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1. Introduction 

Minimally invasive surgery (MIS) has excellent characteristics that can reduce the burden on 

patients. However, surgeons experience great difficulties in operation due to limitations in 

dexterity imposed by the surgical instruments and the small work space. Therefore, the 

development of surgical assistance devices with the application of robotic and mechatronic 

technology is in high demand (Taylor & Stoianovici, 2003). 

Recently, robotic surgical support systems such as `da VINCI' are in clinical use (Guthart & 

Salisbury, 2000). In particular, the development of multi-DOF robotic forceps manipulators 

capable of reproducing complex human finger movements in laparoscopic surgery is one of 

the most important issues in the field of robotic surgical systems.  

A large number of conventional multi-DOF robotic forceps manipulators currently available 

for MIS are of the wire actuation type (Ikuta et al., 2003). However, the rigidity and the 

durability of wires are poor. Furthermore, cleaning and sterilization of the wire are 

problematic. 

In order to improve the rigidity and the sterilization capability of the manipulator, multi-

DOF robotic forceps manipulators which use methods different from wire actuation for 

bending motion have been developed. These are roughly divided into two types. The first 

type is where two-DOF bending is achieved by combining independent joints which 

perform yaw and pitch motions, respectively. The second type is where omnidirectional 

two-DOF bending is achieved by inclination of the entire bending part of the forceps. Many 

manipulators of the first type are linkage-driven forceps manipulators. In (Yamashita et al., 

2005), an endoscopic forceps manipulator using a multi-slider linkage mechanism is 

developed without using wires for bending motion. However, a wire is used for gripping 

motion. In (Arata et al., 2005), a linkage-driven forceps manipulator which does not use 

wires for either bending or gripping motions is developed.  

On the other hand, as one of the omnidirectional driven-type forceps manipulators, an 

active forceps manipulator in the form of a tripodal platform is developed in (Kobayashi et 

al., 2002). Although it has high rigidity, its bending range is 40 to 50 degrees, and it is 

difficult to expand the bending range due to constraints inherent in the mechanism. 
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We have developed a multi-DOF robotic forceps manipulator for minimally invasive 
surgery incorporating a novel omnidirectional bending technique with a screw drive 
mechanism, termed Double-Screw-Drive (DSD) mechanism, so far (Ishii et al., 2010). A 
robotic forceps manipulator incorporating the DSD mechanism (DSD robotic forceps) can 
bend without using wires. Without wires, it has high rigidity, and it can bend at 90 degrees 
in any arbitrary direction. In addition, the gripper of the DSD robotic forceps can perform 
rotational motion. Opening and closing motions of the gripper are attained by wire 
actuation. 
In order to improve the operability of the robotic surgical support systems and to help 
surgeon's dexterity, development of haptic forceps teleoperation systems is required. Most 
recently, haptic forceps manipulator for minimally invasive surgery has been proposed in 
(Seibold et al., 2005) and (Zemiti et al., 2007), in which operation force is measured by sensor 
and force feedback is provided. In addition, the motion scaling, which can adequately 
reduce or enlarge the movements and tactile senses of the operator and the robot, is 
necessary to assure safety of the surgery.  
On the other hand, communication time delay is inevitable in teleoperation systems, which 
may causes instability of the teleoperation systems. Therefore, stability of the system must 
be guaranteed in the presence of the communication time delay between master device and 
slave device. For bilateral teleoperation systems with constant time delay, stabilization 
method based on scattering transformation is proposed in (Anderson & Spong, 1989). 
(Chopra & Spong, 2005) proposed a passivity based control scheme which guarantees delay 
dependent exponential stability of the position and velocity tracking error. However, 
coupling torques are given as a function of position and velocity, and is not a function of 
force. Hence, motion scaling in force tracking cannot be achieved. 
In this chapter, improving the control scheme proposed in (Chopra & Spong, 2005), such a 
passivity based bilateral control scheme that enables motion scaling in both position 
tracking and force tracking,  and guarantees the stability of the teleoperation system in the 
presence of constant time delay, is proposed. This can be achieved by adding force tracking 
error terms to the coupling torques.  
Then, the proposed bilateral control scheme is applied to a haptic control of bending motion 
of the DSD robotic forceps teleoperation system with constant time delay. However, the 
proposed bilateral control law is applicable only to the one-DOF bending motion of the DSD 
robotic forceps. Therefore, using the change of coordinates, the proposed bilateral control 
scheme is extended so that it may become applicable to the omnidirectional bending motion 
of the DSD robotic forceps.  
Experimental works were carried out using the proposed bilateral control scheme, and 
experimental results showed the effectiveness of the proposed control scheme. 

