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1. Introduction

Synchronization is an important property in fundamental biological processes.
Synchronization of biochemical oscillations confers positive functional advantages to
the organism, including temporal organization, spatial organization, and efficiency for
communication between cells (Berridge et al., 1998; Fall et al., 2002; Goldbeter, 2002; Keener
& Sneyd, 1998). Indeed, the relevance of synchronization has been stressed frequently. For
instance synchronized circadian rhythms may influence the pharmacology and the tolerability
of anticancer drugs and/or their antitumor efficacy (Petty, 2004; Fu & Lee, 2003). In the heart,
the impulses coming through the vagus nerve trigger the contraction of the heart only if they
are properly synchronized (Keener & Sneyd, 1998; diBernardo et al., 1998). Synchronized
behavior of calcium oscillators is believed that enables communication from one side of
a cell to another, or between cells, and can serve to synchronize a global, multicellular,
response to a local stimulus (Berridge et al., 1998; Perc & Marhl, 2004). Moreover, there are
some evidences which support that coherent oscillations play an important role in sensory
processing (Izhikevich, 2007).
Understanding both the processes that influence the synchronization of individual
biochemical oscillators and how the behaviors of living cells arise out of the properties of
coupled populations of biological oscillators are important goals in the study of biological
systems, and a field of research with enormous practical application. For instance, elucidating
how and why local biochemical oscillators separated by different distances fluctuate in
synchrony and the study of conditions under which spatiotemporal patterns of biochemical
oscillators can be generated and suppressed (Mikhailov & Hess, 1995; Wolkenhauer et
al., 2003; Walleczek, 2003). Indeed, clarifying the mechanisms behind spatial synchrony
represents a challenge for biologist and also could ultimately provide critical information
to exploit the synchronized behavior in living organisms. For instance, the application
of the knowledge of dynamical systems in biology and medicine is giving rise to new
therapeutic approaches, such as the treatment of Parkinson’s disease by means of neuronal
desynchronization (Tass, 2002), or the indications for the development of new drugs based on
the collective dynamical instabilities in living cells (Petty, 2004).
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Different approaches have been used to synchronize individual biochemical oscillators
(Afraimovich et al., 1997; Boccaletti et al., 2002; Canavier et al., 1999; Collins & Stewart,
1994; Goldbeter, 1996; Mirollo & Strogatz, 1990; Morgul & Solak, 1996; Nijmeijer & Mareels,
1997; Pikovsky et al., 1996; Zhou et al., 2008). Classical synchronization approaches includes
different coupling approaches and the periodic modulation of an external forcing (periodical
or noisy). Despite that synchronization of nonlinear oscillators has been addressed from
control theory community, few papers have been addressed the control and synchronization
problem of biochemical oscillators. In particular, from control theory perspective, there are
basically two ways that are used for synchronization of nonlinear systems. The first is related
with observer based synchronization which is applied for coupling identical systems (i.e.,
same structure and order) and different initial conditions (Alvarez-Ramirez et al., 2002;
Nijmeijer & Mareels, 1997; Morgul & Solak, 1996). In these cases, identical synchronization
is reached which implies the coincidence of the states of the coupled systems. The second
approach from control theory is the application of control laws allows to achieve the
synchronization between nonlinear oscillators, with different structure and order, where the
variable states of the slave system are forced to follow the trajectories of the master system,
such that this approach can be seen as a tracking problem (Fradkov & Pogromsky, 1998;
Alvarez-Ramirez et al., 2001). For control designs the presence of disturbances, dynamic
uncertainties, and nonlinearities in biochemical models pose great challenges. In particular,
biochemical systems have a high degree of uncertainties.
Relevant contributions using control and system theory approaches are the following. Sontag
(2004) has been establishes global asymptotic stability results using small gain theorems
for a class of biochemical systems. Kimura and Nishigaki (2005) have been established an
analogy of circadian rhythm with the PLL framework. Iglesias (2003) has been addressed the
feedback mechanism in chemotaxis using control theory concepts. Steeling et al. (2004) have
been introduced a robustness analysis and a model predictive control approach for circadian
oscillations. Takeuchi et al. (2006) have been also addressed the generation and suppression
of circadian oscillations with control theory tools. We have previously showed that both
modeling error compensation approach and high-order sliding mode control approach can
be used to robust synchronize intracellular calcium oscillators and excitable media (Puebla,
2005, Puebla et al., 2009; Puebla et al., 2010; Aguilar-Lopez et al., 2010).
In this chapter we extend the application of robust controllers for the synchronization of
three benchmark models of biochemical oscillators: (i) Goodwin model of genetic oscillations
(Goodwin, 1965), (ii) FitzHugh-Nagumo model of neurons (FitzHugh, 1961); and (iii) a
model of circadian rhythms in Drosphila (Goldbeter, 1996). We introduce three robust
control approaches for the synchronization of biochemical oscillators: (i) A modeling error
compensation approach (Alvarez-Ramirez, 1999), (ii) integral sliding mode control (Levant,
2001), and (iii) geometric linearizing control (Alvarez-Ramirez, 1999; Hangos et al., 2004). The
proposed controllers have two nice features for biological applications: (i) robustness against
model uncertainties, and (ii) simplicity in the resulting controller. We show how a certain class
of cellular processes can be dynamically synchronized by appropriate input signals.
This chapter is organized as follows: In Section 2, for the sake of clarity in presentation,
we briefly provide some issues on the phenomenology, modeling and nonlinear dynamics
in cellular systems. In Section 3 we review classical synchronization approaches of
biochemical oscillations that have been reported in the literature. In Section 4 we present the
synchronization problem addressed in this chapter and the robust control approaches for the
synchronization of biochemical oscillations. Three numerical benchmark examples in Section
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5 shows the implementation of the proposed feedback control approaches. Finally, in Section
6 we close this chapter with some concluding remarks.

