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1. Introduction

In this chapter, we present three cellular automata that simulate the behavior of the
population dynamics of three biological systems. They are shaped like a torus in which
populations coexist artificially. The first one deals with artificially-living fish divided into two
groups: sharks (predators) and fish that are part of their food chain (preys) (Edelstein-Keshet,
1988; Renning, 1999-2000). The second model introduces a simulation of the HIV evolution in
the blood stream of positive individuals with no antiretroviral therapy (Jafelice et al., 2009).
The last model extends the previous one and considers the HIV dynamics in individuals
subject to medical treatment and the monitoring of the medication potency and treatment
adhesion (Jafelice et al., 2009). For this purpose, a cellular automata approach coupled with
fuzzy set theory is developed to study the HIV evolution. When modeling a physical or
biological system there are many decisions to make. One of them is related to the kind
of approach to take into account. In the “bottom-up” approach the complex behavior of a
system emerges from the interaction of basic components. One might ask if it is possible to
describe the behavior of complex systems in this way. As a matter of fact, Banks (1971) makes
an interesting remark about how physicists were happy to believe the universe is composed
of an enormous number of just three basic components: protons, electrons and neutrons.
Modeling biological phenomena by realistic models generally leads to large system of non
linear integro- and partial differential equations. One alternative approach is to consider
cellular automata (CA) models. The usefulness of the CA models relays on simplicity and
uniformity of their cells and also on their potential to model complex systems. The main
idea behind cellular automata models is to consider each position (or region) of a spatial
domain as a cell to which is attributed a certain state. The state of each cell is modified
according to its own state and the states of its neighbor cells. These states are correlated
through a number of simple rules that imitates the biological and physical laws that guide the
system behavior (Ermentrout & Edelstein-Keshet, 1993). An important aspect in modelling
population dynamics is to take into account the effect of the spatial distribution of population
on their dynamics. The CA models can capture this effect (e.g. Czaran 1998; Lee et al. 1995).
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2. Cellular automata of prey-predator model: Sharks and fish

In this section we discuss a cellular automaton for a predator-prey model proposed by David
Wiseman at the University of Western Ontario (see Dewdney 1984). The planet Wa-Tor1 is
a grid shaped like a torus in which coexist artificially fish and sharks. In this planet most
of the time fish and sharks move randomly. Fish and sharks can propagate when they
have reached the appropriate age. Differently from sharks, fish have a plentiful supply of
plankton and sharks have to eat fish in a specific maximal period, otherwise they would
starve to death. Thus, the simulation is of a dynamic system of predator-prey type. In his
two-dimensional CA, Dewdney (1984) considered a von Neumann neighborhood. That is,
each cell is connected with itself and with its four orthogonal neighbors. He compared his
results with the theoretical predator-prey relation given by the Lotka-Volterra equations and
also with the sizes of the populations of the Canadian lynx and snowshoe hare recorded
by the Hudson’s Bay Company over almost fifty years. Our results were obtained using a
two-dimensional CA with a Moore neighborhood. That is, each cell is connected with itself,
with its four orthogonal neighbors and with its four diagonal neighbors. In both cases, just the
earlier states of the cell and its neighbors determine the next time step. These kind of automata
closely resembles an evolution equation such as partial differential or integral equations. Our
results were compared to the Lotka-Volterra classic model (Edelstein-Keshet, 1988; Murray,
1990) and also with the empirical data from the Hudson’s Bay Company.

2.1 Realistic example of predator-prey: Hare and lynx at Hudson’s Bay

In 1850, the Hudson’s Bay Company used to get from trappers pelts of hares and lynxes. The
number of hares and lynxes that got into traps were recorded and used by researchers to
study competitive interactions models (see Bulmer 1974; Stenseth et al. 1998). It is known that
the number of the captured animals is proportional to their population, so researchers found
populations statistics for those both species for over a large period. Data on the Canadian
hare-lynx system based on the hare and lynx furs records of the Hudson’s Bay Company may
be found at Elton & Nicholson (1942), Gilpin (1973) and Hewitt (1921). Both populations do
not exist independently from one another, because lynxes feed basically from hares. All the
records of pelts for each year were analyzed by the ecologist Charles Elton (Elton, 1924) and
are presented in the Fig. 1. The figure shows a regular oscillation over ten years in the numbers
of both species. They change over 50 fold and up to 100 folds, over the cycle, what makes the
amplitude of the oscillation huge. In the next subsections we will see that the classical model
presents regular curves and a phase plane that is a perfect cycle while our cellular automaton
will present a cycle which will be closer to the Fig. 2. The phase plane graph of a period of
thirty years, initiated in 1875, was obtained from the populations data presented in the Fig. 1.