2. DSD robotic forceps 
In this section, details of the DSD robotic forceps are explained. Overview of the developed 
DSD robotic forceps manipulator is shown in Fig. 1, and the configuration of its bending 
part is shown in Fig. 2. 

2.1 Specifications 
The total length of the DSD robotic forceps manipulator is 635 mm, and its gross weight is 
1050 g. The main specifications of the DSD robotic forceps are given as follows. 
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1. In order to insert a forceps into a trocar, the diameter of the rod of the forceps must be 
10 mm or less since the diameter of the trocar is 12 mm. 

2. The bending force, defined as the lifting force at the tip of the forceps, must be larger 
than 4 N, which would allow the forceps to lift 1/3 of an average human liver. This 
ability is required during operations of internal organs under the liver. 

3. The bending range must be 180 (-90 to +90) degrees or more in both horizontal and 
vertical direction. This ability is required in order to obtain a sufficient degree of 
freedom in limited work space. 

4. The gripper must be able to perform opening and closing motions smoothly. This 
operational requirement is necessary for the proper holding and releasing of medical 
needles. 

5. In order to perform suturing in a small work space, such as the opposite or the far side 
of internal organs, the gripper of the forceps must be able to rotate. 

 

Rod with three shafts inside

Motors

Bending part

Drive Unit

Gripper

Rod with three shafts inside

Motors

Bending part

Drive Unit

Gripper  

Fig. 1. Overview of DSD robotic forceps manipulator 

 

 

 

Fig. 2. Bending part of DSD robotic forceps manipulator 

2.2 Bending mechanism 
One module of the bending mechanism is shown in Fig.3. 
The DSD mechanism has three linkages, and when examined in cross-sectional view, each 
linkage is 120 degrees apart from the other linkages and 6 mm from the center of the cross-
section. Let us denote the group consisting of part £ and part ⁄ as a “bending linkage” and 
the group consisting of part | and part ~ as a “grasping linkage”. Bending motion is 
achieved by rotating the two bending linkages, and grasping linkage is used for actuating 
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the gripper. The key point of this mechanism is that one side of part £ is a left-handed 
screw and the other side is a right-handed screw. When a DSD module is connected to 
another module, a joint is formed. The principle of the bending motion for such a joint is 
illustrated in Fig. 4. 
 

 

BCA

 

A and B: Bending linkage, C: Grasping linkage 

| Universal joint shaft 
~ Coupling 
¡ Plate with left-handed threaded hole 
¢ Plate with right-handed threaded hole 
£ Universal joint of the screw drive 
⁄ Spline nut 

Fig. 3. One module of DSD mechanism 

  

C

A or B
㽵

㽴

㽶C

A or B
㽵

㽴

㽶

 

Fig. 4. Principle of bending motion 

The left-handed screw of part £ connects to part ¡, and the right-handed screw of part £ 
connects to part ¢ of another module. The rotation of the linkage changes the connecting 
length of the screw and the plate at both ends of part £. As a result, an angle is formed 
between part ¡ and part ¢. For example, when the linkage rotates clockwise, part ¡ and 
part ¢ approach each other, and when the linkage rotates counterclockwise, they move 
away from each other. Thus, bending motion is achieved. The maximum bending angle of 
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one joint is between -30 and +30 degrees since this is the allowable bending angle of the 
universal joint. One bending linkage allows for one-DOF bending motion, and by using two 
bending linkages and controlling their rotation angles, arbitrary omnidirectional bending 
motion can be attained. The total length of the bending part is 59 mm excluding a gripper. 