2. Modeling of biochemical oscillators

In this section we define the class of biochemical oscillators that we are studying. First,
we briefly discuss the phenomenology of biological mechanism underlying in biochemical
systems. Next we present some ideas of the modeling of biochemical systems. Finally, we
introduce the class of biochemical systems under consideration in this chapter.

2.1 Biological mechanisms

The processes that underlie cellular behavior are organized in complexly coupled biochemical
reaction networks, where feedforward and feedback information flows provide the links
between the different levels in the hierarchy of cell biochemical network organization (Arkin
& Ross, 1994; Goldbeter, 1996; Glass & Mackey, 1988). Theoretical models of biochemical
reaction networks have been proposed that simulate, for example, cellular dynamics of Ca
oscillations, interactions between different cell signaling pathways, genetic regulatory circuits,
cellular control networks for DNA replication and cellular division (Segel, 1980; Goldbeter,
1996; Keener & Sneyd, 1998; Smolen et al., 2003).
Cells are equipped with exquisite sensing systems which allow them to be continuously
aware of the conditions in their environment and react appropriately to these conditions. The
basic elements of a cellular signaling system are a sensor protein, made of a receptor domain
and a transmitter domain, and a response regulator, consisting of a receiver domain and a
regulator domain (Keener & Sneyd, 1998; Blumenfeld & Tikhonov, 1994). Stimulation of the
sensor (normally bound to the cell membrane) leads to activation of the transmitter, which
produces an intracellular signal. This signal is processed by a cascade of molecules and finally
arrives at the receiver, which in turn activates the regulator. Regulators produce a response
by modulating gene expression or enzyme activities. The key components in this transfer of
information are proteins, which form networks and are able to perform computational tasks
(Goldbeter, 1996; Glass & Mackey, 1998; Fall et al., 2002). Proteins can change their state by
interaction with other proteins or by biochemical modifications (such as phosphorylations)
catalyzed by other proteins. Another common mechanism is the release of small molecules
called second messengers, which diffuse in the cell and activate other proteins (Berridge, 1998;
Keener & Sneyd, 1998).

2.2 Modeling of cellular processes

In contrast to the high complexity of the cell, simple mathematical models have been
developed, mostly based on experimental observations describing phenomena like limitation,
activation, inhibition, saturation, multiple substrate uptake, bottlenecks and multiplicity
of metabolic steady states (De Jong, 2002; Fall et al., 2002; Goldbeter, 2002; Segel, 1980).
Mathematical models of the intracellular complexity of cellular systems are often based on
systems of nonlinear ordinary differential equations (ODEs). These models are usually valid
for a limited, but often sufficiently large range of operating conditions. Of course, the level of
complexity of the mathematical description depends on the application. When the problem
is taken with all its complexity, for instance, if we require that the model accounts for spatial
inhomogeneity, diffusion processes and transport delay, then we deal with partial differential
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equations and time delay (De Jong, 2002; Smolen et al., 2003; Asthagiri & Lauffenburger, 2001).
In this chapter, we restrict ourselves to the simpler case of ODEs.
In cells, most biochemical reactions of interest are catalyzed by enzymes, and a variety of
mathematical descriptions have been developed for these reactions. Many enzymatic reactions
have complex kinetic mechanisms, and specialized equations are needed to describe their
rates in detail. Two typical rate models are the Michelis-Menten kinetics and the allosteric Hill
function (Keener & Sneyd, 1998; Segel, 1980).

1. Michaelis-Menten model: This kinetic model is relevant to situations where there is no
intermediate or product inhibition, and there is no allostericity or cooperativity. The kinetic
model is defined by,

µmax
S

ks + S
(1)

µmax is the maximal growth rate and ks the half-saturation constant.

2. Allosteric interactions: Binding of small molecules can alter an enzyme’s conformation
and alter the rate of the reaction catalyzed by the enzyme. Allosteric interactions can
therefore mediate feedback and feedforward interactions within a biochemical pathway,
as well as crosstalk between pathways. In models of enzyme regulation, allosteric
interactions are commonly represented by Hill functions. These are saturable functions
of the concentration of the effector molecule. With the concentration of effector denoted by
L, if L activates an enzyme, the enzyme activity is taken as proportional to the following
increasing function of the n-th power of L:

Ln

Ln + Kn
H

(2)

The parameter n is called the Hill coefficient. Greater values of n correspond to steeper
sigmoids, that is, to a narrowing of the range of L over which the enzyme activity is
significantly above 0 and also significantly below 1. If L inhibits an enzyme, the enzyme
activity is taken as proportional to a decreasing function of L:

Kn
H

Ln + Kn
H

(3)

2.3 Nonlinear dynamics in cellular systems

Nonlinear phenomena including multiple steady states, periodic or chaotic temporal
evolution and self-organization can be supported by the dynamical cellular system since
functional kinetics are nonlinear in the descriptive variables and the system is maintained far
from equilibrium. The variety of functional dynamics is a consequence of the nonlinearities
inherent in multiple modes of biochemical regulation, such as cooperativity and kinetics at the
levels of gene expression, protein synthesis, enzyme activity, receptor function, and transport
processes (Keener & Sneyd, 1998; Blumenfeld & Tikhonov, 1994; Goldbeter, 2002; Glass, 2001).

1. Simple oscillations: Oscillations occur at every level of a biological organization, with
periods ranging from milliseconds (neurons) to seconds (cardiac cells), minutes (oscillatory
enzymes), hours (pulsatile hormone secretion), days (circadian rhythms), weeks (ovarian
cycle) and even to years (predator-prey interactions in ecology). Oscillatory behavior
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often originates at the cellular level from regulatory feedback loops which involve many
parameters and interacting variables. More generally, oscillations in reaction rates and
concentrations commonly rely, on negative feedback to sustain oscillations. Oscillations
have been observed in the metabolic flux through glycolysis and also in the rates of
secretion of hormones such as insulin (Goldbeter, 2002; Glass, 2001).