2.2 Classic predator-prey model

The population fluctuations of predators and prey challenged many researchers. What causes
the changes in reproduction and survival? Besides the three main factors: food, predation,
and social interactions, many other factors might affect these cycles. For instance, Zhang et al.
(2007) used partial cross correlation and stepwise multiple regression methods to analyze the
effect of climate on the Hudson’s Bay Company’s hare-lynx system (1847-1903). Their results
showed that El Niño/Southern Oscillation has small effects on rates of increase in hare and
lynx populations. Krebs et al. (2001) were interested in how changes on food can influence the

1 The name Wa-Tor comes from Water-Toroidal.
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Fig. 1. Hares and lynxes population as a function of time (Renning, 1999-2000).

Fig. 2. Detail of the phase plane plot of the data presented in Fig.1 (Murray, 1990).

hare cycle while Stenseth et al. (1999) observed that lynx population dynamics are consistent
with a regional structure caused by climatic features.
In order to formulate the interaction between preys and predators, a deterministic model (that
became a classic model) was used2. It is given by the differential equations system:

dx

dt
= ax − αxy

dy

dt
= −by + βxy (1)

In this model, the state variables x and y are, respectively, the number of preys and predators
in each instant t. The parameters are:

• a: preys relative growth rate;

• α: predation rate (probability of a predator to kill the prey in each time they encounter);

• b predators mortality rate in the absence of preys;

• β preys conversion rate into predators.

Solving the differential equations with the parameters a = 0.1, α = 0.01, b = 0.05 and β =
0.001, we obtain the graph of the Fig. 3 and the phase plane, Fig. 4.

2 See Wangersky (1978) for a review on Lotka-Volterra population models.
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Fig. 4. Phase plane.

Since the classical model ignores spatial correlations it does not take into account important
effects that spatial inhomogeneity may cause on the dynamics of the system. Moreover in such
a model we do not have any information about the spatial distribution of the populations.

2.3 Description of the cellular automata simulation

The following five parameters need to be chosen to set up a simulation: 1. number of fish;
2. number of sharks; 3. fish reproductive age; 4. sharks reproductive age; 5. sharks starvation
period. The initial number of sharks and fish as their respective ages are randomly distributed
in a rectangular grid whose opposite sides are identified in pairs. The cells states in the grid are
updated according to the local dynamics rules of each cell. For instance, in a 40x40 cell grid,
300 fish and 10 sharks are placed at random positions. All fish and sharks have a reproductive
age, i.e., 3 and 10 iterations respectively and sharks starvation period is 3.

2.3.1 Behavior of fish in Wa-Tor

Each fish chooses a free place in its neighborhood, moves and ages there (if all places are
occupied, then it remains where it is and ages). When it achieves the reproductive age, it
leaves behind a single offspring. They move according to a randomly assigned integer that
indicates a direction. More specifically, depending on whether the value of the integer is equal
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to 1, 2, 3, 4, 5, 6, 7 or 8, they move north, east, south, west, northeast, northwest, southeast or
southwest (Silva & Jafelice, 2010), in the grid, respectively.

2.3.2 Behavior of sharks in Wa-Tor

First, each shark searches for fish in its neighborhood. If there are fish, the shark randomly
chooses one, catches it and the variable (starve variable) is set to zero. It goes to the cell
of the eaten fish and might propagate if the occasion arises. If it does not find any fish in
its neighborhood, it moves like a fish and the starve variable is increased by 1. When the
starve variable reaches its maximum (sharks starvation period) the shark dies. Also, sharks
reproduction is similar to the fish.
Simulation results of the Wa-Tor system for 200 iterations (or time steps) are depicted in
Figs. 5-7. Notice that the behavior of the fish and sharks shown in Fig. 5 are close to the ones
in similar phase shown in Fig. 3.
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Fig. 5. Wa-Tor simulation results.
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Fig. 6. Phase plan for a simulation in Wa-Tor.

2.4 Computational graphical interface

We have used Matlab 7.0 to build our computational graphical interface for the Wa-Tor system
(see its initial interface in Fig. 8 – (Jafelice & Silva, 2001)). To set up your own simulation,
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Fig. 7. Snapshot of the cellular automata model output: the blue background is the sea, the
fish are in green and the sharks in red.

the following six parameters need to be chosen: 1. number of iterations 2. initial number of
fish; 3. initial number of sharks; 4. fish reproductive age; 5. sharks reproductive age; 6. sharks
starvation period. It is also possible to run the four simulations listed below with previously
assigned parameters:

1. stable ecological cycle

2. fish extinction

3. shark extinction

4. fish and shark extinction.

Furthermore, at the end of each simulation, the graphs of fish and sharks population as a
function of time and of the phase plane are plotted.

