Courtesy of Journal of Biological Engineering 
(Apte et al., 2008)). 
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Topodynamic Pattern 4:  Adding a second feed-forward edge (double feed-forward motif), 
between a pair of nodes in the longer path of the FF loop, accelerates the conversion of the 
source substrate into the target product:   

 D < E < H (5) 

The pattern is illustrated in Fig. 10. Adding a third feed-forward edge does not always have 
an accelerating effect, as seen from the   motifs H → G transformation. 
Topodynamic Pattern 5: Reversing the direction of one or more links in a feed-forward 
motif to turn it into a bi-parallel and tri-parallel one increases the motif performance: 

 Feed-Forward < Bi-Parallel < Tri-Parallel (6) 

Three such conversions: 

 D < F, E < I, J < H (7) 

are shown in Fig. 9, where they are denoted by asterisks. 

Topodynamic Pattern 6 (Isodynamicity): Some feed-forward motifs with different topology 
are characterized by the same overall S →T conversion rate by the CA and linear ODE models: 

 CA: H (2408 ± 13) = I (2427 ± 15) (8a) 

 ODE: G = H = I = 2.169053700 s (8b) 

 

   

           2721±13                       2408±13                     2427±15 

              2.17                                2.17                           2.17 

              5.23                                5.26                           4.78 

              7.57                                7.59                           7.12 

G                         H                       I  

 

Fig. 11. Motifs G, H, and I are isodynamic according to linear ODE model, whereas CA 
models confirms the isodynamicity of H and I. The two nonlinear models show very close 
isodynamicity of G and H, while the more detailed NDE´ model singles out motif I as the 
best performing one, as also predicted by purely topological arguments in Topodynamic 
Pattern 2 (see above). 

Equality (8a) is valid within the standard deviation ranges of H and I (2395-2421 vs. 2412-
2442). The linear ODE's times also characterize motifs F and J as isodynamic, whereas their 
CA estimates diverge slightly (3274-3308 vs. 3330-3366, respectively). The two nonlinear 
NDE times of motifs G and H are very close, while the most complex NDE´ model classifies 
motif I as best performing: 

 NDE:   G (5.23) ≈ H (5.26) > I (4.78) (9a) 

 NDE´:  G (7.57) ≈ H (7.59) > I (7.12) (9b) 
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The concept of motifs isodynamicity was investigated in more details by linear ODE models. 

Three theorems were proved (Taylor et al., 2010) for classes of motifs sharing this property. 

The first such class is motifs containing target vertex with maximal in-degree (Fig. 12a): 

Theorem 1. Consider the family of feed-forward motifs on n vertices with a single target 

vertex. Then all motifs for which the in-degree of the target vertex is (n−1) are isodynamic. 

This theorem is easily extended to motifs having many target nodes (Fig. 12b): 

Theorem 2. Suppose 1 < k < n and consider the family of feed-forward motifs on n vertices 

with precisely k target vertices. Then all motifs for which the in-degrees of the target vertices 

are (n−k) are isodynamic. 

Theorem 1 expands the isodynamicity pattern so as to incorporate the class S(n-1)T1, while 

Theorem 2 expands that pattern further to the class of motifs S(k)T(n-k). The third theorem 

defines isodynamicity in a class of bi-parallel motifs. This class is also of S1T1 type but the 

single source and single target nodes are connected by two parallel chains of links. Adding 

in a specific manner links between the two parallel chains does not change the overall motif 

performance (Fig. 12c).     

 

 
 

Fig. 12. A, B, C. Illustration of Theorems 1, 2 and 3, respectively. 

