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1. Introduction    

One way of seeing Cellular Automata (CA) is as cell- based computational models for 
describing the evolution of spatially distributed systems. Each cell represents a “local” state 
of the system that can vary according to its past states and to the present states of a 
“vicinity” of cells, following some set of relations known as “transitions rules”. 
More important than how these transition rules are (i.e linear, non linear, discrete, etc,), is 
that distant parts of such system can interact one to another only through its neighbours; in 
other words, what we are actually considering in CA models, is that the system obeys the 
principle of locality. For this seems to be the case of most systems in nature, CA models have 
found potential applicability in a wide variety of phenomena, ranging from macroscopic 
scales, like urban systems, down to microscopic scales like in solid state physics. J.F 
Nystrom (2001) has even argued in favour of the idea that fundamental laws of physics 
should arise from simple transitions rules of some Universal CA, in a structured space 
following R. Buckminster Fuller’s synergetic geometry. 
This brings us to a central point, which is that, in nature, space is as essential as time for 
describing any process; disregarding if we are more interested in watching at the temporal 
behaviour of certain group of state variables or if we are more interested in taking static 
pictures of some distributed properties in space, there will be always a spatiotemporal 
evolution process taking place behind. 
A good example are urban and environmental systems; social scientists have been 
discussing since long ago how population and economy of regions interact and evolve 
through the years, while geographers and urban analysts have been doing it looking at its 
spatial structures. Both have contributed in equal parts to our present understanding of 
sustainable development. However, ¿can economists explain development without 
considering where was located the infrastructure support? or ¿can urbanists explain the 
structure of a city without considering  the historical circumstances?  Both views tend to 
describe one aspect of the evolution looking at the other as frame constrains, usually given 
in terms of literal stories.  The same happens in many other fields of science treating with 
complexity.  
A more modern view stands on the growing availability of informatics tools, and pushes 
towards constructing spatiotemporal models. But this is not a simple task; most attempts 
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flow amongst “top-down” approaches, based on continuity equations in partial derivates - 
including fractional order diffusion equations for explaining behaviours with long-range 
dependency (Angulo J.M, et al. 2001)- and “bottom-up” approaches, mostly given by 
discrete rule-based CAs  (Park S. and Wagner D. F., 1997). While the former go more for the 
classic type, which puts emphasis in an extensive view of the system (that is in its behaviour 
and consistency as a whole), the latter are more of the evolutionary type, giving more 
emphasis to a detailed view, trying to describe self-organization and innovation proper of 
complexity.  
However, as discrete space-time models have become more attractive, due to the intensive 
use of dynamical raster GIS (Geographic Information Systems) (Batty, M, 1996; Mitas L. 1997 
et al.; Park S. and Wagner D. F. , 1997), different kinds of CAs , as well as seamless discrete-
continuous approaches, are opening new theoretical avenues. 
For instance, as regards mobile agent-based CAs, the number of agents (population) grows 
initially from implanted “seeds” reproducing and spreading on the back cells, in accordance 
with transition rules and information on their development capability held in different GIS 
layers (Batty M. and Torrens P., 2001). 
Not far from these, some seamless continuous/discrete approaches face the modelling 
problem in terms of a particle-field duality, just as in the path sampling method used in 
physics for solving continuity equations (Mitasova, H. and Mitas L., 2000). 
Multidimensional complexity can be treated herein by means of particles and fields in 
different scales. Likewise, some approaches use spatiotemporal convolution equations with 
kernels limited in space (i.e gaussian or similar), or even space-variant kernels 
(heterogeneous) (Wikle C., 2001), in a way that complex spatiotemporal processes are 
described as the propagation of dispersive or non-dispersive wave packets. 
The distinctive feature of the seamless and mobile agent-based CAs models is that they use 
particles - or rather pseudo-particles - as an attempt to match the continuum response of an 
extensive view with the discrete and evolutionary behaviour of a detailed view; these can be 
considered as descriptions halfway between classical physics kinetics and unstable system 
dynamics. Issues to be primarily considered herewith are: a reduction in the amount of 
information involved, the interlacing of layers or embedding of contributing models, as well 
as the setting of scales for representative particles of the included processes. 
The modelling of ecological systems offers also good examples; the emergency of complex 
spatiotemporal patterns in the population dynamics of certain species has been since long time 
of great interest in Ecology. Random walking and diffusion equations are used to describe the 
movement of animals in their own environment, and to forecast their spatial distribution 
under the influence of the diverse territorial heterogeneities (Jeanson R. et al., 2003). Such 
models are found on a regular basis but there is still a long conceptual way to go. 
Complex spatiotemporal patterns in the activities carried out by some social insects, such as 
ants and termites, reveal that individuals can collectively do better at performing tasks than 
isolated. This is not only observed in the typical pattern scales, usually far larger than the 
size of individuals, but also in their shape, featuring arrangements in various delicate and 
regular structures. Despite individual randomness and limitations, collective structures arise 
effectively in response to several functional and adaptive requirements (protection against 
predators, the substrate of social life and reproduction, thermal regulation, etc.) (Theraulaz 
G. et al., 2003).  
Twenty years of research have revealed that the origin of hierarchical complexity is more a 
consequence of the multiplicity of individual responses to stimuli, derived of relatively 
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simple behaviours, than of the ability of each insect to process a large amount of 
information. Hence, the resulting patterns seem to emerge from non-linear interactions 
among individuals and between individuals and their environment, all this through 
mechanisms like templates, stigmergy and self-organization (Theraulaz G. et al., 2003; Ball  
P., 1998). 
These features in particular have pushed traditional temporal dynamic analysis towards 
incorporating more explicitly space (Spatial Ecology), through metapopulation and 
transition rules models like the Cellular Automata. The interest is in the link between the 
spatial structure of the environment and of the occupying population with the species 
features, their development, survival and even their diversity [Pascala, S. and  Levin, S. 
1997; Tilman,D and Kareiva, P. 1997].  
The latter also points at phenomenological models with differential equations in partial 
derivatives, such as the reaction-diffusion equations based on the Alan Turing model (1952). 
This was originally applied to the morphogenesis of skin spots in animals like zebras, 
jaguars and leopards, and later extended, by several authors, to nearly all the range of 
biological and ecological patterns, being cellular morphogenesis and the spatial segregation 
of species included. Basically, it describes the non-linear interaction of two- species 
concentrations: one is an “activator” (rather of local action) and the other an “inhibitor” (of a 
longer reach), so periodical structures rise as a consequence of different diffusion speeds 
(Meinhardt, H., 1982). An outstanding example in the biological level is the 
chemotaxonomic spatiotemporal behaviour of two bacterial species, which can be externally 
controlled and shapes propagating waves and patterns (Lebiedz D. and Brandt-Pollmann 
U., 2003). 
The variety of approaches is not as much a consequence of the type of system under 
consideration, as of the need to integrate multidimensional interactions at various levels, 
where a spatiotemporal model rises from any of the following (Popov V.L. and Psakhie S.G., 
2001):  
a. the macroscopic dynamics of the system and by finding solutions to partial integro-

differential equations (if known); 
b. the microscopic dynamics of the real system and by finding interaction laws through 

molecular dynamics methods or first-principle methods;  
c. the replacement of the real system by a certain medium model (having rougher 

microscopic behaviour but the same macroscopic dynamics as the former), while 
formulating proper transition laws. 