2.5 Conclusion

This section has introduced a cellular automata approach to a prey-predator dynamics. The
obtained results (as well as the Dewdney (1984) ones) resemble the Lotka-Volterra ones but
go further. The population fluctuations of fish and shark resemble better the hare and lynx
charts than the Lotka-Volterra solutions do. Another interesting feature of the CA model is
that it is a spatially distributed prey-predator model. Nowadays, the crucial role of spatial
inhomogeneity into the dynamics of biological species has been recognized (see Durrett &
Levin (2000), Ermentrout & Edelstein-Keshet (1993) and the references therein for further
discussion. See also, Pekalski (2004) for an overview on predator-prey systems approaches and
remarks on some open problems). Saila (2009) presents Wa-Tor as a complex adaptive system
of interacting autonomous agents and points out that the utility of conventional mathematics
in understanding the dynamics of such complex ecosystems is limited. The evolution of the
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Fig. 8. Computational Graphical Interface of Wa-Tor.

system does not seem to depend on the initial random distribution but the choice of the five
initial parameters is a critical point for the future behavior of the system. The model presents
a complex behavior and the simulations give a qualitative image of the reality.
Cellular automata models for the Human Immunodeficiency Virus (HIV) infection dynamics
are the subject of the next sections. Deciding which are the dynamics rules of each cell
demands a deep knowledge on the HIV behavior. HIV is a spherical retrovirus composed
of RNA or ribonucleic acid. Its replication occurs within host cells. Three virus proteins
are of paramount importance for the replication process: Reverse Transcriptase, Integrase
and Protease. After HIV gains entry to its human host, it is disseminated throughout the
lymphatic tissues. When HIV reaches the blood stream, it attacks mainly the lymphocyte
T of the CD4+ type. The quantity of cells CD4+ in periphery blood has prognostic
implications in HIV infection evolution. The gradual loss of CD4+ T cells to the AIDS-defining
level of 200 cells/mm3 and progressive immune deficiency lead to opportunistic infections
that characterizes the HIV infection (Haase, 1999; Hazenberg et al., 2000). Nowadays, the
amount of immunocompetent cells is the most clinically used and acceptable measurement
during treatment of infected individuals. The antiretroviral treatment works inhibiting both
reverse transcriptase and protease. The inhibitions of reverse transcriptase prevents free virus
particles to infect CD4+ cells. Protease inhibition delays the viral replication, allowing the
organism to react naturally. Combination of reverse transcriptase and protease inhibition has
led to a substantial improvement in HIV therapy.
Microscopic models for HIV infection dynamics in human individuals provide helpful
information to construct cellular automata models, especially when the growth rate of T
lymphocyte of CD4+, the death rate of infected and non infected cells, free virus load, specific
antibodies CTL, interaction rate between non infected cells of the T CD4+ and the virus,
and the interaction rate between the infected cells of the lymphocyte T of the CD4+ and the
antibody are constant.
In the next section, we introduce the cellular automaton model for the HIV infection dynamics
with no antiretroviral therapy (Jafelice et al., 2009).
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3. Cellular automata of the HIV evolution in the blood stream of positive individuals

with no antiretroviral therapy

AIDS (Acquired Immunodeficiency Syndrome) has become a worldwide health problem. In
countries where AIDS control is poor or even nonexistent, as in some African nations, the
HIV-positive population shows high mortality rates. Zorzenon dos Santos & Coutinho (2001)
reported a cellular automaton approach to simulate the three-phases patterns of HIV infection
consisting of primary response, clinical latency and onset of acquired immunodeficiency
syndrome (AIDS). The robustness of the results obtained from their cellular automata model
were analyzed in Figueiredo et al. (2008). The CA model from Ueda et al. (2006) considers the
diversity exhibited by both HIV and T cells. Their results indicate the diversity of the virus
is the major factor affecting the success rate of the escape of HIV from the immune response
and they were also able to resemble the incubation time variability observed in vivo. Mielke
& Pandey (1998) developed a fuzzy interaction model for mutating HIV with a fuzzy set of 10
interactions for macrophages, helper cells, cytotoxic cells and virion. These models are cellular
automata models with no antiretroviral treatment. We consider a cellular automaton to model
the behavior of the three-phases pattern of HIV infection which consists of: primary infection,
asymptomatic and symptomatic phases for the cells of T lymphocyte of CD4+ of the HIV and
specific antibodies called CTL. We compare our CA model results with the natural history of
HIV infection and also with the HIV dynamics model proposed by Nowak & Bangham (1996).

3.1 Microscopic models of HIV dynamics

Nowak & Bangham (1996) developed three microscopic models for HIV infection dynamics
within the organism of human individuals, considering no antiretroviral therapy.
The first model captures the interaction between replicating virus and host cells. In this case,
three variables are considered: uninfected cells n, infected cells i and free virus particles v.
This model assumes that infected cells are produced from uninfected cells and free virus at
rate βnv and die at rate bi. Free virus is produced from infected cells at rate ki and declines at
rate sv. Uninfected cells are produced at a constant rate, r, from a pool of precursor cells, and
die at rate an. Fig. 9 illustrates the HIV dynamics developed by this model.

HIV  DYNAMICS

      UNINFECTED CELL                 FREE VIRUS         INFECTED CELL        +

   r
 

 ( n )

 a

( v )   ( i )

     k

 s

    β

 b

Fig. 9. Microscopic models HIV virus dynamics (Nowak, 1999).
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Modeling assumptions lead to the following system of differential equations:

dn

dt
= r − an − βnv

di

dt
= βnv − bi

dv

dt
= ki − sv.