2. Bursting and chaos: Bursting represents one type of complex oscillations that is particularly
common in neurobiology. An active phase of spike generation is followed by a quiescent
phase, after which a new active phase begins. Chaos is a common mode of complex
oscillatory behavior that has been studied intensively in physical, chemical and biological
systems. It has been discussed the existence of two main routes to complex oscillatory
phenomena. The first relies on forcing a system that displays simple periodic oscillations
by a periodic input. In an appropriate range of input frequency and amplitude, one
can often observe the transition from simple to complex oscillatory behavior such as
bursting and chaos. For other frequencies and amplitudes of the forcing, entrainment or
quasi-periodic oscillations occur. In the second route complex oscillatory phenomena may
arise through the interplay between several instability-generating mechanisms, each of
which is capable of producing sustained oscillations (Goldbeter, 2002; Glass, 2001).

Oscillatory dynamic is not the only possible outcome of nonlinear equations. Indeed,
nonlinear systems are in general classified within three categories: bistable, excitable, and
oscillatory. Bistable systems are characterized by the existence of two different stable states.
Excitable systems posses a unique stable fixed point; however, if they are affected by a
perturbation which overcomes a certain threshold amplitude, they are able to perform an
excursion in the phase space before returning to the stable fixed point. That is, they do not
relax immediately to the stationary state, but keep the excitation for a finite time (Ferrel, 2002;
Fall et al., 2002; Mikhailov & Hess, 1995).

2.4 The class of biochemical oscillators

As the basic single biochemical oscillator we consider single-input nonlinear systems in the
form,

dy

dt
= f1(y, z) + g(y, z)u (4)

dz

dt
= f2(y, z)

where f1(y, z) ∈ R, f2(y, z) ∈ R
n−1, and g(y, z) ∈ R, are smooth functions of their arguments,

y ∈ R, is the measured output of the system, z ∈ R
n−1, is the internal state, and u can be

manipulated for synchronization purposes.
Suppose that there are N subsystems in a lattice yi, i = 1, ..., N, and, in the absence of coupling,
the dynamics of yi is given by the biochemical oscillator (4). That is, the dynamics of yi

satisfies,

dyi

dt
= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (5)

dzi

dt
= f2,i(yi, zi)
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Its not hard to see that several published models of biochemical oscillators can be described
by model (5) (Keener & Sneyd, 1998; Goldbeter, 2002; Tyson et al., 2003; De Jong, 2002).

3. Synchronization of biochemical oscillations

Classical theory of synchronization distinguishes between forced synchronization by an
external periodic driving force and synchronization via the coupling between oscillators.
In both cases manifestations of synchronization are the same. In this section we briefly
review both external forcing and coupling based synchronization approaches proposed in the
literature for biochemical oscillations.

3.1 Synchronization of biochemical oscillations via coupling

Consider that the N subsystems are coupled,

dyi

dt
= Ci(y) + f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (6)

dzi

dt
= f2,i(yi, zi)

where y = [y1, ..., yN ]T and C(y) is a coupling function.

3.1.1 Diffusive coupling

Consider that the coupling function C(y) is described via a local diffusive (nearest
neighborhood) coupling, such that,

C(y) = σ(yi−1 − 2yi + yi+1) (7)

where σ is the coupling strength. This case is quite interesting since it can be seen as a lattice
approximation to reaction-diffusion systems,

∂2y

∂t2
= σ

∂2y

∂ξ2
+ f (y, z) + g(y, z)u (8)

where u = [u1, ..., uN ]T ∈ R
N and ξ is the spatial coordinate.

Local coupling provides the system with the notion of vicinity and distance. This is, each
element directly interacts only with its neighbors, which then transmit the interaction to their
own neighbors. Thus, a localized perturbation spreads through the system affecting first its
close proximity and later reaching the farther parts of the system. This is a crucial property of
reaction-diffusion systems.
Diffusive coupling via gap junctions is considered as the natural form of coupling in many
cellular processes (di Bernando et al., 1998; Fall et al., 2002; Glass, 2001; Mirollo & Strogatz,
1990). Gap junctions are composed of arrays of small channels that permit small molecules to
shuttle from one cell to another and thus directly link the interior of adjacent cells. Importantly,
gap junctions allow electrical and metabolic coupling among cells because signals initiated in
one cell can readily propagate to neighboring cells (Keener & Sneyd, 1998; Izhikevich, 2007).
Thus, gap junctions between cells and electrical coupling can be considered as a particular
form of diffusive coupling.
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In the domain of biological systems, nonlocal coupling can be present as well. Coupling is
nonlocal if diffusion is such that the substance released by one cell can reach and affect not
only its neighbors, but even cells which are located far away from it.

3.1.2 Random coupling

In random coupling the coupling function is described as follows,

C(y) = σAy (9)

where the elements Akl of the matrix A are either 0 or 1 and are assigned in a random way.
This is,

Akl =

{
0 if rkl < rmin

1 if rkl ≥ rmin
(10)

where rkl ∈ [0, 1] is a uniformly distributed random number and the threshold rmin ∈ (0, 1).
This coupling structure resembles that of neural networks (Izhikevich, 2007).

3.1.3 Kuramoto coupling

A successful approach to the problem of synchronization consists of modeling each member of
the population as a phase oscillator. Kuramoto analyzed a model of phase oscillators running
at arbitrary intrinsic frequencies, and coupled through the sine of their phase differences
(Kuramoto, 1984). The Kuramoto model is simple enough to be mathematically tractable, yet
sufficiently complex to be non-trivial. The model is rich enough to display a large variety of
synchronization patterns and sufficiently flexible to be adapted to many different contexts.
The Kuramoto model consists of a population of N coupled phase oscillators, θi(t), having
natural frequencies ωi distributed with a given probability density g(ω), and whose dynamics
is governed by,

dθi

dt
= ωi +

N

∑
j=1

Kij sin(θj − θi), i = 1, ..., N (11)

where Kij is the coupling matrix. When the coupling is sufficiently weak, the oscillators
run incoherently whereas beyond a certain threshold collective synchronization emerges
spontaneously. Many different models for the coupling matrix Kij have been considered such
as nearest-neighbor coupling, hierarchical coupling, random long-range coupling, or even
state dependent interactions (Kuramoto, 1984).