The third type of approach is where CA and seamless models are actually placed; in 
particular the use of Cellular Automata has widely spread because of its intrinsic capacity to 
simulate complexity, specifically self-organization and innovation. However, and going 
back to the beginning, it should be bared in mind that such models are eventually tensorial 
computational methods based on finite spatial cells, thus defining an excitable elastoplastic 
medium that represents the species-space/environment system in question. In any case, 
Cellular Automata can successfully model several types of excitable media, not only due to 
some insensibility of “macroscopic” dynamics in relation to the structure and nature of 
interactions in their “microscopic” order, but also to the fact that most systems and even 
hypothetical mathematical objects, are described by some kind of transport equations (Popov 
V.L. and  Psakhie S.G., 2001).   
It can be surprising that despite the obvious conceptual division between the animate and 
the inanimate worlds certain population phenomena are described similarly. In fact, 
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reaction-diffusion systems are frequently found and rather important in many areas of 
physics. For instance, through the band theory, crystalline solids such as semimetals and 
semiconductors can be described on an electrical basis by means of two charge transport 
equations, one on electrons (negative charge) and other on holes (positive charge) in specific 
energy bands. The concentration of each carrier can be described in a similar way to 
Turing’s, since both transport equations are coupled through the generation/recombination 
of carriers, similar to predator-prey interactions in Ecology.  
As the active and inhibitor species rise naturally herewith, leading to stigmergy-like based 
mechanisms, ¿is it possible that some of the methods and principles used in solid state physics be 
also applicable to ecological and urban systems?; if so, and even though living systems would 
have more plasticity, a crystallographic metaphor would be useful to model certain aspects 
relevant to spatiotemporal evolution in social species, at least under stationary or quasi- 
stationary conditions. This approximation has been studied and applied to spatiotemporal 
modelling of urban areas, thus showing its viability and potentiality at explaining several 
heterogeneously distributed urban phenomena (Puliafito, J.L. 2006). 
We must bear in mind herewith that at describing the spatiotemporal dynamic evolution of 
populations of real individuals through transport equations, one is not only implicitly 
considering the existence of definite interactions of the species with its space/environment, 
but also stability regions in the associated state space that are similar to the energy bands in 
solid materials (multistability; Theraulaz G. et al., 2003). Therefore, either systems can stray 
away slightly from the previous dynamic relations so that restoring forces will tend to 
preserve evolution within a states region (linearity, elasticity), or can stray away largely 
with transitions among regions (non-linearity, plasticity). In this sense, experience proves 
that social behaviour and complex and regular spatiotemporal structures usually emerge 
under conditions where species reach some critical spatial density. 
In such train of thoughts, herein an ecosystem is not the mere association of interactions in 
terms of the whole, or the sum of strongly-interacting independent elements, but a rather 
coherent sum of elementary units made up of living individuals and their immediate 
surrounding space-environment; the latter being regarded as a multidimensional 
representation of the resources needed for its survival, physical space in itself included.  
A review of some of the investigations done by the author dealing with the above questions 
is presented in this chapter. 

2. A bridge from the stochastic behaviour at the individual level to the 
associated behaviour at the collective level 

A research program dealing with all these features should start at modelling generic 
individuals as automata exploring the environment, capturing and feeding from discrete 
units of matter and energy, thus developing some sort of random-walk mostly confined to a 
certain territory. This leads, as it will be briefly shown here, to spatiotemporal behaviours 
that resemble quantum stochastic systems. Apart from the theoretical interest, it yields the 
possible application of simplifying analogies to the population dynamics of dense 
concentrations –even in a restrictive manner -, as it lays a bridge towards a collective 
description similar to the band theory of solids (Puliafito, José L and Puliafito, S. E. 2006).  

2.1 First class Bioautomaton – Langevin equation 
Let us consider some type of autonomous homeostatic device, which, for our purposes, we 
can call bioautomaton. In an elementary class (first class bioautomaton), such an ideal device 
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is an open biophysical system moving step-wise and randomly in space, aiming at 
capturing, storing and processing discreet units of matter/energy (resources), thus assuring 
its “survival”. It can be seen as a black box excited by Poisson impulses and responding 
with limited spatial displacements through an appropriate transfer function. Due to these 
mechanical displacements, the resources that are available in the near-by space–
environment can be captured. The latter can also be considered as a black box excited by a 
random step function, giving such energy impulses to the bioautomaton. (Fig 1) 
 

 

Fig. 1. Left: Scheme of the bioautomaton/environment interaction; the bioautomaton has an 
internal reserve of energy . Heat exchange fluxes are not displayed for simplicity. Right: The 
bioautomaton-medium interaction seen as a closed system; B particle is the bioautomaton 
and ⎯B antiparticle represents the near-by medium; the exchange is given by a discrete flux 
of resources R and of residues ⎯R. 

The evolution in the state space of the whole system (bioautomaton / environment) is a 
stochastic process, depending, on one side, on the efficiency of the bioautomaton to collect 
resources and to adequately use its internal energy reserve and, on the other side, on the 
environmental offer and its renewal capacity. There will be stationary or quasi-stationary 
random solutions, as long as the expected value of the rate of energy consumption per 
period between impulses is higher or equal to the average minimum consumption rate: 

 < εδi / Tδi  >=  ε0 / T0 ≥  (δε⁄δτ)min (1) 

Eq. (1) can be considered as the first-class functional of a bioautomaton or “survival” 

functional, where (δε⁄δτ)min plays a similar role to basal metabolism in living organisms.  
Here, the device’s “survival” consists of a set of conditions resulting in the sustenance in 
time of its internal reactions, within a relatively steady range, balancing dynamically the 
energetic exchange with the environment.  
 Since under stationary conditions the bioautomaton’s movement and survival are limited to 
an optimal use of its internal energy reservoir, a certain potential function can be associated 
to this storage, as a measure of the probability to capture new resources. This can be defined 
as a spatiotemporal convolution between a certain window S(r), representative of the 

perception and capture radio of the bioautomaton, and the spatial density of resources ρ(r) 

(ζ it’s a process constant): 

 Ubr( r, t) = -(1
 
/2π ζ) ∫τ S( r (t) -r’) ρ( r’ ) dτ (2) 
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When taking a gaussian window and a localized distribution of resources (eg. disc type) a 
“well” spatial function is obtained, which recognizes approximately the regions given by the 
three degrees of homogeneity in classical mechanics (Kh= 2 parabolic for r ≤ 1,5 r0, Kh=1 

linear for 1,5 r0 < r < 2r0 and Kh= -1 newtonian for r ≥ 2 r0 , with r0  as a  characteristic radius). 
Unlike a classical potential, which is determined by the medium, Ubr depends on what the 
environment can offer as regards means, as well as the degree of utilisation (or efficiency) 
the bioautomaton can get out of them; that is, it represents the expected interaction 
bioautomaton-environment. Thus, its interpretation as a potential function is conditioned to 
the resulting movement being a stationary or quasi-stationary process, or, in other words, 
being an efficient estimator of the spatial distribution of resources. 
A generalized Langevin stochastic differential equation derives from the previous definitions 
for the bioautomaton, which can be analysed from partial solutions for the homogeneity 
regions above given (3). 

 m.
 d⎯
 d   

2        

t  2 
⎯
 
r  + f  

 d⎯
d  t

 ⎯r   - ∂
∂
⎯ 
       r

 Ubr (⎯r, t ) =  ⎯Fex(t)  = m.⎯n(t) (3) 

Note that equation (3) has reduced the quite complex interactions to the dissipative 
stochastic movement of a m mass and f friction punctual particle, subjected to certain 
excitation and restitution forces dependent on the Ubr( r, t ) virtual potential.  Formally, it 
can be interpreted as a generalized type of Brownian movement, where ⎯n(t) represents 
white shot noise.   