(2)

The second model includes immune responses against infected cells, and extends the system
of equations (2) adding an equation to describe the immune responses against infected cells:

dn

dt
= r − an − βnv

di

dt
= βnv − bi − piz

dv

dt
= ki − sv

dz

dt
= ciz − dz.

(3)

The variable z denotes the magnitude of the antibodies CTL (cytotoxic T lymphocyte) – that
is, the abundance of virus-specific CTLs. The rate of CTL proliferation in response to antigen
is ciz. In the absence of stimulation, CTLs decay at rate dz. Infected cells are killed by CTLs at
rate piz. Fig. 10 shows the solution of (3) using the parameters of Table 1 and initial conditions
of Table 2, obtained from Caetano & Yoneyama (1999).

r = 0.3 a = 0.1 β = 1
b = 0.01 p = 0.03 k = 0.5

s = 0.01 c = 0.01 d = 0.01

Table 1. Parameters of the microscopic HIV model.

n(0) 0.99
i(0) 0.01

v(0) 0.1

z(0) 0.01
t initial 0

t final 500 time units

Table 2. Initial conditions of the microscopic HIV model.

From Fig. 10 one can see that, in logarithmic scale, the uninfected cells of CD4+ show a rapid
decline in the first weeks and a slow recovery when the number of lymphocytes is close to
the maximum. The increase in the number of lymphocytes is related to virus replication in the
infected cells.
Comparing the solution of system (3), shown in Fig. 10, with the plots of Fig. 11, which gives
the dynamics of HIV infection history currently accepted (Coutinho et al., 2001; Perelson
& Nelson, 1999; Saag, 1995), we notice that the uninfected cells of CD4+ identify with the
CD4+ level, the free virus with the HIV virus, and the virus-specific CTLs with the HIV
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Fig. 10. Solution of the microscopic HIV model (3).
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Fig. 11. The natural history of HIV infection dynamics as currently accepted (Coutinho et al.,
2001; Perelson & Nelson, 1999; Saag, 1995).

antibodies. This result will help to validate the cellular automata model for individuals under
no antiretroviral therapy.
The next section details the Blood-Tor system, the cellular automaton model for the HIV
infection dynamics.
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4. Blood-Tor system

The name Blood-Tor comes from Bloodstream-Toroidal which is similar to the name of the
cellular automaton Wa-Tor, that means Water-Toroidal (Dewdney, 1984; Renning, 1999-2000).
The Blood-Tor System (BTS) is shaped like a torus in which coexist artificially uninfected
cells, infected cells of lymphocytes T of CD4+, free virus particles, and specific antibodies
CTL (cytotoxic T lymphocyte) that attack infected cells in an individual blood stream with no
antiretroviral therapy. These elements are the same as those associated with the state variables
of the differential equation system (3).

4.1 Description of the simulation process

Eleven parameters need to be chosen to set up a simulation run. The parameters are the
following:

• number of uninfected cells

• number of infected cells of the lymphocytes T of CD4+

• number of free virus particles

• number of specific antibodies CTL (cytotoxic T lymphocyte)

• life span limit of uninfected cells

• life span limit of infected cells

• life span limit of free virus particles

• life span limit of specific antibodies CTL (cytotoxic T lymphocyte)

• infected cells reproductive age

• specific antibodies CTL reproductive age

• uninfected cells production rate

The cells states in the grid are updated according to the local dynamics rules of each cell. For
instance, in a 31x31 cell grid 200 uninfected cells, 16 infected cells of the lymphocytes T of
CD4+, 120 free virus particles and 25 specific antibodies CTL (cytotoxic T lymphocyte) are
placed at random positions. All uninfected cells, infected cells of the lymphocytes T of CD4+,
free virus particles and specific antibodies CTL have a life span set according to a specific
time limit. Table 3 gives the values of the life spans. An initially random assortment of ages
are distributed to the elements (uninfected cells, infected cells of lymphocytes T of CD4+,
free virus particles and specific antibodies CTL that attack infected cells) according to their
respective life span limits.

cell uninfected infected HIV CTL
life span limit (iterations) 4 5 3 15

Table 3. Life span limits.

4.1.1 Behavior of uninfected cell of the lymphocytes T of CD4+ in BTS

Each uninfected cell of the lymphocytes T of CD4+ chooses a free place in its neighborhood,
moves and ages there (if all places are occupied, then it remains where it is and ages). They
move according to a randomly assigned integer that indicates a direction. More specifically,
depending on whether the value of the integer is equal to 0, 1, 2 or 3, they move north, east,
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south or west in the grid, respectively. Lymphocytes T of CD4+ are produced with a constant
rate. During simulation the rate is 18 cells for each iteration. When they reach their life span
limit they die.

4.1.2 Behavior of HIV in BTS

First, each HIV searches for uninfected cells of the lymphocytes T of CD4+ in its
neighborhood. If there are uninfected cells, the HIV randomly chooses one and the cell chosen
becomes an infected cell. If there are no uninfected cells, then the HIV chooses a place in its
neighborhood and moves and ages there (if all places are occupied, it remains in its place and
ages). When HIVs reach their life span limit they die.