3.2 Applications

Classical synchronization approaches have been applied successfully for the synchronization
of biochemical oscillators. Winfree (2002) has suggested that such critical perturbations
applied at the appropriate phase of a limit cycle should stop the clock, at least transiently,
if the perturbation brings the oscillator back into the vicinity of the steady state. Ueda et al
(2002) studied a model for circadian rhythms in Drosophila. As a single cell oscillator, they
used a more detailed model incorporating 10 variables. They then apply a local coupling
through each possible variable, and show that for some of them, synchronization occurs.
Interestingly, they assessed the effect of fluctuations in parameter values and show that the
coupled system is relatively robust to noise. Another theoretical model of coupled circadian
oscillators through local coupling has been proposed by Kunz and Achermann (2003). Using
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the van der Pol model, they described possible spatial effects, including wave propagation
and pattern formation. Gonze et al (2005) proved that a mean field approach can be an
effective way to couple a population of circadian oscillators, where the global coupling drives
oscillators, which would be damped under a constant forcing.
Gap junctions are tacitly postulated as a sufficient means of intercellular communication
for synchronizing Ca2+ transients (Berridge, 1998; Perc & Marhl, 2004). Ca2+ ions may
pass through gap junction channels to the neighboring cell by passive diffusion. Recently,
it has been shown that individual hepatocytes can have very different intrinsic oscillation
frequencies but become phase-locked when coupled by gap junctions (Hofer, 2003; Tang
& Othmer, 1995). It is shown that junctional calcium fluxes are effective in synchronizing
calcium oscillations in coupled hepatocytes. Many neuronal and non-neuronal systems exhibit
synchronized oscillatory behavior in networks of electrically coupled cells (Fall et al., 2002).
Experimental findings have revealed that in some of these systems electrical coupling is
essential for the generation of oscillations and not only for their modulation (FitzHugh, 1961;
Winfree, 2001; Izhikevich, 2007).

3.3 Synchronization of biochemical oscillations via an external forcing

The intrinsic nonlinearity of living systems is of great significance to scientists who study
the response of cells, tissues and whole organisms to natural or artificial stimuli. External or
artificial stimuli of biological systems by time variation of appropriate control parameters
is of great importance from a general point of view. Forced or tuned oscillators are not
only considered to be important in cellular rhythms, but also in technical applications
involving biochemical reaction systems external control may be of great benefit for improving
performance criteria of bioengineering processes (Greenman et al., 2004).
External modulated forcing has been applied for synchronization purposes in some
contributions. For example a population of chaotic amoebae was subjected to a
small-amplitude periodic forcing, which appeared to be sufficient to transform chaotic
behavior into periodic (Goldbeter, 1996). In many organisms, the source of external forcing
has been identified to be a variation of the light due to night and day cycles. Indeed, the
molecular basis of the effect of light on different circadian biochemical networks has been
unraveled (Gonze & Goldbeter, 2000; Jewett et al., 1991). The question on whether such
external forcing is enough to induce the synchronization between circadian cells usually
observed in experiments, or if coupling between the cells is needed, is still open.

4. Robust control approaches for synchronization of biochemical oscillators

In this section the synchronization problem framed as a tracking feedback control problem is
presented. Three robust control approaches are then briefly described: (i) the modeling error
compensation, (ii) the sliding mode control, and (iii) geometric linearizing control.

4.1 Synchronization problem

The synchronization problem consists of making two or more systems oscillate in a
synchronized way. This synchronization problem is cast as a control problem where the
control objective is tracking with respect to a desired single synchronization signal yre f (t)
via manipulation of an external input u.
The synchronization problem description is completed by the following assumptions:
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A1 The measurement of the variable to be synchronized y, is available for synchronization
design purposes.

A2 Nonlinear functions f1,j(xi) and g1,j(xi) are uncertain, and can be available rough
estimates of these terms.

The following comments are in order:

• A1 is a reasonable assumption. For instance, in neurons the measurement of the membrane
potential is standard. Free intracellular calcium (Ca2+) can be also measured using
florescence techniques. Even in the absence of such measurements, a state estimator can be
designed. On the other hand, cell must have some internal mechanism to knows perfectly
its behavior. Indeed, it has been reported elsewhere that Ca2+ acts as an intracellular
messenger, relaying information within cells to regulate their activity, such that should
be exist some internal mechanism in the cells to knows its behavior (Berridge, 1998).

• A2 considers that functions f1,j(xi) and g1,j(xi) can contain uncertain parameters, or in the
worst case the whole terms are unknown. Indeed, parameters in biochemical systems have
some degree of uncertainties, as these parameter values commonly are estimated from
experimental data, which contain errors due to both the estimation procedure adopted
to fit data and the experimental errors of the data themselves (De Jong, 2002; Keener &
Sneyd, 1998). From a practical viewpoint, the assumption of model uncertainties in our
control methodology allows to design a controller that uses only the minimum system
information in order to control the calcium nonlinear dynamics and the resulting control
can be easily interpreted from a biological viewpoint and implemented.

• The use of an external input as the manipulable variable is realistic. Indeed, several
experimental studies have shown that the synchronization of individual biochemical
oscillators depends on external stimulus properties (FitzHugh, 1961; Glass, 2001; Gonze &
Goldbeter, 2000; Jewett et al., 1991; Marhl & Schuster, 2003; Izhikevich, 2007). An external
electrical stimuli can be modeled including an applied current in the current balance
equation. Chemical stimuli can be modeled either by varying concentrations of relevant
agents or by varying parameters which are believed to be correlated to the stimulating
chemical.