2.2  Behaviour in Kh = 2 zones 
Near the distribution centre of ρ(r), Ubr(r) takes the shape of a second degree parabola (Kh = 
2), in a way that the potential gradient (the potential reactive force) is approximately 
proportional to displacements:  

 d⎯
 d   

2       

t  2 
⎯
 
r  + β 

 d⎯
d  t

 ⎯r     + ω02 ⎯r   = ⎯n(t) (4) 

with β= f/m  and ω02 =  k/m, which corresponds to the movement of a particle in a viscose 
medium under the action of a central field. In the case of the bioautomaton, β must be 
understood more generically as the relation between the total dissipative forces (outer and 
inner) and the total equivalent mass that includes the inert mass and the associated biomass. 
The bidimensional problem can be described in terms of an analytical process with a complex 
random variable r(t) = x(t) + j y(t). The stochastic processes x(t) and y(t) are also described 
through independent differential equations of the type given in (4), coupled through proper 
coefficients ω0x = ω0y = ω0  and βx= βy = β,  which presupposes spatial isotropy.  
The essential properties of the movement originate in the characteristic equation for the 
autocorrelation of any of the two components. The weakly dumped harmonic case is of 
particular interest  (β/2ω0 < 1) , as it describes a range of solutions corresponding to a 
stochastic oscillator in which trajectories are stochastic “orbits”: 

 r (t) =  r . exp [- 0,5 βt +j ( ωd t + ϕ )] (5) 

with ωd= ω0 (1- β2/4ω02)1/2 ;  r = (x2+y2)1/2 ;  ϕ=atan (y/x).  This case gives the longer possible 

average life times of the bioautomaton (τ~ 2/β), thus becoming the most appropriate for the 
definitions above given. 

www.intechopen.com



CA in Urban Systems and Ecology: 
From Individual Behaviour to Transport Equations and Population Dynamics   

 

137 

 

Fig. 2. Numerical simulation of bioautomaton in Kh= 2 zone, with Poisson impulses 
excitation and random directions; simulation parameters are: Mass m=10; Friction  f=3.145; 
Elastic constant  k= 0.987 ( ω0 = 0,31416; β = 0,3145;  ξ= 0,500) 

Considering in particular when n(t) is shot noise, representing discrete supply events, the 
resultant of the apparent excitation forces ⎯Fex, can be expressed as follows: 

 ⎯Fex (s) ≈  ∑
i
 γ.Δs.δ(s-si) ⎯s°  →⎯Fex (t) = ∑

 i
 (εi /⎯vi )  δ(t - ti) (6) 

In the first expression of eq. (6) γ is the apparent density of energy per longitude unit, Δs the 
mean step and δ(s-si) the delta Dirac function for s=si , thus describing an impulse train with 
events located in (i) random positions over the s trajectory. Random positions si can be 
considered as independent events, resulting in a Poisson process with a density parameter 
αs =N/<s> of points, determined by the distribution of resources in space, and a expected 
value   <Fex > = γ δs αs. The second expression of eq. (6) is in explicit function of time, where 
⎯vi is the instantaneous vector velocity of the bioautomaton over trajectory s and εi the 
specific energy of the resources captured in s = si random positions. In this way average 
trajectories in  stationary processes will  depend directly on the number  N of captured resources .    
In fig.2 a numerical simulation of the stochastic differential equation (4) is shown. Figure 
(2.a) shows the trajectories and the encounter positions with resources corresponding to the 
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input impulse sequence. Hence, a cloud of excitation points is associated to the trajectories, 
which is denser in the centre and dilutes to the outside. As expected, the position radii 
follow a Rayleigh distribution (fig 2.b); accordingly, the distributions of x-y distances, as 
well (as of x-y velocity components), follow a gaussian form. The power spectrum of radii 
has also a concordant distribution in frequency, given by a second-order transfer function 
shifted by the natural angular frequency of the system.  
Some of the peculiar properties of shot noise excitation arise already when the distributions 
of the mechanical energy of the system and of the virtual forces are considered. The 
distribution of the mechanical energy (fig 2.c) (as in addition to its transitions) has a spectral 
density that nearly follows a Planck type distribution with two degrees of freedom (the 
correlation factor is approximately 0.97): 

 F(ε) = A. ε2 /exp ( ε/εT – 1) (7) 

where ε represents energy, εT a “thermal” equilibrium energy , and A a proper characteristic 
constant. The third factor is the Bose-Einstein distribution, but here ε is squared instead of at 
a cubic power as in the Planck radiation law. In this sense, while the distribution of the   x-y 
instant components of the input virtual forces follow a sine law (vector decomposition in 
uniformly distributed random phases), their mobile media  (within a window as long as the 
feeding period T*) show the expected tendency to gaussian distributions, but with a clear 
fine reticular structure (fig. 2.d). 
The former results show the need to consider the quantification of the bioautomaton’s 
behaviour as regards the number of capture events associated to the noise density (N). In fact, it is 
possible to analyse the device behaviour by decomposing its excitation in terms of a random 
sum of k- input modes, where k=1 always represents one input impulse per feeding period T*, 
k=2 represents a random sequence of just two impulses per period, k=3 represents three 
impulses, and so on. Denoting ž(t) as the mobile average of excitation forces z(t),  one gets 
the distribution fž (z), shown in figure (2.d), by doing 

 fž (z) = (1/π)  ∑          
k
  bk fzk (z) (8.a) 

where: fzk(z) = ∫
0         

Ωmax

J0
k
(a Ω).cos Ωz dΩ ;  bk  =  (λ.T*)k . exp (-λ.T*) / k! (8.b) 

In eq. (8.a) and (8.b) fzk(z) is the k-modal component of the distribution density, expressed as 
the cosine Fourier transform of the k power of the first kind Bessel function of zero order, in 

the sthocastic frequency domain Ω; Ωmax is a cut-off stochastic frequency which rises from 
the forces reticular structure in stationary conditions.  At the same time bk is a weight factor 
of mode k, expressed as a Poisson probability coefficient.  
A k=0 mode can be also defined, which means that no impulse is arriving (no resource is 
captured), so that the movement is carried out just by the use of the internal storage of 
energy. According to the virial theorem (case Kh= 2), the total average mechanical energy is 
half of the system total energy in the k=1 mode. 
Taking into account the previous considerations it is also possible to decompose in k-modes 
the average value of the angular moment, as well as of the mechanical energy.  In fact, the 
expected angular moment when excited by N capture events per feeding period is: 

 <Mφ>2 =N2 ε02/ ω02 =  m02ω02r04 (9) 
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In eq. (8) one can immediately define an action constant ε0/ω0= a/2π= ǎ, which represents the 
average rate of the energy consumed per capture event, associated to a certain consumption 
capacity of the bioautomaton.  In this way, considering k=0 as the basal mode, k-modal 
components in Kh=2 zones for the angular moment and the energy can be written as: 

 Mφ0k = ( k + ½ ) ǎ (10) 

 E0k =   (k + ½ ) ǎ ω0  (11) 

which have the same form as in the quantum harmonic oscillator. However, one must consider 
that these are not pure states but the average values of associated state groups, in a way that 
their composition, through the Poisson coefficients given in (8.b), define the general mixed 
state of the Bioautomaton in zones Kh=2. 
As the internal energy of the bioautomaton, given by kinetic energy added to the storage 

energy, is Ei = m0 υ2, where υ = v0 can be taken as a typical velocity of bioautomaton-medium 
interaction, other virial relationships can be drawn from here in terms of associated 
wavelengths as well as stating the relativity of the average exploration radio and the effective 
mass of the bioautomaton, respect of its actual average velocity v. In fact, alterations can 
occur while the bioautomaton still keeps the stationary regime; if ω is the apparent 
frequency of the average forced excitation regime, produced by the search movement of the 

bioautomaton, the relative frequency ω/ω0  results from the variation of the average relative 
velocity bioautomaton v/υ. These relationships express the average spatial response of the 
bioautomaton- medium feedback system when trying to keep its stationary regime under 
alterations of interaction parameters. 
Equations (10) and (11) and their associated virial relationships establish as a whole, an 
allometric relation between the resource flux and the device effective mass, of the type 
(δε⁄δτ)min ∼ a m0 b  similar to the ones observed in the real biological world, according to the 
theory of biological similitude of  Max Klieber (1932) and to research works carried out more 
recently like Hemmingsen (1960) and Günther et al. (1992). 1  

2.3 Behaviour in distant zones 
If the device is deployed far from the resource centre, that is, within an interval of distances 
of the virtual potential corresponding to regions Kh=-1, the generalized Langevin equation 
has no lineal term on distance but one of the Newtonian type (-1/r). In this case two kinds of 
behaviours can be basically considered, one that is stationary and another that is a transition 
from Kh=-1 to Kh=2.  
In the first case (Kh=-1) the average trajectories are longer and with less chances of capturing 
resources. A group of stationary solutions here demands lower frictions or higher energy 
per resource. Besides, the selective character of the non-lineal form of the differential 
equation makes stationary solutions critically dependent on the set of values chosen for the 
device parameters and its excitation.  In this case trajectories are also mostly confined into 
certain average radio, but with spatial distributions that are compounded of various 

                                                 
1 The magnitude (δε⁄δτ)min represents the basal metabolism, m0  is the mass expressed in kg weight  and a 
and b are proper allometric parameters. Max Klieber first proposed the allometric relation for most 
mammals adopting b=0,738, and Hemmingsen and other authors extended such relation even for 
different homeothermic, poikilothermic and unicellular species with b=0.75. 
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anisotropies. This is partly due to an additional degree of freedom (stochastic rotation), and 
partly to the group composition of k-modal solutions similar to the ones seen before.    
The second case refers to a bioautomaton having inadequate parameters for keeping a 
stationary dynamic behaviour in region Kh=-1, but instead they are adequate for region 
Kh=2.   Sinulation tests show that there is a quite fast transition from the first to the second 
region, passing through region Kh=1. Once the device reaches the parabolic region, its 
behaviour becomes stationary again, as described before. 