2.3 Attachment and rotary gripper 
The gripper is exchangeable as an end effector and can be replaced with tools such as 

scalpels or surgical knives. Fig. 5 shows the attachment of the end effecter and mechanism of 

the rotary gripper. Gear 1 is on the tip of the grasping linkage and gear 2 is at the root of the 

jaw mesh. The gripper is turned by rotation of the grasping linkage. Although the rotary 

gripper can rotate arbitrary degrees, it should be rotated within 360 degrees to avoid 

winding of the wire which drives the jaw. 

 

Gear1

Gear2End effecter

End plate

Gear1

Gear2

Gear1

Gear2End effecter

End plate

End effecter

End plate

 

Fig. 5. Attachment and rotation of gripper 

2.4 Open and close of jaws 
The opening and closing motions of the gripper are achieved by wire actuation. Only one 

side of the jaws can move, and the other side is fixed. The wire for actuation connects to the 

drive unit through the inside of the DSD mechanism and the rod, and is pulled by the 

motor. The open and closed states of the gripper are shown in Fig.6. 

 

Open Close

Wire

Open Close

Wire

 

Fig. 6. Grasping of gripper 

2.5 Drive unit 
The feature of a drive unit for the DSD robotic forceps manipulator is shown in Fig.7. The 

total length of the drive unit is 274 mm, its maximum diameter is 50 mm, and its weight is 

935 g. Driving forces from motors are transmitted to the linkages through the gears. There 
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are four motors in the drive unit. Three motors are mounted at the center of the drive unit. 

Two of them are used for inducing bending motion and the third one is used for inducing 

rotary motion of the gripper. The fourth motor, which is mounted in the tail, is for the 

opening and closing motions of the gripper actuated by wire. The wire capstan is attached to 

the motor shaft of the forth motor and acts as a reel for the wire. The spring is used for 

maintaining the tension of the wire. DC micromotors 1727U024C (2.25W) produced by 

FAULHABER Co. were selected for the bending motion and the rotary motion of the 

gripper. For the opening and closing motions of the gripper, a DC micro motor 1727U012C 

(2.25W) produced by FAULHABER Corp. was selected. A reduction gear and a rotary 

encoder are installed in the motor. 

 

Wire CapstanWire

274

50

Spring

Gear C

Gear A Gear B

Wire CapstanWire

274

50

Spring

Gear C

Gear A Gear B

 

Fig. 7. Drive unit 

The inside part of the rod, as shown in Fig. 1, consists of three shafts, each 2 mm in diameter 

and 300 mm long. Each motor in the drive unit and each linkage in the DSD mechanism are 

connected to each other through a shaft. Therefore, the rotation of each motor is transmitted 

to each respective linkage through a shaft. 

2.6 Built DSD robotic forceps manipulator 
The proposed DSD robotic forceps manipulator was built from stainless steel SUS303 and 

SUS304 to satisfy bio-compatibility requirements. The miniature universal joints produced 

by Miyoshi Co., LTD. were selected. The universal joints have a diameter of 3 mm and are of 

the MDDS type. The screws on both sides of the yokes were fabricated by special order. 

The built DSD robotic forceps manipulator is shown in Fig. 8. Its maximum diameter from 

the top of the bending part to the root of the rod is 10 mm. The total length of the bending 

part, including the gripper, is 85 mm. 

 

 

Fig. 8. Built DSD robotic forceps manipulator 

A transition chart of the rotary gripper is shown in Fig.9. 
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Fig. 9. Transition chart of the rotary gripper 

2.7 Master manipulator for teleoperation 
In a laparoscopic surgery, multi-DOF robotic forceps manipulators are operated by remote 
control. In order to control the DSD robotic forceps as a teleoperation system, the joy-stick 
type master manipulator for teleoperation was designed and built in (Ishii et al., 2010) by 
reconstruction of a ready-made joy-stick combined with the conventional forceps, which 
enables to control bending, grasping and rotary motions of the DSD robotic forceps 
manipulator. In addition, the built joy-stick type master manipulator was modified so that 
the operator can feel reaction force generated by the electric motors. The teleoperation 
system and the force feedback mechanisms for the bending force are illustrated in Fig.10. 
The operation force is detected by the strain gauges, and variation of the position is 
measured by the encoders mounted in the electric motors. 
 