The proposed feedback and synchronization arrangements are shown in Fig. 1. A sensor
measures a time-varying output from the cell, y(t), and feeds it to a controller. The controller
produces a signal, u(t), which drives an actuator to produce a time-varying input to
individual biochemical oscillators to get the desired synchronized dynamic behavior. On
the other hand, a reference or master oscillator provides the desired reference to individual
or slave oscillators, that will be driven by individual external inputs to follow the desired
reference behavior.

4.2 Modeling error compensation approach

Sun et al. (1994) proposed a robust controller design method for single-input/single-output
(SISO) minimum-phase linear systems. The design approach consists of a modeling error
compensator (MEC). The central idea is to compensate the error due to uncertainty by
determining the modeling error via plant input and output signals and use this information
in the design. In addition to a nominal feedback, another feedback loop is introduced using
the modeling error and this feedback action is explicitly proportional to the parametric
error which is the source of uncertainty. The MEC approach was extended for a class of
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Fig. 1. Feedback and synchronization system.

linear time-varying and nonlinear linearizable lumped parameter systems with uncertain
and unknown terms by Alvarez-Ramirez (1999), where instead of designing a robust state
feedback to dominate the uncertain term, the uncertain term is viewed as an extra state
that is estimated using a high-gain observer. The estimation of the uncertain term gives the
control system some degree of adaptability. The extension of the MEC approach to distributed
parameter systems has been applied by Puebla (2005) and Puebla et al. (2009, 2010) for a class
of biological distributed parameter systems. The underlying idea behind MEC control designs
is to lump the input-output uncertainties into a term, which is estimated and compensated via
a suitable algorithm.
Consider the class of biochemical oscillators described in Section 2:

dyi

dt
= f1,i(yi, zi) + gi(yi, zi)ui, i = 1, ..., N (12)

dzi

dt
= f2,i(yi, zi)

Let ei = yi − yre f be the tracking error, and define the modeling error function ηi as,

ηi = ( f̃1,i − f1,i) + (g̃i − gi)ui (13)

where f̃1,i and g̃i are rough estimates of uncertain functions f1,i and gi respectively. System
(12) can be written as,

•
ei = ηi − f̃1,i − g̃iu −

•
yre f (14)

where
•
yre f is the first derivative of yre f . Consider the inverse dynamics control law,

ui = g̃−1
i (ηi − f̃1,i −

•
yre f + τ−1

c ei) (15)

where τc > 0 is a closed-loop time constant. Under the inverse-dynamics control law (15), the
closed-loop system dynamics is dei/dt = −τ−1

c ei, so that the error dynamic behavior is given
as e(t) = e(0) exp(−t/τc). In this way, the asymptotic convergence e(t) → 0, and so y → yre f ,
is guaranteed.
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In order to implement the control input an estimate of the real uncertain term is computed
using a high-gain reduced-order observer,

•
η̃i = τ−1

e (ηi − η̃i) (16)

where τe > 0 is the estimation time constant. After some direct algebraic manipulations the
reduced order observer (16) can be written as,

•
wi = f̃1,i + g̃iui +

•
yre f − η̃i (17)

η̃i = τ−1
e (wi + ei)

The final form of the controller is given by the feedback function (18) and the modeling error
estimator (17),

ui = g̃−1
i (η̃i − f̃1,i −

•
yre f + τ−1

c ei) (18)

the resulting feedback controlled depends only on the measure y and the estimated values of

uncertain terms f̃1,i and g̃i. Notice that in a worst-case design, one can choose f̃1,i = 0.
The above model-based control approach has only two control design parameters, i.e., τc and
τe. The closed-loop parameter τc can be chosen as the inverse of the dominant frequency
of the open-loop dynamics. On the other hand, the estimation parameter τe > 0, which
determines the smoothness of the modeling error can be chosen as τe <

1
2 τc. On the other

hand, system (12) is of relative grade one. However, straight extensions of the MEC control
design to both autonomous third and second order systems can be found in Puebla et al.
(2003), and Alvarez-Ramirez, respectively.

4.3 Sliding mode control approaches

Sliding mode control techniques have long been recognized as a powerful robust control
method (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). Sliding-mode control schemes,
have shown several advantages like allowing the presence of matched model uncertainties
and convergence speed over others existing techniques as Lyapunov-based techniques,
feedback linearization and extended linearization, however standard sliding-mode controllers
have some drawbacks: the closed-loop trajectory of the designed solution is not robust even
with respect to the matched disturbances on a time interval preceding the sliding motion,
the classical sliding-mode controllers are robust in the case of matched disturbances only,
the designed controller ensures the optimality only after the entrance point into the sliding
mode. To try to avoid the above a relatively new kind of sliding-mode structures have
been proposed as the named high-order sliding-mode technique, these techniques consider a
fractional power of the absolute value of the tracking error coupled with the sign function, this
structure provides several advantages as simplification of the control law, higher accuracy and
chattering prevention (Hangos et al., 2004; Levant, 2001; Sira-Ramirez, 2002). In this section
we present some ideas of the integral high order sliding mode control (IHOSMC).
Sliding mode control design consists of two phases. In the first phase the sliding surface is to
be reached (reaching mode), while in the second the system is controlled to move along the
sliding surface (sliding mode). In fact, these two phases can be designed independently from
each other. Reaching the sliding surface can be realized by appropriate switching elements
(Hangos et al., 2004).
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Defining

σ(e) = ei = yi − yre f

as the sliding surface, we have that the continuous part of the sliding mode controller is given
by,

ueq,i = −g−1
i ( f1,i −

•
yre f )

such that,
•
σ(e) = 0

where
•
yre f is the time-derivative of the desired trajectory signal. Once on the surface, the

dynamic response of the system is governed by dei/dt = 0. To force the system trajectory to
converge to the sliding surface in the presence of both model uncertainties and disturbances,
with chattering minimization and finite-time convergence, the sliding trajectory is proposed
as (Levant, 2001; Aguilar-Lopez et al., 2010),

ueq,i = −g−1
i [δ1ei + δ2

∫ t

0

{
sign(ei) |ei|

1/p
}

dτ] (19)

where δ1 and δ2 are control design parameters. The final IHOSMC is given by,

ui = −g−1
i ( f1,i −

•
yre f + δ1ei + δ2

∫ t

0

{
sign(ei) |ei|

1/p
}

dτ) (20)