Theorem 3. Consider the bi-parallel motif on m vertices, with the alternating vertex labeling. 
Suppose we construct a new motif by adding directed edges between vertices k and (k+1) 
(regardless of orientation) if k has the same parity as m and 1 < k < (m−1). Then this new 
motif is isodynamic with the bi-parallel motif.  
Theorems 1-3 thus identified two large classes of isodynamic feed-forward motifs: such the 
target vertices of which have maximal in-degree, and bi-parallel motifs with a variable 
number of redundant edges not changing the performance rate. An idealized case was used, 
all reactions in which proceed at the same rate, and the formation of intermediate complexes 
is not taken into account. Nevertheless, numerical simulations with more realistic nonlinear 
ODE models have shown time estimates close to those produced by the linear models and 
the CA ones.  
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6. Conclusion 

This chapter summarizes the pioneering work on cellular automata modeling of network 
dynamics done in our Laboratory. Although obtained at molecular biology level, the 
findings of our study are easily applicable to complex networks of arbitrary nature. Our 
approach to such level of complexity is to study in detail small size subnetworks (motifs), 
reducing strongly computational time, while shedding light on the dynamic patterns of the 
system as a whole. This approach does not provide exact answers, but rather identifies 
patterns of behavior. It offers answers to questions like what one has to expect when 
affecting a network node or node-node interaction (link), providing thus means for network 
control. The latter could facilitate the search for novel pharmacological targets, as well as for 
individualized patient treatments. As shown in our work, intimate details of the mechanism 
of action of diseases can be revealed, such as cooperative action of enzymes, synergetic 
action or suppression of inhibitors, etc. All this information provides a basis for developing 
strategies for fighting such diseases like cancer and HIV. 
An essential part of such studies is the extraction of useful topological-dynamic (topo-
dynamic) patterns describing specific effects of topological structures on network dynamics 
at constant other conditions. The great advantage of using topology to study network 
dynamics is in the generality of the patterns found, which do not depend on process 
specificity or network size. The dynamics of the feed-forward motifs investigated revealed 
important aspects of networks containing such loops. Any feed-forward link added to a 
linear cascade of chemical/ biochemical reactions accelerates the process, and the 
acceleration is further enhanced by adding a second feed-forward link. The acceleration of 
the overall process in FF motifs increases with the decrease in the distance, and in the 
average path length, between the input and output nodes.  When the distance parameters 
are kept constant, cellular automata and ODE simulations produce a further finer distinction 
between the motifs dynamic performance. The concept of isodynamic network motifs 
revealed important aspects of similarity in dynamic behavior of subnetworks of different 
topology. The consequence for biological and other systems from this finding is that 
identical or closely similar rate of performance of processes converting a given input to a 
desired output can be produced by different network connectivity. It is important to 
understand whether there is a specific selective advantage to use a certain motif topology 
among a number of others of similar performance rate.  
In the more general case of non-isodynamic network motifs one may expect that evolution 
might have been using the higher speed of producing a desirable target product from 
equivalent initial conditions, particularly in signaling pathways. The answer of this question 
is a subject of our extensive almost completed study, in which the abundance of motifs in 
metabolic networks, and their higher level of organization termed network of interacting 
pathways (NIP) (Mazurie et al., 2008, 2010), were analyzed in over 1000 species. Evidence 
for high statistical support was recovered for the over-representation of certain feed-
forward and bi-parallel motifs (subgraphs) with 3 and 4 nodes. The motifs exhibiting 
considerable enrichment were those having faster performance dynamics and extra null-
performance link. The preliminary results favored strongly one of the three fastest motifs 
found (motif ID # 2204, denoted as G in Fig. 9). The high abundance of this motif evidences 
that evolution conserves this effective topology of maximum cross-talk between the 
individual metabolic pathways. Motif 2204 exhibits the additional advantage to keep its 
overall performance almost unchanged even in case of  losing one of its links (null-

www.intechopen.com



Cellular Automata Modeling of Biomolecular Networks   

 

295 

performance link), in which case it converts to the tri-parallel motif I (ID # 2140), which is 
also one of the three fastest performing motifs. The lack of statistically significant abundance 
of such a high speed subgraph may be interpreted as evidence that at equal or close efficacy 
evolution conserves the structure that provides a higher stability. Having an extra edge 
which does not contribute to a higher conversion rate is a beneficial redundancy; if this edge 
is destroyed or incapacitated, the efficacy of performance of the biochemical reactions will 
remain practically the same. In the context of adaptive significance, these results indicated 
that the need of higher network resilience against attacks not only compensates the energy 
price for the extra link formation but also exceeded the potential benefit of a faster 
performance. Further studies extend this type of motif dynamics analysis on Drosophila 
microRNA-target interaction networks (Woodcock, 2010).  
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