2.4 Comparison with quantum-stochastic systems 
The former points suggest certain similarity to quantum stochastic systems, mainly due to 

the discrete character of the resource absorption and that the movement takes the form of a 

random step sequence, confined more or less to a certain exploration area. 

In order to go deeper into this similarity, it is necessary to focus on the dynamics of the 

bioautomaton-environment system from the possible transitions of states. In this sense, 

apart from the stationary movements seen above, there can exist forced displacements that 

would result from the virtual movement of the resource centre. This would occur, for instance, 

when the resource flux diminishes in an originally dense zone. A drift or a migration of the 

bioautomaton can be conceived here. In fact, if diminishing the potential storage turns into 

an estimation of the distance to the resource centre equivalent to a Kh=1 region, slight state 

changes would force the bioautomaton to “accompany” the virtual displacement of the 

centre (drift). If diminishing the potential storage becomes so large that the estimated 

resource centre occurs at a virtual distance equivalent to a Kh=-1 zone instead, a transition 

would take place (migration). 

This can be alternatively appreciated from the Chapman-Kolmogorov equation, which is a 

property of the transition functions in Markov processes. Due to Kolmogorov, progressive 

and regressive diffusion equations can be derived from it, being the regressive the Fokker-Planck 

diffusion equation.  As a Markov process (increasing times) is also so in an inverted manner 

(decreasing times), the progressive equation can be understood as an antidifussion, or as the 

diffusion of trajectories of an antiparticle, which would represent the virtual motion of the 

resource centre. Hence, interaction must be seen as a rather symmetric exchange between 

two poles; if the position is fixed in the bioautomaton, an incident flux of resources is seen, 

while if the position is fixed in the resource centre an incident flux of “voids” (or residues) is 

seen (fig. 1 right). 

In the strict stationary case, the progressive and regressive diffusion equations present a 

closed symmetry, thus implying that the consumed resources and the residues produced by 

the automaton are equalled to the resources produced and residues processed by the 

environment; in a drift (the bioautomaton follows closely the resource centre) there is a 

practically closed symmetry (quasi-stationary regime), and it is possible to refer such equations 

to a system of mobile coordinates leading back to the previous case. Finally, symmetry 

breaks down definitely during a migration and the said equations express two rather 

independent trajectory fluxes, one for the particle and the other for the antiparticle. 

As for what was stated above, the pair of equations generalized for stationary or quasi-
stationary bidimensional movements (with means and variances not depending on the 
absolute position) show somehow the expected flux of resources and residues for growing times 
(t >t0) from the point of view of particle B:  
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   ∂p⁄∂t +⎯∇ • ( ⎯vF p)  +  D ∇2p  = 0
      (12) 

  ∂p⁄∂t +⎯∇ • ( ⎯vR p)  -  D ∇2p  = 0 

with p = p(x,y,t;x0,y0,t0) the bidimensional transition probability, vR a “regressive” velocity, 
vF a  “progressive” velocity and D a diffusion coefficient. Following for instance Smolin L., 
2007 (inspired in Nelson E., 1966) a wave equation  similar to Schrödinger’s equation can be 
derived, with  ǎ2 = 2m02 D2 : 

 j
 ǎ ∂ψ /∂t = - (ǎ2/2 m0) ∇2ψ + Ub. ψ (13) 

Two fields are here defined, ψ and its conjugated ψ*, associated to the normalized average flux 
density of resources and residues, in a way that their product is the transition probability 
ψψ*= p (x,y,t;x0,y0,t0), consequently establishing the quantum similarity of the system 
bioautomaton-medium2.  

Finally, the k-modal decomposition of ψ  and ψ* can be incorporated, introducing sets of 
orthogonal wave functions or associated wave function groups  ψ  = ∑k Bk ψk (x,y,t;x0,y0,t0) and 
ψ* = ∑k Bk ψk*(x,y,t;x0,y0,t0); where Bk = bk½ with bk the Poisson coefficients. They describe 
the expected configuration of resources and residues by means of its k-modal wave 

functions: the ψk ones associated to the incoming or incident flux and the ψk* associated to 
the outgoing or reflected flux, thus producing a mixed general state of the bioautomaton, as 
compared to a quantum stochastic system.  
However, it should be emphasized here that the bioautomaton is not a quantum system but 
a classical system with quantum similarity, which eventually falls near the treatment of 
quantum dissipative systems given in modern ontological interpretations of Quamtum 
Mechanics, such as those of consistent histories, according to which the purpose of a quantum 
theory is to predict instances of probabilities of various alternative histories3. The 
consistency criterion states that a system’s history can be described on the basis of classical 
probabilities for each alternative history, compatible (consistent) with Schrödinger equation.  

2.5 Transition to collective systems 
The bioautomaton can only be considered as a very vague and simplified representation of a 
biological organism. Notwithstanding, taken as a basic component of a relatively stationary 
population, and far from describing the life cycle and reproductive function of living beings, 
still can be used for studying some aspects of real collective behaviours.  For that, it is not 

                                                 
2 The average Hamiltonian  of the bioautomaton-medium system is H (x ;y) = kinetic energy + resource 
energy + storage = ½ m0v02 + ξ’m0v02 + Ub ; the resource component Hres = ξ’m0v02 = m0u02 plays here a 
similar role to Bhom’s quantum potential (Bohm, D. , 1952; Smolin L., 2007 ) 
3 This is confirmed in various elements as in the generalised Langevin equation (3), which is equivalent 
to the one proposed by Magalinski in 1942, later continued by other authors as a general method to 
analyse quantum dissipative systems (Hänggi P., Ingold G-L., 2005). Or in the conclusions reached by 
Wang Q. A. (2005), which states that there exist commuting and uncertainty relations in the classical 
stochastic processes similar to the ones predicted by Heisenberg, and also by Faigle U., Schoenhuth A. 
(2006), which establish a general type of stochastic models with quantum prediction (Quantum 
Predictor Models), out of which the bioautomaton would be a subclass. Likewise, it is sustained in the 
very derivation of the Schrödinger’s associated equation, which although following a formalism similar 
to Fényes and E. Nelson’s (Smolin L. 2005), here it is relatively direct and gives rise naturally to the 
equivalent of Bohm’s quantum potential. 

⎧
⎪
⎨
⎪
⎩
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hard to imagine bioautomata that are being subjected to second class functionals, by which 
mutual interactions can have complementary or exclusion symmetries, or even subject to 
third class functionals by which group survival can be optimised. Beyond the interest in 
drawing or not quantum analogies, its importance resides, mainly, in the effects the 
extension of the previous outcomes have over the behaviour of an ensemble of devices, and 
eventually over the population dynamics of biological species. 
In this sense, the fact that the statistical behaviour of a bioautomaton can be represented in 
average by means of wave functions, allows to glimpse also stationary or quasi-stationary 
solutions regarding group behaviour, resulting from the superposition of individual wave 
functions. For such reason it is quite possible that a bioautomata ensemble tends to a sort of 
periodical spatial structure in fluctuating cells. Hence, dynamics can be described in terms of 
transport equations (arising from eq. 12) and framed within some appropriate band theory. 
Accordingly, a basic equivalent model could be outlined in terms of a virtual substrate with 
two energy bands: a population band and a resource band where their associated pseudo-
particles – the inhabitant and the recurson – represent (in principle in an anti-symmetrical way) 
the interacting population and their space- environment structure correspondingly. Within 
this context, a high-density ecosystem,  can be compared in some sense to an elastoplastic 
network and thence treated in a similar way to the solid state of matter; that is, as state 
transitions in a pseudo-crystalline virtual substrate subdued to a general exclusion principle. 