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Strain gauge

BendingStrain gauge
Motor with

rotary encoder

Joystick

Master Slave

mx

sx

sf

mf

 

Fig. 10. DSD robotic forceps teleoperation system 

3. Bilateral control for one-DOF bending 

In this section, bilateral control law for one-DOF bending of the DSD robotic forceps 
teleoperation system with communication time delay is derived. 

3.1 Derivation of Control Law 
Let the dynamics of the one-DOF master-slave teleoperation system be given by 

 m m m m m m m mm x b x c x f+ + = τ +$$ $ , (1) 
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 s s s s s s s sm x b x c x f+ + = τ −$$ $ , (2) 

where subscripts m and s denote master and slave respectively. xm and xs represent the 
displacements, mm and ms the masses, bm and bs the viscous coefficients, and cm and cs the 
spring coefficients of the master and slave devices. fm stands for the force applied to the 
master device by human operator, fs the force of the slave device due to the mechanical 
interaction between slave device and handling object, and mτ  and sτ  are input motor 
toques.  
As shown in Fig.11, there exists constant time delay T in the network between the master 
and the slave systems.  
 

Human

operator
Master Slave Environment

mx sx

mf sf

T

T

Communication Time Delay

Human

operator
Master Slave Environment

mx sx

mf sf

T

T

Communication Time Delay

 

Fig. 11. Communication time delay in teleoperation systems 

Define motor torques as 

 mmmmmmmm xcxbxm +−−= λλττ $
, (3) 

 ssssssss xcxbxm +−−= λλττ $
, (4) 

where λ  is a positive constant, and mτ  and sτ  are coupling torques. Then, the dynamics 
are rewritten as follows. 

 mmmmmm frbrm +=+ τ$
, (5) 

 ssssss frbrm −=+ τ$
, (6) 

where rm and rs are new variables defined as 

 mmm xxr λ+= $
, (7) 

 sss xxr λ+= $
. (8) 

Control objective is described as follows. 

[Design Problem] Find a bilateral control law which satisfies the following two 

specifications. 

Specification 1: In both position tracking and force tracking, the motion scaling, which can 

adequately reduce or enlarge the movements and tactile senses of the master device and the 

slave device, is achievable. 

Specification 2: The stability of the teleoperation system in the presence of the constant 

communication time delay between master device and slave device, is guaranteed. 
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Assume the following condition. 

Assumption: The human operator and the remote environment are passive. 

In the presence of the communication time delay between master device and slave device, 

the following fact is shown in (Chopra et al., 2003). 

Fact: In the case where the communication time delay T  is constant, the teleoperation 

system is passive. 

From Assumption and Fact, the following inequalities hold. 

 
0 0

0, 0
t t

m m s sr f d r f d− τ ≥ τ ≥∫ ∫ , (9) 

 ( ) ( )
0 0

0, 0
t t

s m m sr f T d r f T d− τ − τ ≥ τ − τ ≥∫ ∫ . (10) 

Using inequalities (9) and (10), define a positive definite function V  as follows. 

 

( )
( ) ( )

( ) ( )

2 2 2 2 2
1

0 0

0 0

2 1 2 1

2 2

t

m m p s s m p st T

t t

m m m p f s s s

t t

p s s m f m m s

V m r G m r K r G r d

K r f d G G K r f d

G K r f T d G K r f T d

−
= + + + τ

− + τ + + τ

− τ − τ + τ − τ

∫

∫ ∫

∫ ∫

, (11) 

where 1K , mK  and sK  are feedback gains, and 1pG ≥  and 1fG ≥  are scaling gains for 

position tracking and force tracking, respectively. 