4.1.3 Behavior of infected cell of the lymphocytes T of CD4+ in BTS

When free HIVs encounter uninfected cells of CD4+, the uninfected cells become infected.
Those cells begin to replicate HIV when they reach the age of 5 iterations. The simulation
program puts a HIV in the position of the infected cell and assigns zero age to the new HIV.
They move and age similarly as the uninfected cells lymphocytes T of CD4+. After their life
span limit, they die.

4.1.4 Behavior of specific antibodies CTL in BTS

Each specific antibody CTL looks for infected cells of the lymphocytes T of CD4+ in its
neighborhood. When specific antibodies CTL encounter infected cells, the infected cells are
destroyed. The specific antibodies CTL move to the cells infected in previous position. The
specific antibodies reach the reproduction period after 14 iterations. They move and age
similarly as the uninfected cells of lymphocytes T of CD4+. After their life span limit, they
die.
The Blood-Tor system simulates the dynamics of the evolution of HIV within the blood stream
human individual with no treatment.
Fig. 12 shows a snapshot of the Blood-Tor system cellular automaton model. The uninfected
cells are shown in blue, the HIVs in black, the infected cells in green, and the antibodies in
white. The Blood-Tor simulation system was developed using Matlab 7.0.
Simulation results of the Blood-Tor system (BTS), after 50 iterations (or time steps) are depicted
in Fig. 13. Notice that the behavior of the uninfected cells of CD4+, infected cells of CD4+,
free virus, and virus specific antibodies shown in Fig. 13 are close to the ones in similar
(asymptomatic) phase shown in Fig. 11. Clearly, BTS does give a good description of the
evolution of HIV in the blood stream of human individuals with no treatment.
Next section extends the BTS to encompass the natural phases of HIV dynamics of the Fig. 11.

4.2 Extended Blood-Tor system

To expand the ability of cellular automaton to model the natural history of HIV infection,
the Blood-Tor System was extended to include the symptomatic phase behavior, as Fig. 11
suggests.
The cellular automaton that produces the outputs shown in Fig. 13, was modified such that,
after a certain number of iterations, antibodies production decrease and, consequently, the
number of free virus particles increases. In a grid of 31x31 cells, 120 uninfected cells, 18
infected cells of the lymphocytes T of CD4+, 180 free virus particles and 18 specific antibodies
CTL (cytotoxic T lymphocyte) were introduced at random positions. All of these cells move
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Fig. 12. Snapshot of the cellular automata model output: the red background is the blood
stream, the uninfected cells are in blue, the HIV in black, the infected cells in green, and the
antibodies in white.

Fig. 13. Blood-Tor system simulation results.
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randomly. The time limit of uninfected cells was set to seven (in the previous case it was set
at four iterations). If the number of iterations is smaller than 70, then the reproduction time
can be chosen as 14 iterations. If the number of iterations is greater than or equal 70, then the
reproduction time decreases during the next iterations. If the number of iterations is greater
than 90, then the number of uninfected cells placed at each iteration decreases. The result of
this choice reflects the failure of the immunological system. That is, the immune system of the
human individual looses the capacity to fight the viruses.
The BTS simulation results become, in this case, very close to actual HIV biological dynamics.
They show strong qualitative similarities during all the natural history of HIV infection
dynamics, as Figs. 11 and 14 clearly show.
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Fig. 14. Extended Blood-Tor system simulation results.

It is well known that AIDS is a disease that can be treated using appropriate drugs, but
no absolute cure mechanism has been found yet. Some antiretroviral therapy uses reverse
transcriptase inhibitors, others fight against an enzyme that is essential for the formation of
infectious virus particles from infected cells called viral protease. All anti-HIV drugs aim
at preventing the virus from reproducing, but they do not kill virus particles or infected
cells (Nowak, 1999). Inspired in Zorzenon dos Santos & Coutinho (2001) CA model, Sloot
et al. (2002) proposed a CA model incorporating drug therapy. Its main ingredients are
destruction of previously emerged spatial patterns (wave-like and solid-like structures) and
reconstruction of new spatial patterns (wave-like structures) due to incorporation of the
drug therapy concept. The CA model integrates three different therapy procedures into one
model and the simulations show a qualitative correspondence to clinical data. Shi et al. (2008)
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presented a CA model for HIV dynamics and drug treatment. It includes the virus replication
cycle and mechanisms of drug therapy. Viral load, its effect on infection rate, and the role of
latently infected cells in sustaining HIV infection are among the aspects that are explored and
incorporated in the model. The dynamics from the model qualitatively match clinical data.
In the next section, we present the cellular automaton model for the HIV infection dynamics
with antiretroviral therapy (Jafelice et al., 2009).