3. Modelling urban dynamics based on an analogy to solid state physics 

Urban regions in particular, being high density human ecosystems, tend to present 

statistical virial relations and highly structured territorial occupations. The crystallographic 

picture can bring a new insight to the modelling problem, providing additionally some of 

the powerful tools used in the solid state theory. 

As for the pseudo-particles, here the inhabitant can be mostly conceived as an average 

individual, while the recurson more like a hamper of resources, depending on the present 

population needs and the cultural trends; as in quasi stationary frames, changes in the 

hamper composition and its weights are limited, the total composition can be roughly 

replaced by a single representative resource, which in most cities can be accomplished by 

using the available statistics on the real estate values. Complicated interactions can be 

treated hereby as transitions of the process agents within groups of states or energy bands, 

ruled by the well known Fermi- Dirac statistics based on the exclusion principle. Hence, the 

bands structure will represent the organization and hierarchies of the system, and the Fermi 

energy level a measure of its density. 

Beyond this standing point, the analogy also provides a way to introduce a proper potential, 

by defining an equivalent population charge on the basis of the spatial properties of the 

interaction between complementary agents. It is possible then to build a static 

representation of the urban region in terms of the field theory and therefore to represent the 

spatiotemporal processes by means of coupled transport equations of opposite charge 

carriers (Puliafito, José L. 2006).  

3.1 Characterization of an urban region 
A band model and the characterization of pseudo particles can be derived, for a given urban 
region, observing the statistical properties of the spatial distributions of population and of 
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real estate values. A case study was developed for Great Mendoza, an urban region of about 
850,000 inhabitants (1995) located at the foot of the Andes Mountains, 32.8º South latitude 
and 68.8º West longitude in the Province of Mendoza, western Argentina.  
A statistical assessment developed from a GIS raster representation of Great Mendoza’s 
distributions -using 350 x 350 m2 grid elements and official census data collected between 
1990 and 1992-, reveals the existence of two subsystems: one dense and central  and the 
other rather diluted and peripheral (fig 3). The former contributes to the characterization of 
the main urban agglomerate whereas the latter to its interphases of expansion. The dense 
subsystem can be represented appropriately by statistics of the Fermi-Dirac type (FD) and 
its respective spectral densities: 
 

 

Fig. 3. Characterization of Great Mendoza– Above: GIS raster images of the population 
distribution (left) and of real estat values (right.)-. Below: Spectral densities of population 
and real estate and their approximations by Fermi-Dirac density distributions 
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 F (Np) = 1 /{1- exp [(Np-NF)/NT ]}  → ΔNP = Ap Np1/2 F (Np) (14.a) 

 F (Rp) = 1 /{1- exp [(Rp-RF)/RT ]}  → ΔRp= Br Rp1/2 F (Rp) (14.b) 

where eq. (14.a) stand for inhabitants and  (14.b) for recursons.  The FD parameters are 
obtained within correlation factors of 0.98999 and 0.978 respectively (table 1).  
 

Inhabitant (NP) Recurson  (RP) 

NF: Fermi 
density 

[inhab/pixel] 

NT:  Thermal 
density   

[inhab/pixel] 

AP:  Density of 
states 

[inhab/pixel] 

RF:  Fermi  
density  

[millon$/pixel]

RT: “Thermal” 
density 

[millon$/pixel]

BR:  Density of 
states 

[millon$/pixel] 

1140 165 3198 8.5 2.3 424.6 

Table 1. Fermi-Dirac parameters for Great Mendoza 1990/2 

The crystallographic equivalent model (a virtual substrate) is constructed over the properties of 
FD approximations (Kittel C., 1995): 

 δNp/Δε = 2/3 Np/ε (15) 

 gV (ε) = (1/2π2)( (2mp ) 3/2 / ăp3 ) ε1/2 (16) 

Equation (15) represents an associated energy state space (ε) with an Δε uncertainty, and eq. 

(16) the population volumetric density of states gV (ε) in this space (directly related to Ap in 
eq.14.a); here mp represents an effective mass of the pseudo particle inhabitant, while        

ăp= ap/2π is an equivalent action constant proper of the urban process scale.   
Fitting energy uncertainty to half of the excess of biokinetic energy over the daily rest 
metabolism of an inhabitant and the effective mass to the biokinetic proportion of its 
average mass, an effective mass of 12.83 [kg] and an action constant of 153.9 [J.seg] are 
obtained. Scaling can be completed assuming that in eq. (14.a) and eq. (14.b) a “thermal” 
equilibrium is fulfilled (stationary conditions) so that k. NT = RT, with k = 13939.39 [$/inhab] 
representing one recurson per inhabitant. In such case Br results in 30460 [rec/pixel], which 
permits to estimate the effective mass of the recurson as mr = 4.48657mp ≅ 4.5 mp 
The band model can be finally obtained, taking into account that the recurson is the 
inhabitant’s anti-particle, satisfying a representation analogous to a semimetal.  

 NF  / NT  = (EF - EBP) / ET ; RF  / RT  =  (EBR - EF) / ET (17)  

Considereing  the bottom of the population band is the zero energy level, the ceiling of the  
resources band is at 32 J and the Fermi energy level at 20,05 J . 

3.2 Growth and circulation model 
When representing the urban virtual substrate with a band structure analogous to a 
semimetal, it is possible to anticipate equivalent processes of conduction, as much of the free 
type as by movement of vacancies. The former can be associated mainly to fast dynamics on 
a daily basis, whereas the latter to the medium term transport that arises from expansion. 
Naturally, population dynamics adopts thence a similar transport model (circulation and 
growth): 
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  ∂⎯∂ t p(x,y,t) = gp (x,y,t,T) + 1/qp ∇.Jp (x,y,t)   (18) 

         ∂⎯∂ t r(x,y,t) = gr (x,y,t,T) − 1/qp ∇.Jr (x,y,t) 

where [p(x,y,t); r(x,y,t)] represents the surface concentrations of both pseudo particles, 
inhabitants and recursons, [gp(x,y,t,T); gr(x,y,t,T)] their speeds of growth and [Jp(x,y,t); 
Jr(x,y,t)] the corresponding current densities, for which a population equivalent charge qp will 
be defined afterwards. Besides, the growth part of the transport model specified in the pair 
of equations (18) follows the form: 

 δp  = η0p p0 – γ p.r / p0 (19) 

δr  = η0r r0 – β γ p.r /r0 

where δp = gp.Δt and δr = gr.Δt represent the variations of concentrations of pseudo particles 
in a Δt interval, η0p and η0r their free growth rates, γ a factor of mutual control of population 

and β= r0/p0 an urban quality factor, with p0 and r0 the respective local stationary 
concentrations at statistical “temperature” T0. Thus, the growth for each pseudo particle 
adopts the form of a balance between generation (production) and recombination (loss), as it 
could happen in the case of doped solid materials because of  extrinsic excitation, a form 
that in addition can be linked to a prey-predator model typical of population dynamics in 
ecology (see for example: Bossel H., 1986; Pacala S. and Levin S., 1997). This requires the 
definition of population and resources growth rates, and of a recombination rate, that here is 
to be interpreted as a cross limitation to the free rates of growth.  
As for the circulatory part of the transport model, this one follows the form: 

 1/qp) Jp (x,y,z,t) = − μp . p.∇V + Dp .∇p (20) 

(1/qp ) Jr (x,y,z,t) = − μr .r.∇V − Dr .∇r 

Currents adopt in each case the form of a dynamic balance between a drift current, 
mobilized by the gradient of an urban potential, and a diffusion current, mobilized by the 
gradient of the corresponding concentration. Currents demand the definition of an 
appropriate urban potential (in which the population charge mentioned above takes part), 
and a spatial tensor of mobility and diffusion [μp, Dp; μr, Dr ].  
This type of transport and growth model is naturally attainable by means of bidimensional 
cellular automata of mobile agents, characterized by a set of parameters that are a function 
of space and of the statistical temperature of the system. Hereby, nevertheless, the 
additional advantage lays in that the analogy with the solid state of matter allows a more 
conceptual bottom-up interpretation, diminishing therefore the necessities of model 
parameterization to an indispensable minimum. 