The derivative of V  along the trajectories of the systems (5) and (6) is given by 

 

( )
( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )( )

( )( ) ( )( )
( )

2 2 2
1

2 2 2
1

1

1

2 2

  

  2 1 2 1

  2 2

2 2

  

  

  2 1

m m m p s s s m p s

m p s

m m m p f s s s

p s s m f m m s

m m m m m p s s s s s

p s m p s m

m p s m p s

m

V m r r G m r r K r G r

K r t T G r t T

K r f G G K r f

G K r f t T G K r f t T

r b r f G r b r f

K G r t T r G r t T r

K r t T G r r t T G r

K

= + + +

− − + −

− + + +

− − + −

= − + τ + + − + τ −

− − − − +

− − − − +

− +

$ $ $

( )
( ) ( )

2 1

  2 2 .

m m p f s s s

p s s m f m m s

r f G G K r f

G K r f t T G K r f t T

+ +

− − + −

 (12) 

Let the coupling torques be given as follows. 

 ( )( ) ( )( )1m p s m m f s mK G r t T r K G f t T fτ = − − − − − , (13) 

 ( )( ) ( )( )1s m p s s m f sK r t T G r K f t T G fτ = − − + − − . (14) 
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Using (13) and (14), (12) is rewritten as follows. 

 

( )( ){ } ( )( ){ }
( )( ){ } ( )( ){ }

( ) ( )
( ) ( )

2 2

1
1

1
1

2

2 2 2 2 2 2

 2

 2

 2 1 2 1

 2 2

2

m m m m m m p s s p s s p s s

m m f s m m m m f s m

s s m f s p s s s m f s

m m m p f s s

p s s m f m m s

m m

V b r r r f G b r G r G r f

K G f t T f r K K G f t T f

K f t T G f G r K K f t T G f

K r f G G K r f

G K r f t T G K r f t T

b r

−

−

= − + τ + − + τ −

⎡ ⎤+ τ + − − + τ + − −⎢ ⎥⎣ ⎦
⎡ ⎤− τ − − − + τ − − −⎢ ⎥⎣ ⎦

− + + +

− − + −

= −

$

( )( ){ } ( )( ){ }
( )( ) ( )( )

2

2 2
1 1

1 1

2 2

1 1

2

 

.

p s s

m m f s m s s m f s

p s m m p s

G b r

K K G f t T f K K f t T G f

K G r t T r K r t T G r

− −

−

− τ + − − − τ − − −

≤ − − − − − −

 (15) 

Thus, stability of the teleoperation system is assured in spite of the presence of the constant 
communication time delay, and delay independent exponential convergence of the tracking 
errors of position to the origin is guaranteed. 
Finally, motor torques (3) and (4) are given as follows. 

 
( ) ( )

1 1

1 1

( ) ( ) ( )

( )

m p s p s m f s

m m m m m m m

K G x t T K G x t T K G f t T

K m x c K b x K f

τ = − + λ − − −

− + λ + − λ + +

$

$
, (16) 

 ( ) ( )
1 1

1 1

( ) ( ) ( )

( )

s m m s m

p s s s p s s s s

K x t T K x t T K f t T

K G m x c K G b x K f

τ = − + λ − + −

− + λ + − λ + −

$

$
. (17) 

3.2 Experiments 
In order to verify an effectiveness of the proposed control law, experimental works were 
carried out for the developed DSD robotic forceps teleoperation system. Here, only vertical 
direction of the bending motion is considered. Namely, bending motion of the DSD robotic 
forceps is restricted to one degree of freedom. Then, the dynamics of the master-slave 
teleoperation system are given by equations (1) and (2), since only one bending linkage is 
used. Parameter values of the system are given as mm = 0.07 kg, ms = 0.025 kg, bm = 0.25 
Nm/s, bs = 2.5 Nm/s, cm = 9 N/s and cs = 9 N/s. The control system is constructed under the 
MATLAB/Simulink software environment. 
In the experiments, 200g weights pet bottle filled with water was hung up on the tip of the 
forceps, and lift and down were repeated in vertical direction. Appearance of the 
experiment is shown in Fig. 12. 
First, in order to see the effect of the motion scaling, experimental works with the following 
conditions were carried out. 
a. Verification of the effect of the motion scaling. 