The synthesis of the above control law requires accurate knowledge of both f1,i and dyre f /dt
to be realizable. To enhance the robust performance of the above control laws, the uncertain
terms is lumped in single terms and compensated with a reduced-order observer. However,
by exploiting the properties of the sliding part of the sliding-mode type controllers to
compensates uncertain nonlinear terms, the knowledge of the nonlinear term f1,i can be
avoided.
Summarizing, the IHOSMC is composed by a proportional action, which has stabilizing
effects on the control performance, and a high order sliding surface, which compensates the
uncertain nonlinear terms to provide robustness to the closed-loop system. This behavior is
exhibited because, once on the sliding surface, system trajectories remain on that surface, so
the sliding condition is taken and make the surface and invariant set. This implies that some
disturbances or dynamic uncertainties can be compensated while still keeping the surface an
invariant set.

4.4 Robust geometric linearizing control

Differential geometry is an essential tool for the study of the structural properties of nonlinear
control systems. Differential geometric techniques of nonlinear control include static and
dynamic feedback linearization, input-output linearization, nonlinear state observers and
disturbance decoupling (Hangos et al., 2004). In exact linearization the main idea is to
apply a suitable nonlinear coordinate transformation to a nonlinear system in order to
obtain a linear one in the new co-ordinates and between the original output and the newly
introduced transformed input. The coordinates transformation must be supplemented by a
static nonlinear feedback to achieve linearization. After linearization any controller design
method can be used to stabilize the system or modify its dynamic properties.
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Exact linearization via state feedback is a limited technique for control of nonlinear systems
because it is only applicable for systems satisfying a relative degree condition. Indeed, the
relative degree of the system needs to be equal to the number of state variables, i.e. r = n.
Therefore the exact linearization may not be applicable or may not be feasible in practical
cases. Input–output linearization is an alternative way of achieving linear behavior of a system
by nonlinear coordinate transformation (Hangos et al., 2004).
A main drawback in the use of differential geometric control techniques is that depends on the
exact cancelation of the nonlinear dynamics in order to obtain an input-output linear dynamic
behavior. As a consequence, the perfect knowledge of the system is required. Robustness of
geometric differential approaches has received attention in the literature. In this section we
describe a robust geometric input-output linearizing control, where the presence of modeling
errors, unmeasured disturbances and parametric uncertainties are considered in the controller
design.
Consider the class of biochemical oscillators described in Section 2 with yi = hi(yi, zi). An
input-output linearizing controller ui is given by,

ui =
1

LgL
r−1
f hi(yi, zi)

(−Lr
f hi(yi, zi) + vi) (21)

= αi(yi, zi) + βi(yi, zi)vi

αi(yi, zi) =
−Lr

f hi(yi, zi)

LgL
r−1
f hi(yi, zi)

βi(yi, zi) =
1

LgL
r−1
f hi(yi, zi)

where Lg and L f are the lie derivatives of gi and f1,i respectively, and vi is a new external
input.
Under the input-output linearizing controller we have,

dyi

dt
= f1,i(yi, zi) + gi(yi, zi)αi(yi, zi) + βi(yi, zi)vi, i = 1, ..., N (22)

dzi

dt
= f2,i(yi, zi) (23)

The linearizing input-output controller decomposes the system into two parts: (i) a linear
subsystem of order r which is influenced by the chosen input ui (22), and (ii) a nonlinear
subsystem described by the zero dynamics. Thus the main applicability condition of
input–output linearization is to have a stable zero dynamics in a wide domain of the
state-space, or even better, a globally stable zero dynamics (Hangos et al., 2004).
If exact cancelation of nonlinear terms is achieved then the closed-loop system is given by,

dyi

dt
= vi (24)

dzi

dt
= f2,i(yi, zi)
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It is relatively simple to device a feedback control law for vi, which stabilizes the output of the
system, yi, to the desired reference, yre f . A valid choice of the new control input is a simple

linear input, vi = −τ−1
c (yi − yre f ) +

•
yre f , that guarantees the stability of the overall system

provided that the zero dynamics is stable, i.e.,

dei

dt
= −ei (25)

where τc is controller design parameter, ei = yi − yre f , is the tracking error.
The linearizing input-output controller needs accurate knowledge of the nonlinear dynamics
of the system, hence, turns to be inapplicable if the model for the process includes
uncertainties. This fact is behind the motivation to provide robustness properties of the above
linearizing input-output controller. In order to provide robustness against inexact model
cancelations of nonlinear terms, unmodeled dynamics, and external perturbation we proceed
as in the approach of modeling error compensation approach (Alvarez-Ramirez, 1999).
Consider system (22) subject to model uncertainties ηi,

dyi

dt
= f̃1,i(yi, zi) + g̃i(yi, zi)αi(yi, zi) + βi(yi, zi)vi + ηi, i = 1, ..., N (26)

where ηi is defined as,

ηi = ( f1,i(yi, zi) − f̃1,i(yi, zi)) + (gi(yi, zi) − g̃i(yi, zi))αi(yi, zi) (27)

where f̃1,i and g̃i are rough estimates of terms f1,i and gi all the uncertain terms associated
to the biochemical system model are lumped. The uncertain function ηi can be estimated
using a state observer (Alvarez-Ramirez, 1999). We introduce a reduced order observer given
by (16) to this end. After some direct algebraic manipulations we get the robust linearizing
input-output controller as,

dwi

dt
= − f̃1,i(yi, zi) − g̃i(yi, zi)αi(yi, zi) − βi(yi, zi)vi − ηi, i = 1, ..., N (28)

ηi = τ−1
e (wi + yi)

vi = −βi(yi, zi)
−1[ηi − τ−1

c ei]

ui = −αi(yi, zi) + βi(yi, zi)vi

Comparing the above robust linearizing input-output controllers with the controller derived
via a MEC approach we can exploit the tunning guidelines of the MEC approach to provide
some guidelines for the tunning of controller parameters τc and τe (Alvarez-Ramirez, 1999).