3.3 Urban potential and the population equivalent charge 
From the point of view of the individual contribution of an inhabitant, the urban potential 
represents a measurement of its energy reserve, as a result of the capacity of the individual 
to collect resources from the environment, as seen already for the bioautomaton. Appart 
from what is stated in ec. (2), it can also be defined by means of a bottom-up approach 
analogous to the Thomas-Fermi model, used in solid state physics (Kittel C., 1995), taking 
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advantage of the scaling of  characteristic constants already made in the band model; 
therefore, it is also possible to define the value of population charge.4  
Assuming a monostructure of bands, a model of Thomas-Fermi adapted to the case can be 
specified as follows: 

 Vp(x,y) ≅ (ăp2/2mp){(3π2p0m)2/3−sgz . (3π2⏐z(x,y)⏐) 2/3} (21) 

z(x,y) = p(x,y)- r(x,y)mp/mr 

The energy term given by εF0 = (ăp2/2mp)(3π2p0m)2/3 is the Fermi level for zero statistical 
temperature, where p0m  corresponds to the average concentration of  pseudo particles 
inhabitants in their basal state (rest state), and z(x,y) is the associated net concentration to 
the distribution of population charge ( r(x,y) is given in [rec.] ) with its corresponding sign 
(sgz). From this theory and ec (2) , it is possible to find a suitable value for qp . For the case 
study,  a population equivalent charge qp= 5.832 [(J.m)1/2] can be found. 
 

 

Fig. 4. Urban Potential for Great Mendoza (1990/92) in equipotential contour lines format. 

Urban Potential in fig. 4, resulting from ec. (21), shows the centre of the city as a positive 
(dark) peak due to a bigger concentration of resources (Capital Department ). Using this 
urban potential it is easy to distinguish metropolitan residential areas,  resources injection 
areas, as well as the variation of  urban quality and the relation between poles . The single 

                                                 
4 For urban evolutionary situations being governed mainly by spatial nuclei of activity concentration, 
the Thomas - Fermi model allows the description of inhomogeneities in the distribution of population 
and resources, by means of smooth variations of the Fermi level, within a unique structure of bands 
(impoverished or enriched by resources and/or population). In evolutionary situations governed by 
fragmentation, the description must be made by zones with interphases that can present very steep 
transitions and even different band structures, altogether implying nonlinear local behaviours 
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reading of this potential map already gives substantial information of the city, thenceforth 
constituting a valuable synthetic way of representation in itself, even to the extent of a 
qualitative evaluation of  future evolution. 

3.4 Growth parameters 

From the pair of equations (19) and since p = p0 + δp and r = r0 + δr, for situations of normal 

growth in which δp/p0 << 1 and δr/r0 << 1, one gets (despising quadratic powers) the 

following relative variations of concentrations: 

 δp/p0 ≅ [η0p(1–γ) – βγ (1+η0r )] / [1+γ (1-η0p)+βγ (1+η0r)] (22) 

δr/r0 =  η0r –   (1/ β ) ( η0p –δp/p0 ) 

where the factor of urban quality β= r0 /p0  is a function of space β(x,y). Using this last 
property it is possible to fit the growth model to the case study, computing the average 

factor of urban quality by department βmd and associating them to the expected rates of 
annual population and GGP growth in the early 90’s (Fig. 5) 
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Fig. 5. Left: Demographic growth rates for Great Mendoza (90/91) as a function of the 
inverse quality factor 1/β and adjustment of the theoretical growth model . Right:   
Construction growth rates for Great Mendoza at the beginning of the 90s 

The resulting growth parameters for the case study are η0p = 4,2 % , η0r= 8,1 % , and γ = 
3,66%.  The free demographic growth is an annual net birth rate η0p (birth of inhabitants 
minus their mortality), representative of the effective procreative capacity. Similarly, the free 

economical growth rate η0r represents a maximum average annual net growth of resources 
(here taken as real estate rates) since it results from the adjustment to the expected GGP 
growth.  
It should be bared in mind that these growth parameters are representative of a stationary 
behaviour; other behaviours can arise out of the cultural substrate, which can modulate the 

balancing of population as much as through the parametric variation of η0p as of γ .  
Likewise, the economical substrate influences on the balancing of resources through own 
parametric variations of η0r and γ , but hereby depending more on macro economic 
conditions given at a national  or a regional scale, rather than on a  metropolitan scale. This 
justifies the need to represent them as functions of statistical temperature. 
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3.5 Mobility and diffusion factors 
The circulation part of the transport model is written in the pair of equations (20).   For 
deriving the mobility and diffusion factors   one can consider that the system has reached a 
stationary situation where Jp(t=0) ≅ 0  and Jr(t=0) ≅ 0,  then: 

 Dp /μp  ≅  p0 ⏐dV/dp0⏐ ;       Dr /μr  ≅   r0 ⏐dV/dr0⏐ (23) 

As the urban potential V is approximated by Thomas-Fermi, one gets a generalized 
expression of Dp/μp as a function of space 5: 
 

 2 εP(x,y)⏐1–(dr/dp)0 mp/mr)⏐ 
         Dp/μp  ≅  ――――――――――――――――― (24) 
   3 qp ⏐1- (r0/p0) mp/mr)⏐1/3 

where εP(x,y) = (ăp2/2mp)(3π2p0(x,y))2/3 can be considered the isolated contribution of p0(x,y) 
to Fermi’s level. The former applies for genuine stationary conditions, but for a quasi 
stationary frame there should be a limiting trend as follows: 

 Dp/μp  = Dr/μr  ≅ 2/3 εF (x,y)/qp (25) 

Once the D/μ quotient has been specified for each pixel, a numerical value of each  
parameter can be found by estimating mobility factors,  as in solid state theory: 

 μp= qp τp / mp ;  μn= qp τr / mr  (26) 

The characteristic time parameters τp and τr, can be interpreted as the average free time periods 

between relocations of inhabitant and recursons.  In the case of τp, its value is representative of 
the average time invested daily per inhabitant in terms of displacements (in one direction) 
for different activities, which for the case study was about 25 min in 1990 6. 
An average measure of  D/μ quotient  is the given by Einstein’s equation Dp0/μp0 =Dr0/μr0 = 

KT/qp [(J/m)1/2]  , being for the case study  μp0 =1,15 10-04 , μr0  = 2,59 10-05  for the effective 
mobility factors [(J.m)1/2 sec/kg] and Dp0,=5,91 10-5, Dr0 =1,51 10-5 for the effective diffusion 
factors [m2 /seg].  Factor Dr0 in particular, can be interpreted as the city average “thermal” 

expansion, gives a relative surface expansion of 1.65. Since this is practically (1+β0), where β0 

≅ 0.65 is the city average quality factor, it gives a net relative expansion of β0 per inhabitant 
in excess, which is in accordance to the fact that  excess concentration will be rearranged 
trying to conserve the former average quality factor.  
The mobility and diffusion factors link the daily commutation regime to the expansion 
regime, in a way that the city structure depends directly on the average relocation time 
period and vice versa.   