i) Gp= Gf = 1 and T = 0 
ii) Gp = 2, Gf = 3 and T = 0 

Second, in order to see the effect to the time delay, comparison of the proposed bilateral 
control scheme and conventional bilateral control method was performed. 
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Fig. 12. Appearance of experiment 

b. Verification of the effect to the time delay. 
i) Gp= Gf = 1 and T = 0.125 
ii) Force reflecting servo type bilateral control law with constant time delay T = 0.125 

In b-ii), the force reflecting servo type bilateral control law is given as follows. 

 ( )( )m f m sK f f t Tτ = − − , (18) 

 ( )( )s p m sK x t T xτ = − − , (19) 

where Kf and Kp are feedback gains of force and position. The time delay T = 0.125 is 
intentionally generated in the control system, whose value was referred from (Arata et al., 
2007) as the time delay of the control signal between Japan and Thailand: approximately 
124.7 ms.  
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Fig. 13. Experimental result for a-i) 
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Fig. 14. Experimental result for a-ii) 

Note that the proposed bilateral control scheme guarantees stability of the teleoperation 
system in the presence of constant time delay, however, stability is not guaranteed in use of 
the force reflecting servo type bilateral control law in the presence of constant time delay. 

Feedback gains were adjusted by trial and error through repetition of experiments, which 
were determined as λ  = 3.8, K1 = 30, Km = 400, Ks = 400, Kp = 60 and Kf = 650. Experimental 
results for condition a) are shown in Fig. 13 and Fig. 14. 
As shown in Fig. 13 and Fig. 14, it is verified that the motion of slave tracks the motion of 
master with specified scale in both position tracking and force tracking. 
Experimental results for condition b) are shown in Fig. 15 and Fig. 16. 
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Fig. 15. Experimental result for b-i) 
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Fig. 16. Experimental result for b-ii) 

As shown in Fig. 15 and Fig. 16, tracking errors of both position and force in Fig. 15 are 
smaller than those of Fig. 16. From the above observations, the effectiveness of the proposed 
control law for one-DOF bending motion of the DSD robotic forceps was verified. 

4. Bilateral control for omnidirectional bending 

In this section, the bilateral control scheme described in the former session is extended to 
omnidirectional bending of the DSD robotic forceps teleoperation system with constant time 
delay. 

4.1 Extension to omnidirectional bending 
As shown in Fig.10, master device is modified joy-stick type manipulator. Namely, this is 
different structured master-slave system. The cross-section views of shaft of the joy-stick 
and the DSD robotic forceps are shown in Fig.17. 
Due to the placement of strain gauges and motors with encoder of the master device, the 
dynamics of the master device are given in x-y coordinates as follows.  

 m m m m m m xm xmm x b x c x f+ + = τ +$$ $ , (20) 

 
m m m m m m ym ymm y b y c y f+ + = τ +$$ $ . (21) 

When only motor A drives, bending direction of the DSD robotic forceps is along A-axis, 
and when only motor B drives, bending direction of the DSD robotic forceps is along B-axis. 
Thus, due to the arrangement of the bending linkages, the dynamics of the slave device are 
given in A-B coordinates as follows. 

 
s s s s s s As Asm A b A c A f+ + = τ −$$ $ , (22) 

 
s s s s s s Bs Bsm B b B c B f+ + = τ −$$ $ . (23) 
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Fig. 17. Coordinates of master device and slave device 

In order to extend the proposed bilateral control law to the omnidirectional bending motion 
of the DSD robotic forceps, the coordinates must be unified. 