5. Cellular automata of the HIV evolution in the blood stream of positive individuals

with antiretroviral therapy

The Blood-Tor System, detailed in section 4, simulates the behavior of HIV infection
dynamics in the blood stream of HIV positive human individuals who have not received
any antiretroviral therapy. This section addresses the Bloodstream-Toroidal system when
treatment is taken into account. Its purpose is to model and simulate the HIV dynamics in
the blood stream of individuals subject to antiretroviral therapy.
To simulate the antiretroviral therapy the BTS system adopts fuzzy parameters due the
imprecise nature of how the individuals respond to the antiretroviral therapy. When
accounting for antiretroviral therapy, the cellular automaton model assumes that the viruses
do not infect all CD4+ cells because only a portion of CD4+ cells are usually infected. The
period of virus replication is delayed, similarly as it happens in positive HIV individuals blood
stream. The fuzzy parameters depend on the medication potency and on the adhesion of the
individuals to the treatment. Adhesion to treatment means how individuals follow the correct
medication prescription of the therapy. Adhesion is a very complex issue because it involves
many factors that affect the ability of the individuals to comply with the antiretroviral therapy.
Many factors can interfere in the regime prescribed, including the number of hours that
individuals sleep, how strict they are with meals, medication schedules and how healthy their
social life is. Information about medication potency can be obtained from medical doctors
using their knowledge from clinical trials, clinical experience and knowledge published in
the relevant literature. Along with clinical experience, the model increases the CD4+ level
and decreases the viral load to simulate the antiretroviral therapy. The next subsection briefly
review the concept of fuzzy set and fuzzy rule-based systems.

5.1 Basic concepts of fuzzy set theory

The literature on uncertainty has grown considerably during these last years, especially in the
areas of system modeling, optimization, control, and pattern recognition. Recently, several
authors have advocated the use of fuzzy set theory to address epidemiology problems (Barros
et al., 2003; Jafelice et al., 2004; 2005; Ortega et al., 2003) and population dynamics (Krivan
& Colombo, 1998). Since the advent of the HIV infection, several mathematical models have
been developed to describe the HIV dynamics (Murray, 1990; Nowak & Bangham, 1996;
Nowak, 1999). Here, we suggest the use of fuzzy set theory (Zadeh, 1965) to deal with the
uncertain, imprecise nature of the virus dynamics.
First, we recall that a fuzzy set A on a universal set X is a membership function A that
assigns to each element x of X a number A(x) between zero and one to indicate the degree of
membership of x in A. Therefore, the membership function of the fuzzy set A is a function
A : X → [0, 1]. It is interesting to note that a conventional set A on X is a particular instance
of a fuzzy set for which the membership function is the characteristic function of A, that is,
XA : X → {0, 1}.
Second, we remind the reader that a concept that plays a key role in fuzzy set theory is fuzzy

119Studies on Population Dynamics Using Cellular Automata

www.intechopen.com



rule-based systems (FRBS) (Pedrycz & Gomide, 1988). The structure of FRBS is shown in
Fig. 15.

Fig. 15. Structure of fuzzy rule-based systems.

A FRBS has four components: an input processor, a collection of fuzzy rules called fuzzy
rule base (or rule base for short), a fuzzy inference machine, and an output processor. These
components process real-valued inputs to provide real-valued outputs as follows.

• Input Processor (Fuzzification). Here, inputs are encoded into fuzzy sets on the respective
universes of the input variables. For numerical inputs, the approach commonly used is to
transform a real-valued input into a fuzzy singleton. Expert knowledge plays an important
role to build the membership functions for each fuzzy set associated with the inputs.

• Rule Base. This a knowledge-encoding component of fuzzy rule-based systems, a
collection of fuzzy conditional propositions in the form of If-then rules. Fuzzy rules are
an effective mean to encode expert knowledge expressed through linguistic statements. In
general, If-then rules describe relationships between linguistic variables such as If adhesion
to treatment is low and medication potency is high then period of virus reproduction is f ast
and percentage of infected CD4+ cells is high. In fuzzy set theory, a variable (e.g. adhesion to
treatment) whose value is a linguistic term (e.g. low) is called a linguistic variable (Pedrycz
& Gomide, 1988).

• Fuzzy Inference. The fuzzy inference machine performs approximate reasoning using the
compositional rule of inference. A particular form of fuzzy inference that is of interest in
this paper is the Mamdani method (Mamdani, 1976; Mamdani & Assilian, 1999), derived
from the max-min composition (Pedrycz & Gomide, 1988).
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• Output Processor (Defuzzification). In fuzzy rule-based systems, the inferred output
usually is a fuzzy set. Often, especially in biological systems modeling, we require a
real-valued output. The output processor task is to provide real-valued outputs using
defuzzification, a process that chooses a real number that is representative of the fuzzy set
inferred. A typical defuzzification scheme, the one adopted in this paper, is the centroid or
center of mass method (Jafelice et al., 2004).