3.6 Implementation and testing of the model 
The general scheme of calculation associated to the model, consists of an iterative process of 
n periods (annual periods have been used for the case study), in which, as from an initial 

                                                 
5 Mobility and diffusion factors vary in space and hence do not follow the analogous relationship to 
Einstein’s equation D/µ = kT/q . For an explanation on Einstein’s equation see for example Kittel C., 
1995. 
6 Weighted sum of invested time in bus and car journeys not including Luján de Cuyo. 
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state, the urban potential and the growth and transport of population and resources are 
computed for each cell (64x 86 elements of 350x 350 m2), thus filling in an evolutionary 
gridded data base. The parametric inputs of the model are given by the growth free rates 
and mutual control of population and resources, as well as by their respective mobilities. 
 

 

Fig. 6. Comparison between 1990/1 (left figure) and final state (right figure) for the 
distribution of inhabitants (top figures)  and of recursons (bottom figures). 
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Spatiotemporal uncertainty, associated to the initial state, limits the model space and time 
resolution and might even cause its instability. It includes the combined effect of errors due 
to the gathering, sampling and conditioning of demographic and cadastral data, which on 
the other hand are not strictly co-temporal. For the case study the time uncertainty was 
lower than 1.4 year and a space uncertainty not larger than one pixel (350 x 350 m2).  
This model has been tested for the case study in quasi stationary conditions. Initial data 
correspond to Great Mendoza in 1990/1, with the associated characteristic constants 
previously discussed. Parameters have been kept constant throughout all periods.  
The results of a simulation for five years show a good correspondence with growth and 
distribution trends seen in such decade. From the maps one can clearly distinguish how 
equidensity areas evolve (fig.  6).  Only considering the spatial aspects observed here, one 
can already recognize the principal types of effects that could be expected in mid-term 
evolutions in any city, as for instance the one conveyed by the seven transition rules of the 
Batty-Torrens model (Batty M., Torrens P., 2001). It is particularly interesting the depletion 
effect (sometimes called “donut” effect) seen in the main centre of the city, which here arises 
naturally as a consequence of resources and inhabitants competitive growth and diffusion.  
This qualitative correspondence to the principal trends of evolution of Great Mendoza 
during the last decade, acquires more importance when considering it together with the 
reasonable overall temporal behaviour of state variables. 

4. Some reflections on population growth and economy 

Since the beginning of the last century the world is experiencing an important demographic 
transition, which will probably impact on economic growth. Many demographers and social 
scientists are trying to understand the key drivers of such transition as well as its profound 
implications. A correct understanding can help to predict other important trends at global 
scale, as the primary energy demand and the carbon emission to the atmosphere, which may 
be leading to an important climate change.  
Inspired on the former works, a set of coupled differential equations has been proposed in 
Puliafito S. Enrique et al. (2007) to describe the changes of population and gross domestic 
product,  modelled as competing-species as in Lokta-Volterra relations. In fact, if the 
development and population dynamics of cities could be explained in terms of the above 
given model, it would be natural then to expect that global population growth and economy 
follow also a predator-prey type model (eq. 19). Based on that, changes of primary energy 
consumption and carbon emissions would be then modelled similarly. The estimated results 
for the temporal evolution of world population, gross domestic product, primary energy 
consumption and carbon emissions were calculated from year 1850 to year 2150. The 
calculated scenarios are in good agreement with common world data and projections for the 
next 100 years. 
Economic growth models give population growth a major role, but some show population 
as detrimental to economic growth and others show population as a major contributor. In 
fact, population growth has two effects: it increases the number of consumers, and it 
increases the number of workers devoted to productive activity and research. However, 
population growth increases the scale of the economy, therefore permitting industries, 
enterprises, and the entire economy to exploit economies of scale. Models based on 
technological progress, or on generation of new ideas generally conclude that population 
growth and the size of the population have a positive effect on growth of per capita output 
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by specifying technological progress as a function of the number of people engaged in R&D 
activity. But models based on congestion, come to the conclusion that increasing population 
produces a slowing economy, since more investment is needed to maintain same per capita 
output. The debate on whether population growth is detrimental or beneficial to the welfare 
of humanity essentially comes down to the opposing conclusions of the Solow and 
Malthusian models vs. the exogenous growth models  (Galor, O., Weil, D. , 2000).  
The definition of economic growth as an increase in output per capita implies an inverse 
relationship between output (GDP) and population, but this is not necessarily a cause-effect 
relationship; if population causes total output to increase faster than population does, only 
then it will produce an increase in per capita output. Although in many countries 
population growth seems to be negatively related to economical growth,  empirical evidence 
does not unambiguously support either view of population growth.  
For a closer look on this, consider population p  when changes are taken as continuous and 

are unregulated by external factors; then it can be expressed in differential form as: 

 1/p (dp/dt) = η (27) 

which gives as solution a growing exponential function of the type  p(t) = P0 exp (ηt), where η 

is the growth rate. However, many demographic and ecological studies recognize that, for 

long periods of time, the growth rate η is not constant, but decreases as population 

increases. So the actual population presents apparently a (auto-) limiting factor. In fact, this 

limitation can be expressed as in differential form as: 

 1/p (dp/dt) = η -α p (28) 

where the crude growth rate η is limited by the product of α.Pt, being α = η/Pm, and Pm the 
maximum supporting population for a given environment, which produces the "S-shaped" 
curve, known as logistic curve. Also the economic output (GDP) sometimes is modeled in a 
logistic form. Although population and gross domestic product may be fitted to logistic type 
curves, there is no clear indication on which may be the value of the maximum carrying 
capacity, nor a clear explanation for this limitation process. One possible feedback 
mechanism, which may explain this limitation processes is linked to the availability of 
resources, as it can be seen from ecological and biological studies and the discussion given 
in the former points. Consequently, a pair of nonlinear-coupled differential equation, similar 
to the Lokta-Volterra relations for two species interaction, is proposed: 
 

                                                            1/p (dp/dt) = a -g m    

   (29) 
                                                            1/g (dg/dt) = κ -b p

  
where  the left members represent the relative changes in the population p and available 

resources g,  b.p is the annual resource consumption by the population p, k is the annual 

resource renovation, m is the annual death rate, a is the per capita consumption and 

regulates the birth rate n. Interesting to note is that depending on the chosen parameters, 

these coupled no linear relationships may show a chaotic behavior.  Eq (29) shows that for 

low values of g population will increase rapidly regulated only by mortality rate m, but as p 

growths the GDP growths is slowed down by increasing p, which in turn will slow down 

the population growth.  
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If p and g have similar temporal variation, which corresponds to a stationary frame where 
the ratio g/p (per capita output) is approximately constant, it is possible to foresee that p and 
g will also produce a logistic type equation. However, as for non stationary frames, the ratio 
of g/p is not constant, the logistic type curve can only be achieved if also a and b are not 
constant but they have the proper variations. To represent these types of frames adequately 
(particularly the transitory in short terms), an additional function f (t) can be included to the 
set of Eq. (29), which might be interpreted as an external excitation function comprising all 
other causes of variation not included in the predator-prey solely mechanism; in fact, the 
Lokta-Volterra model is a closed one because the eventual changes in the carrying capacity 
of the substrate are not explicit. To make them explicit, considering now an open model, the 
substrate has to be taken as varying along the time, for example due to the changing culture 
and technology. To generalize this open model, disregarding if it is expressed in terms of the 
rates of production or consumption of the species, and at same time to capture the influence 
of the variation of the substrate as rates over the populations of the considered species, we 
can write: 

 1/p (dp/dt) = α1.f/p + α2 .g +α3 

  (30) 

 
1/g (dg/dt) = β1 .f/g + β2 .p + β3 

  

 

Fig. 7. (Left) Exogenous model for world population (millions inhabitants) and GDP 
(Billions U$S); (Right)  Exogenous model for world primary energy consumption (EJ) and 
carbon emissions (GTn) (from 1890 to 2004 measured or estimated values; from 2005 to 2100 

projected values). Coefficient values used in Eq. (30) are p1=0.0004, p2= -7.4×10-8, p3= 0.64%, 

P0=1522; g1= 0.0014, g2= -2.5×10-6, g3= 1.68%, G0=1234); coefficient values used in Eq. (31): 

ε1=0.0009, ε2= -2.8×10-6, ε3= 1.64%, E0=40; σ1= 0.0009, σ2= -2.8×10-6, σ3= 1.45%, C0=3). The 

external function   f =A.exp(τ.t) plus short impulses is used to represent big international 

crisis with A=2, τ=0.04 from 1890 to 1963, and τ=-0.04 thereafter. Sources of data EIA (2005). 