5. Applications

In this section we consider three examples of the implementation of the proposed
synchronization approach with the robust feedback control approaches presented in the above
section. The examples are: (i) the Goodwin model, (ii) a Fitz-Hugh-Nagumo neuron model,
and (iii) circadian rhythms in Drosphila.
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5.1 Goodwin model for genetic oscillators

Synchronization of coupled genetic oscillators has important biological implications and
potential engineering applications from both theoretical and experimental viewpoints, and it
is also essential for the understanding of the rhythmic phenomena of living organisms at both
molecular and cellular levels. The Goodwin model (Goodwin, 1965) is a benchmark model of
genetic oscillations that contains three simple biochemical components (nuclear messenger,
cytoplasmic messenger, and repressor). In the original model, a clock gene mRNA produces
a clock protein, which activates a transcriptional inhibitor, which inhibits the transcription of
the clock gene, thus forming a negative feedback loop.
Using the notation previously introduced, we consider the following external forcing
modification of the Goodwin model that consists of the following set of three ordinary
differential equations (Goodwin, 1965; Keener & Sneyd, 1998),

dy

dt
=

c1

1 + z
p
2

− c2y + u (29)

dz1

dt
= c3y − c4z1

dz2

dt
= c5z1 − c6z2

where y, z1 and z2 represent respectively the concentrations of the mRNA, the enzyme and the
product of the reaction of the enzyme and a substrate, assumed to be available at a constant
level. All ci are constant positive parameters. The creation of y is inhibited by the product z2

and is degraded according to first-order kinetics, while z1 and z2 are created and degraded by
first-order kinetics. We also assumed that u is a plausible manipulated variable.
The synchronization objective is to synchronize an ensemble of two independent genetic
oscillators, to the dynamics generated by a reference Goodwin genetic oscillator, via an
external forcing u to the mRNA concentration y. Figure 2 shows the synchronization
performance for the three proposed robust control approaches: MEC control, IHOSMC, and
the GLC, in the upper, middle and bottom parts of Figure 2 respectively. It can be seen from
Figure 2 that the synchronization objective is achieved for all robust control approaches. MEC
approach uses less control effort than IHOSMC and GLC. The control input for the IHOSMC
displays a switching type behavior typical of SMC approaches. The modulation of external
inputs depends on the measured state such that a feedback mechanism is established and
modifies the natural dynamic behavior of the controlled biochemical oscillators.

5.2 FitzHugh-Nagumo model of neurons

The central nervous system can display a wide spectrum of spatially synchronized, rhythmic
oscillatory patterns of activity with frequencies in the range from 0.5Hz (rhythm), 20Hz
( rhythm), to 30-80 Hz (rhythm) and even higher up to 200Hz (Izhikevich, 2007). In
the past decade it has been shown that synchronized activity and temporal correlation
are fundamental tools for encoding and exchanging information for neuronal information
processing in the brain (Izhikevich, 2007). In particular, it has been suggested that clusters of
cells organize spontaneously into flexible groups of neurons with similar firing rates, but with
a different temporal correlation structure.
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Fig. 2. Synchronization of Goodwin model for genetic oscillators via (a) MEC, (b) IHOSMC
and (c) GLC

A benchmark model of neural activity was proposed by FitzHugh and Nagumo (FHN) as
a mathematical representation of the firing behavior of neuron (FitzHugh, 1961). The neural
FHN model is an excitable media (Keener & Sneyd, 1998). Excitable media are systems that sit
at a steady state and are stable to small disturbances. If, however, they receive a disturbance
(such as a sudden increase in the concentration of the feedback species) above some critical
or threshold value, then they respond with an excitation event (which corresponds to the
reaction front). The FHN model and its modifications served well as simple but reasonable
models of excitation propagation in nerve, heart muscle and other biological excitable media
(Izhikevich, 2007).
The FHN neuron model with external current u studied in this paper is described by the
following set of two ordinary differential equations,

dy

dt
= −y(y − c1)(y − 1) − z + I0 + I cos(c4t) + u (30)

dz

dt
= β(c5y − z)

where y is the potential difference across the membrane, z is a recovery variable which
measures the state of excitability of the cell. Parameters ci are positive constants, I0 stands
for the ionic current inside the cell, I is the amplitude of the external current.
We apply a control approach by injecting the external signal at each individual oscillator in
order to track the desired synchronized signal. In this case, the desired synchronized signal is a
periodic signal. Figures 3 and 4 shows the synchronization performance for the MEC approach
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Fig. 3. Synchronization of 5 individual oscillators for FHN model of neurons.
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Fig. 4. Corresponding control input for Figure 3.

for an ensemble of 5 individual oscillators. It can be seen that, after a short transient, the
array of FHN neurons synchronizes about the desired periodical dynamical behavior. Figure 4
shows that by using periodic applied current we can force the periodicity of the synchronized
neurons. The applied input depends on the current state of the neuron which receives the
external impulse.
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5.3 Circadian rhythms in Drosphila