5.2 Linguistic variables and rule base

Fuzzy set theory is a mathematical tool to model imprecise information and knowledge.
In practice, precise values of the number of infected CD4+ cells and the period of
virus replication with the antiretroviral therapy is uncertain. These values depend on the
medication potency and on the individuals adhesion to treatment. Fuzzy rule-based systems
(FRBS) is an appropriate approach to address the effect of the treatment in HIV dynamics. The
input variables of the FRBS are the adhesion to treatment and the medication potency (Ying
et al., 2007). The output variables are the percentage of HIV infected CD4+ cells and the period
of virus replication. The input and output variables are linguistic variables, denoted as A, M, P
and V. Adhesion to treatment (A), medication potency (M) and percentage of infected CD4+
cells (P) assume the following linguistic values {very low, low, medium, high, very high} and the
period of virus replication (V) adopts the linguistic values {very rapid, rapid, medium, slow, very
slow}. The membership functions specify the meaning of the linguistic variables, as depicted
in Figs. 16, 17, 18 and 19 for adhesion to treatment, medication potency, period of virus replication,
and percentage of CD4+ cells that will be infected, respectively. The rule base that encodes the
relationships between A, M, P and V was constructed using expert medical knowledge. The
fuzzy rules are summarized in Tables 4 and 5. The rule base was processed using the Mamdani
inference method with centroid defuzzification.
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Fig. 16. Membership functions for adhesion to treatment (A).
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Fig. 17. Membership functions for medication potency (M).
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Fig. 18. Membership functions for period of virus replication (R).
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Fig. 19. Membership functions for percentage of CD4+ cells that infected (P).

❤
❤
❤
❤
❤
❤

❤
❤
❤
❤
❤
❤
❤
❤

Adhesion(A)

Medication Potency (M)
very low low medium high very high

very low very high very high very high very high very high

low high high high high high

medium medium high medium high medium

high medium high low low low

very high low low low very low very low

Table 4. Fuzzy rules for the percentage of CD4+ cells that will be infected.

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤❤

Adhesion(A)

Medicat. Potency (M)
very low low medium high very high

very low very rapid very rapid very rapid very rapid very rapid

low rapid rapid rapid rapid rapid

medium medium rapid medium rapid medium

high medium rapid medium slow slow

very high rapid medium medium very slow very slow

Table 5. Fuzzy rules for the period of virus replication.

The cellular automaton model uses the output of the FRBS as follows. The number of HIV in
the neighborhood of uninfected CD4+ cells is counted at each iteration. The product of the
number counted multiplied by the output variable (percentage of CD4+ cells) is the number
of HIV infected cells. This operation models the action of reverse transcriptase inhibitors.
The percentage of CD4+ cells depends on the adhesion to treatment and on the potency
of the medication. All those processes occur at each iteration. In the cellular automaton
representing HIV infection dynamics and untreated HIV positive individuals, an infected cell
CD4+ releases one virus at an available free place of its neighborhood after 5 iterations. In the
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cellular automaton with treatment, the period of virus replication varies from 5 to 16 iterations,
which models inhibitors action in delaying viral replication.

6. Simulation of the blood-tor system with treatment

6.1 Analysis of the Solutions

The quantity and specific time limit of uninfected cells, infected cells of the lymphocytes
T of CD4+, free virus particles and specific antibodies CTL (cytotoxic T lymphocyte) were
adjusted for different patients, considering their adhesion to the treatment. Simulation was
carried out using the data (treatment adhesion and medication potency) of three HIV positive
individuals shown in Table 6. In the table, the parameters of the first, second and third
columns correspond to HIV positive individuals whose treatment receives low, medium, and
high potency medication and treatment, respectively. The output variable values of the fuzzy
rule-based system are shown in Table 7. The first line of the table shows the percentage of
the CD4+ cells infected, and the second shows the period of virus replication, for the input
values of Table 6. The cellular automaton model was ran five times for each patient. Averages
are computed at each time instant t. Fig. 20 shows the results. The average of the individuals
with the best response to the treatment is depicted in solid line. The dotted line is the average
of the individuals with the worst response to the treatment. The behavior of the HIV as well
as the behavior of the uninfected cells of type T lymphocyte of CD4+ fully agree with the
corresponding behaviors reported in Guedj et al. (2007), Filter et al. (2005) and Ouattara et al.
(2008). The HIV curve exhibits an asymptotic decay with a positive upper bound. In practice,
laboratory exams may not detect the viral load, but indicate that the number of RNA copies
of the virus in blood circulation is below the precision of the method used. The precision
values are variable. For instance, in the case of the Brazilian public health network, the method
currently adopted has the precision of 50 copies/ml (Brazil, 2008). If a patient does not adhere
to the treatment, then simulation proceeds as in the no treatment case discussed in section 4.

First parameter Second parameter Third parameter

Medication potency 0.8 0.85 0.9

Adhesion to treatment 0.1 0.6 1

Table 6. Inputs for the FRBS used in simulation.

First parameter Second parameter Third parameter

Percentage of CD4+ cells infected 0.85 0.55 0.1

Period of virus replication 6.35 10.37 16

Table 7. Outputs of the FRBS used in simulation.