The experience shows that most positive culture and technology changes arise from 
scenarios with an increasing g/p rate; therefore, a first approximation is to set f equal to g/p. 

The figure 7 shows satisfactory results for Eq (30) in such condition; the coefficients α1, α2, α3 

and β1, β2, β3 are obtained from the annual changes applying a multi-linear regression.  
The annual changes in energy consumption and carbon emission show similar behaviour as 
changes in GDP and population. Despite that there is not enough certain information of 
carbon emissions and energy consumption from 1890 to 1970, the energy demand e and 
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carbon emission c are strongly coupled to g and p, so that a similar set of differential 
equations as (30) can be suitable to estimate the annual changes in both variables: 
 

 1/e (de/dt) = ε1.f1/e + ε2 .p + ε3 
                                           (31) 

        1/c (dc/dt) = σ1 .f2/c + σ2 .p + σ3  
 

where f1=f.e/g; and f2=f. c/g, and f is the same function used for the external excitation of g 
and p in Eq. (30), for the exogenous model;  ε1. e/g (%) is the efficiency improvement through 

more technological investment, ε2. p (%), is the per capita energy consumption, and ε3 is the 
residual increase in energy consumption not explained by the other two coefficients, or the 
natural increase without an external excitation. Same can be said for the natural rate of 
changes in the carbon emissions.  Some results are also shown in Fig. 7. 

5. Conclusions 

Throughout this chapter we have been exploring some of the fundaments of CA models and 
the reasons of why these are being so widely applied nowadays, particularly to urban 
systems and ecology, all of which seems to be connected directly with the fact that the 
transport equations are common as much to the socioeconomic phenomena as to physics. 
However, it is not immediate that population dynamics can be described similarly by means 
of reaction-diffusion equations; on the contrary, perhaps on this outstanding fact rests one of 
the clues to explain how individual behaviour, usually seen at the “microscopic” scale as 
mostly stochastic or eventually moved by free-will, can fit into the associated collective 
behaviour seen at the “macroscopic” scale. 
In this sense, by means of the bioautomaton theory we  have seen that the discrete character 
of the  device-environment interaction, leads to describe stationary individual behaviour in 
a similar way to what is done in quantum stochastic systems. The most important aspect of 
this similarity is that the statistical behaviour of a bioautomaton can be represented in 
average by means of wave functions, in a way that stationary or quasi-stationary solutions 
regarding group behaviour can result from the superposition of individual wave functions. 
As a wave function is a measure of the probability of a stationary exchange between each 
device and its immediate surrounding, periodical spatial structures can emerge in certain 
conditions; hence, stationary dynamics would be described in terms of transport equations 
framed within some appropriate band theory. 
This theoretical speculation is justified for real ecological systems when we consider that 
social behaviour and complex and regular spatiotemporal structures emerge under 
conditions where species reach some critical spatial density, thus giving place to 
outstanding interaction mechanisms as templates, stigmergy and self-organization.  This 
suggest that an ecosystem is not the mere association of interactions as a whole or a 
collection of highly interactive independent elements, but a rather coherent sum of 
elementary units composed of living individuals and their near-by space-environment, the 
latter being regarded as a multidimensional representation of the necessary resources for 
survival,  physical space in itself included.  
Within this context, a high-density ecosystem can be compared in some sense to an 
elastoplastic network and thence treated in a similar way to the solid state of matter; that is, 
as state transitions in a pseudo-crystalline virtual substrate subdued to a general exclusion 
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principle. In fact, at describing the spatiotemporal dynamic evolution of populations of real 
individuals through transport equations, one is not only considering the interactions of the 
species with its space/environment, but also stability regions in the associated state space 
that are similar to the energy bands in solid materials.  
Standing on these principles we have reviewed a feasible model for urban evolution, which 
is outlined in terms of a virtual substrate with two energy bands: a population band and a 
resource band where their associated pseudo-particles – the inhabitant and the recurson – 
represent (in principle in an anti-symmetrical way) the interacting population and their 
space- environment structure correspondingly. 
The characterization of the energy band model for Great Mendoza, starts of the statistical 
properties of spatial distribution of inhabitants and of real estate values, which have been 
assimilated to Fermi-Dirac statistics; after determining the characteristic parameters of 
associated pseudo particles and of the band structure in itself, the case study can be 
represented in an analogous form to a semimetal.  
Taking advantage of the solid state picture, the net concentration of pseudo particles can be 
linked to a proper urban potential function, through the use of a Thomas –Fermi 
approximation and an equivalent population charge. Thereafter, a static combined 
representation of the urban region is feasible in terms of the field theory. 
With these elements, the dynamics of urban systems can be constructed over cellular 
automata with mobile agents, by using similar transport equations as in solid state. The 
circulatory part of the model adopts the balance form between two components (diffusion 
and drift), describing the concentration and sprawl of population and resources present in 
the cities. The model production part , described in terms of generation-recombination of 
pseudo particles, is comparable to a predator-prey model as well, typical of population 
dynamics in Ecology. Using the characterization of pseudo particles it is possible to adjust 
the diffusion and mobility coefficients, and growth to the well-known urban behaviour, 
with a "bottom-up" approach that diminishes the need of parameterization to an 
indispensable minimum. 
A test in stationary conditions along a five-year period, shows that the principal state 
variables of the case study evolve in time as it would be expected from the application of 
classical methods based on statistical progression, and with a spatial response compatible 
with the principal effects expected in a mid-term evolution in a city. In this sense, this 
analogy plausibly explains the varied growth rates of the political departments, as well as 
the principal urban trends for spatial occupation for Great Mendoza in the last decade. 
The methodology and model here discussed open new possible ways of approaching urban 
evolution. Although it has been presented as a stand-alone tool, it can be combined through 
its parametric inputs with other CA models (i.e. in successive embedded scales or lower 
structural bands) or even with non spatial social-economical models, thus orienting it more 
to long-term simulation, where innovation and changing scenarios are required. It also 
provides a way for describing fragmented urban development by means of zones which 
may have very different band structures, implying non-linear local behaviours in the 
resulting interphases. 
Finally, a global perspective of the former ideas has been presented in the context of a 
research of the projection of the energy demand, the carbon emissions and the link to 
possible climate changes.  Several authors have proposed that world population, the 
primary energy demand and the gross domestic product are the main drivers (or state 
variables) for the carbon emission problem, while per capita consumption, energy intensity 
and emission efficiency, among others, are taken as indicators of the system.   
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As the development and population dynamics of urban regions is represented by transport 
equations that include a production part , described in terms of generation-recombination of 
pseudo particles representing population and resources, it seems natural to expect that 
global population growth and economy follow also a predator-prey type model. Based on 
that, changes of primary energy consumption and carbon emissions can be then modelled.  
Here we have seen that a set of coupled differential equations of this type can describe the 
changes in the main state variables in a plausible way. Indeed, some studies have observed 
both positive and inverse relation between population growth and GDP, depending on the 
time frame and the group of countries involved in the studies; with the coupled model here 
shown is possible to represent well the three different scenarios or transitional phases from 
"Malthusian, post Malthusian and modern growth", proposed by some scholars. Other 
researches propose logistic variation of the population as a way to describe the demographic 
transitions. Here, the interrelation between these variables, the growth rate and their 
expected logistic type shape curve arises naturally as the interaction of population and 
economic output as described in the coupled differential equations. The results of the model 
were compared to several agencies projection, showing comparable results, but most 
importantly is the ability to capture conceptually and mathematically the range of current 
thoughts and models used by the international agencies. 
Cellular Automata have shown a great potential for modelling a wide range of types and 
scales of phenomena, but it is still an open question why this is so. A research on the 
foundation of this capability, as the one intended here, might contribute not only to a better 
understanding of the principles involved but also to a better and wider use of the tool.   
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