The biological functions of most living organisms are organized along an approximate 24-h
time cycle or circadian rhythm (Goldbeter, 1996). Circadian rhythms, are endogenous because
they can occur in constant environmental conditions, e.g. constant darkness. Circadian rhythm
can also be entrained by external forcing of modified light-darkness cycles or phase-shifted
when exposed to light pulses (Goldbeter, 1996; Fu & Lee, 2003; Jewett et al., 1991).
Circadian rhythms are centrally regulated by the suprachiasmatic nucleus (SCN) of the
hypothalamus. Most neurons in the SCN become active during the day and are believed
to comprise the biological clock. Dispersed SCN cells exhibit sustained circadian oscillations
with periods ranging from 20 to 28 hours, but on the tissue level, SCN neurons display a
significant degree of synchrony. Over time, the development of a circadian rhythm might
impart larger benefits to the organism. In cyanobacteria, for example, matching of the
free-running period to the light-dark cycle time provides a selective advantage, which is
presumably the basis for its evolution (Ouyang et al., 1998). In Arabidopsis, matching between
the circadian period and the light-dark cycle results in plants that fix carbon at a higher rate
and grow and survive better than those that lack such a match (Dodd et al., 2005).
Concerning the modeling of this phenomenon, it has to be stressed that the mechanism
can be considerably different for the different living beings in which it has been studied,
ranging from unicellular organisms to mammalians, going through fungi and flies. Some of
the most recent models have a high degree of complexity and involve up to 16 differential
equations. However, it seems to be accepted that the central mechanism causing oscillations is
represented by a negative feedback exerted by a protein on the expression of its corresponding
gene.
We consider as the single biochemical oscillator a simple five-variable model proposed for
circadian rhythms for the central clock of fruit fly Drosophila (Gonze & Goldbeter, 2000),

dy

dt
= u

Kn
I

Kn
I + zn

4

− vm
y

Km + y

dz1

dt
= ksy − V1

z1

K1 + z1
+ V2

z2

K2 + z2

dz2

dt
= V1

z1

K1 + z1
− V2

z2

K2 + z2
− V3

z2

K3 + z2
+ V4

z3

K4 + z4

dz3

dt
= V3

z2

K3 + z2
− V4

z3

K4 + z4
− k1z3 + k2z4 − vd

z3

Kd + z3

dz4

dt
= k1z3 − k2z4

where y, z1, z2, z3 and z4 denote, respectively, the concentrations of mRNA, PER protein,
mono- and di-phosphorylated forms of PER protein, and the amount of phosphorylated
protein located in the cells. Once in the nucleus, PER protein down-regulates mRNA
translation, leading to the observed oscillating behavior. The manipulated variable u denotes
the maximal speed of transcription of y. It seems that progresses in gene manipulation
techniques make it reasonable to think of modifying of this parameter. Definition of other
parameters can be found in Goldbeter, (1996). Kinetic parameters can differ from one oscillator
to the other and thus holds variability in individual circadian oscillators.
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Fig. 5. Synchronization of the circadian rhythms in Drosphila using a periodic modulation of
the external input.

The synchronization objective is fix a nominal 24-h period of the circadian oscillations for
an ensemble of individual circadian oscillators. In this case we have implemented the GLC.
Figures 5 and 6 shows that by using a periodic modulation of the external input, we can force
the circadian periodicity. As was stated above, synchronization of circadian rhythms has been
achieved via the periodic modulation of a light sensitive parameter. In this case, the parameter
modulation requires the periodic manipulation of the maxima speed of transcription of
mRNA, which should be addressed using gene manipulation techniques, and is beyond of
the scope of this contribution.

6. Conclusions and perspectives

In this chapter we have discussed the synchronization problem of biochemical oscillators and
we have addressed this problem via three robust feedback control approaches. In this section
we provide some concluding remarks and a perspective on the synchronization of biochemical
systems.

6.1 Concluding remarks

One interesting phenomenon in biological systems is the collective rhythm of all dynamic
cells. Synchronization occurs in many populations of biological oscillators. From the general
synchronization point of view, synchronization approaches can be classified into two
general groups: (i) natural coupling (self-synchronization), and (ii) artificial coupling forced
via periodic modulation or explicit feedback control approaches. Classical methods are
determined by an interplay of time scales by phase locking or, respectively, natural frequency
entrainment or due to suppression of inherent frequencies. Artificial coupling where an
external input can be manipulated can be looked as control synthesis issue and studied within
the control theory framework developed in this work.
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In this chapter we have shown that external stimulation with robust feedback control can
effectively synchronize populations of individual oscillators. We have introduced three robust
feedback control approaches: (i) the MEC approach, that leads to simple practical control
design with good robustness and performance capabilities, (ii) sliding mode control approach
that leads to a simple design with the feature of switching type action that can be appropriate
for biochemical systems, and (iii) a robust geometric linearizing input-output control, that
can be useful to establish a relation between neural processing behavior in cells and the
mathematical formalism of geometric differential methods. Numerical simulations results
indicate good tracking performance of the proposed robust control approaches. The three
robust control schemes are based on a minimum information from the cell model (output),
not on the precise details of the model (e.g., kinetic parameters). Thus, our control scheme is
likely to be effective in the more complicated models of cell dynamics.
From a general point of view external forcing of cellular processes is important in many
application areas ranging from bioengineering to biomedicine. At the level of biology the
problem is to supply an input to the cell such that the biochemical processes of the cell achieve
specified control objectives. At the level of control theory the biological problem amounts to
the construction of a control law such the control objectives are achieved. In this way, the
results in this work must be seen as a first approach to addressing the systematic design of
control systems in cellular processes.

6.2 Perspectives

Feedback control and synchronization for cells is in its infancy, with numerous challenges
and opportunities ahead. For instance, an implicit assumption of the control frameworks
discussed in this article is that the control law is implemented without regard the actuator
and sensor constraints for cells. Besides, we have considered cellular systems described by
ordinary differential systems, without delays. Delays are however known to be involved in
biological systems, because for example mRNA synthesis and transport (in eukaryotic cells)
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are certainly not instantaneous. Systems with delays are however most difficult to analyze and
control, because they are differential systems of infinite dimensions, to which mathematical
tools are more involved.
Feedback control theory in combination with biological knowledge can lead to a better
understand of the complex dynamics of cellular processes. Indeed, the design of closed-loop
system in biological systems is a first step to gain insights of the suppression and generation of
oscillatory behavior, and the closed-loop response can resembles the features of the behavior
of biological processes. Current work is in progress in order to study various synchronization
mechanisms by investigating the effects of various biologically plausible couplings and
several kinds of noise from the viewpoint of feedback control theory.
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