6.2 Treatment response estimation

Fig. 20 suggests that the treatment response of patient ps is better than of patient p f , where
p f and ps are the data of patients corresponding to first and second parameters of Table
6, respectively. To quantify the treatment response we must define a performance measure.
Any of the four (or all, if an appropriate temporal average is chosen) variables, namely,
uninfected and infected cells of lymphocyte T CD4+, free virus, and specific antibodies, can
be considered. For instance, an estimation can be obtained using the a ratio of two variables
values. Let us assume that the viral load is the variable revealing the treatment efficiency. Let
vp1 and vp2 the averages of the viral loads of the patient 1 and 2 over the same time interval
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Fig. 20. Averages of the Blood-Tor System with Treatment beginning at t = 0.

△t. The treatment response (Cr) in terms of the ratio of the averages vp1 and vp2 signalizes the
treatment efficiency. Therefore, we have

Cr =
vp1

vp2

=

∑ vp1
△t

∑ vp2
△t

=
∑ vp1

∑ vp2

. (4)

To illustrate the use of (4) with △t = 100 we obtain vp f
= 139.24 and vps = 50.71. The averages

vp f
and vps were computed using the outputs of the cellular automaton. Thus, the response

ratio between the first and second patient parameters is

Cr f s
=

vp f

vps

=
139.24

50.71
= 2.74.

The remaining cases are similar. Notice that, for the example just discussed, patient ps

response is twice as better than patient p f . The values of vp f
and vps are averages of 30 runs

of the model.

6.3 Conclusion

The sections 4 and 5 introduced a cellular automata approach to model HIV positive behavior
in two cases: without and with antiretroviral treatment. An interesting characteristic of the
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model is its ability to approximate the trajectories of all phases of the HIV history. Most
models suggested so far emphasize the asymptomatic phase only. Moreover, the similarity
of the solutions of the cellular automata models with the natural history (Fig. 11) gives
enough evidence that they reproduce the actual HIV dynamics appropriately. The Blood-Tor
System with treatment taken into account approximates the dynamics of HIV infection in
the blood stream of HIV positive individuals under antiretroviral therapy. The outputs of
the fuzzy rule-based system provide the percentage of infected CD4+ cells and the period
of virus replication, given information about medication potency and individual adhesion to
treatment. Using the outputs of the fuzzy rule-based system, the cellular automaton can be
run to reproduce the trajectory of uninfected cells, infected cells of lymphocytes T of CD4+,
free virus particles and specific antibodies CTL (cytotoxic T lymphocyte).

6.4 Computational graphical interface

We have used Matlab 7.0 to build our computational graphical interface for the Blood-Tor
system (see its initial interface in Fig. 21). To set up your own simulation, the following two

Fig. 21. Computational Graphical Interface of Blood-Tor.

parameters need to be chosen: 1. medication potency; 2. treatment adhesion. Furthermore, at
the end of each simulation, the graphs of the uninfected cells of CD4+, infected cells of CD4+,
free virus and virus specific antibodies as a function of time are plotted. If the user press the
Three Simulations button, the simulation is carried out using the data (treatment adhesion
and medication potency) of three HIV positive individuals shown in Table 6.

7. Conclusion

The interaction of multidisciplinary areas is very important to construct and strength
biological mathematical models. For instance, the interaction of mathematical modeling and
clinical research was crucial in understanding essential features of the HIV infection dynamics.
Identifying that HIV is a dynamic disease which encompass different time scales (hours, days,
weeks, months and years) was a conclusion that resulted of mathematical modeling combined
with perturbation experiments. It was then to identify that these time scales correspond
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to important biological processes underlying HIV infection. This knowledge is associated
for instance with the recommendation of changing the treatment from monotherapy to
combination antiretroviral. After that, HIV has become a treatable chronic disease, with HIV
mortality rates approaching those of the general population. Another important practical
message from modeling is the necessity that patients continue with the antiretroviral
treatment for a period of at least 2-3 years after virus is no longer detectable in blood (Perelson
& Nelson, 1999; Yazdanpanah, 2009). In this context, CA compared to differential equations
approaches are better choices for modeling HIV infection since they can deal with the variety
of observed time scales and also can incorporate the heterogeneity of populations and the
local interactions (Sloot et al., 2002). It also important to address questions concerning the
sensitivity to parameters raised for instance by Strain & Levine (2002) on the Zorzenon dos
Santos & Coutinho (2001) CA model. Burkhead et al. (2009) presented rigorous mathematical
results about the time scales and other dynamical aspects of the last model as well as discussed
parameter and model changes and their consequences. They gave explanations for the timing
in the model supported by numerical observations. The presented results show that fuzzy set
theory is a powerful tool to deal with the uncertain, imprecise nature of the virus dynamics.
Besides the discussion on mathematical aspects of the models, it is also important to be aware
of questions posed by recent studies on HIV and AIDS. Yazdanpanah (2009) discussed the
challenges posed by new antiretroviral agents for the management of treatment-experienced
patients. They point out it is important to know how to optimize the pairing and sequencing
of recently available antiretroviral agents in order to further improve long-term treatment
efficacy in patients with multidrug-resistant HIV infection.
In further researches, a cellular automaton that represents initially the blood stream of an
individual HIV positive without treatment and afterwards the same individual with treatment
would be our main objective.
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