As shown in Fig. 17, xm and ym are measured by encoders. fxm, fym, fxs, and fys are measured by 

strain gauges. xmτ , ymτ , xsτ  and ysτ  are calculated from the bilateral control laws. These 

values are obtained in x-y coordinates. Therefore, consider to unify the coordinates in x-y 

coordinates. While, displacement of the slave As and Bs are measured by encoder, which are 

obtained in A-B coordinates. These values must be changed into x-y coordinates. 
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Fig. 18. Change of coordinates 

The change of coordinates for position r(A,B) given in A-B coordinates to r(x,y) given in x-y 
coordinates (Fig. 18) is given as follows. 
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3 31

2 1 1

x A

y B

⎡ ⎤⎡ ⎤ ⎡ ⎤−
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. (24) 

Thus, the dynamics of the slave device given in A-B coordinates are converted into x-y 

coordinates. Finally, the dynamics of the two-DOF DSD robotic forceps teleoperation system 

in horizontal direction and vertical direction are described as follows. 

 m m m m m m xm xm

s s s s s s xs xs

m x b x c x f

m x b x c x f

+ + = τ +⎧
⎨ + + = τ −⎩

$$ $
$$ $

 (25) 

 
m m m m m m ym ym

s s s s s s ys ys

m y b y c y f

m y b y c y f

+ + = τ +⎧⎪
⎨ + + = τ −⎪⎩

$$ $

$$ $
 (26) 

For each direction, the bilateral control law derived in the former session, which is 

developed for one-DOF bending of the DSD robotic forceps, is applied. 

However, as shown in Fig. 17, the actual torque inputs to the motors in the slave device are 

Asτ  and Bsτ . Therefore, input torque of the slave must be given in A-B coordinates. Asτ  and 

Bsτ  can be obtained from xsτ  and ysτ  through an inverse transformation of (24), which is 

given by 

 
1 / 3 1

1 / 3 1

xsAs

ysBs

⎡ ⎤ τ⎡ ⎤τ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ττ −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. (27) 

Thus, bilateral control for the omnidirectional bending motion of the DSD robotic forceps is 

realized. 

4.2 Experiments 
Experimental works were carried out using the proposed bilateral control laws. The 

parameter values of the system are given as same value as described in subsection 3.2. 

In the experiments, 100g weight pet bottle filled with water was hung up on the tip of the 

forceps, and the pet bottle was lifted by vertical bending motion of the forceps. Then, the 

forceps was controlled so that the tip of the forceps draws a quarter circular orbit 

counterclockwise, and the PET bottle was landed on the floor.  

Experimental works were carried out under the communication time delay T = 0.125. The 
control gains were determined by trial and error through the repetition of experiments, 
which are given as λ  = 5.0, K1 = 40, Km = 80, and Ks = 80. Scaling gains were chosen as Gp= 
Gf = 1. Experimental results are shown in Fig. 19. 
In Fig. 19, the top two figures show force and position in x coordinates, and the bottom two 

figures show force and position in y coordinates. In the experiment, the PET bottle was lifted 

at around 4 seconds, and landed on the floor at around 20 seconds. The counterclockwise 

rotation at the tip of the forceps has begun from around 12 seconds. 

Although small tracking errors can be seen, the reaction forces which acted on the slave 

device in x-y directions were reproducible to the master manipulator as tactile sense. In 

terms of above observations, it can be said that the effectiveness of the proposed control 

scheme was verified. 
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Fig. 19. Experimental results for omnidirectional bending of DSD robotic forceps 

5. Conclusion 

In this chapter, robust bilateral control for teleoperation systems in the presence of 
communication time delay was discussed. The Lyapunov function based bilateral control 
law that enables the motion scaling in both position tracking and force tracking, and 
guarantees stability of the system in the presence of the constant communication time delay, 
was proposed under the passivity assumption.  
The proposed control law was applied to the haptic control of one-DOF bending motion of 
the DSD robotic forceps teleoperation system with constant time delay, and experimental 
works were executed.  
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In addition, the proposed bilateral control scheme was extended so that it may become 
applicable to the omnidirectional bending motion of the DSD robotic forceps. Experimental 
works for the haptic control of omnidirectional bending motion of the DSD robotic forceps 
teleoperation system with constant time delay were carried out. From the experimental 
results, the effectiveness of the proposed control scheme was verified. 
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